1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include <linux/uaccess.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/if_ether.h> 23 #include <linux/if_vlan.h> 24 #include <net/llc_pdu.h> 25 #include <linux/kernel.h> 26 #include <linux/jhash.h> 27 #include <linux/jiffies.h> 28 #include <linux/llc.h> 29 #include <linux/module.h> 30 #include <linux/in.h> 31 #include <linux/rcupdate.h> 32 #include <linux/cpumask.h> 33 #include <linux/if_arp.h> 34 #include <linux/ip.h> 35 #include <linux/ipv6.h> 36 #include <linux/mpls.h> 37 #include <linux/sctp.h> 38 #include <linux/smp.h> 39 #include <linux/tcp.h> 40 #include <linux/udp.h> 41 #include <linux/icmp.h> 42 #include <linux/icmpv6.h> 43 #include <linux/rculist.h> 44 #include <net/ip.h> 45 #include <net/ip_tunnels.h> 46 #include <net/ipv6.h> 47 #include <net/mpls.h> 48 #include <net/ndisc.h> 49 50 #include "conntrack.h" 51 #include "datapath.h" 52 #include "flow.h" 53 #include "flow_netlink.h" 54 #include "vport.h" 55 56 u64 ovs_flow_used_time(unsigned long flow_jiffies) 57 { 58 struct timespec cur_ts; 59 u64 cur_ms, idle_ms; 60 61 ktime_get_ts(&cur_ts); 62 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 63 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + 64 cur_ts.tv_nsec / NSEC_PER_MSEC; 65 66 return cur_ms - idle_ms; 67 } 68 69 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) 70 71 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, 72 const struct sk_buff *skb) 73 { 74 struct flow_stats *stats; 75 unsigned int cpu = smp_processor_id(); 76 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0); 77 78 stats = rcu_dereference(flow->stats[cpu]); 79 80 /* Check if already have CPU-specific stats. */ 81 if (likely(stats)) { 82 spin_lock(&stats->lock); 83 /* Mark if we write on the pre-allocated stats. */ 84 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu)) 85 flow->stats_last_writer = cpu; 86 } else { 87 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ 88 spin_lock(&stats->lock); 89 90 /* If the current CPU is the only writer on the 91 * pre-allocated stats keep using them. 92 */ 93 if (unlikely(flow->stats_last_writer != cpu)) { 94 /* A previous locker may have already allocated the 95 * stats, so we need to check again. If CPU-specific 96 * stats were already allocated, we update the pre- 97 * allocated stats as we have already locked them. 98 */ 99 if (likely(flow->stats_last_writer != -1) && 100 likely(!rcu_access_pointer(flow->stats[cpu]))) { 101 /* Try to allocate CPU-specific stats. */ 102 struct flow_stats *new_stats; 103 104 new_stats = 105 kmem_cache_alloc_node(flow_stats_cache, 106 GFP_NOWAIT | 107 __GFP_THISNODE | 108 __GFP_NOWARN | 109 __GFP_NOMEMALLOC, 110 numa_node_id()); 111 if (likely(new_stats)) { 112 new_stats->used = jiffies; 113 new_stats->packet_count = 1; 114 new_stats->byte_count = len; 115 new_stats->tcp_flags = tcp_flags; 116 spin_lock_init(&new_stats->lock); 117 118 rcu_assign_pointer(flow->stats[cpu], 119 new_stats); 120 cpumask_set_cpu(cpu, &flow->cpu_used_mask); 121 goto unlock; 122 } 123 } 124 flow->stats_last_writer = cpu; 125 } 126 } 127 128 stats->used = jiffies; 129 stats->packet_count++; 130 stats->byte_count += len; 131 stats->tcp_flags |= tcp_flags; 132 unlock: 133 spin_unlock(&stats->lock); 134 } 135 136 /* Must be called with rcu_read_lock or ovs_mutex. */ 137 void ovs_flow_stats_get(const struct sw_flow *flow, 138 struct ovs_flow_stats *ovs_stats, 139 unsigned long *used, __be16 *tcp_flags) 140 { 141 int cpu; 142 143 *used = 0; 144 *tcp_flags = 0; 145 memset(ovs_stats, 0, sizeof(*ovs_stats)); 146 147 /* We open code this to make sure cpu 0 is always considered */ 148 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) { 149 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]); 150 151 if (stats) { 152 /* Local CPU may write on non-local stats, so we must 153 * block bottom-halves here. 154 */ 155 spin_lock_bh(&stats->lock); 156 if (!*used || time_after(stats->used, *used)) 157 *used = stats->used; 158 *tcp_flags |= stats->tcp_flags; 159 ovs_stats->n_packets += stats->packet_count; 160 ovs_stats->n_bytes += stats->byte_count; 161 spin_unlock_bh(&stats->lock); 162 } 163 } 164 } 165 166 /* Called with ovs_mutex. */ 167 void ovs_flow_stats_clear(struct sw_flow *flow) 168 { 169 int cpu; 170 171 /* We open code this to make sure cpu 0 is always considered */ 172 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) { 173 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]); 174 175 if (stats) { 176 spin_lock_bh(&stats->lock); 177 stats->used = 0; 178 stats->packet_count = 0; 179 stats->byte_count = 0; 180 stats->tcp_flags = 0; 181 spin_unlock_bh(&stats->lock); 182 } 183 } 184 } 185 186 static int check_header(struct sk_buff *skb, int len) 187 { 188 if (unlikely(skb->len < len)) 189 return -EINVAL; 190 if (unlikely(!pskb_may_pull(skb, len))) 191 return -ENOMEM; 192 return 0; 193 } 194 195 static bool arphdr_ok(struct sk_buff *skb) 196 { 197 return pskb_may_pull(skb, skb_network_offset(skb) + 198 sizeof(struct arp_eth_header)); 199 } 200 201 static int check_iphdr(struct sk_buff *skb) 202 { 203 unsigned int nh_ofs = skb_network_offset(skb); 204 unsigned int ip_len; 205 int err; 206 207 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 208 if (unlikely(err)) 209 return err; 210 211 ip_len = ip_hdrlen(skb); 212 if (unlikely(ip_len < sizeof(struct iphdr) || 213 skb->len < nh_ofs + ip_len)) 214 return -EINVAL; 215 216 skb_set_transport_header(skb, nh_ofs + ip_len); 217 return 0; 218 } 219 220 static bool tcphdr_ok(struct sk_buff *skb) 221 { 222 int th_ofs = skb_transport_offset(skb); 223 int tcp_len; 224 225 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 226 return false; 227 228 tcp_len = tcp_hdrlen(skb); 229 if (unlikely(tcp_len < sizeof(struct tcphdr) || 230 skb->len < th_ofs + tcp_len)) 231 return false; 232 233 return true; 234 } 235 236 static bool udphdr_ok(struct sk_buff *skb) 237 { 238 return pskb_may_pull(skb, skb_transport_offset(skb) + 239 sizeof(struct udphdr)); 240 } 241 242 static bool sctphdr_ok(struct sk_buff *skb) 243 { 244 return pskb_may_pull(skb, skb_transport_offset(skb) + 245 sizeof(struct sctphdr)); 246 } 247 248 static bool icmphdr_ok(struct sk_buff *skb) 249 { 250 return pskb_may_pull(skb, skb_transport_offset(skb) + 251 sizeof(struct icmphdr)); 252 } 253 254 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) 255 { 256 unsigned int nh_ofs = skb_network_offset(skb); 257 unsigned int nh_len; 258 int payload_ofs; 259 struct ipv6hdr *nh; 260 uint8_t nexthdr; 261 __be16 frag_off; 262 int err; 263 264 err = check_header(skb, nh_ofs + sizeof(*nh)); 265 if (unlikely(err)) 266 return err; 267 268 nh = ipv6_hdr(skb); 269 nexthdr = nh->nexthdr; 270 payload_ofs = (u8 *)(nh + 1) - skb->data; 271 272 key->ip.proto = NEXTHDR_NONE; 273 key->ip.tos = ipv6_get_dsfield(nh); 274 key->ip.ttl = nh->hop_limit; 275 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 276 key->ipv6.addr.src = nh->saddr; 277 key->ipv6.addr.dst = nh->daddr; 278 279 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 280 281 if (frag_off) { 282 if (frag_off & htons(~0x7)) 283 key->ip.frag = OVS_FRAG_TYPE_LATER; 284 else 285 key->ip.frag = OVS_FRAG_TYPE_FIRST; 286 } else { 287 key->ip.frag = OVS_FRAG_TYPE_NONE; 288 } 289 290 /* Delayed handling of error in ipv6_skip_exthdr() as it 291 * always sets frag_off to a valid value which may be 292 * used to set key->ip.frag above. 293 */ 294 if (unlikely(payload_ofs < 0)) 295 return -EPROTO; 296 297 nh_len = payload_ofs - nh_ofs; 298 skb_set_transport_header(skb, nh_ofs + nh_len); 299 key->ip.proto = nexthdr; 300 return nh_len; 301 } 302 303 static bool icmp6hdr_ok(struct sk_buff *skb) 304 { 305 return pskb_may_pull(skb, skb_transport_offset(skb) + 306 sizeof(struct icmp6hdr)); 307 } 308 309 /** 310 * Parse vlan tag from vlan header. 311 * Returns ERROR on memory error. 312 * Returns 0 if it encounters a non-vlan or incomplete packet. 313 * Returns 1 after successfully parsing vlan tag. 314 */ 315 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh, 316 bool untag_vlan) 317 { 318 struct vlan_head *vh = (struct vlan_head *)skb->data; 319 320 if (likely(!eth_type_vlan(vh->tpid))) 321 return 0; 322 323 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16))) 324 return 0; 325 326 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) + 327 sizeof(__be16)))) 328 return -ENOMEM; 329 330 vh = (struct vlan_head *)skb->data; 331 key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT); 332 key_vh->tpid = vh->tpid; 333 334 if (unlikely(untag_vlan)) { 335 int offset = skb->data - skb_mac_header(skb); 336 u16 tci; 337 int err; 338 339 __skb_push(skb, offset); 340 err = __skb_vlan_pop(skb, &tci); 341 __skb_pull(skb, offset); 342 if (err) 343 return err; 344 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci); 345 } else { 346 __skb_pull(skb, sizeof(struct vlan_head)); 347 } 348 return 1; 349 } 350 351 static void clear_vlan(struct sw_flow_key *key) 352 { 353 key->eth.vlan.tci = 0; 354 key->eth.vlan.tpid = 0; 355 key->eth.cvlan.tci = 0; 356 key->eth.cvlan.tpid = 0; 357 } 358 359 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 360 { 361 int res; 362 363 if (skb_vlan_tag_present(skb)) { 364 key->eth.vlan.tci = htons(skb->vlan_tci); 365 key->eth.vlan.tpid = skb->vlan_proto; 366 } else { 367 /* Parse outer vlan tag in the non-accelerated case. */ 368 res = parse_vlan_tag(skb, &key->eth.vlan, true); 369 if (res <= 0) 370 return res; 371 } 372 373 /* Parse inner vlan tag. */ 374 res = parse_vlan_tag(skb, &key->eth.cvlan, false); 375 if (res <= 0) 376 return res; 377 378 return 0; 379 } 380 381 static __be16 parse_ethertype(struct sk_buff *skb) 382 { 383 struct llc_snap_hdr { 384 u8 dsap; /* Always 0xAA */ 385 u8 ssap; /* Always 0xAA */ 386 u8 ctrl; 387 u8 oui[3]; 388 __be16 ethertype; 389 }; 390 struct llc_snap_hdr *llc; 391 __be16 proto; 392 393 proto = *(__be16 *) skb->data; 394 __skb_pull(skb, sizeof(__be16)); 395 396 if (eth_proto_is_802_3(proto)) 397 return proto; 398 399 if (skb->len < sizeof(struct llc_snap_hdr)) 400 return htons(ETH_P_802_2); 401 402 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 403 return htons(0); 404 405 llc = (struct llc_snap_hdr *) skb->data; 406 if (llc->dsap != LLC_SAP_SNAP || 407 llc->ssap != LLC_SAP_SNAP || 408 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 409 return htons(ETH_P_802_2); 410 411 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 412 413 if (eth_proto_is_802_3(llc->ethertype)) 414 return llc->ethertype; 415 416 return htons(ETH_P_802_2); 417 } 418 419 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 420 int nh_len) 421 { 422 struct icmp6hdr *icmp = icmp6_hdr(skb); 423 424 /* The ICMPv6 type and code fields use the 16-bit transport port 425 * fields, so we need to store them in 16-bit network byte order. 426 */ 427 key->tp.src = htons(icmp->icmp6_type); 428 key->tp.dst = htons(icmp->icmp6_code); 429 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); 430 431 if (icmp->icmp6_code == 0 && 432 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 433 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 434 int icmp_len = skb->len - skb_transport_offset(skb); 435 struct nd_msg *nd; 436 int offset; 437 438 /* In order to process neighbor discovery options, we need the 439 * entire packet. 440 */ 441 if (unlikely(icmp_len < sizeof(*nd))) 442 return 0; 443 444 if (unlikely(skb_linearize(skb))) 445 return -ENOMEM; 446 447 nd = (struct nd_msg *)skb_transport_header(skb); 448 key->ipv6.nd.target = nd->target; 449 450 icmp_len -= sizeof(*nd); 451 offset = 0; 452 while (icmp_len >= 8) { 453 struct nd_opt_hdr *nd_opt = 454 (struct nd_opt_hdr *)(nd->opt + offset); 455 int opt_len = nd_opt->nd_opt_len * 8; 456 457 if (unlikely(!opt_len || opt_len > icmp_len)) 458 return 0; 459 460 /* Store the link layer address if the appropriate 461 * option is provided. It is considered an error if 462 * the same link layer option is specified twice. 463 */ 464 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 465 && opt_len == 8) { 466 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 467 goto invalid; 468 ether_addr_copy(key->ipv6.nd.sll, 469 &nd->opt[offset+sizeof(*nd_opt)]); 470 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 471 && opt_len == 8) { 472 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 473 goto invalid; 474 ether_addr_copy(key->ipv6.nd.tll, 475 &nd->opt[offset+sizeof(*nd_opt)]); 476 } 477 478 icmp_len -= opt_len; 479 offset += opt_len; 480 } 481 } 482 483 return 0; 484 485 invalid: 486 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 487 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 488 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 489 490 return 0; 491 } 492 493 /** 494 * key_extract - extracts a flow key from an Ethernet frame. 495 * @skb: sk_buff that contains the frame, with skb->data pointing to the 496 * Ethernet header 497 * @key: output flow key 498 * 499 * The caller must ensure that skb->len >= ETH_HLEN. 500 * 501 * Returns 0 if successful, otherwise a negative errno value. 502 * 503 * Initializes @skb header fields as follows: 504 * 505 * - skb->mac_header: the L2 header. 506 * 507 * - skb->network_header: just past the L2 header, or just past the 508 * VLAN header, to the first byte of the L2 payload. 509 * 510 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 511 * on output, then just past the IP header, if one is present and 512 * of a correct length, otherwise the same as skb->network_header. 513 * For other key->eth.type values it is left untouched. 514 * 515 * - skb->protocol: the type of the data starting at skb->network_header. 516 * Equals to key->eth.type. 517 */ 518 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) 519 { 520 int error; 521 struct ethhdr *eth; 522 523 /* Flags are always used as part of stats */ 524 key->tp.flags = 0; 525 526 skb_reset_mac_header(skb); 527 528 /* Link layer. */ 529 clear_vlan(key); 530 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) { 531 if (unlikely(eth_type_vlan(skb->protocol))) 532 return -EINVAL; 533 534 skb_reset_network_header(skb); 535 } else { 536 eth = eth_hdr(skb); 537 ether_addr_copy(key->eth.src, eth->h_source); 538 ether_addr_copy(key->eth.dst, eth->h_dest); 539 540 __skb_pull(skb, 2 * ETH_ALEN); 541 /* We are going to push all headers that we pull, so no need to 542 * update skb->csum here. 543 */ 544 545 if (unlikely(parse_vlan(skb, key))) 546 return -ENOMEM; 547 548 skb->protocol = parse_ethertype(skb); 549 if (unlikely(skb->protocol == htons(0))) 550 return -ENOMEM; 551 552 skb_reset_network_header(skb); 553 __skb_push(skb, skb->data - skb_mac_header(skb)); 554 } 555 skb_reset_mac_len(skb); 556 key->eth.type = skb->protocol; 557 558 /* Network layer. */ 559 if (key->eth.type == htons(ETH_P_IP)) { 560 struct iphdr *nh; 561 __be16 offset; 562 563 error = check_iphdr(skb); 564 if (unlikely(error)) { 565 memset(&key->ip, 0, sizeof(key->ip)); 566 memset(&key->ipv4, 0, sizeof(key->ipv4)); 567 if (error == -EINVAL) { 568 skb->transport_header = skb->network_header; 569 error = 0; 570 } 571 return error; 572 } 573 574 nh = ip_hdr(skb); 575 key->ipv4.addr.src = nh->saddr; 576 key->ipv4.addr.dst = nh->daddr; 577 578 key->ip.proto = nh->protocol; 579 key->ip.tos = nh->tos; 580 key->ip.ttl = nh->ttl; 581 582 offset = nh->frag_off & htons(IP_OFFSET); 583 if (offset) { 584 key->ip.frag = OVS_FRAG_TYPE_LATER; 585 return 0; 586 } 587 if (nh->frag_off & htons(IP_MF)) 588 key->ip.frag = OVS_FRAG_TYPE_FIRST; 589 else 590 key->ip.frag = OVS_FRAG_TYPE_NONE; 591 592 /* Transport layer. */ 593 if (key->ip.proto == IPPROTO_TCP) { 594 if (tcphdr_ok(skb)) { 595 struct tcphdr *tcp = tcp_hdr(skb); 596 key->tp.src = tcp->source; 597 key->tp.dst = tcp->dest; 598 key->tp.flags = TCP_FLAGS_BE16(tcp); 599 } else { 600 memset(&key->tp, 0, sizeof(key->tp)); 601 } 602 603 } else if (key->ip.proto == IPPROTO_UDP) { 604 if (udphdr_ok(skb)) { 605 struct udphdr *udp = udp_hdr(skb); 606 key->tp.src = udp->source; 607 key->tp.dst = udp->dest; 608 } else { 609 memset(&key->tp, 0, sizeof(key->tp)); 610 } 611 } else if (key->ip.proto == IPPROTO_SCTP) { 612 if (sctphdr_ok(skb)) { 613 struct sctphdr *sctp = sctp_hdr(skb); 614 key->tp.src = sctp->source; 615 key->tp.dst = sctp->dest; 616 } else { 617 memset(&key->tp, 0, sizeof(key->tp)); 618 } 619 } else if (key->ip.proto == IPPROTO_ICMP) { 620 if (icmphdr_ok(skb)) { 621 struct icmphdr *icmp = icmp_hdr(skb); 622 /* The ICMP type and code fields use the 16-bit 623 * transport port fields, so we need to store 624 * them in 16-bit network byte order. */ 625 key->tp.src = htons(icmp->type); 626 key->tp.dst = htons(icmp->code); 627 } else { 628 memset(&key->tp, 0, sizeof(key->tp)); 629 } 630 } 631 632 } else if (key->eth.type == htons(ETH_P_ARP) || 633 key->eth.type == htons(ETH_P_RARP)) { 634 struct arp_eth_header *arp; 635 bool arp_available = arphdr_ok(skb); 636 637 arp = (struct arp_eth_header *)skb_network_header(skb); 638 639 if (arp_available && 640 arp->ar_hrd == htons(ARPHRD_ETHER) && 641 arp->ar_pro == htons(ETH_P_IP) && 642 arp->ar_hln == ETH_ALEN && 643 arp->ar_pln == 4) { 644 645 /* We only match on the lower 8 bits of the opcode. */ 646 if (ntohs(arp->ar_op) <= 0xff) 647 key->ip.proto = ntohs(arp->ar_op); 648 else 649 key->ip.proto = 0; 650 651 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 652 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 653 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); 654 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); 655 } else { 656 memset(&key->ip, 0, sizeof(key->ip)); 657 memset(&key->ipv4, 0, sizeof(key->ipv4)); 658 } 659 } else if (eth_p_mpls(key->eth.type)) { 660 size_t stack_len = MPLS_HLEN; 661 662 skb_set_inner_network_header(skb, skb->mac_len); 663 while (1) { 664 __be32 lse; 665 666 error = check_header(skb, skb->mac_len + stack_len); 667 if (unlikely(error)) 668 return 0; 669 670 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN); 671 672 if (stack_len == MPLS_HLEN) 673 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN); 674 675 skb_set_inner_network_header(skb, skb->mac_len + stack_len); 676 if (lse & htonl(MPLS_LS_S_MASK)) 677 break; 678 679 stack_len += MPLS_HLEN; 680 } 681 } else if (key->eth.type == htons(ETH_P_IPV6)) { 682 int nh_len; /* IPv6 Header + Extensions */ 683 684 nh_len = parse_ipv6hdr(skb, key); 685 if (unlikely(nh_len < 0)) { 686 switch (nh_len) { 687 case -EINVAL: 688 memset(&key->ip, 0, sizeof(key->ip)); 689 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); 690 /* fall-through */ 691 case -EPROTO: 692 skb->transport_header = skb->network_header; 693 error = 0; 694 break; 695 default: 696 error = nh_len; 697 } 698 return error; 699 } 700 701 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 702 return 0; 703 /* Transport layer. */ 704 if (key->ip.proto == NEXTHDR_TCP) { 705 if (tcphdr_ok(skb)) { 706 struct tcphdr *tcp = tcp_hdr(skb); 707 key->tp.src = tcp->source; 708 key->tp.dst = tcp->dest; 709 key->tp.flags = TCP_FLAGS_BE16(tcp); 710 } else { 711 memset(&key->tp, 0, sizeof(key->tp)); 712 } 713 } else if (key->ip.proto == NEXTHDR_UDP) { 714 if (udphdr_ok(skb)) { 715 struct udphdr *udp = udp_hdr(skb); 716 key->tp.src = udp->source; 717 key->tp.dst = udp->dest; 718 } else { 719 memset(&key->tp, 0, sizeof(key->tp)); 720 } 721 } else if (key->ip.proto == NEXTHDR_SCTP) { 722 if (sctphdr_ok(skb)) { 723 struct sctphdr *sctp = sctp_hdr(skb); 724 key->tp.src = sctp->source; 725 key->tp.dst = sctp->dest; 726 } else { 727 memset(&key->tp, 0, sizeof(key->tp)); 728 } 729 } else if (key->ip.proto == NEXTHDR_ICMP) { 730 if (icmp6hdr_ok(skb)) { 731 error = parse_icmpv6(skb, key, nh_len); 732 if (error) 733 return error; 734 } else { 735 memset(&key->tp, 0, sizeof(key->tp)); 736 } 737 } 738 } 739 return 0; 740 } 741 742 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) 743 { 744 int res; 745 746 res = key_extract(skb, key); 747 if (!res) 748 key->mac_proto &= ~SW_FLOW_KEY_INVALID; 749 750 return res; 751 } 752 753 static int key_extract_mac_proto(struct sk_buff *skb) 754 { 755 switch (skb->dev->type) { 756 case ARPHRD_ETHER: 757 return MAC_PROTO_ETHERNET; 758 case ARPHRD_NONE: 759 if (skb->protocol == htons(ETH_P_TEB)) 760 return MAC_PROTO_ETHERNET; 761 return MAC_PROTO_NONE; 762 } 763 WARN_ON_ONCE(1); 764 return -EINVAL; 765 } 766 767 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info, 768 struct sk_buff *skb, struct sw_flow_key *key) 769 { 770 int res, err; 771 772 /* Extract metadata from packet. */ 773 if (tun_info) { 774 key->tun_proto = ip_tunnel_info_af(tun_info); 775 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key)); 776 777 if (tun_info->options_len) { 778 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 779 8)) - 1 780 > sizeof(key->tun_opts)); 781 782 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len), 783 tun_info); 784 key->tun_opts_len = tun_info->options_len; 785 } else { 786 key->tun_opts_len = 0; 787 } 788 } else { 789 key->tun_proto = 0; 790 key->tun_opts_len = 0; 791 memset(&key->tun_key, 0, sizeof(key->tun_key)); 792 } 793 794 key->phy.priority = skb->priority; 795 key->phy.in_port = OVS_CB(skb)->input_vport->port_no; 796 key->phy.skb_mark = skb->mark; 797 key->ovs_flow_hash = 0; 798 res = key_extract_mac_proto(skb); 799 if (res < 0) 800 return res; 801 key->mac_proto = res; 802 key->recirc_id = 0; 803 804 err = key_extract(skb, key); 805 if (!err) 806 ovs_ct_fill_key(skb, key); /* Must be after key_extract(). */ 807 return err; 808 } 809 810 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr, 811 struct sk_buff *skb, 812 struct sw_flow_key *key, bool log) 813 { 814 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 815 u64 attrs = 0; 816 int err; 817 818 err = parse_flow_nlattrs(attr, a, &attrs, log); 819 if (err) 820 return -EINVAL; 821 822 /* Extract metadata from netlink attributes. */ 823 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log); 824 if (err) 825 return err; 826 827 /* key_extract assumes that skb->protocol is set-up for 828 * layer 3 packets which is the case for other callers, 829 * in particular packets received from the network stack. 830 * Here the correct value can be set from the metadata 831 * extracted above. 832 * For L2 packet key eth type would be zero. skb protocol 833 * would be set to correct value later during key-extact. 834 */ 835 836 skb->protocol = key->eth.type; 837 err = key_extract(skb, key); 838 if (err) 839 return err; 840 841 /* Check that we have conntrack original direction tuple metadata only 842 * for packets for which it makes sense. Otherwise the key may be 843 * corrupted due to overlapping key fields. 844 */ 845 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) && 846 key->eth.type != htons(ETH_P_IP)) 847 return -EINVAL; 848 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) && 849 (key->eth.type != htons(ETH_P_IPV6) || 850 sw_flow_key_is_nd(key))) 851 return -EINVAL; 852 853 return 0; 854 } 855