1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include <linux/uaccess.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/if_ether.h> 23 #include <linux/if_vlan.h> 24 #include <net/llc_pdu.h> 25 #include <linux/kernel.h> 26 #include <linux/jhash.h> 27 #include <linux/jiffies.h> 28 #include <linux/llc.h> 29 #include <linux/module.h> 30 #include <linux/in.h> 31 #include <linux/rcupdate.h> 32 #include <linux/if_arp.h> 33 #include <linux/ip.h> 34 #include <linux/ipv6.h> 35 #include <linux/sctp.h> 36 #include <linux/smp.h> 37 #include <linux/tcp.h> 38 #include <linux/udp.h> 39 #include <linux/icmp.h> 40 #include <linux/icmpv6.h> 41 #include <linux/rculist.h> 42 #include <net/ip.h> 43 #include <net/ip_tunnels.h> 44 #include <net/ipv6.h> 45 #include <net/ndisc.h> 46 47 #include "datapath.h" 48 #include "flow.h" 49 #include "flow_netlink.h" 50 51 u64 ovs_flow_used_time(unsigned long flow_jiffies) 52 { 53 struct timespec cur_ts; 54 u64 cur_ms, idle_ms; 55 56 ktime_get_ts(&cur_ts); 57 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 58 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + 59 cur_ts.tv_nsec / NSEC_PER_MSEC; 60 61 return cur_ms - idle_ms; 62 } 63 64 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) 65 66 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, 67 struct sk_buff *skb) 68 { 69 struct flow_stats *stats; 70 int node = numa_node_id(); 71 72 stats = rcu_dereference(flow->stats[node]); 73 74 /* Check if already have node-specific stats. */ 75 if (likely(stats)) { 76 spin_lock(&stats->lock); 77 /* Mark if we write on the pre-allocated stats. */ 78 if (node == 0 && unlikely(flow->stats_last_writer != node)) 79 flow->stats_last_writer = node; 80 } else { 81 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ 82 spin_lock(&stats->lock); 83 84 /* If the current NUMA-node is the only writer on the 85 * pre-allocated stats keep using them. 86 */ 87 if (unlikely(flow->stats_last_writer != node)) { 88 /* A previous locker may have already allocated the 89 * stats, so we need to check again. If node-specific 90 * stats were already allocated, we update the pre- 91 * allocated stats as we have already locked them. 92 */ 93 if (likely(flow->stats_last_writer != NUMA_NO_NODE) 94 && likely(!rcu_access_pointer(flow->stats[node]))) { 95 /* Try to allocate node-specific stats. */ 96 struct flow_stats *new_stats; 97 98 new_stats = 99 kmem_cache_alloc_node(flow_stats_cache, 100 GFP_THISNODE | 101 __GFP_NOMEMALLOC, 102 node); 103 if (likely(new_stats)) { 104 new_stats->used = jiffies; 105 new_stats->packet_count = 1; 106 new_stats->byte_count = skb->len; 107 new_stats->tcp_flags = tcp_flags; 108 spin_lock_init(&new_stats->lock); 109 110 rcu_assign_pointer(flow->stats[node], 111 new_stats); 112 goto unlock; 113 } 114 } 115 flow->stats_last_writer = node; 116 } 117 } 118 119 stats->used = jiffies; 120 stats->packet_count++; 121 stats->byte_count += skb->len; 122 stats->tcp_flags |= tcp_flags; 123 unlock: 124 spin_unlock(&stats->lock); 125 } 126 127 /* Must be called with rcu_read_lock or ovs_mutex. */ 128 void ovs_flow_stats_get(const struct sw_flow *flow, 129 struct ovs_flow_stats *ovs_stats, 130 unsigned long *used, __be16 *tcp_flags) 131 { 132 int node; 133 134 *used = 0; 135 *tcp_flags = 0; 136 memset(ovs_stats, 0, sizeof(*ovs_stats)); 137 138 for_each_node(node) { 139 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]); 140 141 if (stats) { 142 /* Local CPU may write on non-local stats, so we must 143 * block bottom-halves here. 144 */ 145 spin_lock_bh(&stats->lock); 146 if (!*used || time_after(stats->used, *used)) 147 *used = stats->used; 148 *tcp_flags |= stats->tcp_flags; 149 ovs_stats->n_packets += stats->packet_count; 150 ovs_stats->n_bytes += stats->byte_count; 151 spin_unlock_bh(&stats->lock); 152 } 153 } 154 } 155 156 /* Called with ovs_mutex. */ 157 void ovs_flow_stats_clear(struct sw_flow *flow) 158 { 159 int node; 160 161 for_each_node(node) { 162 struct flow_stats *stats = ovsl_dereference(flow->stats[node]); 163 164 if (stats) { 165 spin_lock_bh(&stats->lock); 166 stats->used = 0; 167 stats->packet_count = 0; 168 stats->byte_count = 0; 169 stats->tcp_flags = 0; 170 spin_unlock_bh(&stats->lock); 171 } 172 } 173 } 174 175 static int check_header(struct sk_buff *skb, int len) 176 { 177 if (unlikely(skb->len < len)) 178 return -EINVAL; 179 if (unlikely(!pskb_may_pull(skb, len))) 180 return -ENOMEM; 181 return 0; 182 } 183 184 static bool arphdr_ok(struct sk_buff *skb) 185 { 186 return pskb_may_pull(skb, skb_network_offset(skb) + 187 sizeof(struct arp_eth_header)); 188 } 189 190 static int check_iphdr(struct sk_buff *skb) 191 { 192 unsigned int nh_ofs = skb_network_offset(skb); 193 unsigned int ip_len; 194 int err; 195 196 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 197 if (unlikely(err)) 198 return err; 199 200 ip_len = ip_hdrlen(skb); 201 if (unlikely(ip_len < sizeof(struct iphdr) || 202 skb->len < nh_ofs + ip_len)) 203 return -EINVAL; 204 205 skb_set_transport_header(skb, nh_ofs + ip_len); 206 return 0; 207 } 208 209 static bool tcphdr_ok(struct sk_buff *skb) 210 { 211 int th_ofs = skb_transport_offset(skb); 212 int tcp_len; 213 214 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 215 return false; 216 217 tcp_len = tcp_hdrlen(skb); 218 if (unlikely(tcp_len < sizeof(struct tcphdr) || 219 skb->len < th_ofs + tcp_len)) 220 return false; 221 222 return true; 223 } 224 225 static bool udphdr_ok(struct sk_buff *skb) 226 { 227 return pskb_may_pull(skb, skb_transport_offset(skb) + 228 sizeof(struct udphdr)); 229 } 230 231 static bool sctphdr_ok(struct sk_buff *skb) 232 { 233 return pskb_may_pull(skb, skb_transport_offset(skb) + 234 sizeof(struct sctphdr)); 235 } 236 237 static bool icmphdr_ok(struct sk_buff *skb) 238 { 239 return pskb_may_pull(skb, skb_transport_offset(skb) + 240 sizeof(struct icmphdr)); 241 } 242 243 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) 244 { 245 unsigned int nh_ofs = skb_network_offset(skb); 246 unsigned int nh_len; 247 int payload_ofs; 248 struct ipv6hdr *nh; 249 uint8_t nexthdr; 250 __be16 frag_off; 251 int err; 252 253 err = check_header(skb, nh_ofs + sizeof(*nh)); 254 if (unlikely(err)) 255 return err; 256 257 nh = ipv6_hdr(skb); 258 nexthdr = nh->nexthdr; 259 payload_ofs = (u8 *)(nh + 1) - skb->data; 260 261 key->ip.proto = NEXTHDR_NONE; 262 key->ip.tos = ipv6_get_dsfield(nh); 263 key->ip.ttl = nh->hop_limit; 264 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 265 key->ipv6.addr.src = nh->saddr; 266 key->ipv6.addr.dst = nh->daddr; 267 268 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 269 if (unlikely(payload_ofs < 0)) 270 return -EINVAL; 271 272 if (frag_off) { 273 if (frag_off & htons(~0x7)) 274 key->ip.frag = OVS_FRAG_TYPE_LATER; 275 else 276 key->ip.frag = OVS_FRAG_TYPE_FIRST; 277 } else { 278 key->ip.frag = OVS_FRAG_TYPE_NONE; 279 } 280 281 nh_len = payload_ofs - nh_ofs; 282 skb_set_transport_header(skb, nh_ofs + nh_len); 283 key->ip.proto = nexthdr; 284 return nh_len; 285 } 286 287 static bool icmp6hdr_ok(struct sk_buff *skb) 288 { 289 return pskb_may_pull(skb, skb_transport_offset(skb) + 290 sizeof(struct icmp6hdr)); 291 } 292 293 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 294 { 295 struct qtag_prefix { 296 __be16 eth_type; /* ETH_P_8021Q */ 297 __be16 tci; 298 }; 299 struct qtag_prefix *qp; 300 301 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) 302 return 0; 303 304 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + 305 sizeof(__be16)))) 306 return -ENOMEM; 307 308 qp = (struct qtag_prefix *) skb->data; 309 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); 310 __skb_pull(skb, sizeof(struct qtag_prefix)); 311 312 return 0; 313 } 314 315 static __be16 parse_ethertype(struct sk_buff *skb) 316 { 317 struct llc_snap_hdr { 318 u8 dsap; /* Always 0xAA */ 319 u8 ssap; /* Always 0xAA */ 320 u8 ctrl; 321 u8 oui[3]; 322 __be16 ethertype; 323 }; 324 struct llc_snap_hdr *llc; 325 __be16 proto; 326 327 proto = *(__be16 *) skb->data; 328 __skb_pull(skb, sizeof(__be16)); 329 330 if (ntohs(proto) >= ETH_P_802_3_MIN) 331 return proto; 332 333 if (skb->len < sizeof(struct llc_snap_hdr)) 334 return htons(ETH_P_802_2); 335 336 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 337 return htons(0); 338 339 llc = (struct llc_snap_hdr *) skb->data; 340 if (llc->dsap != LLC_SAP_SNAP || 341 llc->ssap != LLC_SAP_SNAP || 342 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 343 return htons(ETH_P_802_2); 344 345 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 346 347 if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN) 348 return llc->ethertype; 349 350 return htons(ETH_P_802_2); 351 } 352 353 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 354 int nh_len) 355 { 356 struct icmp6hdr *icmp = icmp6_hdr(skb); 357 358 /* The ICMPv6 type and code fields use the 16-bit transport port 359 * fields, so we need to store them in 16-bit network byte order. 360 */ 361 key->tp.src = htons(icmp->icmp6_type); 362 key->tp.dst = htons(icmp->icmp6_code); 363 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); 364 365 if (icmp->icmp6_code == 0 && 366 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 367 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 368 int icmp_len = skb->len - skb_transport_offset(skb); 369 struct nd_msg *nd; 370 int offset; 371 372 /* In order to process neighbor discovery options, we need the 373 * entire packet. 374 */ 375 if (unlikely(icmp_len < sizeof(*nd))) 376 return 0; 377 378 if (unlikely(skb_linearize(skb))) 379 return -ENOMEM; 380 381 nd = (struct nd_msg *)skb_transport_header(skb); 382 key->ipv6.nd.target = nd->target; 383 384 icmp_len -= sizeof(*nd); 385 offset = 0; 386 while (icmp_len >= 8) { 387 struct nd_opt_hdr *nd_opt = 388 (struct nd_opt_hdr *)(nd->opt + offset); 389 int opt_len = nd_opt->nd_opt_len * 8; 390 391 if (unlikely(!opt_len || opt_len > icmp_len)) 392 return 0; 393 394 /* Store the link layer address if the appropriate 395 * option is provided. It is considered an error if 396 * the same link layer option is specified twice. 397 */ 398 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 399 && opt_len == 8) { 400 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 401 goto invalid; 402 ether_addr_copy(key->ipv6.nd.sll, 403 &nd->opt[offset+sizeof(*nd_opt)]); 404 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 405 && opt_len == 8) { 406 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 407 goto invalid; 408 ether_addr_copy(key->ipv6.nd.tll, 409 &nd->opt[offset+sizeof(*nd_opt)]); 410 } 411 412 icmp_len -= opt_len; 413 offset += opt_len; 414 } 415 } 416 417 return 0; 418 419 invalid: 420 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 421 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 422 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 423 424 return 0; 425 } 426 427 /** 428 * key_extract - extracts a flow key from an Ethernet frame. 429 * @skb: sk_buff that contains the frame, with skb->data pointing to the 430 * Ethernet header 431 * @key: output flow key 432 * 433 * The caller must ensure that skb->len >= ETH_HLEN. 434 * 435 * Returns 0 if successful, otherwise a negative errno value. 436 * 437 * Initializes @skb header pointers as follows: 438 * 439 * - skb->mac_header: the Ethernet header. 440 * 441 * - skb->network_header: just past the Ethernet header, or just past the 442 * VLAN header, to the first byte of the Ethernet payload. 443 * 444 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 445 * on output, then just past the IP header, if one is present and 446 * of a correct length, otherwise the same as skb->network_header. 447 * For other key->eth.type values it is left untouched. 448 */ 449 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) 450 { 451 int error; 452 struct ethhdr *eth; 453 454 /* Flags are always used as part of stats */ 455 key->tp.flags = 0; 456 457 skb_reset_mac_header(skb); 458 459 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet 460 * header in the linear data area. 461 */ 462 eth = eth_hdr(skb); 463 ether_addr_copy(key->eth.src, eth->h_source); 464 ether_addr_copy(key->eth.dst, eth->h_dest); 465 466 __skb_pull(skb, 2 * ETH_ALEN); 467 /* We are going to push all headers that we pull, so no need to 468 * update skb->csum here. 469 */ 470 471 key->eth.tci = 0; 472 if (vlan_tx_tag_present(skb)) 473 key->eth.tci = htons(skb->vlan_tci); 474 else if (eth->h_proto == htons(ETH_P_8021Q)) 475 if (unlikely(parse_vlan(skb, key))) 476 return -ENOMEM; 477 478 key->eth.type = parse_ethertype(skb); 479 if (unlikely(key->eth.type == htons(0))) 480 return -ENOMEM; 481 482 skb_reset_network_header(skb); 483 __skb_push(skb, skb->data - skb_mac_header(skb)); 484 485 /* Network layer. */ 486 if (key->eth.type == htons(ETH_P_IP)) { 487 struct iphdr *nh; 488 __be16 offset; 489 490 error = check_iphdr(skb); 491 if (unlikely(error)) { 492 memset(&key->ip, 0, sizeof(key->ip)); 493 memset(&key->ipv4, 0, sizeof(key->ipv4)); 494 if (error == -EINVAL) { 495 skb->transport_header = skb->network_header; 496 error = 0; 497 } 498 return error; 499 } 500 501 nh = ip_hdr(skb); 502 key->ipv4.addr.src = nh->saddr; 503 key->ipv4.addr.dst = nh->daddr; 504 505 key->ip.proto = nh->protocol; 506 key->ip.tos = nh->tos; 507 key->ip.ttl = nh->ttl; 508 509 offset = nh->frag_off & htons(IP_OFFSET); 510 if (offset) { 511 key->ip.frag = OVS_FRAG_TYPE_LATER; 512 return 0; 513 } 514 if (nh->frag_off & htons(IP_MF) || 515 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 516 key->ip.frag = OVS_FRAG_TYPE_FIRST; 517 else 518 key->ip.frag = OVS_FRAG_TYPE_NONE; 519 520 /* Transport layer. */ 521 if (key->ip.proto == IPPROTO_TCP) { 522 if (tcphdr_ok(skb)) { 523 struct tcphdr *tcp = tcp_hdr(skb); 524 key->tp.src = tcp->source; 525 key->tp.dst = tcp->dest; 526 key->tp.flags = TCP_FLAGS_BE16(tcp); 527 } else { 528 memset(&key->tp, 0, sizeof(key->tp)); 529 } 530 531 } else if (key->ip.proto == IPPROTO_UDP) { 532 if (udphdr_ok(skb)) { 533 struct udphdr *udp = udp_hdr(skb); 534 key->tp.src = udp->source; 535 key->tp.dst = udp->dest; 536 } else { 537 memset(&key->tp, 0, sizeof(key->tp)); 538 } 539 } else if (key->ip.proto == IPPROTO_SCTP) { 540 if (sctphdr_ok(skb)) { 541 struct sctphdr *sctp = sctp_hdr(skb); 542 key->tp.src = sctp->source; 543 key->tp.dst = sctp->dest; 544 } else { 545 memset(&key->tp, 0, sizeof(key->tp)); 546 } 547 } else if (key->ip.proto == IPPROTO_ICMP) { 548 if (icmphdr_ok(skb)) { 549 struct icmphdr *icmp = icmp_hdr(skb); 550 /* The ICMP type and code fields use the 16-bit 551 * transport port fields, so we need to store 552 * them in 16-bit network byte order. */ 553 key->tp.src = htons(icmp->type); 554 key->tp.dst = htons(icmp->code); 555 } else { 556 memset(&key->tp, 0, sizeof(key->tp)); 557 } 558 } 559 560 } else if (key->eth.type == htons(ETH_P_ARP) || 561 key->eth.type == htons(ETH_P_RARP)) { 562 struct arp_eth_header *arp; 563 bool arp_available = arphdr_ok(skb); 564 565 arp = (struct arp_eth_header *)skb_network_header(skb); 566 567 if (arp_available && 568 arp->ar_hrd == htons(ARPHRD_ETHER) && 569 arp->ar_pro == htons(ETH_P_IP) && 570 arp->ar_hln == ETH_ALEN && 571 arp->ar_pln == 4) { 572 573 /* We only match on the lower 8 bits of the opcode. */ 574 if (ntohs(arp->ar_op) <= 0xff) 575 key->ip.proto = ntohs(arp->ar_op); 576 else 577 key->ip.proto = 0; 578 579 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 580 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 581 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); 582 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); 583 } else { 584 memset(&key->ip, 0, sizeof(key->ip)); 585 memset(&key->ipv4, 0, sizeof(key->ipv4)); 586 } 587 } else if (key->eth.type == htons(ETH_P_IPV6)) { 588 int nh_len; /* IPv6 Header + Extensions */ 589 590 nh_len = parse_ipv6hdr(skb, key); 591 if (unlikely(nh_len < 0)) { 592 memset(&key->ip, 0, sizeof(key->ip)); 593 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); 594 if (nh_len == -EINVAL) { 595 skb->transport_header = skb->network_header; 596 error = 0; 597 } else { 598 error = nh_len; 599 } 600 return error; 601 } 602 603 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 604 return 0; 605 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 606 key->ip.frag = OVS_FRAG_TYPE_FIRST; 607 608 /* Transport layer. */ 609 if (key->ip.proto == NEXTHDR_TCP) { 610 if (tcphdr_ok(skb)) { 611 struct tcphdr *tcp = tcp_hdr(skb); 612 key->tp.src = tcp->source; 613 key->tp.dst = tcp->dest; 614 key->tp.flags = TCP_FLAGS_BE16(tcp); 615 } else { 616 memset(&key->tp, 0, sizeof(key->tp)); 617 } 618 } else if (key->ip.proto == NEXTHDR_UDP) { 619 if (udphdr_ok(skb)) { 620 struct udphdr *udp = udp_hdr(skb); 621 key->tp.src = udp->source; 622 key->tp.dst = udp->dest; 623 } else { 624 memset(&key->tp, 0, sizeof(key->tp)); 625 } 626 } else if (key->ip.proto == NEXTHDR_SCTP) { 627 if (sctphdr_ok(skb)) { 628 struct sctphdr *sctp = sctp_hdr(skb); 629 key->tp.src = sctp->source; 630 key->tp.dst = sctp->dest; 631 } else { 632 memset(&key->tp, 0, sizeof(key->tp)); 633 } 634 } else if (key->ip.proto == NEXTHDR_ICMP) { 635 if (icmp6hdr_ok(skb)) { 636 error = parse_icmpv6(skb, key, nh_len); 637 if (error) 638 return error; 639 } else { 640 memset(&key->tp, 0, sizeof(key->tp)); 641 } 642 } 643 } 644 return 0; 645 } 646 647 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) 648 { 649 return key_extract(skb, key); 650 } 651 652 int ovs_flow_key_extract(struct ovs_tunnel_info *tun_info, 653 struct sk_buff *skb, struct sw_flow_key *key) 654 { 655 /* Extract metadata from packet. */ 656 if (tun_info) { 657 memcpy(&key->tun_key, &tun_info->tunnel, sizeof(key->tun_key)); 658 659 if (tun_info->options) { 660 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 661 8)) - 1 662 > sizeof(key->tun_opts)); 663 memcpy(GENEVE_OPTS(key, tun_info->options_len), 664 tun_info->options, tun_info->options_len); 665 key->tun_opts_len = tun_info->options_len; 666 } else { 667 key->tun_opts_len = 0; 668 } 669 } else { 670 key->tun_opts_len = 0; 671 memset(&key->tun_key, 0, sizeof(key->tun_key)); 672 } 673 674 key->phy.priority = skb->priority; 675 key->phy.in_port = OVS_CB(skb)->input_vport->port_no; 676 key->phy.skb_mark = skb->mark; 677 key->ovs_flow_hash = 0; 678 key->recirc_id = 0; 679 680 return key_extract(skb, key); 681 } 682 683 int ovs_flow_key_extract_userspace(const struct nlattr *attr, 684 struct sk_buff *skb, 685 struct sw_flow_key *key) 686 { 687 int err; 688 689 /* Extract metadata from netlink attributes. */ 690 err = ovs_nla_get_flow_metadata(attr, key); 691 if (err) 692 return err; 693 694 return key_extract(skb, key); 695 } 696