1 /* 2 * Copyright (c) 2015 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/openvswitch.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/sctp.h> 19 #include <net/ip.h> 20 #include <net/netfilter/nf_conntrack_core.h> 21 #include <net/netfilter/nf_conntrack_helper.h> 22 #include <net/netfilter/nf_conntrack_labels.h> 23 #include <net/netfilter/nf_conntrack_seqadj.h> 24 #include <net/netfilter/nf_conntrack_zones.h> 25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 26 27 #ifdef CONFIG_NF_NAT_NEEDED 28 #include <linux/netfilter/nf_nat.h> 29 #include <net/netfilter/nf_nat_core.h> 30 #include <net/netfilter/nf_nat_l3proto.h> 31 #endif 32 33 #include "datapath.h" 34 #include "conntrack.h" 35 #include "flow.h" 36 #include "flow_netlink.h" 37 38 struct ovs_ct_len_tbl { 39 int maxlen; 40 int minlen; 41 }; 42 43 /* Metadata mark for masked write to conntrack mark */ 44 struct md_mark { 45 u32 value; 46 u32 mask; 47 }; 48 49 /* Metadata label for masked write to conntrack label. */ 50 struct md_labels { 51 struct ovs_key_ct_labels value; 52 struct ovs_key_ct_labels mask; 53 }; 54 55 enum ovs_ct_nat { 56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 59 }; 60 61 /* Conntrack action context for execution. */ 62 struct ovs_conntrack_info { 63 struct nf_conntrack_helper *helper; 64 struct nf_conntrack_zone zone; 65 struct nf_conn *ct; 66 u8 commit : 1; 67 u8 nat : 3; /* enum ovs_ct_nat */ 68 u16 family; 69 struct md_mark mark; 70 struct md_labels labels; 71 #ifdef CONFIG_NF_NAT_NEEDED 72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */ 73 #endif 74 }; 75 76 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 77 78 static u16 key_to_nfproto(const struct sw_flow_key *key) 79 { 80 switch (ntohs(key->eth.type)) { 81 case ETH_P_IP: 82 return NFPROTO_IPV4; 83 case ETH_P_IPV6: 84 return NFPROTO_IPV6; 85 default: 86 return NFPROTO_UNSPEC; 87 } 88 } 89 90 /* Map SKB connection state into the values used by flow definition. */ 91 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 92 { 93 u8 ct_state = OVS_CS_F_TRACKED; 94 95 switch (ctinfo) { 96 case IP_CT_ESTABLISHED_REPLY: 97 case IP_CT_RELATED_REPLY: 98 ct_state |= OVS_CS_F_REPLY_DIR; 99 break; 100 default: 101 break; 102 } 103 104 switch (ctinfo) { 105 case IP_CT_ESTABLISHED: 106 case IP_CT_ESTABLISHED_REPLY: 107 ct_state |= OVS_CS_F_ESTABLISHED; 108 break; 109 case IP_CT_RELATED: 110 case IP_CT_RELATED_REPLY: 111 ct_state |= OVS_CS_F_RELATED; 112 break; 113 case IP_CT_NEW: 114 ct_state |= OVS_CS_F_NEW; 115 break; 116 default: 117 break; 118 } 119 120 return ct_state; 121 } 122 123 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 124 { 125 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 126 return ct ? ct->mark : 0; 127 #else 128 return 0; 129 #endif 130 } 131 132 static void ovs_ct_get_labels(const struct nf_conn *ct, 133 struct ovs_key_ct_labels *labels) 134 { 135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 136 137 if (cl) { 138 size_t len = sizeof(cl->bits); 139 140 if (len > OVS_CT_LABELS_LEN) 141 len = OVS_CT_LABELS_LEN; 142 else if (len < OVS_CT_LABELS_LEN) 143 memset(labels, 0, OVS_CT_LABELS_LEN); 144 memcpy(labels, cl->bits, len); 145 } else { 146 memset(labels, 0, OVS_CT_LABELS_LEN); 147 } 148 } 149 150 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 151 const struct nf_conntrack_zone *zone, 152 const struct nf_conn *ct) 153 { 154 key->ct.state = state; 155 key->ct.zone = zone->id; 156 key->ct.mark = ovs_ct_get_mark(ct); 157 ovs_ct_get_labels(ct, &key->ct.labels); 158 } 159 160 /* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has 161 * previously sent the packet to conntrack via the ct action. If 162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 163 * initialized from the connection status. 164 */ 165 static void ovs_ct_update_key(const struct sk_buff *skb, 166 const struct ovs_conntrack_info *info, 167 struct sw_flow_key *key, bool post_ct, 168 bool keep_nat_flags) 169 { 170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 171 enum ip_conntrack_info ctinfo; 172 struct nf_conn *ct; 173 u8 state = 0; 174 175 ct = nf_ct_get(skb, &ctinfo); 176 if (ct) { 177 state = ovs_ct_get_state(ctinfo); 178 /* All unconfirmed entries are NEW connections. */ 179 if (!nf_ct_is_confirmed(ct)) 180 state |= OVS_CS_F_NEW; 181 /* OVS persists the related flag for the duration of the 182 * connection. 183 */ 184 if (ct->master) 185 state |= OVS_CS_F_RELATED; 186 if (keep_nat_flags) { 187 state |= key->ct.state & OVS_CS_F_NAT_MASK; 188 } else { 189 if (ct->status & IPS_SRC_NAT) 190 state |= OVS_CS_F_SRC_NAT; 191 if (ct->status & IPS_DST_NAT) 192 state |= OVS_CS_F_DST_NAT; 193 } 194 zone = nf_ct_zone(ct); 195 } else if (post_ct) { 196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 197 if (info) 198 zone = &info->zone; 199 } 200 __ovs_ct_update_key(key, state, zone, ct); 201 } 202 203 /* This is called to initialize CT key fields possibly coming in from the local 204 * stack. 205 */ 206 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 207 { 208 ovs_ct_update_key(skb, NULL, key, false, false); 209 } 210 211 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb) 212 { 213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state)) 214 return -EMSGSIZE; 215 216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone)) 218 return -EMSGSIZE; 219 220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark)) 222 return -EMSGSIZE; 223 224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels), 226 &key->ct.labels)) 227 return -EMSGSIZE; 228 229 return 0; 230 } 231 232 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key, 233 u32 ct_mark, u32 mask) 234 { 235 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 236 enum ip_conntrack_info ctinfo; 237 struct nf_conn *ct; 238 u32 new_mark; 239 240 /* The connection could be invalid, in which case set_mark is no-op. */ 241 ct = nf_ct_get(skb, &ctinfo); 242 if (!ct) 243 return 0; 244 245 new_mark = ct_mark | (ct->mark & ~(mask)); 246 if (ct->mark != new_mark) { 247 ct->mark = new_mark; 248 nf_conntrack_event_cache(IPCT_MARK, ct); 249 key->ct.mark = new_mark; 250 } 251 252 return 0; 253 #else 254 return -ENOTSUPP; 255 #endif 256 } 257 258 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key, 259 const struct ovs_key_ct_labels *labels, 260 const struct ovs_key_ct_labels *mask) 261 { 262 enum ip_conntrack_info ctinfo; 263 struct nf_conn_labels *cl; 264 struct nf_conn *ct; 265 int err; 266 267 /* The connection could be invalid, in which case set_label is no-op.*/ 268 ct = nf_ct_get(skb, &ctinfo); 269 if (!ct) 270 return 0; 271 272 cl = nf_ct_labels_find(ct); 273 if (!cl) { 274 nf_ct_labels_ext_add(ct); 275 cl = nf_ct_labels_find(ct); 276 } 277 if (!cl || sizeof(cl->bits) < OVS_CT_LABELS_LEN) 278 return -ENOSPC; 279 280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask, 281 OVS_CT_LABELS_LEN / sizeof(u32)); 282 if (err) 283 return err; 284 285 ovs_ct_get_labels(ct, &key->ct.labels); 286 return 0; 287 } 288 289 /* 'skb' should already be pulled to nh_ofs. */ 290 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 291 { 292 const struct nf_conntrack_helper *helper; 293 const struct nf_conn_help *help; 294 enum ip_conntrack_info ctinfo; 295 unsigned int protoff; 296 struct nf_conn *ct; 297 int err; 298 299 ct = nf_ct_get(skb, &ctinfo); 300 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 301 return NF_ACCEPT; 302 303 help = nfct_help(ct); 304 if (!help) 305 return NF_ACCEPT; 306 307 helper = rcu_dereference(help->helper); 308 if (!helper) 309 return NF_ACCEPT; 310 311 switch (proto) { 312 case NFPROTO_IPV4: 313 protoff = ip_hdrlen(skb); 314 break; 315 case NFPROTO_IPV6: { 316 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 317 __be16 frag_off; 318 int ofs; 319 320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 321 &frag_off); 322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 323 pr_debug("proto header not found\n"); 324 return NF_ACCEPT; 325 } 326 protoff = ofs; 327 break; 328 } 329 default: 330 WARN_ONCE(1, "helper invoked on non-IP family!"); 331 return NF_DROP; 332 } 333 334 err = helper->help(skb, protoff, ct, ctinfo); 335 if (err != NF_ACCEPT) 336 return err; 337 338 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 339 * FTP with NAT) adusting the TCP payload size when mangling IP 340 * addresses and/or port numbers in the text-based control connection. 341 */ 342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 344 return NF_DROP; 345 return NF_ACCEPT; 346 } 347 348 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 349 * value if 'skb' is freed. 350 */ 351 static int handle_fragments(struct net *net, struct sw_flow_key *key, 352 u16 zone, struct sk_buff *skb) 353 { 354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 355 int err; 356 357 if (key->eth.type == htons(ETH_P_IP)) { 358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 359 360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 361 err = ip_defrag(net, skb, user); 362 if (err) 363 return err; 364 365 ovs_cb.mru = IPCB(skb)->frag_max_size; 366 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 367 } else if (key->eth.type == htons(ETH_P_IPV6)) { 368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 369 370 skb_orphan(skb); 371 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 372 err = nf_ct_frag6_gather(net, skb, user); 373 if (err) { 374 if (err != -EINPROGRESS) 375 kfree_skb(skb); 376 return err; 377 } 378 379 key->ip.proto = ipv6_hdr(skb)->nexthdr; 380 ovs_cb.mru = IP6CB(skb)->frag_max_size; 381 #endif 382 } else { 383 kfree_skb(skb); 384 return -EPFNOSUPPORT; 385 } 386 387 key->ip.frag = OVS_FRAG_TYPE_NONE; 388 skb_clear_hash(skb); 389 skb->ignore_df = 1; 390 *OVS_CB(skb) = ovs_cb; 391 392 return 0; 393 } 394 395 static struct nf_conntrack_expect * 396 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 397 u16 proto, const struct sk_buff *skb) 398 { 399 struct nf_conntrack_tuple tuple; 400 401 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 402 return NULL; 403 return __nf_ct_expect_find(net, zone, &tuple); 404 } 405 406 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 407 static enum ip_conntrack_info 408 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 409 { 410 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 411 412 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 413 return IP_CT_ESTABLISHED_REPLY; 414 /* Once we've had two way comms, always ESTABLISHED. */ 415 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 416 return IP_CT_ESTABLISHED; 417 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 418 return IP_CT_RELATED; 419 return IP_CT_NEW; 420 } 421 422 /* Find an existing connection which this packet belongs to without 423 * re-attributing statistics or modifying the connection state. This allows an 424 * skb->nfct lost due to an upcall to be recovered during actions execution. 425 * 426 * Must be called with rcu_read_lock. 427 * 428 * On success, populates skb->nfct and skb->nfctinfo, and returns the 429 * connection. Returns NULL if there is no existing entry. 430 */ 431 static struct nf_conn * 432 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 433 u8 l3num, struct sk_buff *skb) 434 { 435 struct nf_conntrack_l3proto *l3proto; 436 struct nf_conntrack_l4proto *l4proto; 437 struct nf_conntrack_tuple tuple; 438 struct nf_conntrack_tuple_hash *h; 439 struct nf_conn *ct; 440 unsigned int dataoff; 441 u8 protonum; 442 443 l3proto = __nf_ct_l3proto_find(l3num); 444 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff, 445 &protonum) <= 0) { 446 pr_debug("ovs_ct_find_existing: Can't get protonum\n"); 447 return NULL; 448 } 449 l4proto = __nf_ct_l4proto_find(l3num, protonum); 450 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, 451 protonum, net, &tuple, l3proto, l4proto)) { 452 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 453 return NULL; 454 } 455 456 /* look for tuple match */ 457 h = nf_conntrack_find_get(net, zone, &tuple); 458 if (!h) 459 return NULL; /* Not found. */ 460 461 ct = nf_ct_tuplehash_to_ctrack(h); 462 463 skb->nfct = &ct->ct_general; 464 skb->nfctinfo = ovs_ct_get_info(h); 465 return ct; 466 } 467 468 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */ 469 static bool skb_nfct_cached(struct net *net, 470 const struct sw_flow_key *key, 471 const struct ovs_conntrack_info *info, 472 struct sk_buff *skb) 473 { 474 enum ip_conntrack_info ctinfo; 475 struct nf_conn *ct; 476 477 ct = nf_ct_get(skb, &ctinfo); 478 /* If no ct, check if we have evidence that an existing conntrack entry 479 * might be found for this skb. This happens when we lose a skb->nfct 480 * due to an upcall. If the connection was not confirmed, it is not 481 * cached and needs to be run through conntrack again. 482 */ 483 if (!ct && key->ct.state & OVS_CS_F_TRACKED && 484 !(key->ct.state & OVS_CS_F_INVALID) && 485 key->ct.zone == info->zone.id) 486 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb); 487 if (!ct) 488 return false; 489 if (!net_eq(net, read_pnet(&ct->ct_net))) 490 return false; 491 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 492 return false; 493 if (info->helper) { 494 struct nf_conn_help *help; 495 496 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 497 if (help && rcu_access_pointer(help->helper) != info->helper) 498 return false; 499 } 500 501 return true; 502 } 503 504 #ifdef CONFIG_NF_NAT_NEEDED 505 /* Modelled after nf_nat_ipv[46]_fn(). 506 * range is only used for new, uninitialized NAT state. 507 * Returns either NF_ACCEPT or NF_DROP. 508 */ 509 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 510 enum ip_conntrack_info ctinfo, 511 const struct nf_nat_range *range, 512 enum nf_nat_manip_type maniptype) 513 { 514 int hooknum, nh_off, err = NF_ACCEPT; 515 516 nh_off = skb_network_offset(skb); 517 skb_pull_rcsum(skb, nh_off); 518 519 /* See HOOK2MANIP(). */ 520 if (maniptype == NF_NAT_MANIP_SRC) 521 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 522 else 523 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 524 525 switch (ctinfo) { 526 case IP_CT_RELATED: 527 case IP_CT_RELATED_REPLY: 528 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 529 skb->protocol == htons(ETH_P_IP) && 530 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 531 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 532 hooknum)) 533 err = NF_DROP; 534 goto push; 535 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 536 skb->protocol == htons(ETH_P_IPV6)) { 537 __be16 frag_off; 538 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 539 int hdrlen = ipv6_skip_exthdr(skb, 540 sizeof(struct ipv6hdr), 541 &nexthdr, &frag_off); 542 543 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 544 if (!nf_nat_icmpv6_reply_translation(skb, ct, 545 ctinfo, 546 hooknum, 547 hdrlen)) 548 err = NF_DROP; 549 goto push; 550 } 551 } 552 /* Non-ICMP, fall thru to initialize if needed. */ 553 case IP_CT_NEW: 554 /* Seen it before? This can happen for loopback, retrans, 555 * or local packets. 556 */ 557 if (!nf_nat_initialized(ct, maniptype)) { 558 /* Initialize according to the NAT action. */ 559 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 560 /* Action is set up to establish a new 561 * mapping. 562 */ 563 ? nf_nat_setup_info(ct, range, maniptype) 564 : nf_nat_alloc_null_binding(ct, hooknum); 565 if (err != NF_ACCEPT) 566 goto push; 567 } 568 break; 569 570 case IP_CT_ESTABLISHED: 571 case IP_CT_ESTABLISHED_REPLY: 572 break; 573 574 default: 575 err = NF_DROP; 576 goto push; 577 } 578 579 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 580 push: 581 skb_push(skb, nh_off); 582 skb_postpush_rcsum(skb, skb->data, nh_off); 583 584 return err; 585 } 586 587 static void ovs_nat_update_key(struct sw_flow_key *key, 588 const struct sk_buff *skb, 589 enum nf_nat_manip_type maniptype) 590 { 591 if (maniptype == NF_NAT_MANIP_SRC) { 592 __be16 src; 593 594 key->ct.state |= OVS_CS_F_SRC_NAT; 595 if (key->eth.type == htons(ETH_P_IP)) 596 key->ipv4.addr.src = ip_hdr(skb)->saddr; 597 else if (key->eth.type == htons(ETH_P_IPV6)) 598 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 599 sizeof(key->ipv6.addr.src)); 600 else 601 return; 602 603 if (key->ip.proto == IPPROTO_UDP) 604 src = udp_hdr(skb)->source; 605 else if (key->ip.proto == IPPROTO_TCP) 606 src = tcp_hdr(skb)->source; 607 else if (key->ip.proto == IPPROTO_SCTP) 608 src = sctp_hdr(skb)->source; 609 else 610 return; 611 612 key->tp.src = src; 613 } else { 614 __be16 dst; 615 616 key->ct.state |= OVS_CS_F_DST_NAT; 617 if (key->eth.type == htons(ETH_P_IP)) 618 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 619 else if (key->eth.type == htons(ETH_P_IPV6)) 620 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 621 sizeof(key->ipv6.addr.dst)); 622 else 623 return; 624 625 if (key->ip.proto == IPPROTO_UDP) 626 dst = udp_hdr(skb)->dest; 627 else if (key->ip.proto == IPPROTO_TCP) 628 dst = tcp_hdr(skb)->dest; 629 else if (key->ip.proto == IPPROTO_SCTP) 630 dst = sctp_hdr(skb)->dest; 631 else 632 return; 633 634 key->tp.dst = dst; 635 } 636 } 637 638 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 639 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 640 const struct ovs_conntrack_info *info, 641 struct sk_buff *skb, struct nf_conn *ct, 642 enum ip_conntrack_info ctinfo) 643 { 644 enum nf_nat_manip_type maniptype; 645 int err; 646 647 if (nf_ct_is_untracked(ct)) { 648 /* A NAT action may only be performed on tracked packets. */ 649 return NF_ACCEPT; 650 } 651 652 /* Add NAT extension if not confirmed yet. */ 653 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 654 return NF_ACCEPT; /* Can't NAT. */ 655 656 /* Determine NAT type. 657 * Check if the NAT type can be deduced from the tracked connection. 658 * Make sure new expected connections (IP_CT_RELATED) are NATted only 659 * when committing. 660 */ 661 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 662 ct->status & IPS_NAT_MASK && 663 (ctinfo != IP_CT_RELATED || info->commit)) { 664 /* NAT an established or related connection like before. */ 665 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 666 /* This is the REPLY direction for a connection 667 * for which NAT was applied in the forward 668 * direction. Do the reverse NAT. 669 */ 670 maniptype = ct->status & IPS_SRC_NAT 671 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 672 else 673 maniptype = ct->status & IPS_SRC_NAT 674 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 675 } else if (info->nat & OVS_CT_SRC_NAT) { 676 maniptype = NF_NAT_MANIP_SRC; 677 } else if (info->nat & OVS_CT_DST_NAT) { 678 maniptype = NF_NAT_MANIP_DST; 679 } else { 680 return NF_ACCEPT; /* Connection is not NATed. */ 681 } 682 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 683 684 /* Mark NAT done if successful and update the flow key. */ 685 if (err == NF_ACCEPT) 686 ovs_nat_update_key(key, skb, maniptype); 687 688 return err; 689 } 690 #else /* !CONFIG_NF_NAT_NEEDED */ 691 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 692 const struct ovs_conntrack_info *info, 693 struct sk_buff *skb, struct nf_conn *ct, 694 enum ip_conntrack_info ctinfo) 695 { 696 return NF_ACCEPT; 697 } 698 #endif 699 700 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 701 * not done already. Update key with new CT state after passing the packet 702 * through conntrack. 703 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be 704 * set to NULL and 0 will be returned. 705 */ 706 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 707 const struct ovs_conntrack_info *info, 708 struct sk_buff *skb) 709 { 710 /* If we are recirculating packets to match on conntrack fields and 711 * committing with a separate conntrack action, then we don't need to 712 * actually run the packet through conntrack twice unless it's for a 713 * different zone. 714 */ 715 bool cached = skb_nfct_cached(net, key, info, skb); 716 enum ip_conntrack_info ctinfo; 717 struct nf_conn *ct; 718 719 if (!cached) { 720 struct nf_conn *tmpl = info->ct; 721 int err; 722 723 /* Associate skb with specified zone. */ 724 if (tmpl) { 725 if (skb->nfct) 726 nf_conntrack_put(skb->nfct); 727 nf_conntrack_get(&tmpl->ct_general); 728 skb->nfct = &tmpl->ct_general; 729 skb->nfctinfo = IP_CT_NEW; 730 } 731 732 err = nf_conntrack_in(net, info->family, 733 NF_INET_PRE_ROUTING, skb); 734 if (err != NF_ACCEPT) 735 return -ENOENT; 736 737 /* Clear CT state NAT flags to mark that we have not yet done 738 * NAT after the nf_conntrack_in() call. We can actually clear 739 * the whole state, as it will be re-initialized below. 740 */ 741 key->ct.state = 0; 742 743 /* Update the key, but keep the NAT flags. */ 744 ovs_ct_update_key(skb, info, key, true, true); 745 } 746 747 ct = nf_ct_get(skb, &ctinfo); 748 if (ct) { 749 /* Packets starting a new connection must be NATted before the 750 * helper, so that the helper knows about the NAT. We enforce 751 * this by delaying both NAT and helper calls for unconfirmed 752 * connections until the committing CT action. For later 753 * packets NAT and Helper may be called in either order. 754 * 755 * NAT will be done only if the CT action has NAT, and only 756 * once per packet (per zone), as guarded by the NAT bits in 757 * the key->ct.state. 758 */ 759 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) && 760 (nf_ct_is_confirmed(ct) || info->commit) && 761 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 762 return -EINVAL; 763 } 764 765 /* Userspace may decide to perform a ct lookup without a helper 766 * specified followed by a (recirculate and) commit with one. 767 * Therefore, for unconfirmed connections which we will commit, 768 * we need to attach the helper here. 769 */ 770 if (!nf_ct_is_confirmed(ct) && info->commit && 771 info->helper && !nfct_help(ct)) { 772 int err = __nf_ct_try_assign_helper(ct, info->ct, 773 GFP_ATOMIC); 774 if (err) 775 return err; 776 } 777 778 /* Call the helper only if: 779 * - nf_conntrack_in() was executed above ("!cached") for a 780 * confirmed connection, or 781 * - When committing an unconfirmed connection. 782 */ 783 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && 784 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 785 return -EINVAL; 786 } 787 } 788 789 return 0; 790 } 791 792 /* Lookup connection and read fields into key. */ 793 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 794 const struct ovs_conntrack_info *info, 795 struct sk_buff *skb) 796 { 797 struct nf_conntrack_expect *exp; 798 799 /* If we pass an expected packet through nf_conntrack_in() the 800 * expectation is typically removed, but the packet could still be 801 * lost in upcall processing. To prevent this from happening we 802 * perform an explicit expectation lookup. Expected connections are 803 * always new, and will be passed through conntrack only when they are 804 * committed, as it is OK to remove the expectation at that time. 805 */ 806 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 807 if (exp) { 808 u8 state; 809 810 /* NOTE: New connections are NATted and Helped only when 811 * committed, so we are not calling into NAT here. 812 */ 813 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 814 __ovs_ct_update_key(key, state, &info->zone, exp->master); 815 } else { 816 struct nf_conn *ct; 817 int err; 818 819 err = __ovs_ct_lookup(net, key, info, skb); 820 if (err) 821 return err; 822 823 ct = (struct nf_conn *)skb->nfct; 824 if (ct) 825 nf_ct_deliver_cached_events(ct); 826 } 827 828 return 0; 829 } 830 831 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 832 { 833 size_t i; 834 835 for (i = 0; i < sizeof(*labels); i++) 836 if (labels->ct_labels[i]) 837 return true; 838 839 return false; 840 } 841 842 /* Lookup connection and confirm if unconfirmed. */ 843 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 844 const struct ovs_conntrack_info *info, 845 struct sk_buff *skb) 846 { 847 int err; 848 849 err = __ovs_ct_lookup(net, key, info, skb); 850 if (err) 851 return err; 852 853 /* Apply changes before confirming the connection so that the initial 854 * conntrack NEW netlink event carries the values given in the CT 855 * action. 856 */ 857 if (info->mark.mask) { 858 err = ovs_ct_set_mark(skb, key, info->mark.value, 859 info->mark.mask); 860 if (err) 861 return err; 862 } 863 if (labels_nonzero(&info->labels.mask)) { 864 err = ovs_ct_set_labels(skb, key, &info->labels.value, 865 &info->labels.mask); 866 if (err) 867 return err; 868 } 869 /* This will take care of sending queued events even if the connection 870 * is already confirmed. 871 */ 872 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 873 return -EINVAL; 874 875 return 0; 876 } 877 878 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 879 * value if 'skb' is freed. 880 */ 881 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 882 struct sw_flow_key *key, 883 const struct ovs_conntrack_info *info) 884 { 885 int nh_ofs; 886 int err; 887 888 /* The conntrack module expects to be working at L3. */ 889 nh_ofs = skb_network_offset(skb); 890 skb_pull_rcsum(skb, nh_ofs); 891 892 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 893 err = handle_fragments(net, key, info->zone.id, skb); 894 if (err) 895 return err; 896 } 897 898 if (info->commit) 899 err = ovs_ct_commit(net, key, info, skb); 900 else 901 err = ovs_ct_lookup(net, key, info, skb); 902 903 skb_push(skb, nh_ofs); 904 skb_postpush_rcsum(skb, skb->data, nh_ofs); 905 if (err) 906 kfree_skb(skb); 907 return err; 908 } 909 910 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 911 const struct sw_flow_key *key, bool log) 912 { 913 struct nf_conntrack_helper *helper; 914 struct nf_conn_help *help; 915 916 helper = nf_conntrack_helper_try_module_get(name, info->family, 917 key->ip.proto); 918 if (!helper) { 919 OVS_NLERR(log, "Unknown helper \"%s\"", name); 920 return -EINVAL; 921 } 922 923 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); 924 if (!help) { 925 module_put(helper->me); 926 return -ENOMEM; 927 } 928 929 rcu_assign_pointer(help->helper, helper); 930 info->helper = helper; 931 return 0; 932 } 933 934 #ifdef CONFIG_NF_NAT_NEEDED 935 static int parse_nat(const struct nlattr *attr, 936 struct ovs_conntrack_info *info, bool log) 937 { 938 struct nlattr *a; 939 int rem; 940 bool have_ip_max = false; 941 bool have_proto_max = false; 942 bool ip_vers = (info->family == NFPROTO_IPV6); 943 944 nla_for_each_nested(a, attr, rem) { 945 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 946 [OVS_NAT_ATTR_SRC] = {0, 0}, 947 [OVS_NAT_ATTR_DST] = {0, 0}, 948 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 949 sizeof(struct in6_addr)}, 950 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 951 sizeof(struct in6_addr)}, 952 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 953 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 954 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 955 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 956 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 957 }; 958 int type = nla_type(a); 959 960 if (type > OVS_NAT_ATTR_MAX) { 961 OVS_NLERR(log, 962 "Unknown NAT attribute (type=%d, max=%d).\n", 963 type, OVS_NAT_ATTR_MAX); 964 return -EINVAL; 965 } 966 967 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 968 OVS_NLERR(log, 969 "NAT attribute type %d has unexpected length (%d != %d).\n", 970 type, nla_len(a), 971 ovs_nat_attr_lens[type][ip_vers]); 972 return -EINVAL; 973 } 974 975 switch (type) { 976 case OVS_NAT_ATTR_SRC: 977 case OVS_NAT_ATTR_DST: 978 if (info->nat) { 979 OVS_NLERR(log, 980 "Only one type of NAT may be specified.\n" 981 ); 982 return -ERANGE; 983 } 984 info->nat |= OVS_CT_NAT; 985 info->nat |= ((type == OVS_NAT_ATTR_SRC) 986 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 987 break; 988 989 case OVS_NAT_ATTR_IP_MIN: 990 nla_memcpy(&info->range.min_addr, a, 991 sizeof(info->range.min_addr)); 992 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 993 break; 994 995 case OVS_NAT_ATTR_IP_MAX: 996 have_ip_max = true; 997 nla_memcpy(&info->range.max_addr, a, 998 sizeof(info->range.max_addr)); 999 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1000 break; 1001 1002 case OVS_NAT_ATTR_PROTO_MIN: 1003 info->range.min_proto.all = htons(nla_get_u16(a)); 1004 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1005 break; 1006 1007 case OVS_NAT_ATTR_PROTO_MAX: 1008 have_proto_max = true; 1009 info->range.max_proto.all = htons(nla_get_u16(a)); 1010 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1011 break; 1012 1013 case OVS_NAT_ATTR_PERSISTENT: 1014 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1015 break; 1016 1017 case OVS_NAT_ATTR_PROTO_HASH: 1018 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1019 break; 1020 1021 case OVS_NAT_ATTR_PROTO_RANDOM: 1022 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1023 break; 1024 1025 default: 1026 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type); 1027 return -EINVAL; 1028 } 1029 } 1030 1031 if (rem > 0) { 1032 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem); 1033 return -EINVAL; 1034 } 1035 if (!info->nat) { 1036 /* Do not allow flags if no type is given. */ 1037 if (info->range.flags) { 1038 OVS_NLERR(log, 1039 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n" 1040 ); 1041 return -EINVAL; 1042 } 1043 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1044 } else if (!info->commit) { 1045 OVS_NLERR(log, 1046 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n" 1047 ); 1048 return -EINVAL; 1049 } 1050 /* Allow missing IP_MAX. */ 1051 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1052 memcpy(&info->range.max_addr, &info->range.min_addr, 1053 sizeof(info->range.max_addr)); 1054 } 1055 /* Allow missing PROTO_MAX. */ 1056 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1057 !have_proto_max) { 1058 info->range.max_proto.all = info->range.min_proto.all; 1059 } 1060 return 0; 1061 } 1062 #endif 1063 1064 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1065 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1066 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1067 .maxlen = sizeof(u16) }, 1068 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1069 .maxlen = sizeof(struct md_mark) }, 1070 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1071 .maxlen = sizeof(struct md_labels) }, 1072 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1073 .maxlen = NF_CT_HELPER_NAME_LEN }, 1074 #ifdef CONFIG_NF_NAT_NEEDED 1075 /* NAT length is checked when parsing the nested attributes. */ 1076 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1077 #endif 1078 }; 1079 1080 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1081 const char **helper, bool log) 1082 { 1083 struct nlattr *a; 1084 int rem; 1085 1086 nla_for_each_nested(a, attr, rem) { 1087 int type = nla_type(a); 1088 int maxlen = ovs_ct_attr_lens[type].maxlen; 1089 int minlen = ovs_ct_attr_lens[type].minlen; 1090 1091 if (type > OVS_CT_ATTR_MAX) { 1092 OVS_NLERR(log, 1093 "Unknown conntrack attr (type=%d, max=%d)", 1094 type, OVS_CT_ATTR_MAX); 1095 return -EINVAL; 1096 } 1097 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1098 OVS_NLERR(log, 1099 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1100 type, nla_len(a), maxlen); 1101 return -EINVAL; 1102 } 1103 1104 switch (type) { 1105 case OVS_CT_ATTR_COMMIT: 1106 info->commit = true; 1107 break; 1108 #ifdef CONFIG_NF_CONNTRACK_ZONES 1109 case OVS_CT_ATTR_ZONE: 1110 info->zone.id = nla_get_u16(a); 1111 break; 1112 #endif 1113 #ifdef CONFIG_NF_CONNTRACK_MARK 1114 case OVS_CT_ATTR_MARK: { 1115 struct md_mark *mark = nla_data(a); 1116 1117 if (!mark->mask) { 1118 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1119 return -EINVAL; 1120 } 1121 info->mark = *mark; 1122 break; 1123 } 1124 #endif 1125 #ifdef CONFIG_NF_CONNTRACK_LABELS 1126 case OVS_CT_ATTR_LABELS: { 1127 struct md_labels *labels = nla_data(a); 1128 1129 if (!labels_nonzero(&labels->mask)) { 1130 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1131 return -EINVAL; 1132 } 1133 info->labels = *labels; 1134 break; 1135 } 1136 #endif 1137 case OVS_CT_ATTR_HELPER: 1138 *helper = nla_data(a); 1139 if (!memchr(*helper, '\0', nla_len(a))) { 1140 OVS_NLERR(log, "Invalid conntrack helper"); 1141 return -EINVAL; 1142 } 1143 break; 1144 #ifdef CONFIG_NF_NAT_NEEDED 1145 case OVS_CT_ATTR_NAT: { 1146 int err = parse_nat(a, info, log); 1147 1148 if (err) 1149 return err; 1150 break; 1151 } 1152 #endif 1153 default: 1154 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1155 type); 1156 return -EINVAL; 1157 } 1158 } 1159 1160 #ifdef CONFIG_NF_CONNTRACK_MARK 1161 if (!info->commit && info->mark.mask) { 1162 OVS_NLERR(log, 1163 "Setting conntrack mark requires 'commit' flag."); 1164 return -EINVAL; 1165 } 1166 #endif 1167 #ifdef CONFIG_NF_CONNTRACK_LABELS 1168 if (!info->commit && labels_nonzero(&info->labels.mask)) { 1169 OVS_NLERR(log, 1170 "Setting conntrack labels requires 'commit' flag."); 1171 return -EINVAL; 1172 } 1173 #endif 1174 if (rem > 0) { 1175 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1176 return -EINVAL; 1177 } 1178 1179 return 0; 1180 } 1181 1182 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1183 { 1184 if (attr == OVS_KEY_ATTR_CT_STATE) 1185 return true; 1186 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1187 attr == OVS_KEY_ATTR_CT_ZONE) 1188 return true; 1189 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1190 attr == OVS_KEY_ATTR_CT_MARK) 1191 return true; 1192 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1193 attr == OVS_KEY_ATTR_CT_LABELS) { 1194 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1195 1196 return ovs_net->xt_label; 1197 } 1198 1199 return false; 1200 } 1201 1202 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1203 const struct sw_flow_key *key, 1204 struct sw_flow_actions **sfa, bool log) 1205 { 1206 struct ovs_conntrack_info ct_info; 1207 const char *helper = NULL; 1208 u16 family; 1209 int err; 1210 1211 family = key_to_nfproto(key); 1212 if (family == NFPROTO_UNSPEC) { 1213 OVS_NLERR(log, "ct family unspecified"); 1214 return -EINVAL; 1215 } 1216 1217 memset(&ct_info, 0, sizeof(ct_info)); 1218 ct_info.family = family; 1219 1220 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1221 NF_CT_DEFAULT_ZONE_DIR, 0); 1222 1223 err = parse_ct(attr, &ct_info, &helper, log); 1224 if (err) 1225 return err; 1226 1227 /* Set up template for tracking connections in specific zones. */ 1228 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1229 if (!ct_info.ct) { 1230 OVS_NLERR(log, "Failed to allocate conntrack template"); 1231 return -ENOMEM; 1232 } 1233 1234 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1235 nf_conntrack_get(&ct_info.ct->ct_general); 1236 1237 if (helper) { 1238 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1239 if (err) 1240 goto err_free_ct; 1241 } 1242 1243 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1244 sizeof(ct_info), log); 1245 if (err) 1246 goto err_free_ct; 1247 1248 return 0; 1249 err_free_ct: 1250 __ovs_ct_free_action(&ct_info); 1251 return err; 1252 } 1253 1254 #ifdef CONFIG_NF_NAT_NEEDED 1255 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1256 struct sk_buff *skb) 1257 { 1258 struct nlattr *start; 1259 1260 start = nla_nest_start(skb, OVS_CT_ATTR_NAT); 1261 if (!start) 1262 return false; 1263 1264 if (info->nat & OVS_CT_SRC_NAT) { 1265 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1266 return false; 1267 } else if (info->nat & OVS_CT_DST_NAT) { 1268 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1269 return false; 1270 } else { 1271 goto out; 1272 } 1273 1274 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1275 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 1276 info->family == NFPROTO_IPV4) { 1277 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1278 info->range.min_addr.ip) || 1279 (info->range.max_addr.ip 1280 != info->range.min_addr.ip && 1281 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1282 info->range.max_addr.ip)))) 1283 return false; 1284 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 1285 info->family == NFPROTO_IPV6) { 1286 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1287 &info->range.min_addr.in6) || 1288 (memcmp(&info->range.max_addr.in6, 1289 &info->range.min_addr.in6, 1290 sizeof(info->range.max_addr.in6)) && 1291 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1292 &info->range.max_addr.in6)))) 1293 return false; 1294 } else { 1295 return false; 1296 } 1297 } 1298 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1299 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1300 ntohs(info->range.min_proto.all)) || 1301 (info->range.max_proto.all != info->range.min_proto.all && 1302 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1303 ntohs(info->range.max_proto.all))))) 1304 return false; 1305 1306 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1307 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1308 return false; 1309 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1310 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1311 return false; 1312 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1313 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1314 return false; 1315 out: 1316 nla_nest_end(skb, start); 1317 1318 return true; 1319 } 1320 #endif 1321 1322 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1323 struct sk_buff *skb) 1324 { 1325 struct nlattr *start; 1326 1327 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); 1328 if (!start) 1329 return -EMSGSIZE; 1330 1331 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT)) 1332 return -EMSGSIZE; 1333 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1334 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1335 return -EMSGSIZE; 1336 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1337 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1338 &ct_info->mark)) 1339 return -EMSGSIZE; 1340 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1341 labels_nonzero(&ct_info->labels.mask) && 1342 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1343 &ct_info->labels)) 1344 return -EMSGSIZE; 1345 if (ct_info->helper) { 1346 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1347 ct_info->helper->name)) 1348 return -EMSGSIZE; 1349 } 1350 #ifdef CONFIG_NF_NAT_NEEDED 1351 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1352 return -EMSGSIZE; 1353 #endif 1354 nla_nest_end(skb, start); 1355 1356 return 0; 1357 } 1358 1359 void ovs_ct_free_action(const struct nlattr *a) 1360 { 1361 struct ovs_conntrack_info *ct_info = nla_data(a); 1362 1363 __ovs_ct_free_action(ct_info); 1364 } 1365 1366 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1367 { 1368 if (ct_info->helper) 1369 module_put(ct_info->helper->me); 1370 if (ct_info->ct) 1371 nf_ct_tmpl_free(ct_info->ct); 1372 } 1373 1374 void ovs_ct_init(struct net *net) 1375 { 1376 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 1377 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1378 1379 if (nf_connlabels_get(net, n_bits - 1)) { 1380 ovs_net->xt_label = false; 1381 OVS_NLERR(true, "Failed to set connlabel length"); 1382 } else { 1383 ovs_net->xt_label = true; 1384 } 1385 } 1386 1387 void ovs_ct_exit(struct net *net) 1388 { 1389 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1390 1391 if (ovs_net->xt_label) 1392 nf_connlabels_put(net); 1393 } 1394