1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include <linux/uaccess.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/if_ether.h> 23 #include <linux/if_vlan.h> 24 #include <net/llc_pdu.h> 25 #include <linux/kernel.h> 26 #include <linux/jhash.h> 27 #include <linux/jiffies.h> 28 #include <linux/llc.h> 29 #include <linux/module.h> 30 #include <linux/in.h> 31 #include <linux/rcupdate.h> 32 #include <linux/cpumask.h> 33 #include <linux/if_arp.h> 34 #include <linux/ip.h> 35 #include <linux/ipv6.h> 36 #include <linux/mpls.h> 37 #include <linux/sctp.h> 38 #include <linux/smp.h> 39 #include <linux/tcp.h> 40 #include <linux/udp.h> 41 #include <linux/icmp.h> 42 #include <linux/icmpv6.h> 43 #include <linux/rculist.h> 44 #include <net/ip.h> 45 #include <net/ip_tunnels.h> 46 #include <net/ipv6.h> 47 #include <net/mpls.h> 48 #include <net/ndisc.h> 49 #include <net/nsh.h> 50 51 #include "conntrack.h" 52 #include "datapath.h" 53 #include "flow.h" 54 #include "flow_netlink.h" 55 #include "vport.h" 56 57 u64 ovs_flow_used_time(unsigned long flow_jiffies) 58 { 59 struct timespec64 cur_ts; 60 u64 cur_ms, idle_ms; 61 62 ktime_get_ts64(&cur_ts); 63 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 64 cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC + 65 cur_ts.tv_nsec / NSEC_PER_MSEC; 66 67 return cur_ms - idle_ms; 68 } 69 70 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) 71 72 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, 73 const struct sk_buff *skb) 74 { 75 struct flow_stats *stats; 76 unsigned int cpu = smp_processor_id(); 77 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0); 78 79 stats = rcu_dereference(flow->stats[cpu]); 80 81 /* Check if already have CPU-specific stats. */ 82 if (likely(stats)) { 83 spin_lock(&stats->lock); 84 /* Mark if we write on the pre-allocated stats. */ 85 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu)) 86 flow->stats_last_writer = cpu; 87 } else { 88 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ 89 spin_lock(&stats->lock); 90 91 /* If the current CPU is the only writer on the 92 * pre-allocated stats keep using them. 93 */ 94 if (unlikely(flow->stats_last_writer != cpu)) { 95 /* A previous locker may have already allocated the 96 * stats, so we need to check again. If CPU-specific 97 * stats were already allocated, we update the pre- 98 * allocated stats as we have already locked them. 99 */ 100 if (likely(flow->stats_last_writer != -1) && 101 likely(!rcu_access_pointer(flow->stats[cpu]))) { 102 /* Try to allocate CPU-specific stats. */ 103 struct flow_stats *new_stats; 104 105 new_stats = 106 kmem_cache_alloc_node(flow_stats_cache, 107 GFP_NOWAIT | 108 __GFP_THISNODE | 109 __GFP_NOWARN | 110 __GFP_NOMEMALLOC, 111 numa_node_id()); 112 if (likely(new_stats)) { 113 new_stats->used = jiffies; 114 new_stats->packet_count = 1; 115 new_stats->byte_count = len; 116 new_stats->tcp_flags = tcp_flags; 117 spin_lock_init(&new_stats->lock); 118 119 rcu_assign_pointer(flow->stats[cpu], 120 new_stats); 121 cpumask_set_cpu(cpu, &flow->cpu_used_mask); 122 goto unlock; 123 } 124 } 125 flow->stats_last_writer = cpu; 126 } 127 } 128 129 stats->used = jiffies; 130 stats->packet_count++; 131 stats->byte_count += len; 132 stats->tcp_flags |= tcp_flags; 133 unlock: 134 spin_unlock(&stats->lock); 135 } 136 137 /* Must be called with rcu_read_lock or ovs_mutex. */ 138 void ovs_flow_stats_get(const struct sw_flow *flow, 139 struct ovs_flow_stats *ovs_stats, 140 unsigned long *used, __be16 *tcp_flags) 141 { 142 int cpu; 143 144 *used = 0; 145 *tcp_flags = 0; 146 memset(ovs_stats, 0, sizeof(*ovs_stats)); 147 148 /* We open code this to make sure cpu 0 is always considered */ 149 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) { 150 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]); 151 152 if (stats) { 153 /* Local CPU may write on non-local stats, so we must 154 * block bottom-halves here. 155 */ 156 spin_lock_bh(&stats->lock); 157 if (!*used || time_after(stats->used, *used)) 158 *used = stats->used; 159 *tcp_flags |= stats->tcp_flags; 160 ovs_stats->n_packets += stats->packet_count; 161 ovs_stats->n_bytes += stats->byte_count; 162 spin_unlock_bh(&stats->lock); 163 } 164 } 165 } 166 167 /* Called with ovs_mutex. */ 168 void ovs_flow_stats_clear(struct sw_flow *flow) 169 { 170 int cpu; 171 172 /* We open code this to make sure cpu 0 is always considered */ 173 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) { 174 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]); 175 176 if (stats) { 177 spin_lock_bh(&stats->lock); 178 stats->used = 0; 179 stats->packet_count = 0; 180 stats->byte_count = 0; 181 stats->tcp_flags = 0; 182 spin_unlock_bh(&stats->lock); 183 } 184 } 185 } 186 187 static int check_header(struct sk_buff *skb, int len) 188 { 189 if (unlikely(skb->len < len)) 190 return -EINVAL; 191 if (unlikely(!pskb_may_pull(skb, len))) 192 return -ENOMEM; 193 return 0; 194 } 195 196 static bool arphdr_ok(struct sk_buff *skb) 197 { 198 return pskb_may_pull(skb, skb_network_offset(skb) + 199 sizeof(struct arp_eth_header)); 200 } 201 202 static int check_iphdr(struct sk_buff *skb) 203 { 204 unsigned int nh_ofs = skb_network_offset(skb); 205 unsigned int ip_len; 206 int err; 207 208 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 209 if (unlikely(err)) 210 return err; 211 212 ip_len = ip_hdrlen(skb); 213 if (unlikely(ip_len < sizeof(struct iphdr) || 214 skb->len < nh_ofs + ip_len)) 215 return -EINVAL; 216 217 skb_set_transport_header(skb, nh_ofs + ip_len); 218 return 0; 219 } 220 221 static bool tcphdr_ok(struct sk_buff *skb) 222 { 223 int th_ofs = skb_transport_offset(skb); 224 int tcp_len; 225 226 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 227 return false; 228 229 tcp_len = tcp_hdrlen(skb); 230 if (unlikely(tcp_len < sizeof(struct tcphdr) || 231 skb->len < th_ofs + tcp_len)) 232 return false; 233 234 return true; 235 } 236 237 static bool udphdr_ok(struct sk_buff *skb) 238 { 239 return pskb_may_pull(skb, skb_transport_offset(skb) + 240 sizeof(struct udphdr)); 241 } 242 243 static bool sctphdr_ok(struct sk_buff *skb) 244 { 245 return pskb_may_pull(skb, skb_transport_offset(skb) + 246 sizeof(struct sctphdr)); 247 } 248 249 static bool icmphdr_ok(struct sk_buff *skb) 250 { 251 return pskb_may_pull(skb, skb_transport_offset(skb) + 252 sizeof(struct icmphdr)); 253 } 254 255 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) 256 { 257 unsigned short frag_off; 258 unsigned int payload_ofs = 0; 259 unsigned int nh_ofs = skb_network_offset(skb); 260 unsigned int nh_len; 261 struct ipv6hdr *nh; 262 int err, nexthdr, flags = 0; 263 264 err = check_header(skb, nh_ofs + sizeof(*nh)); 265 if (unlikely(err)) 266 return err; 267 268 nh = ipv6_hdr(skb); 269 270 key->ip.proto = NEXTHDR_NONE; 271 key->ip.tos = ipv6_get_dsfield(nh); 272 key->ip.ttl = nh->hop_limit; 273 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 274 key->ipv6.addr.src = nh->saddr; 275 key->ipv6.addr.dst = nh->daddr; 276 277 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 278 if (flags & IP6_FH_F_FRAG) { 279 if (frag_off) { 280 key->ip.frag = OVS_FRAG_TYPE_LATER; 281 key->ip.proto = nexthdr; 282 return 0; 283 } 284 key->ip.frag = OVS_FRAG_TYPE_FIRST; 285 } else { 286 key->ip.frag = OVS_FRAG_TYPE_NONE; 287 } 288 289 /* Delayed handling of error in ipv6_find_hdr() as it 290 * always sets flags and frag_off to a valid value which may be 291 * used to set key->ip.frag above. 292 */ 293 if (unlikely(nexthdr < 0)) 294 return -EPROTO; 295 296 nh_len = payload_ofs - nh_ofs; 297 skb_set_transport_header(skb, nh_ofs + nh_len); 298 key->ip.proto = nexthdr; 299 return nh_len; 300 } 301 302 static bool icmp6hdr_ok(struct sk_buff *skb) 303 { 304 return pskb_may_pull(skb, skb_transport_offset(skb) + 305 sizeof(struct icmp6hdr)); 306 } 307 308 /** 309 * Parse vlan tag from vlan header. 310 * Returns ERROR on memory error. 311 * Returns 0 if it encounters a non-vlan or incomplete packet. 312 * Returns 1 after successfully parsing vlan tag. 313 */ 314 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh, 315 bool untag_vlan) 316 { 317 struct vlan_head *vh = (struct vlan_head *)skb->data; 318 319 if (likely(!eth_type_vlan(vh->tpid))) 320 return 0; 321 322 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16))) 323 return 0; 324 325 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) + 326 sizeof(__be16)))) 327 return -ENOMEM; 328 329 vh = (struct vlan_head *)skb->data; 330 key_vh->tci = vh->tci | htons(VLAN_CFI_MASK); 331 key_vh->tpid = vh->tpid; 332 333 if (unlikely(untag_vlan)) { 334 int offset = skb->data - skb_mac_header(skb); 335 u16 tci; 336 int err; 337 338 __skb_push(skb, offset); 339 err = __skb_vlan_pop(skb, &tci); 340 __skb_pull(skb, offset); 341 if (err) 342 return err; 343 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci); 344 } else { 345 __skb_pull(skb, sizeof(struct vlan_head)); 346 } 347 return 1; 348 } 349 350 static void clear_vlan(struct sw_flow_key *key) 351 { 352 key->eth.vlan.tci = 0; 353 key->eth.vlan.tpid = 0; 354 key->eth.cvlan.tci = 0; 355 key->eth.cvlan.tpid = 0; 356 } 357 358 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 359 { 360 int res; 361 362 if (skb_vlan_tag_present(skb)) { 363 key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK); 364 key->eth.vlan.tpid = skb->vlan_proto; 365 } else { 366 /* Parse outer vlan tag in the non-accelerated case. */ 367 res = parse_vlan_tag(skb, &key->eth.vlan, true); 368 if (res <= 0) 369 return res; 370 } 371 372 /* Parse inner vlan tag. */ 373 res = parse_vlan_tag(skb, &key->eth.cvlan, false); 374 if (res <= 0) 375 return res; 376 377 return 0; 378 } 379 380 static __be16 parse_ethertype(struct sk_buff *skb) 381 { 382 struct llc_snap_hdr { 383 u8 dsap; /* Always 0xAA */ 384 u8 ssap; /* Always 0xAA */ 385 u8 ctrl; 386 u8 oui[3]; 387 __be16 ethertype; 388 }; 389 struct llc_snap_hdr *llc; 390 __be16 proto; 391 392 proto = *(__be16 *) skb->data; 393 __skb_pull(skb, sizeof(__be16)); 394 395 if (eth_proto_is_802_3(proto)) 396 return proto; 397 398 if (skb->len < sizeof(struct llc_snap_hdr)) 399 return htons(ETH_P_802_2); 400 401 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 402 return htons(0); 403 404 llc = (struct llc_snap_hdr *) skb->data; 405 if (llc->dsap != LLC_SAP_SNAP || 406 llc->ssap != LLC_SAP_SNAP || 407 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 408 return htons(ETH_P_802_2); 409 410 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 411 412 if (eth_proto_is_802_3(llc->ethertype)) 413 return llc->ethertype; 414 415 return htons(ETH_P_802_2); 416 } 417 418 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 419 int nh_len) 420 { 421 struct icmp6hdr *icmp = icmp6_hdr(skb); 422 423 /* The ICMPv6 type and code fields use the 16-bit transport port 424 * fields, so we need to store them in 16-bit network byte order. 425 */ 426 key->tp.src = htons(icmp->icmp6_type); 427 key->tp.dst = htons(icmp->icmp6_code); 428 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); 429 430 if (icmp->icmp6_code == 0 && 431 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 432 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 433 int icmp_len = skb->len - skb_transport_offset(skb); 434 struct nd_msg *nd; 435 int offset; 436 437 /* In order to process neighbor discovery options, we need the 438 * entire packet. 439 */ 440 if (unlikely(icmp_len < sizeof(*nd))) 441 return 0; 442 443 if (unlikely(skb_linearize(skb))) 444 return -ENOMEM; 445 446 nd = (struct nd_msg *)skb_transport_header(skb); 447 key->ipv6.nd.target = nd->target; 448 449 icmp_len -= sizeof(*nd); 450 offset = 0; 451 while (icmp_len >= 8) { 452 struct nd_opt_hdr *nd_opt = 453 (struct nd_opt_hdr *)(nd->opt + offset); 454 int opt_len = nd_opt->nd_opt_len * 8; 455 456 if (unlikely(!opt_len || opt_len > icmp_len)) 457 return 0; 458 459 /* Store the link layer address if the appropriate 460 * option is provided. It is considered an error if 461 * the same link layer option is specified twice. 462 */ 463 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 464 && opt_len == 8) { 465 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 466 goto invalid; 467 ether_addr_copy(key->ipv6.nd.sll, 468 &nd->opt[offset+sizeof(*nd_opt)]); 469 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 470 && opt_len == 8) { 471 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 472 goto invalid; 473 ether_addr_copy(key->ipv6.nd.tll, 474 &nd->opt[offset+sizeof(*nd_opt)]); 475 } 476 477 icmp_len -= opt_len; 478 offset += opt_len; 479 } 480 } 481 482 return 0; 483 484 invalid: 485 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 486 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 487 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 488 489 return 0; 490 } 491 492 static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key) 493 { 494 struct nshhdr *nh; 495 unsigned int nh_ofs = skb_network_offset(skb); 496 u8 version, length; 497 int err; 498 499 err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN); 500 if (unlikely(err)) 501 return err; 502 503 nh = nsh_hdr(skb); 504 version = nsh_get_ver(nh); 505 length = nsh_hdr_len(nh); 506 507 if (version != 0) 508 return -EINVAL; 509 510 err = check_header(skb, nh_ofs + length); 511 if (unlikely(err)) 512 return err; 513 514 nh = nsh_hdr(skb); 515 key->nsh.base.flags = nsh_get_flags(nh); 516 key->nsh.base.ttl = nsh_get_ttl(nh); 517 key->nsh.base.mdtype = nh->mdtype; 518 key->nsh.base.np = nh->np; 519 key->nsh.base.path_hdr = nh->path_hdr; 520 switch (key->nsh.base.mdtype) { 521 case NSH_M_TYPE1: 522 if (length != NSH_M_TYPE1_LEN) 523 return -EINVAL; 524 memcpy(key->nsh.context, nh->md1.context, 525 sizeof(nh->md1)); 526 break; 527 case NSH_M_TYPE2: 528 memset(key->nsh.context, 0, 529 sizeof(nh->md1)); 530 break; 531 default: 532 return -EINVAL; 533 } 534 535 return 0; 536 } 537 538 /** 539 * key_extract - extracts a flow key from an Ethernet frame. 540 * @skb: sk_buff that contains the frame, with skb->data pointing to the 541 * Ethernet header 542 * @key: output flow key 543 * 544 * The caller must ensure that skb->len >= ETH_HLEN. 545 * 546 * Returns 0 if successful, otherwise a negative errno value. 547 * 548 * Initializes @skb header fields as follows: 549 * 550 * - skb->mac_header: the L2 header. 551 * 552 * - skb->network_header: just past the L2 header, or just past the 553 * VLAN header, to the first byte of the L2 payload. 554 * 555 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 556 * on output, then just past the IP header, if one is present and 557 * of a correct length, otherwise the same as skb->network_header. 558 * For other key->eth.type values it is left untouched. 559 * 560 * - skb->protocol: the type of the data starting at skb->network_header. 561 * Equals to key->eth.type. 562 */ 563 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) 564 { 565 int error; 566 struct ethhdr *eth; 567 568 /* Flags are always used as part of stats */ 569 key->tp.flags = 0; 570 571 skb_reset_mac_header(skb); 572 573 /* Link layer. */ 574 clear_vlan(key); 575 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) { 576 if (unlikely(eth_type_vlan(skb->protocol))) 577 return -EINVAL; 578 579 skb_reset_network_header(skb); 580 key->eth.type = skb->protocol; 581 } else { 582 eth = eth_hdr(skb); 583 ether_addr_copy(key->eth.src, eth->h_source); 584 ether_addr_copy(key->eth.dst, eth->h_dest); 585 586 __skb_pull(skb, 2 * ETH_ALEN); 587 /* We are going to push all headers that we pull, so no need to 588 * update skb->csum here. 589 */ 590 591 if (unlikely(parse_vlan(skb, key))) 592 return -ENOMEM; 593 594 key->eth.type = parse_ethertype(skb); 595 if (unlikely(key->eth.type == htons(0))) 596 return -ENOMEM; 597 598 /* Multiple tagged packets need to retain TPID to satisfy 599 * skb_vlan_pop(), which will later shift the ethertype into 600 * skb->protocol. 601 */ 602 if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK)) 603 skb->protocol = key->eth.cvlan.tpid; 604 else 605 skb->protocol = key->eth.type; 606 607 skb_reset_network_header(skb); 608 __skb_push(skb, skb->data - skb_mac_header(skb)); 609 } 610 skb_reset_mac_len(skb); 611 612 /* Network layer. */ 613 if (key->eth.type == htons(ETH_P_IP)) { 614 struct iphdr *nh; 615 __be16 offset; 616 617 error = check_iphdr(skb); 618 if (unlikely(error)) { 619 memset(&key->ip, 0, sizeof(key->ip)); 620 memset(&key->ipv4, 0, sizeof(key->ipv4)); 621 if (error == -EINVAL) { 622 skb->transport_header = skb->network_header; 623 error = 0; 624 } 625 return error; 626 } 627 628 nh = ip_hdr(skb); 629 key->ipv4.addr.src = nh->saddr; 630 key->ipv4.addr.dst = nh->daddr; 631 632 key->ip.proto = nh->protocol; 633 key->ip.tos = nh->tos; 634 key->ip.ttl = nh->ttl; 635 636 offset = nh->frag_off & htons(IP_OFFSET); 637 if (offset) { 638 key->ip.frag = OVS_FRAG_TYPE_LATER; 639 return 0; 640 } 641 if (nh->frag_off & htons(IP_MF) || 642 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 643 key->ip.frag = OVS_FRAG_TYPE_FIRST; 644 else 645 key->ip.frag = OVS_FRAG_TYPE_NONE; 646 647 /* Transport layer. */ 648 if (key->ip.proto == IPPROTO_TCP) { 649 if (tcphdr_ok(skb)) { 650 struct tcphdr *tcp = tcp_hdr(skb); 651 key->tp.src = tcp->source; 652 key->tp.dst = tcp->dest; 653 key->tp.flags = TCP_FLAGS_BE16(tcp); 654 } else { 655 memset(&key->tp, 0, sizeof(key->tp)); 656 } 657 658 } else if (key->ip.proto == IPPROTO_UDP) { 659 if (udphdr_ok(skb)) { 660 struct udphdr *udp = udp_hdr(skb); 661 key->tp.src = udp->source; 662 key->tp.dst = udp->dest; 663 } else { 664 memset(&key->tp, 0, sizeof(key->tp)); 665 } 666 } else if (key->ip.proto == IPPROTO_SCTP) { 667 if (sctphdr_ok(skb)) { 668 struct sctphdr *sctp = sctp_hdr(skb); 669 key->tp.src = sctp->source; 670 key->tp.dst = sctp->dest; 671 } else { 672 memset(&key->tp, 0, sizeof(key->tp)); 673 } 674 } else if (key->ip.proto == IPPROTO_ICMP) { 675 if (icmphdr_ok(skb)) { 676 struct icmphdr *icmp = icmp_hdr(skb); 677 /* The ICMP type and code fields use the 16-bit 678 * transport port fields, so we need to store 679 * them in 16-bit network byte order. */ 680 key->tp.src = htons(icmp->type); 681 key->tp.dst = htons(icmp->code); 682 } else { 683 memset(&key->tp, 0, sizeof(key->tp)); 684 } 685 } 686 687 } else if (key->eth.type == htons(ETH_P_ARP) || 688 key->eth.type == htons(ETH_P_RARP)) { 689 struct arp_eth_header *arp; 690 bool arp_available = arphdr_ok(skb); 691 692 arp = (struct arp_eth_header *)skb_network_header(skb); 693 694 if (arp_available && 695 arp->ar_hrd == htons(ARPHRD_ETHER) && 696 arp->ar_pro == htons(ETH_P_IP) && 697 arp->ar_hln == ETH_ALEN && 698 arp->ar_pln == 4) { 699 700 /* We only match on the lower 8 bits of the opcode. */ 701 if (ntohs(arp->ar_op) <= 0xff) 702 key->ip.proto = ntohs(arp->ar_op); 703 else 704 key->ip.proto = 0; 705 706 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 707 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 708 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); 709 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); 710 } else { 711 memset(&key->ip, 0, sizeof(key->ip)); 712 memset(&key->ipv4, 0, sizeof(key->ipv4)); 713 } 714 } else if (eth_p_mpls(key->eth.type)) { 715 size_t stack_len = MPLS_HLEN; 716 717 skb_set_inner_network_header(skb, skb->mac_len); 718 while (1) { 719 __be32 lse; 720 721 error = check_header(skb, skb->mac_len + stack_len); 722 if (unlikely(error)) 723 return 0; 724 725 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN); 726 727 if (stack_len == MPLS_HLEN) 728 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN); 729 730 skb_set_inner_network_header(skb, skb->mac_len + stack_len); 731 if (lse & htonl(MPLS_LS_S_MASK)) 732 break; 733 734 stack_len += MPLS_HLEN; 735 } 736 } else if (key->eth.type == htons(ETH_P_IPV6)) { 737 int nh_len; /* IPv6 Header + Extensions */ 738 739 nh_len = parse_ipv6hdr(skb, key); 740 if (unlikely(nh_len < 0)) { 741 switch (nh_len) { 742 case -EINVAL: 743 memset(&key->ip, 0, sizeof(key->ip)); 744 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); 745 /* fall-through */ 746 case -EPROTO: 747 skb->transport_header = skb->network_header; 748 error = 0; 749 break; 750 default: 751 error = nh_len; 752 } 753 return error; 754 } 755 756 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 757 return 0; 758 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 759 key->ip.frag = OVS_FRAG_TYPE_FIRST; 760 761 /* Transport layer. */ 762 if (key->ip.proto == NEXTHDR_TCP) { 763 if (tcphdr_ok(skb)) { 764 struct tcphdr *tcp = tcp_hdr(skb); 765 key->tp.src = tcp->source; 766 key->tp.dst = tcp->dest; 767 key->tp.flags = TCP_FLAGS_BE16(tcp); 768 } else { 769 memset(&key->tp, 0, sizeof(key->tp)); 770 } 771 } else if (key->ip.proto == NEXTHDR_UDP) { 772 if (udphdr_ok(skb)) { 773 struct udphdr *udp = udp_hdr(skb); 774 key->tp.src = udp->source; 775 key->tp.dst = udp->dest; 776 } else { 777 memset(&key->tp, 0, sizeof(key->tp)); 778 } 779 } else if (key->ip.proto == NEXTHDR_SCTP) { 780 if (sctphdr_ok(skb)) { 781 struct sctphdr *sctp = sctp_hdr(skb); 782 key->tp.src = sctp->source; 783 key->tp.dst = sctp->dest; 784 } else { 785 memset(&key->tp, 0, sizeof(key->tp)); 786 } 787 } else if (key->ip.proto == NEXTHDR_ICMP) { 788 if (icmp6hdr_ok(skb)) { 789 error = parse_icmpv6(skb, key, nh_len); 790 if (error) 791 return error; 792 } else { 793 memset(&key->tp, 0, sizeof(key->tp)); 794 } 795 } 796 } else if (key->eth.type == htons(ETH_P_NSH)) { 797 error = parse_nsh(skb, key); 798 if (error) 799 return error; 800 } 801 return 0; 802 } 803 804 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) 805 { 806 int res; 807 808 res = key_extract(skb, key); 809 if (!res) 810 key->mac_proto &= ~SW_FLOW_KEY_INVALID; 811 812 return res; 813 } 814 815 static int key_extract_mac_proto(struct sk_buff *skb) 816 { 817 switch (skb->dev->type) { 818 case ARPHRD_ETHER: 819 return MAC_PROTO_ETHERNET; 820 case ARPHRD_NONE: 821 if (skb->protocol == htons(ETH_P_TEB)) 822 return MAC_PROTO_ETHERNET; 823 return MAC_PROTO_NONE; 824 } 825 WARN_ON_ONCE(1); 826 return -EINVAL; 827 } 828 829 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info, 830 struct sk_buff *skb, struct sw_flow_key *key) 831 { 832 int res, err; 833 834 /* Extract metadata from packet. */ 835 if (tun_info) { 836 key->tun_proto = ip_tunnel_info_af(tun_info); 837 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key)); 838 839 if (tun_info->options_len) { 840 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 841 8)) - 1 842 > sizeof(key->tun_opts)); 843 844 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len), 845 tun_info); 846 key->tun_opts_len = tun_info->options_len; 847 } else { 848 key->tun_opts_len = 0; 849 } 850 } else { 851 key->tun_proto = 0; 852 key->tun_opts_len = 0; 853 memset(&key->tun_key, 0, sizeof(key->tun_key)); 854 } 855 856 key->phy.priority = skb->priority; 857 key->phy.in_port = OVS_CB(skb)->input_vport->port_no; 858 key->phy.skb_mark = skb->mark; 859 key->ovs_flow_hash = 0; 860 res = key_extract_mac_proto(skb); 861 if (res < 0) 862 return res; 863 key->mac_proto = res; 864 key->recirc_id = 0; 865 866 err = key_extract(skb, key); 867 if (!err) 868 ovs_ct_fill_key(skb, key); /* Must be after key_extract(). */ 869 return err; 870 } 871 872 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr, 873 struct sk_buff *skb, 874 struct sw_flow_key *key, bool log) 875 { 876 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 877 u64 attrs = 0; 878 int err; 879 880 err = parse_flow_nlattrs(attr, a, &attrs, log); 881 if (err) 882 return -EINVAL; 883 884 /* Extract metadata from netlink attributes. */ 885 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log); 886 if (err) 887 return err; 888 889 /* key_extract assumes that skb->protocol is set-up for 890 * layer 3 packets which is the case for other callers, 891 * in particular packets received from the network stack. 892 * Here the correct value can be set from the metadata 893 * extracted above. 894 * For L2 packet key eth type would be zero. skb protocol 895 * would be set to correct value later during key-extact. 896 */ 897 898 skb->protocol = key->eth.type; 899 err = key_extract(skb, key); 900 if (err) 901 return err; 902 903 /* Check that we have conntrack original direction tuple metadata only 904 * for packets for which it makes sense. Otherwise the key may be 905 * corrupted due to overlapping key fields. 906 */ 907 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) && 908 key->eth.type != htons(ETH_P_IP)) 909 return -EINVAL; 910 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) && 911 (key->eth.type != htons(ETH_P_IPV6) || 912 sw_flow_key_is_nd(key))) 913 return -EINVAL; 914 915 return 0; 916 } 917