1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include <linux/uaccess.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/if_ether.h> 23 #include <linux/if_vlan.h> 24 #include <net/llc_pdu.h> 25 #include <linux/kernel.h> 26 #include <linux/jhash.h> 27 #include <linux/jiffies.h> 28 #include <linux/llc.h> 29 #include <linux/module.h> 30 #include <linux/in.h> 31 #include <linux/rcupdate.h> 32 #include <linux/cpumask.h> 33 #include <linux/if_arp.h> 34 #include <linux/ip.h> 35 #include <linux/ipv6.h> 36 #include <linux/mpls.h> 37 #include <linux/sctp.h> 38 #include <linux/smp.h> 39 #include <linux/tcp.h> 40 #include <linux/udp.h> 41 #include <linux/icmp.h> 42 #include <linux/icmpv6.h> 43 #include <linux/rculist.h> 44 #include <net/ip.h> 45 #include <net/ip_tunnels.h> 46 #include <net/ipv6.h> 47 #include <net/mpls.h> 48 #include <net/ndisc.h> 49 50 #include "conntrack.h" 51 #include "datapath.h" 52 #include "flow.h" 53 #include "flow_netlink.h" 54 #include "vport.h" 55 56 u64 ovs_flow_used_time(unsigned long flow_jiffies) 57 { 58 struct timespec cur_ts; 59 u64 cur_ms, idle_ms; 60 61 ktime_get_ts(&cur_ts); 62 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 63 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + 64 cur_ts.tv_nsec / NSEC_PER_MSEC; 65 66 return cur_ms - idle_ms; 67 } 68 69 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) 70 71 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, 72 const struct sk_buff *skb) 73 { 74 struct flow_stats *stats; 75 int node = numa_node_id(); 76 int cpu = smp_processor_id(); 77 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0); 78 79 stats = rcu_dereference(flow->stats[cpu]); 80 81 /* Check if already have CPU-specific stats. */ 82 if (likely(stats)) { 83 spin_lock(&stats->lock); 84 /* Mark if we write on the pre-allocated stats. */ 85 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu)) 86 flow->stats_last_writer = cpu; 87 } else { 88 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ 89 spin_lock(&stats->lock); 90 91 /* If the current CPU is the only writer on the 92 * pre-allocated stats keep using them. 93 */ 94 if (unlikely(flow->stats_last_writer != cpu)) { 95 /* A previous locker may have already allocated the 96 * stats, so we need to check again. If CPU-specific 97 * stats were already allocated, we update the pre- 98 * allocated stats as we have already locked them. 99 */ 100 if (likely(flow->stats_last_writer != -1) && 101 likely(!rcu_access_pointer(flow->stats[cpu]))) { 102 /* Try to allocate CPU-specific stats. */ 103 struct flow_stats *new_stats; 104 105 new_stats = 106 kmem_cache_alloc_node(flow_stats_cache, 107 GFP_NOWAIT | 108 __GFP_THISNODE | 109 __GFP_NOWARN | 110 __GFP_NOMEMALLOC, 111 node); 112 if (likely(new_stats)) { 113 new_stats->used = jiffies; 114 new_stats->packet_count = 1; 115 new_stats->byte_count = len; 116 new_stats->tcp_flags = tcp_flags; 117 spin_lock_init(&new_stats->lock); 118 119 rcu_assign_pointer(flow->stats[cpu], 120 new_stats); 121 goto unlock; 122 } 123 } 124 flow->stats_last_writer = cpu; 125 } 126 } 127 128 stats->used = jiffies; 129 stats->packet_count++; 130 stats->byte_count += len; 131 stats->tcp_flags |= tcp_flags; 132 unlock: 133 spin_unlock(&stats->lock); 134 } 135 136 /* Must be called with rcu_read_lock or ovs_mutex. */ 137 void ovs_flow_stats_get(const struct sw_flow *flow, 138 struct ovs_flow_stats *ovs_stats, 139 unsigned long *used, __be16 *tcp_flags) 140 { 141 int cpu; 142 143 *used = 0; 144 *tcp_flags = 0; 145 memset(ovs_stats, 0, sizeof(*ovs_stats)); 146 147 /* We open code this to make sure cpu 0 is always considered */ 148 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, cpu_possible_mask)) { 149 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]); 150 151 if (stats) { 152 /* Local CPU may write on non-local stats, so we must 153 * block bottom-halves here. 154 */ 155 spin_lock_bh(&stats->lock); 156 if (!*used || time_after(stats->used, *used)) 157 *used = stats->used; 158 *tcp_flags |= stats->tcp_flags; 159 ovs_stats->n_packets += stats->packet_count; 160 ovs_stats->n_bytes += stats->byte_count; 161 spin_unlock_bh(&stats->lock); 162 } 163 } 164 } 165 166 /* Called with ovs_mutex. */ 167 void ovs_flow_stats_clear(struct sw_flow *flow) 168 { 169 int cpu; 170 171 /* We open code this to make sure cpu 0 is always considered */ 172 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, cpu_possible_mask)) { 173 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]); 174 175 if (stats) { 176 spin_lock_bh(&stats->lock); 177 stats->used = 0; 178 stats->packet_count = 0; 179 stats->byte_count = 0; 180 stats->tcp_flags = 0; 181 spin_unlock_bh(&stats->lock); 182 } 183 } 184 } 185 186 static int check_header(struct sk_buff *skb, int len) 187 { 188 if (unlikely(skb->len < len)) 189 return -EINVAL; 190 if (unlikely(!pskb_may_pull(skb, len))) 191 return -ENOMEM; 192 return 0; 193 } 194 195 static bool arphdr_ok(struct sk_buff *skb) 196 { 197 return pskb_may_pull(skb, skb_network_offset(skb) + 198 sizeof(struct arp_eth_header)); 199 } 200 201 static int check_iphdr(struct sk_buff *skb) 202 { 203 unsigned int nh_ofs = skb_network_offset(skb); 204 unsigned int ip_len; 205 int err; 206 207 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 208 if (unlikely(err)) 209 return err; 210 211 ip_len = ip_hdrlen(skb); 212 if (unlikely(ip_len < sizeof(struct iphdr) || 213 skb->len < nh_ofs + ip_len)) 214 return -EINVAL; 215 216 skb_set_transport_header(skb, nh_ofs + ip_len); 217 return 0; 218 } 219 220 static bool tcphdr_ok(struct sk_buff *skb) 221 { 222 int th_ofs = skb_transport_offset(skb); 223 int tcp_len; 224 225 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 226 return false; 227 228 tcp_len = tcp_hdrlen(skb); 229 if (unlikely(tcp_len < sizeof(struct tcphdr) || 230 skb->len < th_ofs + tcp_len)) 231 return false; 232 233 return true; 234 } 235 236 static bool udphdr_ok(struct sk_buff *skb) 237 { 238 return pskb_may_pull(skb, skb_transport_offset(skb) + 239 sizeof(struct udphdr)); 240 } 241 242 static bool sctphdr_ok(struct sk_buff *skb) 243 { 244 return pskb_may_pull(skb, skb_transport_offset(skb) + 245 sizeof(struct sctphdr)); 246 } 247 248 static bool icmphdr_ok(struct sk_buff *skb) 249 { 250 return pskb_may_pull(skb, skb_transport_offset(skb) + 251 sizeof(struct icmphdr)); 252 } 253 254 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) 255 { 256 unsigned int nh_ofs = skb_network_offset(skb); 257 unsigned int nh_len; 258 int payload_ofs; 259 struct ipv6hdr *nh; 260 uint8_t nexthdr; 261 __be16 frag_off; 262 int err; 263 264 err = check_header(skb, nh_ofs + sizeof(*nh)); 265 if (unlikely(err)) 266 return err; 267 268 nh = ipv6_hdr(skb); 269 nexthdr = nh->nexthdr; 270 payload_ofs = (u8 *)(nh + 1) - skb->data; 271 272 key->ip.proto = NEXTHDR_NONE; 273 key->ip.tos = ipv6_get_dsfield(nh); 274 key->ip.ttl = nh->hop_limit; 275 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 276 key->ipv6.addr.src = nh->saddr; 277 key->ipv6.addr.dst = nh->daddr; 278 279 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 280 281 if (frag_off) { 282 if (frag_off & htons(~0x7)) 283 key->ip.frag = OVS_FRAG_TYPE_LATER; 284 else 285 key->ip.frag = OVS_FRAG_TYPE_FIRST; 286 } else { 287 key->ip.frag = OVS_FRAG_TYPE_NONE; 288 } 289 290 /* Delayed handling of error in ipv6_skip_exthdr() as it 291 * always sets frag_off to a valid value which may be 292 * used to set key->ip.frag above. 293 */ 294 if (unlikely(payload_ofs < 0)) 295 return -EPROTO; 296 297 nh_len = payload_ofs - nh_ofs; 298 skb_set_transport_header(skb, nh_ofs + nh_len); 299 key->ip.proto = nexthdr; 300 return nh_len; 301 } 302 303 static bool icmp6hdr_ok(struct sk_buff *skb) 304 { 305 return pskb_may_pull(skb, skb_transport_offset(skb) + 306 sizeof(struct icmp6hdr)); 307 } 308 309 /** 310 * Parse vlan tag from vlan header. 311 * Returns ERROR on memory error. 312 * Returns 0 if it encounters a non-vlan or incomplete packet. 313 * Returns 1 after successfully parsing vlan tag. 314 */ 315 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh) 316 { 317 struct vlan_head *vh = (struct vlan_head *)skb->data; 318 319 if (likely(!eth_type_vlan(vh->tpid))) 320 return 0; 321 322 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16))) 323 return 0; 324 325 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) + 326 sizeof(__be16)))) 327 return -ENOMEM; 328 329 vh = (struct vlan_head *)skb->data; 330 key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT); 331 key_vh->tpid = vh->tpid; 332 333 __skb_pull(skb, sizeof(struct vlan_head)); 334 return 1; 335 } 336 337 static void clear_vlan(struct sw_flow_key *key) 338 { 339 key->eth.vlan.tci = 0; 340 key->eth.vlan.tpid = 0; 341 key->eth.cvlan.tci = 0; 342 key->eth.cvlan.tpid = 0; 343 } 344 345 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 346 { 347 int res; 348 349 if (skb_vlan_tag_present(skb)) { 350 key->eth.vlan.tci = htons(skb->vlan_tci); 351 key->eth.vlan.tpid = skb->vlan_proto; 352 } else { 353 /* Parse outer vlan tag in the non-accelerated case. */ 354 res = parse_vlan_tag(skb, &key->eth.vlan); 355 if (res <= 0) 356 return res; 357 } 358 359 /* Parse inner vlan tag. */ 360 res = parse_vlan_tag(skb, &key->eth.cvlan); 361 if (res <= 0) 362 return res; 363 364 return 0; 365 } 366 367 static __be16 parse_ethertype(struct sk_buff *skb) 368 { 369 struct llc_snap_hdr { 370 u8 dsap; /* Always 0xAA */ 371 u8 ssap; /* Always 0xAA */ 372 u8 ctrl; 373 u8 oui[3]; 374 __be16 ethertype; 375 }; 376 struct llc_snap_hdr *llc; 377 __be16 proto; 378 379 proto = *(__be16 *) skb->data; 380 __skb_pull(skb, sizeof(__be16)); 381 382 if (eth_proto_is_802_3(proto)) 383 return proto; 384 385 if (skb->len < sizeof(struct llc_snap_hdr)) 386 return htons(ETH_P_802_2); 387 388 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 389 return htons(0); 390 391 llc = (struct llc_snap_hdr *) skb->data; 392 if (llc->dsap != LLC_SAP_SNAP || 393 llc->ssap != LLC_SAP_SNAP || 394 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 395 return htons(ETH_P_802_2); 396 397 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 398 399 if (eth_proto_is_802_3(llc->ethertype)) 400 return llc->ethertype; 401 402 return htons(ETH_P_802_2); 403 } 404 405 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 406 int nh_len) 407 { 408 struct icmp6hdr *icmp = icmp6_hdr(skb); 409 410 /* The ICMPv6 type and code fields use the 16-bit transport port 411 * fields, so we need to store them in 16-bit network byte order. 412 */ 413 key->tp.src = htons(icmp->icmp6_type); 414 key->tp.dst = htons(icmp->icmp6_code); 415 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); 416 417 if (icmp->icmp6_code == 0 && 418 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 419 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 420 int icmp_len = skb->len - skb_transport_offset(skb); 421 struct nd_msg *nd; 422 int offset; 423 424 /* In order to process neighbor discovery options, we need the 425 * entire packet. 426 */ 427 if (unlikely(icmp_len < sizeof(*nd))) 428 return 0; 429 430 if (unlikely(skb_linearize(skb))) 431 return -ENOMEM; 432 433 nd = (struct nd_msg *)skb_transport_header(skb); 434 key->ipv6.nd.target = nd->target; 435 436 icmp_len -= sizeof(*nd); 437 offset = 0; 438 while (icmp_len >= 8) { 439 struct nd_opt_hdr *nd_opt = 440 (struct nd_opt_hdr *)(nd->opt + offset); 441 int opt_len = nd_opt->nd_opt_len * 8; 442 443 if (unlikely(!opt_len || opt_len > icmp_len)) 444 return 0; 445 446 /* Store the link layer address if the appropriate 447 * option is provided. It is considered an error if 448 * the same link layer option is specified twice. 449 */ 450 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 451 && opt_len == 8) { 452 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 453 goto invalid; 454 ether_addr_copy(key->ipv6.nd.sll, 455 &nd->opt[offset+sizeof(*nd_opt)]); 456 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 457 && opt_len == 8) { 458 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 459 goto invalid; 460 ether_addr_copy(key->ipv6.nd.tll, 461 &nd->opt[offset+sizeof(*nd_opt)]); 462 } 463 464 icmp_len -= opt_len; 465 offset += opt_len; 466 } 467 } 468 469 return 0; 470 471 invalid: 472 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 473 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 474 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 475 476 return 0; 477 } 478 479 /** 480 * key_extract - extracts a flow key from an Ethernet frame. 481 * @skb: sk_buff that contains the frame, with skb->data pointing to the 482 * Ethernet header 483 * @key: output flow key 484 * 485 * The caller must ensure that skb->len >= ETH_HLEN. 486 * 487 * Returns 0 if successful, otherwise a negative errno value. 488 * 489 * Initializes @skb header fields as follows: 490 * 491 * - skb->mac_header: the L2 header. 492 * 493 * - skb->network_header: just past the L2 header, or just past the 494 * VLAN header, to the first byte of the L2 payload. 495 * 496 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 497 * on output, then just past the IP header, if one is present and 498 * of a correct length, otherwise the same as skb->network_header. 499 * For other key->eth.type values it is left untouched. 500 * 501 * - skb->protocol: the type of the data starting at skb->network_header. 502 * Equals to key->eth.type. 503 */ 504 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) 505 { 506 int error; 507 struct ethhdr *eth; 508 509 /* Flags are always used as part of stats */ 510 key->tp.flags = 0; 511 512 skb_reset_mac_header(skb); 513 514 /* Link layer. */ 515 clear_vlan(key); 516 if (key->mac_proto == MAC_PROTO_NONE) { 517 if (unlikely(eth_type_vlan(skb->protocol))) 518 return -EINVAL; 519 520 skb_reset_network_header(skb); 521 } else { 522 eth = eth_hdr(skb); 523 ether_addr_copy(key->eth.src, eth->h_source); 524 ether_addr_copy(key->eth.dst, eth->h_dest); 525 526 __skb_pull(skb, 2 * ETH_ALEN); 527 /* We are going to push all headers that we pull, so no need to 528 * update skb->csum here. 529 */ 530 531 if (unlikely(parse_vlan(skb, key))) 532 return -ENOMEM; 533 534 skb->protocol = parse_ethertype(skb); 535 if (unlikely(skb->protocol == htons(0))) 536 return -ENOMEM; 537 538 skb_reset_network_header(skb); 539 __skb_push(skb, skb->data - skb_mac_header(skb)); 540 } 541 skb_reset_mac_len(skb); 542 key->eth.type = skb->protocol; 543 544 /* Network layer. */ 545 if (key->eth.type == htons(ETH_P_IP)) { 546 struct iphdr *nh; 547 __be16 offset; 548 549 error = check_iphdr(skb); 550 if (unlikely(error)) { 551 memset(&key->ip, 0, sizeof(key->ip)); 552 memset(&key->ipv4, 0, sizeof(key->ipv4)); 553 if (error == -EINVAL) { 554 skb->transport_header = skb->network_header; 555 error = 0; 556 } 557 return error; 558 } 559 560 nh = ip_hdr(skb); 561 key->ipv4.addr.src = nh->saddr; 562 key->ipv4.addr.dst = nh->daddr; 563 564 key->ip.proto = nh->protocol; 565 key->ip.tos = nh->tos; 566 key->ip.ttl = nh->ttl; 567 568 offset = nh->frag_off & htons(IP_OFFSET); 569 if (offset) { 570 key->ip.frag = OVS_FRAG_TYPE_LATER; 571 return 0; 572 } 573 if (nh->frag_off & htons(IP_MF) || 574 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 575 key->ip.frag = OVS_FRAG_TYPE_FIRST; 576 else 577 key->ip.frag = OVS_FRAG_TYPE_NONE; 578 579 /* Transport layer. */ 580 if (key->ip.proto == IPPROTO_TCP) { 581 if (tcphdr_ok(skb)) { 582 struct tcphdr *tcp = tcp_hdr(skb); 583 key->tp.src = tcp->source; 584 key->tp.dst = tcp->dest; 585 key->tp.flags = TCP_FLAGS_BE16(tcp); 586 } else { 587 memset(&key->tp, 0, sizeof(key->tp)); 588 } 589 590 } else if (key->ip.proto == IPPROTO_UDP) { 591 if (udphdr_ok(skb)) { 592 struct udphdr *udp = udp_hdr(skb); 593 key->tp.src = udp->source; 594 key->tp.dst = udp->dest; 595 } else { 596 memset(&key->tp, 0, sizeof(key->tp)); 597 } 598 } else if (key->ip.proto == IPPROTO_SCTP) { 599 if (sctphdr_ok(skb)) { 600 struct sctphdr *sctp = sctp_hdr(skb); 601 key->tp.src = sctp->source; 602 key->tp.dst = sctp->dest; 603 } else { 604 memset(&key->tp, 0, sizeof(key->tp)); 605 } 606 } else if (key->ip.proto == IPPROTO_ICMP) { 607 if (icmphdr_ok(skb)) { 608 struct icmphdr *icmp = icmp_hdr(skb); 609 /* The ICMP type and code fields use the 16-bit 610 * transport port fields, so we need to store 611 * them in 16-bit network byte order. */ 612 key->tp.src = htons(icmp->type); 613 key->tp.dst = htons(icmp->code); 614 } else { 615 memset(&key->tp, 0, sizeof(key->tp)); 616 } 617 } 618 619 } else if (key->eth.type == htons(ETH_P_ARP) || 620 key->eth.type == htons(ETH_P_RARP)) { 621 struct arp_eth_header *arp; 622 bool arp_available = arphdr_ok(skb); 623 624 arp = (struct arp_eth_header *)skb_network_header(skb); 625 626 if (arp_available && 627 arp->ar_hrd == htons(ARPHRD_ETHER) && 628 arp->ar_pro == htons(ETH_P_IP) && 629 arp->ar_hln == ETH_ALEN && 630 arp->ar_pln == 4) { 631 632 /* We only match on the lower 8 bits of the opcode. */ 633 if (ntohs(arp->ar_op) <= 0xff) 634 key->ip.proto = ntohs(arp->ar_op); 635 else 636 key->ip.proto = 0; 637 638 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 639 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 640 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); 641 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); 642 } else { 643 memset(&key->ip, 0, sizeof(key->ip)); 644 memset(&key->ipv4, 0, sizeof(key->ipv4)); 645 } 646 } else if (eth_p_mpls(key->eth.type)) { 647 size_t stack_len = MPLS_HLEN; 648 649 skb_set_inner_network_header(skb, skb->mac_len); 650 while (1) { 651 __be32 lse; 652 653 error = check_header(skb, skb->mac_len + stack_len); 654 if (unlikely(error)) 655 return 0; 656 657 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN); 658 659 if (stack_len == MPLS_HLEN) 660 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN); 661 662 skb_set_inner_network_header(skb, skb->mac_len + stack_len); 663 if (lse & htonl(MPLS_LS_S_MASK)) 664 break; 665 666 stack_len += MPLS_HLEN; 667 } 668 } else if (key->eth.type == htons(ETH_P_IPV6)) { 669 int nh_len; /* IPv6 Header + Extensions */ 670 671 nh_len = parse_ipv6hdr(skb, key); 672 if (unlikely(nh_len < 0)) { 673 switch (nh_len) { 674 case -EINVAL: 675 memset(&key->ip, 0, sizeof(key->ip)); 676 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); 677 /* fall-through */ 678 case -EPROTO: 679 skb->transport_header = skb->network_header; 680 error = 0; 681 break; 682 default: 683 error = nh_len; 684 } 685 return error; 686 } 687 688 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 689 return 0; 690 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 691 key->ip.frag = OVS_FRAG_TYPE_FIRST; 692 693 /* Transport layer. */ 694 if (key->ip.proto == NEXTHDR_TCP) { 695 if (tcphdr_ok(skb)) { 696 struct tcphdr *tcp = tcp_hdr(skb); 697 key->tp.src = tcp->source; 698 key->tp.dst = tcp->dest; 699 key->tp.flags = TCP_FLAGS_BE16(tcp); 700 } else { 701 memset(&key->tp, 0, sizeof(key->tp)); 702 } 703 } else if (key->ip.proto == NEXTHDR_UDP) { 704 if (udphdr_ok(skb)) { 705 struct udphdr *udp = udp_hdr(skb); 706 key->tp.src = udp->source; 707 key->tp.dst = udp->dest; 708 } else { 709 memset(&key->tp, 0, sizeof(key->tp)); 710 } 711 } else if (key->ip.proto == NEXTHDR_SCTP) { 712 if (sctphdr_ok(skb)) { 713 struct sctphdr *sctp = sctp_hdr(skb); 714 key->tp.src = sctp->source; 715 key->tp.dst = sctp->dest; 716 } else { 717 memset(&key->tp, 0, sizeof(key->tp)); 718 } 719 } else if (key->ip.proto == NEXTHDR_ICMP) { 720 if (icmp6hdr_ok(skb)) { 721 error = parse_icmpv6(skb, key, nh_len); 722 if (error) 723 return error; 724 } else { 725 memset(&key->tp, 0, sizeof(key->tp)); 726 } 727 } 728 } 729 return 0; 730 } 731 732 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) 733 { 734 return key_extract(skb, key); 735 } 736 737 static int key_extract_mac_proto(struct sk_buff *skb) 738 { 739 switch (skb->dev->type) { 740 case ARPHRD_ETHER: 741 return MAC_PROTO_ETHERNET; 742 case ARPHRD_NONE: 743 if (skb->protocol == htons(ETH_P_TEB)) 744 return MAC_PROTO_ETHERNET; 745 return MAC_PROTO_NONE; 746 } 747 WARN_ON_ONCE(1); 748 return -EINVAL; 749 } 750 751 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info, 752 struct sk_buff *skb, struct sw_flow_key *key) 753 { 754 int res; 755 756 /* Extract metadata from packet. */ 757 if (tun_info) { 758 key->tun_proto = ip_tunnel_info_af(tun_info); 759 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key)); 760 761 if (tun_info->options_len) { 762 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 763 8)) - 1 764 > sizeof(key->tun_opts)); 765 766 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len), 767 tun_info); 768 key->tun_opts_len = tun_info->options_len; 769 } else { 770 key->tun_opts_len = 0; 771 } 772 } else { 773 key->tun_proto = 0; 774 key->tun_opts_len = 0; 775 memset(&key->tun_key, 0, sizeof(key->tun_key)); 776 } 777 778 key->phy.priority = skb->priority; 779 key->phy.in_port = OVS_CB(skb)->input_vport->port_no; 780 key->phy.skb_mark = skb->mark; 781 ovs_ct_fill_key(skb, key); 782 key->ovs_flow_hash = 0; 783 res = key_extract_mac_proto(skb); 784 if (res < 0) 785 return res; 786 key->mac_proto = res; 787 key->recirc_id = 0; 788 789 return key_extract(skb, key); 790 } 791 792 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr, 793 struct sk_buff *skb, 794 struct sw_flow_key *key, bool log) 795 { 796 int err; 797 798 /* Extract metadata from netlink attributes. */ 799 err = ovs_nla_get_flow_metadata(net, attr, key, log); 800 if (err) 801 return err; 802 803 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) { 804 /* key_extract assumes that skb->protocol is set-up for 805 * layer 3 packets which is the case for other callers, 806 * in particular packets recieved from the network stack. 807 * Here the correct value can be set from the metadata 808 * extracted above. 809 */ 810 skb->protocol = key->eth.type; 811 } else { 812 struct ethhdr *eth; 813 814 skb_reset_mac_header(skb); 815 eth = eth_hdr(skb); 816 817 /* Normally, setting the skb 'protocol' field would be 818 * handled by a call to eth_type_trans(), but it assumes 819 * there's a sending device, which we may not have. 820 */ 821 if (eth_proto_is_802_3(eth->h_proto)) 822 skb->protocol = eth->h_proto; 823 else 824 skb->protocol = htons(ETH_P_802_2); 825 } 826 827 return key_extract(skb, key); 828 } 829