1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2007-2014 Nicira, Inc. 4 */ 5 6 #include <linux/uaccess.h> 7 #include <linux/netdevice.h> 8 #include <linux/etherdevice.h> 9 #include <linux/if_ether.h> 10 #include <linux/if_vlan.h> 11 #include <net/llc_pdu.h> 12 #include <linux/kernel.h> 13 #include <linux/jhash.h> 14 #include <linux/jiffies.h> 15 #include <linux/llc.h> 16 #include <linux/module.h> 17 #include <linux/in.h> 18 #include <linux/rcupdate.h> 19 #include <linux/cpumask.h> 20 #include <linux/if_arp.h> 21 #include <linux/ip.h> 22 #include <linux/ipv6.h> 23 #include <linux/mpls.h> 24 #include <linux/sctp.h> 25 #include <linux/smp.h> 26 #include <linux/tcp.h> 27 #include <linux/udp.h> 28 #include <linux/icmp.h> 29 #include <linux/icmpv6.h> 30 #include <linux/rculist.h> 31 #include <net/ip.h> 32 #include <net/ip_tunnels.h> 33 #include <net/ipv6.h> 34 #include <net/mpls.h> 35 #include <net/ndisc.h> 36 #include <net/nsh.h> 37 #include <net/netfilter/nf_conntrack_zones.h> 38 39 #include "conntrack.h" 40 #include "datapath.h" 41 #include "flow.h" 42 #include "flow_netlink.h" 43 #include "vport.h" 44 45 u64 ovs_flow_used_time(unsigned long flow_jiffies) 46 { 47 struct timespec64 cur_ts; 48 u64 cur_ms, idle_ms; 49 50 ktime_get_ts64(&cur_ts); 51 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 52 cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC + 53 cur_ts.tv_nsec / NSEC_PER_MSEC; 54 55 return cur_ms - idle_ms; 56 } 57 58 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) 59 60 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, 61 const struct sk_buff *skb) 62 { 63 struct sw_flow_stats *stats; 64 unsigned int cpu = smp_processor_id(); 65 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0); 66 67 stats = rcu_dereference(flow->stats[cpu]); 68 69 /* Check if already have CPU-specific stats. */ 70 if (likely(stats)) { 71 spin_lock(&stats->lock); 72 /* Mark if we write on the pre-allocated stats. */ 73 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu)) 74 flow->stats_last_writer = cpu; 75 } else { 76 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ 77 spin_lock(&stats->lock); 78 79 /* If the current CPU is the only writer on the 80 * pre-allocated stats keep using them. 81 */ 82 if (unlikely(flow->stats_last_writer != cpu)) { 83 /* A previous locker may have already allocated the 84 * stats, so we need to check again. If CPU-specific 85 * stats were already allocated, we update the pre- 86 * allocated stats as we have already locked them. 87 */ 88 if (likely(flow->stats_last_writer != -1) && 89 likely(!rcu_access_pointer(flow->stats[cpu]))) { 90 /* Try to allocate CPU-specific stats. */ 91 struct sw_flow_stats *new_stats; 92 93 new_stats = 94 kmem_cache_alloc_node(flow_stats_cache, 95 GFP_NOWAIT | 96 __GFP_THISNODE | 97 __GFP_NOWARN | 98 __GFP_NOMEMALLOC, 99 numa_node_id()); 100 if (likely(new_stats)) { 101 new_stats->used = jiffies; 102 new_stats->packet_count = 1; 103 new_stats->byte_count = len; 104 new_stats->tcp_flags = tcp_flags; 105 spin_lock_init(&new_stats->lock); 106 107 rcu_assign_pointer(flow->stats[cpu], 108 new_stats); 109 cpumask_set_cpu(cpu, &flow->cpu_used_mask); 110 goto unlock; 111 } 112 } 113 flow->stats_last_writer = cpu; 114 } 115 } 116 117 stats->used = jiffies; 118 stats->packet_count++; 119 stats->byte_count += len; 120 stats->tcp_flags |= tcp_flags; 121 unlock: 122 spin_unlock(&stats->lock); 123 } 124 125 /* Must be called with rcu_read_lock or ovs_mutex. */ 126 void ovs_flow_stats_get(const struct sw_flow *flow, 127 struct ovs_flow_stats *ovs_stats, 128 unsigned long *used, __be16 *tcp_flags) 129 { 130 int cpu; 131 132 *used = 0; 133 *tcp_flags = 0; 134 memset(ovs_stats, 0, sizeof(*ovs_stats)); 135 136 /* We open code this to make sure cpu 0 is always considered */ 137 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) { 138 struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]); 139 140 if (stats) { 141 /* Local CPU may write on non-local stats, so we must 142 * block bottom-halves here. 143 */ 144 spin_lock_bh(&stats->lock); 145 if (!*used || time_after(stats->used, *used)) 146 *used = stats->used; 147 *tcp_flags |= stats->tcp_flags; 148 ovs_stats->n_packets += stats->packet_count; 149 ovs_stats->n_bytes += stats->byte_count; 150 spin_unlock_bh(&stats->lock); 151 } 152 } 153 } 154 155 /* Called with ovs_mutex. */ 156 void ovs_flow_stats_clear(struct sw_flow *flow) 157 { 158 int cpu; 159 160 /* We open code this to make sure cpu 0 is always considered */ 161 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) { 162 struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]); 163 164 if (stats) { 165 spin_lock_bh(&stats->lock); 166 stats->used = 0; 167 stats->packet_count = 0; 168 stats->byte_count = 0; 169 stats->tcp_flags = 0; 170 spin_unlock_bh(&stats->lock); 171 } 172 } 173 } 174 175 static int check_header(struct sk_buff *skb, int len) 176 { 177 if (unlikely(skb->len < len)) 178 return -EINVAL; 179 if (unlikely(!pskb_may_pull(skb, len))) 180 return -ENOMEM; 181 return 0; 182 } 183 184 static bool arphdr_ok(struct sk_buff *skb) 185 { 186 return pskb_may_pull(skb, skb_network_offset(skb) + 187 sizeof(struct arp_eth_header)); 188 } 189 190 static int check_iphdr(struct sk_buff *skb) 191 { 192 unsigned int nh_ofs = skb_network_offset(skb); 193 unsigned int ip_len; 194 int err; 195 196 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 197 if (unlikely(err)) 198 return err; 199 200 ip_len = ip_hdrlen(skb); 201 if (unlikely(ip_len < sizeof(struct iphdr) || 202 skb->len < nh_ofs + ip_len)) 203 return -EINVAL; 204 205 skb_set_transport_header(skb, nh_ofs + ip_len); 206 return 0; 207 } 208 209 static bool tcphdr_ok(struct sk_buff *skb) 210 { 211 int th_ofs = skb_transport_offset(skb); 212 int tcp_len; 213 214 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 215 return false; 216 217 tcp_len = tcp_hdrlen(skb); 218 if (unlikely(tcp_len < sizeof(struct tcphdr) || 219 skb->len < th_ofs + tcp_len)) 220 return false; 221 222 return true; 223 } 224 225 static bool udphdr_ok(struct sk_buff *skb) 226 { 227 return pskb_may_pull(skb, skb_transport_offset(skb) + 228 sizeof(struct udphdr)); 229 } 230 231 static bool sctphdr_ok(struct sk_buff *skb) 232 { 233 return pskb_may_pull(skb, skb_transport_offset(skb) + 234 sizeof(struct sctphdr)); 235 } 236 237 static bool icmphdr_ok(struct sk_buff *skb) 238 { 239 return pskb_may_pull(skb, skb_transport_offset(skb) + 240 sizeof(struct icmphdr)); 241 } 242 243 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) 244 { 245 unsigned short frag_off; 246 unsigned int payload_ofs = 0; 247 unsigned int nh_ofs = skb_network_offset(skb); 248 unsigned int nh_len; 249 struct ipv6hdr *nh; 250 int err, nexthdr, flags = 0; 251 252 err = check_header(skb, nh_ofs + sizeof(*nh)); 253 if (unlikely(err)) 254 return err; 255 256 nh = ipv6_hdr(skb); 257 258 key->ip.proto = NEXTHDR_NONE; 259 key->ip.tos = ipv6_get_dsfield(nh); 260 key->ip.ttl = nh->hop_limit; 261 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 262 key->ipv6.addr.src = nh->saddr; 263 key->ipv6.addr.dst = nh->daddr; 264 265 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 266 if (flags & IP6_FH_F_FRAG) { 267 if (frag_off) { 268 key->ip.frag = OVS_FRAG_TYPE_LATER; 269 key->ip.proto = nexthdr; 270 return 0; 271 } 272 key->ip.frag = OVS_FRAG_TYPE_FIRST; 273 } else { 274 key->ip.frag = OVS_FRAG_TYPE_NONE; 275 } 276 277 /* Delayed handling of error in ipv6_find_hdr() as it 278 * always sets flags and frag_off to a valid value which may be 279 * used to set key->ip.frag above. 280 */ 281 if (unlikely(nexthdr < 0)) 282 return -EPROTO; 283 284 nh_len = payload_ofs - nh_ofs; 285 skb_set_transport_header(skb, nh_ofs + nh_len); 286 key->ip.proto = nexthdr; 287 return nh_len; 288 } 289 290 static bool icmp6hdr_ok(struct sk_buff *skb) 291 { 292 return pskb_may_pull(skb, skb_transport_offset(skb) + 293 sizeof(struct icmp6hdr)); 294 } 295 296 /** 297 * parse_vlan_tag - Parse vlan tag from vlan header. 298 * @skb: skb containing frame to parse 299 * @key_vh: pointer to parsed vlan tag 300 * @untag_vlan: should the vlan header be removed from the frame 301 * 302 * Return: ERROR on memory error. 303 * %0 if it encounters a non-vlan or incomplete packet. 304 * %1 after successfully parsing vlan tag. 305 */ 306 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh, 307 bool untag_vlan) 308 { 309 struct vlan_head *vh = (struct vlan_head *)skb->data; 310 311 if (likely(!eth_type_vlan(vh->tpid))) 312 return 0; 313 314 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16))) 315 return 0; 316 317 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) + 318 sizeof(__be16)))) 319 return -ENOMEM; 320 321 vh = (struct vlan_head *)skb->data; 322 key_vh->tci = vh->tci | htons(VLAN_CFI_MASK); 323 key_vh->tpid = vh->tpid; 324 325 if (unlikely(untag_vlan)) { 326 int offset = skb->data - skb_mac_header(skb); 327 u16 tci; 328 int err; 329 330 __skb_push(skb, offset); 331 err = __skb_vlan_pop(skb, &tci); 332 __skb_pull(skb, offset); 333 if (err) 334 return err; 335 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci); 336 } else { 337 __skb_pull(skb, sizeof(struct vlan_head)); 338 } 339 return 1; 340 } 341 342 static void clear_vlan(struct sw_flow_key *key) 343 { 344 key->eth.vlan.tci = 0; 345 key->eth.vlan.tpid = 0; 346 key->eth.cvlan.tci = 0; 347 key->eth.cvlan.tpid = 0; 348 } 349 350 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 351 { 352 int res; 353 354 if (skb_vlan_tag_present(skb)) { 355 key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK); 356 key->eth.vlan.tpid = skb->vlan_proto; 357 } else { 358 /* Parse outer vlan tag in the non-accelerated case. */ 359 res = parse_vlan_tag(skb, &key->eth.vlan, true); 360 if (res <= 0) 361 return res; 362 } 363 364 /* Parse inner vlan tag. */ 365 res = parse_vlan_tag(skb, &key->eth.cvlan, false); 366 if (res <= 0) 367 return res; 368 369 return 0; 370 } 371 372 static __be16 parse_ethertype(struct sk_buff *skb) 373 { 374 struct llc_snap_hdr { 375 u8 dsap; /* Always 0xAA */ 376 u8 ssap; /* Always 0xAA */ 377 u8 ctrl; 378 u8 oui[3]; 379 __be16 ethertype; 380 }; 381 struct llc_snap_hdr *llc; 382 __be16 proto; 383 384 proto = *(__be16 *) skb->data; 385 __skb_pull(skb, sizeof(__be16)); 386 387 if (eth_proto_is_802_3(proto)) 388 return proto; 389 390 if (skb->len < sizeof(struct llc_snap_hdr)) 391 return htons(ETH_P_802_2); 392 393 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 394 return htons(0); 395 396 llc = (struct llc_snap_hdr *) skb->data; 397 if (llc->dsap != LLC_SAP_SNAP || 398 llc->ssap != LLC_SAP_SNAP || 399 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 400 return htons(ETH_P_802_2); 401 402 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 403 404 if (eth_proto_is_802_3(llc->ethertype)) 405 return llc->ethertype; 406 407 return htons(ETH_P_802_2); 408 } 409 410 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 411 int nh_len) 412 { 413 struct icmp6hdr *icmp = icmp6_hdr(skb); 414 415 /* The ICMPv6 type and code fields use the 16-bit transport port 416 * fields, so we need to store them in 16-bit network byte order. 417 */ 418 key->tp.src = htons(icmp->icmp6_type); 419 key->tp.dst = htons(icmp->icmp6_code); 420 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); 421 422 if (icmp->icmp6_code == 0 && 423 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 424 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 425 int icmp_len = skb->len - skb_transport_offset(skb); 426 struct nd_msg *nd; 427 int offset; 428 429 /* In order to process neighbor discovery options, we need the 430 * entire packet. 431 */ 432 if (unlikely(icmp_len < sizeof(*nd))) 433 return 0; 434 435 if (unlikely(skb_linearize(skb))) 436 return -ENOMEM; 437 438 nd = (struct nd_msg *)skb_transport_header(skb); 439 key->ipv6.nd.target = nd->target; 440 441 icmp_len -= sizeof(*nd); 442 offset = 0; 443 while (icmp_len >= 8) { 444 struct nd_opt_hdr *nd_opt = 445 (struct nd_opt_hdr *)(nd->opt + offset); 446 int opt_len = nd_opt->nd_opt_len * 8; 447 448 if (unlikely(!opt_len || opt_len > icmp_len)) 449 return 0; 450 451 /* Store the link layer address if the appropriate 452 * option is provided. It is considered an error if 453 * the same link layer option is specified twice. 454 */ 455 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 456 && opt_len == 8) { 457 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 458 goto invalid; 459 ether_addr_copy(key->ipv6.nd.sll, 460 &nd->opt[offset+sizeof(*nd_opt)]); 461 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 462 && opt_len == 8) { 463 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 464 goto invalid; 465 ether_addr_copy(key->ipv6.nd.tll, 466 &nd->opt[offset+sizeof(*nd_opt)]); 467 } 468 469 icmp_len -= opt_len; 470 offset += opt_len; 471 } 472 } 473 474 return 0; 475 476 invalid: 477 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 478 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 479 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 480 481 return 0; 482 } 483 484 static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key) 485 { 486 struct nshhdr *nh; 487 unsigned int nh_ofs = skb_network_offset(skb); 488 u8 version, length; 489 int err; 490 491 err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN); 492 if (unlikely(err)) 493 return err; 494 495 nh = nsh_hdr(skb); 496 version = nsh_get_ver(nh); 497 length = nsh_hdr_len(nh); 498 499 if (version != 0) 500 return -EINVAL; 501 502 err = check_header(skb, nh_ofs + length); 503 if (unlikely(err)) 504 return err; 505 506 nh = nsh_hdr(skb); 507 key->nsh.base.flags = nsh_get_flags(nh); 508 key->nsh.base.ttl = nsh_get_ttl(nh); 509 key->nsh.base.mdtype = nh->mdtype; 510 key->nsh.base.np = nh->np; 511 key->nsh.base.path_hdr = nh->path_hdr; 512 switch (key->nsh.base.mdtype) { 513 case NSH_M_TYPE1: 514 if (length != NSH_M_TYPE1_LEN) 515 return -EINVAL; 516 memcpy(key->nsh.context, nh->md1.context, 517 sizeof(nh->md1)); 518 break; 519 case NSH_M_TYPE2: 520 memset(key->nsh.context, 0, 521 sizeof(nh->md1)); 522 break; 523 default: 524 return -EINVAL; 525 } 526 527 return 0; 528 } 529 530 /** 531 * key_extract_l3l4 - extracts L3/L4 header information. 532 * @skb: sk_buff that contains the frame, with skb->data pointing to the 533 * L3 header 534 * @key: output flow key 535 * 536 * Return: %0 if successful, otherwise a negative errno value. 537 */ 538 static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key) 539 { 540 int error; 541 542 /* Network layer. */ 543 if (key->eth.type == htons(ETH_P_IP)) { 544 struct iphdr *nh; 545 __be16 offset; 546 547 error = check_iphdr(skb); 548 if (unlikely(error)) { 549 memset(&key->ip, 0, sizeof(key->ip)); 550 memset(&key->ipv4, 0, sizeof(key->ipv4)); 551 if (error == -EINVAL) { 552 skb->transport_header = skb->network_header; 553 error = 0; 554 } 555 return error; 556 } 557 558 nh = ip_hdr(skb); 559 key->ipv4.addr.src = nh->saddr; 560 key->ipv4.addr.dst = nh->daddr; 561 562 key->ip.proto = nh->protocol; 563 key->ip.tos = nh->tos; 564 key->ip.ttl = nh->ttl; 565 566 offset = nh->frag_off & htons(IP_OFFSET); 567 if (offset) { 568 key->ip.frag = OVS_FRAG_TYPE_LATER; 569 memset(&key->tp, 0, sizeof(key->tp)); 570 return 0; 571 } 572 if (nh->frag_off & htons(IP_MF) || 573 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 574 key->ip.frag = OVS_FRAG_TYPE_FIRST; 575 else 576 key->ip.frag = OVS_FRAG_TYPE_NONE; 577 578 /* Transport layer. */ 579 if (key->ip.proto == IPPROTO_TCP) { 580 if (tcphdr_ok(skb)) { 581 struct tcphdr *tcp = tcp_hdr(skb); 582 key->tp.src = tcp->source; 583 key->tp.dst = tcp->dest; 584 key->tp.flags = TCP_FLAGS_BE16(tcp); 585 } else { 586 memset(&key->tp, 0, sizeof(key->tp)); 587 } 588 589 } else if (key->ip.proto == IPPROTO_UDP) { 590 if (udphdr_ok(skb)) { 591 struct udphdr *udp = udp_hdr(skb); 592 key->tp.src = udp->source; 593 key->tp.dst = udp->dest; 594 } else { 595 memset(&key->tp, 0, sizeof(key->tp)); 596 } 597 } else if (key->ip.proto == IPPROTO_SCTP) { 598 if (sctphdr_ok(skb)) { 599 struct sctphdr *sctp = sctp_hdr(skb); 600 key->tp.src = sctp->source; 601 key->tp.dst = sctp->dest; 602 } else { 603 memset(&key->tp, 0, sizeof(key->tp)); 604 } 605 } else if (key->ip.proto == IPPROTO_ICMP) { 606 if (icmphdr_ok(skb)) { 607 struct icmphdr *icmp = icmp_hdr(skb); 608 /* The ICMP type and code fields use the 16-bit 609 * transport port fields, so we need to store 610 * them in 16-bit network byte order. */ 611 key->tp.src = htons(icmp->type); 612 key->tp.dst = htons(icmp->code); 613 } else { 614 memset(&key->tp, 0, sizeof(key->tp)); 615 } 616 } 617 618 } else if (key->eth.type == htons(ETH_P_ARP) || 619 key->eth.type == htons(ETH_P_RARP)) { 620 struct arp_eth_header *arp; 621 bool arp_available = arphdr_ok(skb); 622 623 arp = (struct arp_eth_header *)skb_network_header(skb); 624 625 if (arp_available && 626 arp->ar_hrd == htons(ARPHRD_ETHER) && 627 arp->ar_pro == htons(ETH_P_IP) && 628 arp->ar_hln == ETH_ALEN && 629 arp->ar_pln == 4) { 630 631 /* We only match on the lower 8 bits of the opcode. */ 632 if (ntohs(arp->ar_op) <= 0xff) 633 key->ip.proto = ntohs(arp->ar_op); 634 else 635 key->ip.proto = 0; 636 637 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 638 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 639 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); 640 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); 641 } else { 642 memset(&key->ip, 0, sizeof(key->ip)); 643 memset(&key->ipv4, 0, sizeof(key->ipv4)); 644 } 645 } else if (eth_p_mpls(key->eth.type)) { 646 u8 label_count = 1; 647 648 memset(&key->mpls, 0, sizeof(key->mpls)); 649 skb_set_inner_network_header(skb, skb->mac_len); 650 while (1) { 651 __be32 lse; 652 653 error = check_header(skb, skb->mac_len + 654 label_count * MPLS_HLEN); 655 if (unlikely(error)) 656 return 0; 657 658 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN); 659 660 if (label_count <= MPLS_LABEL_DEPTH) 661 memcpy(&key->mpls.lse[label_count - 1], &lse, 662 MPLS_HLEN); 663 664 skb_set_inner_network_header(skb, skb->mac_len + 665 label_count * MPLS_HLEN); 666 if (lse & htonl(MPLS_LS_S_MASK)) 667 break; 668 669 label_count++; 670 } 671 if (label_count > MPLS_LABEL_DEPTH) 672 label_count = MPLS_LABEL_DEPTH; 673 674 key->mpls.num_labels_mask = GENMASK(label_count - 1, 0); 675 } else if (key->eth.type == htons(ETH_P_IPV6)) { 676 int nh_len; /* IPv6 Header + Extensions */ 677 678 nh_len = parse_ipv6hdr(skb, key); 679 if (unlikely(nh_len < 0)) { 680 switch (nh_len) { 681 case -EINVAL: 682 memset(&key->ip, 0, sizeof(key->ip)); 683 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); 684 fallthrough; 685 case -EPROTO: 686 skb->transport_header = skb->network_header; 687 error = 0; 688 break; 689 default: 690 error = nh_len; 691 } 692 return error; 693 } 694 695 if (key->ip.frag == OVS_FRAG_TYPE_LATER) { 696 memset(&key->tp, 0, sizeof(key->tp)); 697 return 0; 698 } 699 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 700 key->ip.frag = OVS_FRAG_TYPE_FIRST; 701 702 /* Transport layer. */ 703 if (key->ip.proto == NEXTHDR_TCP) { 704 if (tcphdr_ok(skb)) { 705 struct tcphdr *tcp = tcp_hdr(skb); 706 key->tp.src = tcp->source; 707 key->tp.dst = tcp->dest; 708 key->tp.flags = TCP_FLAGS_BE16(tcp); 709 } else { 710 memset(&key->tp, 0, sizeof(key->tp)); 711 } 712 } else if (key->ip.proto == NEXTHDR_UDP) { 713 if (udphdr_ok(skb)) { 714 struct udphdr *udp = udp_hdr(skb); 715 key->tp.src = udp->source; 716 key->tp.dst = udp->dest; 717 } else { 718 memset(&key->tp, 0, sizeof(key->tp)); 719 } 720 } else if (key->ip.proto == NEXTHDR_SCTP) { 721 if (sctphdr_ok(skb)) { 722 struct sctphdr *sctp = sctp_hdr(skb); 723 key->tp.src = sctp->source; 724 key->tp.dst = sctp->dest; 725 } else { 726 memset(&key->tp, 0, sizeof(key->tp)); 727 } 728 } else if (key->ip.proto == NEXTHDR_ICMP) { 729 if (icmp6hdr_ok(skb)) { 730 error = parse_icmpv6(skb, key, nh_len); 731 if (error) 732 return error; 733 } else { 734 memset(&key->tp, 0, sizeof(key->tp)); 735 } 736 } 737 } else if (key->eth.type == htons(ETH_P_NSH)) { 738 error = parse_nsh(skb, key); 739 if (error) 740 return error; 741 } 742 return 0; 743 } 744 745 /** 746 * key_extract - extracts a flow key from an Ethernet frame. 747 * @skb: sk_buff that contains the frame, with skb->data pointing to the 748 * Ethernet header 749 * @key: output flow key 750 * 751 * The caller must ensure that skb->len >= ETH_HLEN. 752 * 753 * Initializes @skb header fields as follows: 754 * 755 * - skb->mac_header: the L2 header. 756 * 757 * - skb->network_header: just past the L2 header, or just past the 758 * VLAN header, to the first byte of the L2 payload. 759 * 760 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 761 * on output, then just past the IP header, if one is present and 762 * of a correct length, otherwise the same as skb->network_header. 763 * For other key->eth.type values it is left untouched. 764 * 765 * - skb->protocol: the type of the data starting at skb->network_header. 766 * Equals to key->eth.type. 767 * 768 * Return: %0 if successful, otherwise a negative errno value. 769 */ 770 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) 771 { 772 struct ethhdr *eth; 773 774 /* Flags are always used as part of stats */ 775 key->tp.flags = 0; 776 777 skb_reset_mac_header(skb); 778 779 /* Link layer. */ 780 clear_vlan(key); 781 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) { 782 if (unlikely(eth_type_vlan(skb->protocol))) 783 return -EINVAL; 784 785 skb_reset_network_header(skb); 786 key->eth.type = skb->protocol; 787 } else { 788 eth = eth_hdr(skb); 789 ether_addr_copy(key->eth.src, eth->h_source); 790 ether_addr_copy(key->eth.dst, eth->h_dest); 791 792 __skb_pull(skb, 2 * ETH_ALEN); 793 /* We are going to push all headers that we pull, so no need to 794 * update skb->csum here. 795 */ 796 797 if (unlikely(parse_vlan(skb, key))) 798 return -ENOMEM; 799 800 key->eth.type = parse_ethertype(skb); 801 if (unlikely(key->eth.type == htons(0))) 802 return -ENOMEM; 803 804 /* Multiple tagged packets need to retain TPID to satisfy 805 * skb_vlan_pop(), which will later shift the ethertype into 806 * skb->protocol. 807 */ 808 if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK)) 809 skb->protocol = key->eth.cvlan.tpid; 810 else 811 skb->protocol = key->eth.type; 812 813 skb_reset_network_header(skb); 814 __skb_push(skb, skb->data - skb_mac_header(skb)); 815 } 816 817 skb_reset_mac_len(skb); 818 819 /* Fill out L3/L4 key info, if any */ 820 return key_extract_l3l4(skb, key); 821 } 822 823 /* In the case of conntrack fragment handling it expects L3 headers, 824 * add a helper. 825 */ 826 int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key) 827 { 828 return key_extract_l3l4(skb, key); 829 } 830 831 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) 832 { 833 int res; 834 835 res = key_extract(skb, key); 836 if (!res) 837 key->mac_proto &= ~SW_FLOW_KEY_INVALID; 838 839 return res; 840 } 841 842 static int key_extract_mac_proto(struct sk_buff *skb) 843 { 844 switch (skb->dev->type) { 845 case ARPHRD_ETHER: 846 return MAC_PROTO_ETHERNET; 847 case ARPHRD_NONE: 848 if (skb->protocol == htons(ETH_P_TEB)) 849 return MAC_PROTO_ETHERNET; 850 return MAC_PROTO_NONE; 851 } 852 WARN_ON_ONCE(1); 853 return -EINVAL; 854 } 855 856 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info, 857 struct sk_buff *skb, struct sw_flow_key *key) 858 { 859 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 860 struct tc_skb_ext *tc_ext; 861 #endif 862 bool post_ct = false, post_ct_snat = false, post_ct_dnat = false; 863 int res, err; 864 u16 zone = 0; 865 866 /* Extract metadata from packet. */ 867 if (tun_info) { 868 key->tun_proto = ip_tunnel_info_af(tun_info); 869 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key)); 870 871 if (tun_info->options_len) { 872 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 873 8)) - 1 874 > sizeof(key->tun_opts)); 875 876 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len), 877 tun_info); 878 key->tun_opts_len = tun_info->options_len; 879 } else { 880 key->tun_opts_len = 0; 881 } 882 } else { 883 key->tun_proto = 0; 884 key->tun_opts_len = 0; 885 memset(&key->tun_key, 0, sizeof(key->tun_key)); 886 } 887 888 key->phy.priority = skb->priority; 889 key->phy.in_port = OVS_CB(skb)->input_vport->port_no; 890 key->phy.skb_mark = skb->mark; 891 key->ovs_flow_hash = 0; 892 res = key_extract_mac_proto(skb); 893 if (res < 0) 894 return res; 895 key->mac_proto = res; 896 897 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 898 if (static_branch_unlikely(&tc_recirc_sharing_support)) { 899 tc_ext = skb_ext_find(skb, TC_SKB_EXT); 900 key->recirc_id = tc_ext ? tc_ext->chain : 0; 901 OVS_CB(skb)->mru = tc_ext ? tc_ext->mru : 0; 902 post_ct = tc_ext ? tc_ext->post_ct : false; 903 post_ct_snat = post_ct ? tc_ext->post_ct_snat : false; 904 post_ct_dnat = post_ct ? tc_ext->post_ct_dnat : false; 905 zone = post_ct ? tc_ext->zone : 0; 906 } else { 907 key->recirc_id = 0; 908 } 909 #else 910 key->recirc_id = 0; 911 #endif 912 913 err = key_extract(skb, key); 914 if (!err) { 915 ovs_ct_fill_key(skb, key, post_ct); /* Must be after key_extract(). */ 916 if (post_ct) { 917 if (!skb_get_nfct(skb)) { 918 key->ct_zone = zone; 919 } else { 920 if (!post_ct_dnat) 921 key->ct_state &= ~OVS_CS_F_DST_NAT; 922 if (!post_ct_snat) 923 key->ct_state &= ~OVS_CS_F_SRC_NAT; 924 } 925 } 926 } 927 return err; 928 } 929 930 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr, 931 struct sk_buff *skb, 932 struct sw_flow_key *key, bool log) 933 { 934 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 935 u64 attrs = 0; 936 int err; 937 938 err = parse_flow_nlattrs(attr, a, &attrs, log); 939 if (err) 940 return -EINVAL; 941 942 /* Extract metadata from netlink attributes. */ 943 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log); 944 if (err) 945 return err; 946 947 /* key_extract assumes that skb->protocol is set-up for 948 * layer 3 packets which is the case for other callers, 949 * in particular packets received from the network stack. 950 * Here the correct value can be set from the metadata 951 * extracted above. 952 * For L2 packet key eth type would be zero. skb protocol 953 * would be set to correct value later during key-extact. 954 */ 955 956 skb->protocol = key->eth.type; 957 err = key_extract(skb, key); 958 if (err) 959 return err; 960 961 /* Check that we have conntrack original direction tuple metadata only 962 * for packets for which it makes sense. Otherwise the key may be 963 * corrupted due to overlapping key fields. 964 */ 965 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) && 966 key->eth.type != htons(ETH_P_IP)) 967 return -EINVAL; 968 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) && 969 (key->eth.type != htons(ETH_P_IPV6) || 970 sw_flow_key_is_nd(key))) 971 return -EINVAL; 972 973 return 0; 974 } 975