1 /* 2 * Copyright (c) 2007-2011 Nicira Networks. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include "flow.h" 20 #include "datapath.h" 21 #include <linux/uaccess.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/if_ether.h> 25 #include <linux/if_vlan.h> 26 #include <net/llc_pdu.h> 27 #include <linux/kernel.h> 28 #include <linux/jhash.h> 29 #include <linux/jiffies.h> 30 #include <linux/llc.h> 31 #include <linux/module.h> 32 #include <linux/in.h> 33 #include <linux/rcupdate.h> 34 #include <linux/if_arp.h> 35 #include <linux/ip.h> 36 #include <linux/ipv6.h> 37 #include <linux/tcp.h> 38 #include <linux/udp.h> 39 #include <linux/icmp.h> 40 #include <linux/icmpv6.h> 41 #include <linux/rculist.h> 42 #include <net/ip.h> 43 #include <net/ipv6.h> 44 #include <net/ndisc.h> 45 46 static struct kmem_cache *flow_cache; 47 48 static int check_header(struct sk_buff *skb, int len) 49 { 50 if (unlikely(skb->len < len)) 51 return -EINVAL; 52 if (unlikely(!pskb_may_pull(skb, len))) 53 return -ENOMEM; 54 return 0; 55 } 56 57 static bool arphdr_ok(struct sk_buff *skb) 58 { 59 return pskb_may_pull(skb, skb_network_offset(skb) + 60 sizeof(struct arp_eth_header)); 61 } 62 63 static int check_iphdr(struct sk_buff *skb) 64 { 65 unsigned int nh_ofs = skb_network_offset(skb); 66 unsigned int ip_len; 67 int err; 68 69 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 70 if (unlikely(err)) 71 return err; 72 73 ip_len = ip_hdrlen(skb); 74 if (unlikely(ip_len < sizeof(struct iphdr) || 75 skb->len < nh_ofs + ip_len)) 76 return -EINVAL; 77 78 skb_set_transport_header(skb, nh_ofs + ip_len); 79 return 0; 80 } 81 82 static bool tcphdr_ok(struct sk_buff *skb) 83 { 84 int th_ofs = skb_transport_offset(skb); 85 int tcp_len; 86 87 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 88 return false; 89 90 tcp_len = tcp_hdrlen(skb); 91 if (unlikely(tcp_len < sizeof(struct tcphdr) || 92 skb->len < th_ofs + tcp_len)) 93 return false; 94 95 return true; 96 } 97 98 static bool udphdr_ok(struct sk_buff *skb) 99 { 100 return pskb_may_pull(skb, skb_transport_offset(skb) + 101 sizeof(struct udphdr)); 102 } 103 104 static bool icmphdr_ok(struct sk_buff *skb) 105 { 106 return pskb_may_pull(skb, skb_transport_offset(skb) + 107 sizeof(struct icmphdr)); 108 } 109 110 u64 ovs_flow_used_time(unsigned long flow_jiffies) 111 { 112 struct timespec cur_ts; 113 u64 cur_ms, idle_ms; 114 115 ktime_get_ts(&cur_ts); 116 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 117 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + 118 cur_ts.tv_nsec / NSEC_PER_MSEC; 119 120 return cur_ms - idle_ms; 121 } 122 123 #define SW_FLOW_KEY_OFFSET(field) \ 124 (offsetof(struct sw_flow_key, field) + \ 125 FIELD_SIZEOF(struct sw_flow_key, field)) 126 127 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key, 128 int *key_lenp) 129 { 130 unsigned int nh_ofs = skb_network_offset(skb); 131 unsigned int nh_len; 132 int payload_ofs; 133 struct ipv6hdr *nh; 134 uint8_t nexthdr; 135 __be16 frag_off; 136 int err; 137 138 *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label); 139 140 err = check_header(skb, nh_ofs + sizeof(*nh)); 141 if (unlikely(err)) 142 return err; 143 144 nh = ipv6_hdr(skb); 145 nexthdr = nh->nexthdr; 146 payload_ofs = (u8 *)(nh + 1) - skb->data; 147 148 key->ip.proto = NEXTHDR_NONE; 149 key->ip.tos = ipv6_get_dsfield(nh); 150 key->ip.ttl = nh->hop_limit; 151 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 152 key->ipv6.addr.src = nh->saddr; 153 key->ipv6.addr.dst = nh->daddr; 154 155 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 156 if (unlikely(payload_ofs < 0)) 157 return -EINVAL; 158 159 if (frag_off) { 160 if (frag_off & htons(~0x7)) 161 key->ip.frag = OVS_FRAG_TYPE_LATER; 162 else 163 key->ip.frag = OVS_FRAG_TYPE_FIRST; 164 } 165 166 nh_len = payload_ofs - nh_ofs; 167 skb_set_transport_header(skb, nh_ofs + nh_len); 168 key->ip.proto = nexthdr; 169 return nh_len; 170 } 171 172 static bool icmp6hdr_ok(struct sk_buff *skb) 173 { 174 return pskb_may_pull(skb, skb_transport_offset(skb) + 175 sizeof(struct icmp6hdr)); 176 } 177 178 #define TCP_FLAGS_OFFSET 13 179 #define TCP_FLAG_MASK 0x3f 180 181 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb) 182 { 183 u8 tcp_flags = 0; 184 185 if (flow->key.eth.type == htons(ETH_P_IP) && 186 flow->key.ip.proto == IPPROTO_TCP && 187 likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) { 188 u8 *tcp = (u8 *)tcp_hdr(skb); 189 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK; 190 } 191 192 spin_lock(&flow->lock); 193 flow->used = jiffies; 194 flow->packet_count++; 195 flow->byte_count += skb->len; 196 flow->tcp_flags |= tcp_flags; 197 spin_unlock(&flow->lock); 198 } 199 200 struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions) 201 { 202 int actions_len = nla_len(actions); 203 struct sw_flow_actions *sfa; 204 205 /* At least DP_MAX_PORTS actions are required to be able to flood a 206 * packet to every port. Factor of 2 allows for setting VLAN tags, 207 * etc. */ 208 if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4)) 209 return ERR_PTR(-EINVAL); 210 211 sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL); 212 if (!sfa) 213 return ERR_PTR(-ENOMEM); 214 215 sfa->actions_len = actions_len; 216 memcpy(sfa->actions, nla_data(actions), actions_len); 217 return sfa; 218 } 219 220 struct sw_flow *ovs_flow_alloc(void) 221 { 222 struct sw_flow *flow; 223 224 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL); 225 if (!flow) 226 return ERR_PTR(-ENOMEM); 227 228 spin_lock_init(&flow->lock); 229 flow->sf_acts = NULL; 230 231 return flow; 232 } 233 234 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash) 235 { 236 hash = jhash_1word(hash, table->hash_seed); 237 return flex_array_get(table->buckets, 238 (hash & (table->n_buckets - 1))); 239 } 240 241 static struct flex_array *alloc_buckets(unsigned int n_buckets) 242 { 243 struct flex_array *buckets; 244 int i, err; 245 246 buckets = flex_array_alloc(sizeof(struct hlist_head *), 247 n_buckets, GFP_KERNEL); 248 if (!buckets) 249 return NULL; 250 251 err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL); 252 if (err) { 253 flex_array_free(buckets); 254 return NULL; 255 } 256 257 for (i = 0; i < n_buckets; i++) 258 INIT_HLIST_HEAD((struct hlist_head *) 259 flex_array_get(buckets, i)); 260 261 return buckets; 262 } 263 264 static void free_buckets(struct flex_array *buckets) 265 { 266 flex_array_free(buckets); 267 } 268 269 struct flow_table *ovs_flow_tbl_alloc(int new_size) 270 { 271 struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL); 272 273 if (!table) 274 return NULL; 275 276 table->buckets = alloc_buckets(new_size); 277 278 if (!table->buckets) { 279 kfree(table); 280 return NULL; 281 } 282 table->n_buckets = new_size; 283 table->count = 0; 284 table->node_ver = 0; 285 table->keep_flows = false; 286 get_random_bytes(&table->hash_seed, sizeof(u32)); 287 288 return table; 289 } 290 291 void ovs_flow_tbl_destroy(struct flow_table *table) 292 { 293 int i; 294 295 if (!table) 296 return; 297 298 if (table->keep_flows) 299 goto skip_flows; 300 301 for (i = 0; i < table->n_buckets; i++) { 302 struct sw_flow *flow; 303 struct hlist_head *head = flex_array_get(table->buckets, i); 304 struct hlist_node *node, *n; 305 int ver = table->node_ver; 306 307 hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) { 308 hlist_del_rcu(&flow->hash_node[ver]); 309 ovs_flow_free(flow); 310 } 311 } 312 313 skip_flows: 314 free_buckets(table->buckets); 315 kfree(table); 316 } 317 318 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu) 319 { 320 struct flow_table *table = container_of(rcu, struct flow_table, rcu); 321 322 ovs_flow_tbl_destroy(table); 323 } 324 325 void ovs_flow_tbl_deferred_destroy(struct flow_table *table) 326 { 327 if (!table) 328 return; 329 330 call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb); 331 } 332 333 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last) 334 { 335 struct sw_flow *flow; 336 struct hlist_head *head; 337 struct hlist_node *n; 338 int ver; 339 int i; 340 341 ver = table->node_ver; 342 while (*bucket < table->n_buckets) { 343 i = 0; 344 head = flex_array_get(table->buckets, *bucket); 345 hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) { 346 if (i < *last) { 347 i++; 348 continue; 349 } 350 *last = i + 1; 351 return flow; 352 } 353 (*bucket)++; 354 *last = 0; 355 } 356 357 return NULL; 358 } 359 360 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new) 361 { 362 int old_ver; 363 int i; 364 365 old_ver = old->node_ver; 366 new->node_ver = !old_ver; 367 368 /* Insert in new table. */ 369 for (i = 0; i < old->n_buckets; i++) { 370 struct sw_flow *flow; 371 struct hlist_head *head; 372 struct hlist_node *n; 373 374 head = flex_array_get(old->buckets, i); 375 376 hlist_for_each_entry(flow, n, head, hash_node[old_ver]) 377 ovs_flow_tbl_insert(new, flow); 378 } 379 old->keep_flows = true; 380 } 381 382 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets) 383 { 384 struct flow_table *new_table; 385 386 new_table = ovs_flow_tbl_alloc(n_buckets); 387 if (!new_table) 388 return ERR_PTR(-ENOMEM); 389 390 flow_table_copy_flows(table, new_table); 391 392 return new_table; 393 } 394 395 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table) 396 { 397 return __flow_tbl_rehash(table, table->n_buckets); 398 } 399 400 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table) 401 { 402 return __flow_tbl_rehash(table, table->n_buckets * 2); 403 } 404 405 void ovs_flow_free(struct sw_flow *flow) 406 { 407 if (unlikely(!flow)) 408 return; 409 410 kfree((struct sf_flow_acts __force *)flow->sf_acts); 411 kmem_cache_free(flow_cache, flow); 412 } 413 414 /* RCU callback used by ovs_flow_deferred_free. */ 415 static void rcu_free_flow_callback(struct rcu_head *rcu) 416 { 417 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); 418 419 ovs_flow_free(flow); 420 } 421 422 /* Schedules 'flow' to be freed after the next RCU grace period. 423 * The caller must hold rcu_read_lock for this to be sensible. */ 424 void ovs_flow_deferred_free(struct sw_flow *flow) 425 { 426 call_rcu(&flow->rcu, rcu_free_flow_callback); 427 } 428 429 /* RCU callback used by ovs_flow_deferred_free_acts. */ 430 static void rcu_free_acts_callback(struct rcu_head *rcu) 431 { 432 struct sw_flow_actions *sf_acts = container_of(rcu, 433 struct sw_flow_actions, rcu); 434 kfree(sf_acts); 435 } 436 437 /* Schedules 'sf_acts' to be freed after the next RCU grace period. 438 * The caller must hold rcu_read_lock for this to be sensible. */ 439 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts) 440 { 441 call_rcu(&sf_acts->rcu, rcu_free_acts_callback); 442 } 443 444 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 445 { 446 struct qtag_prefix { 447 __be16 eth_type; /* ETH_P_8021Q */ 448 __be16 tci; 449 }; 450 struct qtag_prefix *qp; 451 452 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) 453 return 0; 454 455 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + 456 sizeof(__be16)))) 457 return -ENOMEM; 458 459 qp = (struct qtag_prefix *) skb->data; 460 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); 461 __skb_pull(skb, sizeof(struct qtag_prefix)); 462 463 return 0; 464 } 465 466 static __be16 parse_ethertype(struct sk_buff *skb) 467 { 468 struct llc_snap_hdr { 469 u8 dsap; /* Always 0xAA */ 470 u8 ssap; /* Always 0xAA */ 471 u8 ctrl; 472 u8 oui[3]; 473 __be16 ethertype; 474 }; 475 struct llc_snap_hdr *llc; 476 __be16 proto; 477 478 proto = *(__be16 *) skb->data; 479 __skb_pull(skb, sizeof(__be16)); 480 481 if (ntohs(proto) >= 1536) 482 return proto; 483 484 if (skb->len < sizeof(struct llc_snap_hdr)) 485 return htons(ETH_P_802_2); 486 487 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 488 return htons(0); 489 490 llc = (struct llc_snap_hdr *) skb->data; 491 if (llc->dsap != LLC_SAP_SNAP || 492 llc->ssap != LLC_SAP_SNAP || 493 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 494 return htons(ETH_P_802_2); 495 496 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 497 return llc->ethertype; 498 } 499 500 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 501 int *key_lenp, int nh_len) 502 { 503 struct icmp6hdr *icmp = icmp6_hdr(skb); 504 int error = 0; 505 int key_len; 506 507 /* The ICMPv6 type and code fields use the 16-bit transport port 508 * fields, so we need to store them in 16-bit network byte order. 509 */ 510 key->ipv6.tp.src = htons(icmp->icmp6_type); 511 key->ipv6.tp.dst = htons(icmp->icmp6_code); 512 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 513 514 if (icmp->icmp6_code == 0 && 515 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 516 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 517 int icmp_len = skb->len - skb_transport_offset(skb); 518 struct nd_msg *nd; 519 int offset; 520 521 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 522 523 /* In order to process neighbor discovery options, we need the 524 * entire packet. 525 */ 526 if (unlikely(icmp_len < sizeof(*nd))) 527 goto out; 528 if (unlikely(skb_linearize(skb))) { 529 error = -ENOMEM; 530 goto out; 531 } 532 533 nd = (struct nd_msg *)skb_transport_header(skb); 534 key->ipv6.nd.target = nd->target; 535 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 536 537 icmp_len -= sizeof(*nd); 538 offset = 0; 539 while (icmp_len >= 8) { 540 struct nd_opt_hdr *nd_opt = 541 (struct nd_opt_hdr *)(nd->opt + offset); 542 int opt_len = nd_opt->nd_opt_len * 8; 543 544 if (unlikely(!opt_len || opt_len > icmp_len)) 545 goto invalid; 546 547 /* Store the link layer address if the appropriate 548 * option is provided. It is considered an error if 549 * the same link layer option is specified twice. 550 */ 551 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 552 && opt_len == 8) { 553 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 554 goto invalid; 555 memcpy(key->ipv6.nd.sll, 556 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); 557 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 558 && opt_len == 8) { 559 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 560 goto invalid; 561 memcpy(key->ipv6.nd.tll, 562 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); 563 } 564 565 icmp_len -= opt_len; 566 offset += opt_len; 567 } 568 } 569 570 goto out; 571 572 invalid: 573 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 574 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 575 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 576 577 out: 578 *key_lenp = key_len; 579 return error; 580 } 581 582 /** 583 * ovs_flow_extract - extracts a flow key from an Ethernet frame. 584 * @skb: sk_buff that contains the frame, with skb->data pointing to the 585 * Ethernet header 586 * @in_port: port number on which @skb was received. 587 * @key: output flow key 588 * @key_lenp: length of output flow key 589 * 590 * The caller must ensure that skb->len >= ETH_HLEN. 591 * 592 * Returns 0 if successful, otherwise a negative errno value. 593 * 594 * Initializes @skb header pointers as follows: 595 * 596 * - skb->mac_header: the Ethernet header. 597 * 598 * - skb->network_header: just past the Ethernet header, or just past the 599 * VLAN header, to the first byte of the Ethernet payload. 600 * 601 * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6 602 * on output, then just past the IP header, if one is present and 603 * of a correct length, otherwise the same as skb->network_header. 604 * For other key->dl_type values it is left untouched. 605 */ 606 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key, 607 int *key_lenp) 608 { 609 int error = 0; 610 int key_len = SW_FLOW_KEY_OFFSET(eth); 611 struct ethhdr *eth; 612 613 memset(key, 0, sizeof(*key)); 614 615 key->phy.priority = skb->priority; 616 key->phy.in_port = in_port; 617 618 skb_reset_mac_header(skb); 619 620 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet 621 * header in the linear data area. 622 */ 623 eth = eth_hdr(skb); 624 memcpy(key->eth.src, eth->h_source, ETH_ALEN); 625 memcpy(key->eth.dst, eth->h_dest, ETH_ALEN); 626 627 __skb_pull(skb, 2 * ETH_ALEN); 628 629 if (vlan_tx_tag_present(skb)) 630 key->eth.tci = htons(skb->vlan_tci); 631 else if (eth->h_proto == htons(ETH_P_8021Q)) 632 if (unlikely(parse_vlan(skb, key))) 633 return -ENOMEM; 634 635 key->eth.type = parse_ethertype(skb); 636 if (unlikely(key->eth.type == htons(0))) 637 return -ENOMEM; 638 639 skb_reset_network_header(skb); 640 __skb_push(skb, skb->data - skb_mac_header(skb)); 641 642 /* Network layer. */ 643 if (key->eth.type == htons(ETH_P_IP)) { 644 struct iphdr *nh; 645 __be16 offset; 646 647 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); 648 649 error = check_iphdr(skb); 650 if (unlikely(error)) { 651 if (error == -EINVAL) { 652 skb->transport_header = skb->network_header; 653 error = 0; 654 } 655 goto out; 656 } 657 658 nh = ip_hdr(skb); 659 key->ipv4.addr.src = nh->saddr; 660 key->ipv4.addr.dst = nh->daddr; 661 662 key->ip.proto = nh->protocol; 663 key->ip.tos = nh->tos; 664 key->ip.ttl = nh->ttl; 665 666 offset = nh->frag_off & htons(IP_OFFSET); 667 if (offset) { 668 key->ip.frag = OVS_FRAG_TYPE_LATER; 669 goto out; 670 } 671 if (nh->frag_off & htons(IP_MF) || 672 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 673 key->ip.frag = OVS_FRAG_TYPE_FIRST; 674 675 /* Transport layer. */ 676 if (key->ip.proto == IPPROTO_TCP) { 677 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 678 if (tcphdr_ok(skb)) { 679 struct tcphdr *tcp = tcp_hdr(skb); 680 key->ipv4.tp.src = tcp->source; 681 key->ipv4.tp.dst = tcp->dest; 682 } 683 } else if (key->ip.proto == IPPROTO_UDP) { 684 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 685 if (udphdr_ok(skb)) { 686 struct udphdr *udp = udp_hdr(skb); 687 key->ipv4.tp.src = udp->source; 688 key->ipv4.tp.dst = udp->dest; 689 } 690 } else if (key->ip.proto == IPPROTO_ICMP) { 691 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 692 if (icmphdr_ok(skb)) { 693 struct icmphdr *icmp = icmp_hdr(skb); 694 /* The ICMP type and code fields use the 16-bit 695 * transport port fields, so we need to store 696 * them in 16-bit network byte order. */ 697 key->ipv4.tp.src = htons(icmp->type); 698 key->ipv4.tp.dst = htons(icmp->code); 699 } 700 } 701 702 } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) { 703 struct arp_eth_header *arp; 704 705 arp = (struct arp_eth_header *)skb_network_header(skb); 706 707 if (arp->ar_hrd == htons(ARPHRD_ETHER) 708 && arp->ar_pro == htons(ETH_P_IP) 709 && arp->ar_hln == ETH_ALEN 710 && arp->ar_pln == 4) { 711 712 /* We only match on the lower 8 bits of the opcode. */ 713 if (ntohs(arp->ar_op) <= 0xff) 714 key->ip.proto = ntohs(arp->ar_op); 715 716 if (key->ip.proto == ARPOP_REQUEST 717 || key->ip.proto == ARPOP_REPLY) { 718 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 719 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 720 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN); 721 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN); 722 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); 723 } 724 } 725 } else if (key->eth.type == htons(ETH_P_IPV6)) { 726 int nh_len; /* IPv6 Header + Extensions */ 727 728 nh_len = parse_ipv6hdr(skb, key, &key_len); 729 if (unlikely(nh_len < 0)) { 730 if (nh_len == -EINVAL) 731 skb->transport_header = skb->network_header; 732 else 733 error = nh_len; 734 goto out; 735 } 736 737 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 738 goto out; 739 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 740 key->ip.frag = OVS_FRAG_TYPE_FIRST; 741 742 /* Transport layer. */ 743 if (key->ip.proto == NEXTHDR_TCP) { 744 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 745 if (tcphdr_ok(skb)) { 746 struct tcphdr *tcp = tcp_hdr(skb); 747 key->ipv6.tp.src = tcp->source; 748 key->ipv6.tp.dst = tcp->dest; 749 } 750 } else if (key->ip.proto == NEXTHDR_UDP) { 751 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 752 if (udphdr_ok(skb)) { 753 struct udphdr *udp = udp_hdr(skb); 754 key->ipv6.tp.src = udp->source; 755 key->ipv6.tp.dst = udp->dest; 756 } 757 } else if (key->ip.proto == NEXTHDR_ICMP) { 758 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 759 if (icmp6hdr_ok(skb)) { 760 error = parse_icmpv6(skb, key, &key_len, nh_len); 761 if (error < 0) 762 goto out; 763 } 764 } 765 } 766 767 out: 768 *key_lenp = key_len; 769 return error; 770 } 771 772 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len) 773 { 774 return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0); 775 } 776 777 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table, 778 struct sw_flow_key *key, int key_len) 779 { 780 struct sw_flow *flow; 781 struct hlist_node *n; 782 struct hlist_head *head; 783 u32 hash; 784 785 hash = ovs_flow_hash(key, key_len); 786 787 head = find_bucket(table, hash); 788 hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) { 789 790 if (flow->hash == hash && 791 !memcmp(&flow->key, key, key_len)) { 792 return flow; 793 } 794 } 795 return NULL; 796 } 797 798 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow) 799 { 800 struct hlist_head *head; 801 802 head = find_bucket(table, flow->hash); 803 hlist_add_head_rcu(&flow->hash_node[table->node_ver], head); 804 table->count++; 805 } 806 807 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow) 808 { 809 hlist_del_rcu(&flow->hash_node[table->node_ver]); 810 table->count--; 811 BUG_ON(table->count < 0); 812 } 813 814 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ 815 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { 816 [OVS_KEY_ATTR_ENCAP] = -1, 817 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32), 818 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32), 819 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), 820 [OVS_KEY_ATTR_VLAN] = sizeof(__be16), 821 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), 822 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), 823 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), 824 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), 825 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), 826 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), 827 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), 828 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), 829 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), 830 }; 831 832 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, 833 const struct nlattr *a[], u32 *attrs) 834 { 835 const struct ovs_key_icmp *icmp_key; 836 const struct ovs_key_tcp *tcp_key; 837 const struct ovs_key_udp *udp_key; 838 839 switch (swkey->ip.proto) { 840 case IPPROTO_TCP: 841 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) 842 return -EINVAL; 843 *attrs &= ~(1 << OVS_KEY_ATTR_TCP); 844 845 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 846 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 847 swkey->ipv4.tp.src = tcp_key->tcp_src; 848 swkey->ipv4.tp.dst = tcp_key->tcp_dst; 849 break; 850 851 case IPPROTO_UDP: 852 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) 853 return -EINVAL; 854 *attrs &= ~(1 << OVS_KEY_ATTR_UDP); 855 856 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 857 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 858 swkey->ipv4.tp.src = udp_key->udp_src; 859 swkey->ipv4.tp.dst = udp_key->udp_dst; 860 break; 861 862 case IPPROTO_ICMP: 863 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP))) 864 return -EINVAL; 865 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP); 866 867 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 868 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); 869 swkey->ipv4.tp.src = htons(icmp_key->icmp_type); 870 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code); 871 break; 872 } 873 874 return 0; 875 } 876 877 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, 878 const struct nlattr *a[], u32 *attrs) 879 { 880 const struct ovs_key_icmpv6 *icmpv6_key; 881 const struct ovs_key_tcp *tcp_key; 882 const struct ovs_key_udp *udp_key; 883 884 switch (swkey->ip.proto) { 885 case IPPROTO_TCP: 886 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) 887 return -EINVAL; 888 *attrs &= ~(1 << OVS_KEY_ATTR_TCP); 889 890 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 891 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 892 swkey->ipv6.tp.src = tcp_key->tcp_src; 893 swkey->ipv6.tp.dst = tcp_key->tcp_dst; 894 break; 895 896 case IPPROTO_UDP: 897 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) 898 return -EINVAL; 899 *attrs &= ~(1 << OVS_KEY_ATTR_UDP); 900 901 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 902 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 903 swkey->ipv6.tp.src = udp_key->udp_src; 904 swkey->ipv6.tp.dst = udp_key->udp_dst; 905 break; 906 907 case IPPROTO_ICMPV6: 908 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6))) 909 return -EINVAL; 910 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); 911 912 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 913 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); 914 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type); 915 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code); 916 917 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || 918 swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 919 const struct ovs_key_nd *nd_key; 920 921 if (!(*attrs & (1 << OVS_KEY_ATTR_ND))) 922 return -EINVAL; 923 *attrs &= ~(1 << OVS_KEY_ATTR_ND); 924 925 *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 926 nd_key = nla_data(a[OVS_KEY_ATTR_ND]); 927 memcpy(&swkey->ipv6.nd.target, nd_key->nd_target, 928 sizeof(swkey->ipv6.nd.target)); 929 memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN); 930 memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN); 931 } 932 break; 933 } 934 935 return 0; 936 } 937 938 static int parse_flow_nlattrs(const struct nlattr *attr, 939 const struct nlattr *a[], u32 *attrsp) 940 { 941 const struct nlattr *nla; 942 u32 attrs; 943 int rem; 944 945 attrs = 0; 946 nla_for_each_nested(nla, attr, rem) { 947 u16 type = nla_type(nla); 948 int expected_len; 949 950 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type)) 951 return -EINVAL; 952 953 expected_len = ovs_key_lens[type]; 954 if (nla_len(nla) != expected_len && expected_len != -1) 955 return -EINVAL; 956 957 attrs |= 1 << type; 958 a[type] = nla; 959 } 960 if (rem) 961 return -EINVAL; 962 963 *attrsp = attrs; 964 return 0; 965 } 966 967 /** 968 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key. 969 * @swkey: receives the extracted flow key. 970 * @key_lenp: number of bytes used in @swkey. 971 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 972 * sequence. 973 */ 974 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp, 975 const struct nlattr *attr) 976 { 977 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 978 const struct ovs_key_ethernet *eth_key; 979 int key_len; 980 u32 attrs; 981 int err; 982 983 memset(swkey, 0, sizeof(struct sw_flow_key)); 984 key_len = SW_FLOW_KEY_OFFSET(eth); 985 986 err = parse_flow_nlattrs(attr, a, &attrs); 987 if (err) 988 return err; 989 990 /* Metadata attributes. */ 991 if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { 992 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]); 993 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); 994 } 995 if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { 996 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); 997 if (in_port >= DP_MAX_PORTS) 998 return -EINVAL; 999 swkey->phy.in_port = in_port; 1000 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); 1001 } else { 1002 swkey->phy.in_port = USHRT_MAX; 1003 } 1004 1005 /* Data attributes. */ 1006 if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET))) 1007 return -EINVAL; 1008 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); 1009 1010 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); 1011 memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN); 1012 memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN); 1013 1014 if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) && 1015 nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) { 1016 const struct nlattr *encap; 1017 __be16 tci; 1018 1019 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) | 1020 (1 << OVS_KEY_ATTR_ETHERTYPE) | 1021 (1 << OVS_KEY_ATTR_ENCAP))) 1022 return -EINVAL; 1023 1024 encap = a[OVS_KEY_ATTR_ENCAP]; 1025 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1026 if (tci & htons(VLAN_TAG_PRESENT)) { 1027 swkey->eth.tci = tci; 1028 1029 err = parse_flow_nlattrs(encap, a, &attrs); 1030 if (err) 1031 return err; 1032 } else if (!tci) { 1033 /* Corner case for truncated 802.1Q header. */ 1034 if (nla_len(encap)) 1035 return -EINVAL; 1036 1037 swkey->eth.type = htons(ETH_P_8021Q); 1038 *key_lenp = key_len; 1039 return 0; 1040 } else { 1041 return -EINVAL; 1042 } 1043 } 1044 1045 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { 1046 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1047 if (ntohs(swkey->eth.type) < 1536) 1048 return -EINVAL; 1049 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1050 } else { 1051 swkey->eth.type = htons(ETH_P_802_2); 1052 } 1053 1054 if (swkey->eth.type == htons(ETH_P_IP)) { 1055 const struct ovs_key_ipv4 *ipv4_key; 1056 1057 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4))) 1058 return -EINVAL; 1059 attrs &= ~(1 << OVS_KEY_ATTR_IPV4); 1060 1061 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); 1062 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); 1063 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) 1064 return -EINVAL; 1065 swkey->ip.proto = ipv4_key->ipv4_proto; 1066 swkey->ip.tos = ipv4_key->ipv4_tos; 1067 swkey->ip.ttl = ipv4_key->ipv4_ttl; 1068 swkey->ip.frag = ipv4_key->ipv4_frag; 1069 swkey->ipv4.addr.src = ipv4_key->ipv4_src; 1070 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst; 1071 1072 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1073 err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs); 1074 if (err) 1075 return err; 1076 } 1077 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1078 const struct ovs_key_ipv6 *ipv6_key; 1079 1080 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6))) 1081 return -EINVAL; 1082 attrs &= ~(1 << OVS_KEY_ATTR_IPV6); 1083 1084 key_len = SW_FLOW_KEY_OFFSET(ipv6.label); 1085 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); 1086 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) 1087 return -EINVAL; 1088 swkey->ipv6.label = ipv6_key->ipv6_label; 1089 swkey->ip.proto = ipv6_key->ipv6_proto; 1090 swkey->ip.tos = ipv6_key->ipv6_tclass; 1091 swkey->ip.ttl = ipv6_key->ipv6_hlimit; 1092 swkey->ip.frag = ipv6_key->ipv6_frag; 1093 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src, 1094 sizeof(swkey->ipv6.addr.src)); 1095 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst, 1096 sizeof(swkey->ipv6.addr.dst)); 1097 1098 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1099 err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs); 1100 if (err) 1101 return err; 1102 } 1103 } else if (swkey->eth.type == htons(ETH_P_ARP)) { 1104 const struct ovs_key_arp *arp_key; 1105 1106 if (!(attrs & (1 << OVS_KEY_ATTR_ARP))) 1107 return -EINVAL; 1108 attrs &= ~(1 << OVS_KEY_ATTR_ARP); 1109 1110 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); 1111 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); 1112 swkey->ipv4.addr.src = arp_key->arp_sip; 1113 swkey->ipv4.addr.dst = arp_key->arp_tip; 1114 if (arp_key->arp_op & htons(0xff00)) 1115 return -EINVAL; 1116 swkey->ip.proto = ntohs(arp_key->arp_op); 1117 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN); 1118 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN); 1119 } 1120 1121 if (attrs) 1122 return -EINVAL; 1123 *key_lenp = key_len; 1124 1125 return 0; 1126 } 1127 1128 /** 1129 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key. 1130 * @in_port: receives the extracted input port. 1131 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1132 * sequence. 1133 * 1134 * This parses a series of Netlink attributes that form a flow key, which must 1135 * take the same form accepted by flow_from_nlattrs(), but only enough of it to 1136 * get the metadata, that is, the parts of the flow key that cannot be 1137 * extracted from the packet itself. 1138 */ 1139 int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port, 1140 const struct nlattr *attr) 1141 { 1142 const struct nlattr *nla; 1143 int rem; 1144 1145 *in_port = USHRT_MAX; 1146 *priority = 0; 1147 1148 nla_for_each_nested(nla, attr, rem) { 1149 int type = nla_type(nla); 1150 1151 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) { 1152 if (nla_len(nla) != ovs_key_lens[type]) 1153 return -EINVAL; 1154 1155 switch (type) { 1156 case OVS_KEY_ATTR_PRIORITY: 1157 *priority = nla_get_u32(nla); 1158 break; 1159 1160 case OVS_KEY_ATTR_IN_PORT: 1161 if (nla_get_u32(nla) >= DP_MAX_PORTS) 1162 return -EINVAL; 1163 *in_port = nla_get_u32(nla); 1164 break; 1165 } 1166 } 1167 } 1168 if (rem) 1169 return -EINVAL; 1170 return 0; 1171 } 1172 1173 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb) 1174 { 1175 struct ovs_key_ethernet *eth_key; 1176 struct nlattr *nla, *encap; 1177 1178 if (swkey->phy.priority) 1179 NLA_PUT_U32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority); 1180 1181 if (swkey->phy.in_port != USHRT_MAX) 1182 NLA_PUT_U32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port); 1183 1184 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); 1185 if (!nla) 1186 goto nla_put_failure; 1187 eth_key = nla_data(nla); 1188 memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN); 1189 memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN); 1190 1191 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { 1192 NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)); 1193 NLA_PUT_BE16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci); 1194 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 1195 if (!swkey->eth.tci) 1196 goto unencap; 1197 } else { 1198 encap = NULL; 1199 } 1200 1201 if (swkey->eth.type == htons(ETH_P_802_2)) 1202 goto unencap; 1203 1204 NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type); 1205 1206 if (swkey->eth.type == htons(ETH_P_IP)) { 1207 struct ovs_key_ipv4 *ipv4_key; 1208 1209 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); 1210 if (!nla) 1211 goto nla_put_failure; 1212 ipv4_key = nla_data(nla); 1213 ipv4_key->ipv4_src = swkey->ipv4.addr.src; 1214 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst; 1215 ipv4_key->ipv4_proto = swkey->ip.proto; 1216 ipv4_key->ipv4_tos = swkey->ip.tos; 1217 ipv4_key->ipv4_ttl = swkey->ip.ttl; 1218 ipv4_key->ipv4_frag = swkey->ip.frag; 1219 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1220 struct ovs_key_ipv6 *ipv6_key; 1221 1222 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); 1223 if (!nla) 1224 goto nla_put_failure; 1225 ipv6_key = nla_data(nla); 1226 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src, 1227 sizeof(ipv6_key->ipv6_src)); 1228 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst, 1229 sizeof(ipv6_key->ipv6_dst)); 1230 ipv6_key->ipv6_label = swkey->ipv6.label; 1231 ipv6_key->ipv6_proto = swkey->ip.proto; 1232 ipv6_key->ipv6_tclass = swkey->ip.tos; 1233 ipv6_key->ipv6_hlimit = swkey->ip.ttl; 1234 ipv6_key->ipv6_frag = swkey->ip.frag; 1235 } else if (swkey->eth.type == htons(ETH_P_ARP)) { 1236 struct ovs_key_arp *arp_key; 1237 1238 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); 1239 if (!nla) 1240 goto nla_put_failure; 1241 arp_key = nla_data(nla); 1242 memset(arp_key, 0, sizeof(struct ovs_key_arp)); 1243 arp_key->arp_sip = swkey->ipv4.addr.src; 1244 arp_key->arp_tip = swkey->ipv4.addr.dst; 1245 arp_key->arp_op = htons(swkey->ip.proto); 1246 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN); 1247 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN); 1248 } 1249 1250 if ((swkey->eth.type == htons(ETH_P_IP) || 1251 swkey->eth.type == htons(ETH_P_IPV6)) && 1252 swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1253 1254 if (swkey->ip.proto == IPPROTO_TCP) { 1255 struct ovs_key_tcp *tcp_key; 1256 1257 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); 1258 if (!nla) 1259 goto nla_put_failure; 1260 tcp_key = nla_data(nla); 1261 if (swkey->eth.type == htons(ETH_P_IP)) { 1262 tcp_key->tcp_src = swkey->ipv4.tp.src; 1263 tcp_key->tcp_dst = swkey->ipv4.tp.dst; 1264 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1265 tcp_key->tcp_src = swkey->ipv6.tp.src; 1266 tcp_key->tcp_dst = swkey->ipv6.tp.dst; 1267 } 1268 } else if (swkey->ip.proto == IPPROTO_UDP) { 1269 struct ovs_key_udp *udp_key; 1270 1271 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); 1272 if (!nla) 1273 goto nla_put_failure; 1274 udp_key = nla_data(nla); 1275 if (swkey->eth.type == htons(ETH_P_IP)) { 1276 udp_key->udp_src = swkey->ipv4.tp.src; 1277 udp_key->udp_dst = swkey->ipv4.tp.dst; 1278 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1279 udp_key->udp_src = swkey->ipv6.tp.src; 1280 udp_key->udp_dst = swkey->ipv6.tp.dst; 1281 } 1282 } else if (swkey->eth.type == htons(ETH_P_IP) && 1283 swkey->ip.proto == IPPROTO_ICMP) { 1284 struct ovs_key_icmp *icmp_key; 1285 1286 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); 1287 if (!nla) 1288 goto nla_put_failure; 1289 icmp_key = nla_data(nla); 1290 icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src); 1291 icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst); 1292 } else if (swkey->eth.type == htons(ETH_P_IPV6) && 1293 swkey->ip.proto == IPPROTO_ICMPV6) { 1294 struct ovs_key_icmpv6 *icmpv6_key; 1295 1296 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, 1297 sizeof(*icmpv6_key)); 1298 if (!nla) 1299 goto nla_put_failure; 1300 icmpv6_key = nla_data(nla); 1301 icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src); 1302 icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst); 1303 1304 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || 1305 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { 1306 struct ovs_key_nd *nd_key; 1307 1308 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); 1309 if (!nla) 1310 goto nla_put_failure; 1311 nd_key = nla_data(nla); 1312 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target, 1313 sizeof(nd_key->nd_target)); 1314 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN); 1315 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN); 1316 } 1317 } 1318 } 1319 1320 unencap: 1321 if (encap) 1322 nla_nest_end(skb, encap); 1323 1324 return 0; 1325 1326 nla_put_failure: 1327 return -EMSGSIZE; 1328 } 1329 1330 /* Initializes the flow module. 1331 * Returns zero if successful or a negative error code. */ 1332 int ovs_flow_init(void) 1333 { 1334 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0, 1335 0, NULL); 1336 if (flow_cache == NULL) 1337 return -ENOMEM; 1338 1339 return 0; 1340 } 1341 1342 /* Uninitializes the flow module. */ 1343 void ovs_flow_exit(void) 1344 { 1345 kmem_cache_destroy(flow_cache); 1346 } 1347