xref: /openbmc/linux/net/openvswitch/flow.c (revision 2eb5f31b)
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/if_arp.h>
33 #include <linux/ip.h>
34 #include <linux/ipv6.h>
35 #include <linux/mpls.h>
36 #include <linux/sctp.h>
37 #include <linux/smp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ip_tunnels.h>
45 #include <net/ipv6.h>
46 #include <net/mpls.h>
47 #include <net/ndisc.h>
48 
49 #include "conntrack.h"
50 #include "datapath.h"
51 #include "flow.h"
52 #include "flow_netlink.h"
53 #include "vport.h"
54 
55 u64 ovs_flow_used_time(unsigned long flow_jiffies)
56 {
57 	struct timespec cur_ts;
58 	u64 cur_ms, idle_ms;
59 
60 	ktime_get_ts(&cur_ts);
61 	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
62 	cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
63 		 cur_ts.tv_nsec / NSEC_PER_MSEC;
64 
65 	return cur_ms - idle_ms;
66 }
67 
68 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
69 
70 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
71 			   const struct sk_buff *skb)
72 {
73 	struct flow_stats *stats;
74 	int node = numa_node_id();
75 	int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
76 
77 	stats = rcu_dereference(flow->stats[node]);
78 
79 	/* Check if already have node-specific stats. */
80 	if (likely(stats)) {
81 		spin_lock(&stats->lock);
82 		/* Mark if we write on the pre-allocated stats. */
83 		if (node == 0 && unlikely(flow->stats_last_writer != node))
84 			flow->stats_last_writer = node;
85 	} else {
86 		stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
87 		spin_lock(&stats->lock);
88 
89 		/* If the current NUMA-node is the only writer on the
90 		 * pre-allocated stats keep using them.
91 		 */
92 		if (unlikely(flow->stats_last_writer != node)) {
93 			/* A previous locker may have already allocated the
94 			 * stats, so we need to check again.  If node-specific
95 			 * stats were already allocated, we update the pre-
96 			 * allocated stats as we have already locked them.
97 			 */
98 			if (likely(flow->stats_last_writer != NUMA_NO_NODE)
99 			    && likely(!rcu_access_pointer(flow->stats[node]))) {
100 				/* Try to allocate node-specific stats. */
101 				struct flow_stats *new_stats;
102 
103 				new_stats =
104 					kmem_cache_alloc_node(flow_stats_cache,
105 							      GFP_NOWAIT |
106 							      __GFP_THISNODE |
107 							      __GFP_NOWARN |
108 							      __GFP_NOMEMALLOC,
109 							      node);
110 				if (likely(new_stats)) {
111 					new_stats->used = jiffies;
112 					new_stats->packet_count = 1;
113 					new_stats->byte_count = len;
114 					new_stats->tcp_flags = tcp_flags;
115 					spin_lock_init(&new_stats->lock);
116 
117 					rcu_assign_pointer(flow->stats[node],
118 							   new_stats);
119 					goto unlock;
120 				}
121 			}
122 			flow->stats_last_writer = node;
123 		}
124 	}
125 
126 	stats->used = jiffies;
127 	stats->packet_count++;
128 	stats->byte_count += len;
129 	stats->tcp_flags |= tcp_flags;
130 unlock:
131 	spin_unlock(&stats->lock);
132 }
133 
134 /* Must be called with rcu_read_lock or ovs_mutex. */
135 void ovs_flow_stats_get(const struct sw_flow *flow,
136 			struct ovs_flow_stats *ovs_stats,
137 			unsigned long *used, __be16 *tcp_flags)
138 {
139 	int node;
140 
141 	*used = 0;
142 	*tcp_flags = 0;
143 	memset(ovs_stats, 0, sizeof(*ovs_stats));
144 
145 	for_each_node(node) {
146 		struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]);
147 
148 		if (stats) {
149 			/* Local CPU may write on non-local stats, so we must
150 			 * block bottom-halves here.
151 			 */
152 			spin_lock_bh(&stats->lock);
153 			if (!*used || time_after(stats->used, *used))
154 				*used = stats->used;
155 			*tcp_flags |= stats->tcp_flags;
156 			ovs_stats->n_packets += stats->packet_count;
157 			ovs_stats->n_bytes += stats->byte_count;
158 			spin_unlock_bh(&stats->lock);
159 		}
160 	}
161 }
162 
163 /* Called with ovs_mutex. */
164 void ovs_flow_stats_clear(struct sw_flow *flow)
165 {
166 	int node;
167 
168 	for_each_node(node) {
169 		struct flow_stats *stats = ovsl_dereference(flow->stats[node]);
170 
171 		if (stats) {
172 			spin_lock_bh(&stats->lock);
173 			stats->used = 0;
174 			stats->packet_count = 0;
175 			stats->byte_count = 0;
176 			stats->tcp_flags = 0;
177 			spin_unlock_bh(&stats->lock);
178 		}
179 	}
180 }
181 
182 static int check_header(struct sk_buff *skb, int len)
183 {
184 	if (unlikely(skb->len < len))
185 		return -EINVAL;
186 	if (unlikely(!pskb_may_pull(skb, len)))
187 		return -ENOMEM;
188 	return 0;
189 }
190 
191 static bool arphdr_ok(struct sk_buff *skb)
192 {
193 	return pskb_may_pull(skb, skb_network_offset(skb) +
194 				  sizeof(struct arp_eth_header));
195 }
196 
197 static int check_iphdr(struct sk_buff *skb)
198 {
199 	unsigned int nh_ofs = skb_network_offset(skb);
200 	unsigned int ip_len;
201 	int err;
202 
203 	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
204 	if (unlikely(err))
205 		return err;
206 
207 	ip_len = ip_hdrlen(skb);
208 	if (unlikely(ip_len < sizeof(struct iphdr) ||
209 		     skb->len < nh_ofs + ip_len))
210 		return -EINVAL;
211 
212 	skb_set_transport_header(skb, nh_ofs + ip_len);
213 	return 0;
214 }
215 
216 static bool tcphdr_ok(struct sk_buff *skb)
217 {
218 	int th_ofs = skb_transport_offset(skb);
219 	int tcp_len;
220 
221 	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
222 		return false;
223 
224 	tcp_len = tcp_hdrlen(skb);
225 	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
226 		     skb->len < th_ofs + tcp_len))
227 		return false;
228 
229 	return true;
230 }
231 
232 static bool udphdr_ok(struct sk_buff *skb)
233 {
234 	return pskb_may_pull(skb, skb_transport_offset(skb) +
235 				  sizeof(struct udphdr));
236 }
237 
238 static bool sctphdr_ok(struct sk_buff *skb)
239 {
240 	return pskb_may_pull(skb, skb_transport_offset(skb) +
241 				  sizeof(struct sctphdr));
242 }
243 
244 static bool icmphdr_ok(struct sk_buff *skb)
245 {
246 	return pskb_may_pull(skb, skb_transport_offset(skb) +
247 				  sizeof(struct icmphdr));
248 }
249 
250 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
251 {
252 	unsigned int nh_ofs = skb_network_offset(skb);
253 	unsigned int nh_len;
254 	int payload_ofs;
255 	struct ipv6hdr *nh;
256 	uint8_t nexthdr;
257 	__be16 frag_off;
258 	int err;
259 
260 	err = check_header(skb, nh_ofs + sizeof(*nh));
261 	if (unlikely(err))
262 		return err;
263 
264 	nh = ipv6_hdr(skb);
265 	nexthdr = nh->nexthdr;
266 	payload_ofs = (u8 *)(nh + 1) - skb->data;
267 
268 	key->ip.proto = NEXTHDR_NONE;
269 	key->ip.tos = ipv6_get_dsfield(nh);
270 	key->ip.ttl = nh->hop_limit;
271 	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
272 	key->ipv6.addr.src = nh->saddr;
273 	key->ipv6.addr.dst = nh->daddr;
274 
275 	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
276 
277 	if (frag_off) {
278 		if (frag_off & htons(~0x7))
279 			key->ip.frag = OVS_FRAG_TYPE_LATER;
280 		else
281 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
282 	} else {
283 		key->ip.frag = OVS_FRAG_TYPE_NONE;
284 	}
285 
286 	/* Delayed handling of error in ipv6_skip_exthdr() as it
287 	 * always sets frag_off to a valid value which may be
288 	 * used to set key->ip.frag above.
289 	 */
290 	if (unlikely(payload_ofs < 0))
291 		return -EPROTO;
292 
293 	nh_len = payload_ofs - nh_ofs;
294 	skb_set_transport_header(skb, nh_ofs + nh_len);
295 	key->ip.proto = nexthdr;
296 	return nh_len;
297 }
298 
299 static bool icmp6hdr_ok(struct sk_buff *skb)
300 {
301 	return pskb_may_pull(skb, skb_transport_offset(skb) +
302 				  sizeof(struct icmp6hdr));
303 }
304 
305 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
306 {
307 	struct qtag_prefix {
308 		__be16 eth_type; /* ETH_P_8021Q */
309 		__be16 tci;
310 	};
311 	struct qtag_prefix *qp;
312 
313 	if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
314 		return 0;
315 
316 	if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
317 					 sizeof(__be16))))
318 		return -ENOMEM;
319 
320 	qp = (struct qtag_prefix *) skb->data;
321 	key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
322 	__skb_pull(skb, sizeof(struct qtag_prefix));
323 
324 	return 0;
325 }
326 
327 static __be16 parse_ethertype(struct sk_buff *skb)
328 {
329 	struct llc_snap_hdr {
330 		u8  dsap;  /* Always 0xAA */
331 		u8  ssap;  /* Always 0xAA */
332 		u8  ctrl;
333 		u8  oui[3];
334 		__be16 ethertype;
335 	};
336 	struct llc_snap_hdr *llc;
337 	__be16 proto;
338 
339 	proto = *(__be16 *) skb->data;
340 	__skb_pull(skb, sizeof(__be16));
341 
342 	if (eth_proto_is_802_3(proto))
343 		return proto;
344 
345 	if (skb->len < sizeof(struct llc_snap_hdr))
346 		return htons(ETH_P_802_2);
347 
348 	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
349 		return htons(0);
350 
351 	llc = (struct llc_snap_hdr *) skb->data;
352 	if (llc->dsap != LLC_SAP_SNAP ||
353 	    llc->ssap != LLC_SAP_SNAP ||
354 	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
355 		return htons(ETH_P_802_2);
356 
357 	__skb_pull(skb, sizeof(struct llc_snap_hdr));
358 
359 	if (eth_proto_is_802_3(llc->ethertype))
360 		return llc->ethertype;
361 
362 	return htons(ETH_P_802_2);
363 }
364 
365 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
366 			int nh_len)
367 {
368 	struct icmp6hdr *icmp = icmp6_hdr(skb);
369 
370 	/* The ICMPv6 type and code fields use the 16-bit transport port
371 	 * fields, so we need to store them in 16-bit network byte order.
372 	 */
373 	key->tp.src = htons(icmp->icmp6_type);
374 	key->tp.dst = htons(icmp->icmp6_code);
375 	memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
376 
377 	if (icmp->icmp6_code == 0 &&
378 	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
379 	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
380 		int icmp_len = skb->len - skb_transport_offset(skb);
381 		struct nd_msg *nd;
382 		int offset;
383 
384 		/* In order to process neighbor discovery options, we need the
385 		 * entire packet.
386 		 */
387 		if (unlikely(icmp_len < sizeof(*nd)))
388 			return 0;
389 
390 		if (unlikely(skb_linearize(skb)))
391 			return -ENOMEM;
392 
393 		nd = (struct nd_msg *)skb_transport_header(skb);
394 		key->ipv6.nd.target = nd->target;
395 
396 		icmp_len -= sizeof(*nd);
397 		offset = 0;
398 		while (icmp_len >= 8) {
399 			struct nd_opt_hdr *nd_opt =
400 				 (struct nd_opt_hdr *)(nd->opt + offset);
401 			int opt_len = nd_opt->nd_opt_len * 8;
402 
403 			if (unlikely(!opt_len || opt_len > icmp_len))
404 				return 0;
405 
406 			/* Store the link layer address if the appropriate
407 			 * option is provided.  It is considered an error if
408 			 * the same link layer option is specified twice.
409 			 */
410 			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
411 			    && opt_len == 8) {
412 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
413 					goto invalid;
414 				ether_addr_copy(key->ipv6.nd.sll,
415 						&nd->opt[offset+sizeof(*nd_opt)]);
416 			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
417 				   && opt_len == 8) {
418 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
419 					goto invalid;
420 				ether_addr_copy(key->ipv6.nd.tll,
421 						&nd->opt[offset+sizeof(*nd_opt)]);
422 			}
423 
424 			icmp_len -= opt_len;
425 			offset += opt_len;
426 		}
427 	}
428 
429 	return 0;
430 
431 invalid:
432 	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
433 	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
434 	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
435 
436 	return 0;
437 }
438 
439 /**
440  * key_extract - extracts a flow key from an Ethernet frame.
441  * @skb: sk_buff that contains the frame, with skb->data pointing to the
442  * Ethernet header
443  * @key: output flow key
444  *
445  * The caller must ensure that skb->len >= ETH_HLEN.
446  *
447  * Returns 0 if successful, otherwise a negative errno value.
448  *
449  * Initializes @skb header pointers as follows:
450  *
451  *    - skb->mac_header: the Ethernet header.
452  *
453  *    - skb->network_header: just past the Ethernet header, or just past the
454  *      VLAN header, to the first byte of the Ethernet payload.
455  *
456  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
457  *      on output, then just past the IP header, if one is present and
458  *      of a correct length, otherwise the same as skb->network_header.
459  *      For other key->eth.type values it is left untouched.
460  */
461 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
462 {
463 	int error;
464 	struct ethhdr *eth;
465 
466 	/* Flags are always used as part of stats */
467 	key->tp.flags = 0;
468 
469 	skb_reset_mac_header(skb);
470 
471 	/* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
472 	 * header in the linear data area.
473 	 */
474 	eth = eth_hdr(skb);
475 	ether_addr_copy(key->eth.src, eth->h_source);
476 	ether_addr_copy(key->eth.dst, eth->h_dest);
477 
478 	__skb_pull(skb, 2 * ETH_ALEN);
479 	/* We are going to push all headers that we pull, so no need to
480 	 * update skb->csum here.
481 	 */
482 
483 	key->eth.tci = 0;
484 	if (skb_vlan_tag_present(skb))
485 		key->eth.tci = htons(skb->vlan_tci);
486 	else if (eth->h_proto == htons(ETH_P_8021Q))
487 		if (unlikely(parse_vlan(skb, key)))
488 			return -ENOMEM;
489 
490 	key->eth.type = parse_ethertype(skb);
491 	if (unlikely(key->eth.type == htons(0)))
492 		return -ENOMEM;
493 
494 	skb_reset_network_header(skb);
495 	skb_reset_mac_len(skb);
496 	__skb_push(skb, skb->data - skb_mac_header(skb));
497 
498 	/* Network layer. */
499 	if (key->eth.type == htons(ETH_P_IP)) {
500 		struct iphdr *nh;
501 		__be16 offset;
502 
503 		error = check_iphdr(skb);
504 		if (unlikely(error)) {
505 			memset(&key->ip, 0, sizeof(key->ip));
506 			memset(&key->ipv4, 0, sizeof(key->ipv4));
507 			if (error == -EINVAL) {
508 				skb->transport_header = skb->network_header;
509 				error = 0;
510 			}
511 			return error;
512 		}
513 
514 		nh = ip_hdr(skb);
515 		key->ipv4.addr.src = nh->saddr;
516 		key->ipv4.addr.dst = nh->daddr;
517 
518 		key->ip.proto = nh->protocol;
519 		key->ip.tos = nh->tos;
520 		key->ip.ttl = nh->ttl;
521 
522 		offset = nh->frag_off & htons(IP_OFFSET);
523 		if (offset) {
524 			key->ip.frag = OVS_FRAG_TYPE_LATER;
525 			return 0;
526 		}
527 		if (nh->frag_off & htons(IP_MF) ||
528 			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
529 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
530 		else
531 			key->ip.frag = OVS_FRAG_TYPE_NONE;
532 
533 		/* Transport layer. */
534 		if (key->ip.proto == IPPROTO_TCP) {
535 			if (tcphdr_ok(skb)) {
536 				struct tcphdr *tcp = tcp_hdr(skb);
537 				key->tp.src = tcp->source;
538 				key->tp.dst = tcp->dest;
539 				key->tp.flags = TCP_FLAGS_BE16(tcp);
540 			} else {
541 				memset(&key->tp, 0, sizeof(key->tp));
542 			}
543 
544 		} else if (key->ip.proto == IPPROTO_UDP) {
545 			if (udphdr_ok(skb)) {
546 				struct udphdr *udp = udp_hdr(skb);
547 				key->tp.src = udp->source;
548 				key->tp.dst = udp->dest;
549 			} else {
550 				memset(&key->tp, 0, sizeof(key->tp));
551 			}
552 		} else if (key->ip.proto == IPPROTO_SCTP) {
553 			if (sctphdr_ok(skb)) {
554 				struct sctphdr *sctp = sctp_hdr(skb);
555 				key->tp.src = sctp->source;
556 				key->tp.dst = sctp->dest;
557 			} else {
558 				memset(&key->tp, 0, sizeof(key->tp));
559 			}
560 		} else if (key->ip.proto == IPPROTO_ICMP) {
561 			if (icmphdr_ok(skb)) {
562 				struct icmphdr *icmp = icmp_hdr(skb);
563 				/* The ICMP type and code fields use the 16-bit
564 				 * transport port fields, so we need to store
565 				 * them in 16-bit network byte order. */
566 				key->tp.src = htons(icmp->type);
567 				key->tp.dst = htons(icmp->code);
568 			} else {
569 				memset(&key->tp, 0, sizeof(key->tp));
570 			}
571 		}
572 
573 	} else if (key->eth.type == htons(ETH_P_ARP) ||
574 		   key->eth.type == htons(ETH_P_RARP)) {
575 		struct arp_eth_header *arp;
576 		bool arp_available = arphdr_ok(skb);
577 
578 		arp = (struct arp_eth_header *)skb_network_header(skb);
579 
580 		if (arp_available &&
581 		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
582 		    arp->ar_pro == htons(ETH_P_IP) &&
583 		    arp->ar_hln == ETH_ALEN &&
584 		    arp->ar_pln == 4) {
585 
586 			/* We only match on the lower 8 bits of the opcode. */
587 			if (ntohs(arp->ar_op) <= 0xff)
588 				key->ip.proto = ntohs(arp->ar_op);
589 			else
590 				key->ip.proto = 0;
591 
592 			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
593 			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
594 			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
595 			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
596 		} else {
597 			memset(&key->ip, 0, sizeof(key->ip));
598 			memset(&key->ipv4, 0, sizeof(key->ipv4));
599 		}
600 	} else if (eth_p_mpls(key->eth.type)) {
601 		size_t stack_len = MPLS_HLEN;
602 
603 		/* In the presence of an MPLS label stack the end of the L2
604 		 * header and the beginning of the L3 header differ.
605 		 *
606 		 * Advance network_header to the beginning of the L3
607 		 * header. mac_len corresponds to the end of the L2 header.
608 		 */
609 		while (1) {
610 			__be32 lse;
611 
612 			error = check_header(skb, skb->mac_len + stack_len);
613 			if (unlikely(error))
614 				return 0;
615 
616 			memcpy(&lse, skb_network_header(skb), MPLS_HLEN);
617 
618 			if (stack_len == MPLS_HLEN)
619 				memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
620 
621 			skb_set_network_header(skb, skb->mac_len + stack_len);
622 			if (lse & htonl(MPLS_LS_S_MASK))
623 				break;
624 
625 			stack_len += MPLS_HLEN;
626 		}
627 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
628 		int nh_len;             /* IPv6 Header + Extensions */
629 
630 		nh_len = parse_ipv6hdr(skb, key);
631 		if (unlikely(nh_len < 0)) {
632 			switch (nh_len) {
633 			case -EINVAL:
634 				memset(&key->ip, 0, sizeof(key->ip));
635 				memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
636 				/* fall-through */
637 			case -EPROTO:
638 				skb->transport_header = skb->network_header;
639 				error = 0;
640 				break;
641 			default:
642 				error = nh_len;
643 			}
644 			return error;
645 		}
646 
647 		if (key->ip.frag == OVS_FRAG_TYPE_LATER)
648 			return 0;
649 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
650 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
651 
652 		/* Transport layer. */
653 		if (key->ip.proto == NEXTHDR_TCP) {
654 			if (tcphdr_ok(skb)) {
655 				struct tcphdr *tcp = tcp_hdr(skb);
656 				key->tp.src = tcp->source;
657 				key->tp.dst = tcp->dest;
658 				key->tp.flags = TCP_FLAGS_BE16(tcp);
659 			} else {
660 				memset(&key->tp, 0, sizeof(key->tp));
661 			}
662 		} else if (key->ip.proto == NEXTHDR_UDP) {
663 			if (udphdr_ok(skb)) {
664 				struct udphdr *udp = udp_hdr(skb);
665 				key->tp.src = udp->source;
666 				key->tp.dst = udp->dest;
667 			} else {
668 				memset(&key->tp, 0, sizeof(key->tp));
669 			}
670 		} else if (key->ip.proto == NEXTHDR_SCTP) {
671 			if (sctphdr_ok(skb)) {
672 				struct sctphdr *sctp = sctp_hdr(skb);
673 				key->tp.src = sctp->source;
674 				key->tp.dst = sctp->dest;
675 			} else {
676 				memset(&key->tp, 0, sizeof(key->tp));
677 			}
678 		} else if (key->ip.proto == NEXTHDR_ICMP) {
679 			if (icmp6hdr_ok(skb)) {
680 				error = parse_icmpv6(skb, key, nh_len);
681 				if (error)
682 					return error;
683 			} else {
684 				memset(&key->tp, 0, sizeof(key->tp));
685 			}
686 		}
687 	}
688 	return 0;
689 }
690 
691 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
692 {
693 	return key_extract(skb, key);
694 }
695 
696 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
697 			 struct sk_buff *skb, struct sw_flow_key *key)
698 {
699 	/* Extract metadata from packet. */
700 	if (tun_info) {
701 		if (ip_tunnel_info_af(tun_info) != AF_INET)
702 			return -EINVAL;
703 		memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
704 
705 		if (tun_info->options_len) {
706 			BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
707 						   8)) - 1
708 					> sizeof(key->tun_opts));
709 
710 			ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
711 						tun_info);
712 			key->tun_opts_len = tun_info->options_len;
713 		} else {
714 			key->tun_opts_len = 0;
715 		}
716 	} else  {
717 		key->tun_opts_len = 0;
718 		memset(&key->tun_key, 0, sizeof(key->tun_key));
719 	}
720 
721 	key->phy.priority = skb->priority;
722 	key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
723 	key->phy.skb_mark = skb->mark;
724 	ovs_ct_fill_key(skb, key);
725 	key->ovs_flow_hash = 0;
726 	key->recirc_id = 0;
727 
728 	return key_extract(skb, key);
729 }
730 
731 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
732 				   struct sk_buff *skb,
733 				   struct sw_flow_key *key, bool log)
734 {
735 	int err;
736 
737 	memset(key, 0, OVS_SW_FLOW_KEY_METADATA_SIZE);
738 
739 	/* Extract metadata from netlink attributes. */
740 	err = ovs_nla_get_flow_metadata(net, attr, key, log);
741 	if (err)
742 		return err;
743 
744 	return key_extract(skb, key);
745 }
746