xref: /openbmc/linux/net/openvswitch/conntrack.c (revision f4356947f0297b0962fdd197672db7edf9f58be6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 Nicira, Inc.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/openvswitch.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/sctp.h>
11 #include <linux/static_key.h>
12 #include <linux/string_helpers.h>
13 #include <net/ip.h>
14 #include <net/genetlink.h>
15 #include <net/netfilter/nf_conntrack_core.h>
16 #include <net/netfilter/nf_conntrack_count.h>
17 #include <net/netfilter/nf_conntrack_helper.h>
18 #include <net/netfilter/nf_conntrack_labels.h>
19 #include <net/netfilter/nf_conntrack_seqadj.h>
20 #include <net/netfilter/nf_conntrack_timeout.h>
21 #include <net/netfilter/nf_conntrack_zones.h>
22 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
23 #include <net/ipv6_frag.h>
24 
25 #if IS_ENABLED(CONFIG_NF_NAT)
26 #include <net/netfilter/nf_nat.h>
27 #endif
28 
29 #include <net/netfilter/nf_conntrack_act_ct.h>
30 
31 #include "datapath.h"
32 #include "conntrack.h"
33 #include "flow.h"
34 #include "flow_netlink.h"
35 
36 struct ovs_ct_len_tbl {
37 	int maxlen;
38 	int minlen;
39 };
40 
41 /* Metadata mark for masked write to conntrack mark */
42 struct md_mark {
43 	u32 value;
44 	u32 mask;
45 };
46 
47 /* Metadata label for masked write to conntrack label. */
48 struct md_labels {
49 	struct ovs_key_ct_labels value;
50 	struct ovs_key_ct_labels mask;
51 };
52 
53 enum ovs_ct_nat {
54 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
55 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
56 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
57 };
58 
59 /* Conntrack action context for execution. */
60 struct ovs_conntrack_info {
61 	struct nf_conntrack_helper *helper;
62 	struct nf_conntrack_zone zone;
63 	struct nf_conn *ct;
64 	u8 commit : 1;
65 	u8 nat : 3;                 /* enum ovs_ct_nat */
66 	u8 force : 1;
67 	u8 have_eventmask : 1;
68 	u16 family;
69 	u32 eventmask;              /* Mask of 1 << IPCT_*. */
70 	struct md_mark mark;
71 	struct md_labels labels;
72 	char timeout[CTNL_TIMEOUT_NAME_MAX];
73 	struct nf_ct_timeout *nf_ct_timeout;
74 #if IS_ENABLED(CONFIG_NF_NAT)
75 	struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
76 #endif
77 };
78 
79 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
80 #define OVS_CT_LIMIT_UNLIMITED	0
81 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
82 #define CT_LIMIT_HASH_BUCKETS 512
83 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
84 
85 struct ovs_ct_limit {
86 	/* Elements in ovs_ct_limit_info->limits hash table */
87 	struct hlist_node hlist_node;
88 	struct rcu_head rcu;
89 	u16 zone;
90 	u32 limit;
91 };
92 
93 struct ovs_ct_limit_info {
94 	u32 default_limit;
95 	struct hlist_head *limits;
96 	struct nf_conncount_data *data;
97 };
98 
99 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
100 	[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
101 };
102 #endif
103 
104 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
105 
106 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
107 
108 static u16 key_to_nfproto(const struct sw_flow_key *key)
109 {
110 	switch (ntohs(key->eth.type)) {
111 	case ETH_P_IP:
112 		return NFPROTO_IPV4;
113 	case ETH_P_IPV6:
114 		return NFPROTO_IPV6;
115 	default:
116 		return NFPROTO_UNSPEC;
117 	}
118 }
119 
120 /* Map SKB connection state into the values used by flow definition. */
121 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
122 {
123 	u8 ct_state = OVS_CS_F_TRACKED;
124 
125 	switch (ctinfo) {
126 	case IP_CT_ESTABLISHED_REPLY:
127 	case IP_CT_RELATED_REPLY:
128 		ct_state |= OVS_CS_F_REPLY_DIR;
129 		break;
130 	default:
131 		break;
132 	}
133 
134 	switch (ctinfo) {
135 	case IP_CT_ESTABLISHED:
136 	case IP_CT_ESTABLISHED_REPLY:
137 		ct_state |= OVS_CS_F_ESTABLISHED;
138 		break;
139 	case IP_CT_RELATED:
140 	case IP_CT_RELATED_REPLY:
141 		ct_state |= OVS_CS_F_RELATED;
142 		break;
143 	case IP_CT_NEW:
144 		ct_state |= OVS_CS_F_NEW;
145 		break;
146 	default:
147 		break;
148 	}
149 
150 	return ct_state;
151 }
152 
153 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
154 {
155 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
156 	return ct ? READ_ONCE(ct->mark) : 0;
157 #else
158 	return 0;
159 #endif
160 }
161 
162 /* Guard against conntrack labels max size shrinking below 128 bits. */
163 #if NF_CT_LABELS_MAX_SIZE < 16
164 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
165 #endif
166 
167 static void ovs_ct_get_labels(const struct nf_conn *ct,
168 			      struct ovs_key_ct_labels *labels)
169 {
170 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
171 
172 	if (cl)
173 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
174 	else
175 		memset(labels, 0, OVS_CT_LABELS_LEN);
176 }
177 
178 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
179 					const struct nf_conntrack_tuple *orig,
180 					u8 icmp_proto)
181 {
182 	key->ct_orig_proto = orig->dst.protonum;
183 	if (orig->dst.protonum == icmp_proto) {
184 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
185 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
186 	} else {
187 		key->ct.orig_tp.src = orig->src.u.all;
188 		key->ct.orig_tp.dst = orig->dst.u.all;
189 	}
190 }
191 
192 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
193 				const struct nf_conntrack_zone *zone,
194 				const struct nf_conn *ct)
195 {
196 	key->ct_state = state;
197 	key->ct_zone = zone->id;
198 	key->ct.mark = ovs_ct_get_mark(ct);
199 	ovs_ct_get_labels(ct, &key->ct.labels);
200 
201 	if (ct) {
202 		const struct nf_conntrack_tuple *orig;
203 
204 		/* Use the master if we have one. */
205 		if (ct->master)
206 			ct = ct->master;
207 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
208 
209 		/* IP version must match with the master connection. */
210 		if (key->eth.type == htons(ETH_P_IP) &&
211 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
212 			key->ipv4.ct_orig.src = orig->src.u3.ip;
213 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
214 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
215 			return;
216 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
217 			   !sw_flow_key_is_nd(key) &&
218 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
219 			key->ipv6.ct_orig.src = orig->src.u3.in6;
220 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
221 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
222 			return;
223 		}
224 	}
225 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
226 	 * original direction key fields.
227 	 */
228 	key->ct_orig_proto = 0;
229 }
230 
231 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
232  * previously sent the packet to conntrack via the ct action.  If
233  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
234  * initialized from the connection status.
235  */
236 static void ovs_ct_update_key(const struct sk_buff *skb,
237 			      const struct ovs_conntrack_info *info,
238 			      struct sw_flow_key *key, bool post_ct,
239 			      bool keep_nat_flags)
240 {
241 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
242 	enum ip_conntrack_info ctinfo;
243 	struct nf_conn *ct;
244 	u8 state = 0;
245 
246 	ct = nf_ct_get(skb, &ctinfo);
247 	if (ct) {
248 		state = ovs_ct_get_state(ctinfo);
249 		/* All unconfirmed entries are NEW connections. */
250 		if (!nf_ct_is_confirmed(ct))
251 			state |= OVS_CS_F_NEW;
252 		/* OVS persists the related flag for the duration of the
253 		 * connection.
254 		 */
255 		if (ct->master)
256 			state |= OVS_CS_F_RELATED;
257 		if (keep_nat_flags) {
258 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
259 		} else {
260 			if (ct->status & IPS_SRC_NAT)
261 				state |= OVS_CS_F_SRC_NAT;
262 			if (ct->status & IPS_DST_NAT)
263 				state |= OVS_CS_F_DST_NAT;
264 		}
265 		zone = nf_ct_zone(ct);
266 	} else if (post_ct) {
267 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
268 		if (info)
269 			zone = &info->zone;
270 	}
271 	__ovs_ct_update_key(key, state, zone, ct);
272 }
273 
274 /* This is called to initialize CT key fields possibly coming in from the local
275  * stack.
276  */
277 void ovs_ct_fill_key(const struct sk_buff *skb,
278 		     struct sw_flow_key *key,
279 		     bool post_ct)
280 {
281 	ovs_ct_update_key(skb, NULL, key, post_ct, false);
282 }
283 
284 int ovs_ct_put_key(const struct sw_flow_key *swkey,
285 		   const struct sw_flow_key *output, struct sk_buff *skb)
286 {
287 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
288 		return -EMSGSIZE;
289 
290 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
291 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
292 		return -EMSGSIZE;
293 
294 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
295 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
296 		return -EMSGSIZE;
297 
298 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
299 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
300 		    &output->ct.labels))
301 		return -EMSGSIZE;
302 
303 	if (swkey->ct_orig_proto) {
304 		if (swkey->eth.type == htons(ETH_P_IP)) {
305 			struct ovs_key_ct_tuple_ipv4 orig;
306 
307 			memset(&orig, 0, sizeof(orig));
308 			orig.ipv4_src = output->ipv4.ct_orig.src;
309 			orig.ipv4_dst = output->ipv4.ct_orig.dst;
310 			orig.src_port = output->ct.orig_tp.src;
311 			orig.dst_port = output->ct.orig_tp.dst;
312 			orig.ipv4_proto = output->ct_orig_proto;
313 
314 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
315 				    sizeof(orig), &orig))
316 				return -EMSGSIZE;
317 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
318 			struct ovs_key_ct_tuple_ipv6 orig;
319 
320 			memset(&orig, 0, sizeof(orig));
321 			memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
322 			       sizeof(orig.ipv6_src));
323 			memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
324 			       sizeof(orig.ipv6_dst));
325 			orig.src_port = output->ct.orig_tp.src;
326 			orig.dst_port = output->ct.orig_tp.dst;
327 			orig.ipv6_proto = output->ct_orig_proto;
328 
329 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
330 				    sizeof(orig), &orig))
331 				return -EMSGSIZE;
332 		}
333 	}
334 
335 	return 0;
336 }
337 
338 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
339 			   u32 ct_mark, u32 mask)
340 {
341 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
342 	u32 new_mark;
343 
344 	new_mark = ct_mark | (READ_ONCE(ct->mark) & ~(mask));
345 	if (READ_ONCE(ct->mark) != new_mark) {
346 		WRITE_ONCE(ct->mark, new_mark);
347 		if (nf_ct_is_confirmed(ct))
348 			nf_conntrack_event_cache(IPCT_MARK, ct);
349 		key->ct.mark = new_mark;
350 	}
351 
352 	return 0;
353 #else
354 	return -ENOTSUPP;
355 #endif
356 }
357 
358 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
359 {
360 	struct nf_conn_labels *cl;
361 
362 	cl = nf_ct_labels_find(ct);
363 	if (!cl) {
364 		nf_ct_labels_ext_add(ct);
365 		cl = nf_ct_labels_find(ct);
366 	}
367 
368 	return cl;
369 }
370 
371 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
372  * since the new connection is not yet confirmed, and thus no-one else has
373  * access to it's labels, we simply write them over.
374  */
375 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
376 			      const struct ovs_key_ct_labels *labels,
377 			      const struct ovs_key_ct_labels *mask)
378 {
379 	struct nf_conn_labels *cl, *master_cl;
380 	bool have_mask = labels_nonzero(mask);
381 
382 	/* Inherit master's labels to the related connection? */
383 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
384 
385 	if (!master_cl && !have_mask)
386 		return 0;   /* Nothing to do. */
387 
388 	cl = ovs_ct_get_conn_labels(ct);
389 	if (!cl)
390 		return -ENOSPC;
391 
392 	/* Inherit the master's labels, if any. */
393 	if (master_cl)
394 		*cl = *master_cl;
395 
396 	if (have_mask) {
397 		u32 *dst = (u32 *)cl->bits;
398 		int i;
399 
400 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
401 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
402 				(labels->ct_labels_32[i]
403 				 & mask->ct_labels_32[i]);
404 	}
405 
406 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
407 	 * IPCT_LABEL bit is set in the event cache.
408 	 */
409 	nf_conntrack_event_cache(IPCT_LABEL, ct);
410 
411 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
412 
413 	return 0;
414 }
415 
416 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
417 			     const struct ovs_key_ct_labels *labels,
418 			     const struct ovs_key_ct_labels *mask)
419 {
420 	struct nf_conn_labels *cl;
421 	int err;
422 
423 	cl = ovs_ct_get_conn_labels(ct);
424 	if (!cl)
425 		return -ENOSPC;
426 
427 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
428 				    mask->ct_labels_32,
429 				    OVS_CT_LABELS_LEN_32);
430 	if (err)
431 		return err;
432 
433 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
434 
435 	return 0;
436 }
437 
438 static int ovs_ct_handle_fragments(struct net *net, struct sw_flow_key *key,
439 				   u16 zone, int family, struct sk_buff *skb)
440 {
441 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
442 	int err;
443 
444 	err = nf_ct_handle_fragments(net, skb, zone, family, &key->ip.proto, &ovs_cb.mru);
445 	if (err)
446 		return err;
447 
448 	/* The key extracted from the fragment that completed this datagram
449 	 * likely didn't have an L4 header, so regenerate it.
450 	 */
451 	ovs_flow_key_update_l3l4(skb, key);
452 	key->ip.frag = OVS_FRAG_TYPE_NONE;
453 	*OVS_CB(skb) = ovs_cb;
454 
455 	return 0;
456 }
457 
458 static struct nf_conntrack_expect *
459 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
460 		   u16 proto, const struct sk_buff *skb)
461 {
462 	struct nf_conntrack_tuple tuple;
463 	struct nf_conntrack_expect *exp;
464 
465 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
466 		return NULL;
467 
468 	exp = __nf_ct_expect_find(net, zone, &tuple);
469 	if (exp) {
470 		struct nf_conntrack_tuple_hash *h;
471 
472 		/* Delete existing conntrack entry, if it clashes with the
473 		 * expectation.  This can happen since conntrack ALGs do not
474 		 * check for clashes between (new) expectations and existing
475 		 * conntrack entries.  nf_conntrack_in() will check the
476 		 * expectations only if a conntrack entry can not be found,
477 		 * which can lead to OVS finding the expectation (here) in the
478 		 * init direction, but which will not be removed by the
479 		 * nf_conntrack_in() call, if a matching conntrack entry is
480 		 * found instead.  In this case all init direction packets
481 		 * would be reported as new related packets, while reply
482 		 * direction packets would be reported as un-related
483 		 * established packets.
484 		 */
485 		h = nf_conntrack_find_get(net, zone, &tuple);
486 		if (h) {
487 			struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
488 
489 			nf_ct_delete(ct, 0, 0);
490 			nf_ct_put(ct);
491 		}
492 	}
493 
494 	return exp;
495 }
496 
497 /* This replicates logic from nf_conntrack_core.c that is not exported. */
498 static enum ip_conntrack_info
499 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
500 {
501 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
502 
503 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
504 		return IP_CT_ESTABLISHED_REPLY;
505 	/* Once we've had two way comms, always ESTABLISHED. */
506 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
507 		return IP_CT_ESTABLISHED;
508 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
509 		return IP_CT_RELATED;
510 	return IP_CT_NEW;
511 }
512 
513 /* Find an existing connection which this packet belongs to without
514  * re-attributing statistics or modifying the connection state.  This allows an
515  * skb->_nfct lost due to an upcall to be recovered during actions execution.
516  *
517  * Must be called with rcu_read_lock.
518  *
519  * On success, populates skb->_nfct and returns the connection.  Returns NULL
520  * if there is no existing entry.
521  */
522 static struct nf_conn *
523 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
524 		     u8 l3num, struct sk_buff *skb, bool natted)
525 {
526 	struct nf_conntrack_tuple tuple;
527 	struct nf_conntrack_tuple_hash *h;
528 	struct nf_conn *ct;
529 
530 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
531 			       net, &tuple)) {
532 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
533 		return NULL;
534 	}
535 
536 	/* Must invert the tuple if skb has been transformed by NAT. */
537 	if (natted) {
538 		struct nf_conntrack_tuple inverse;
539 
540 		if (!nf_ct_invert_tuple(&inverse, &tuple)) {
541 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
542 			return NULL;
543 		}
544 		tuple = inverse;
545 	}
546 
547 	/* look for tuple match */
548 	h = nf_conntrack_find_get(net, zone, &tuple);
549 	if (!h)
550 		return NULL;   /* Not found. */
551 
552 	ct = nf_ct_tuplehash_to_ctrack(h);
553 
554 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
555 	 * select the other tuplehash to get the right 'ctinfo' bits for this
556 	 * packet.
557 	 */
558 	if (natted)
559 		h = &ct->tuplehash[!h->tuple.dst.dir];
560 
561 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
562 	return ct;
563 }
564 
565 static
566 struct nf_conn *ovs_ct_executed(struct net *net,
567 				const struct sw_flow_key *key,
568 				const struct ovs_conntrack_info *info,
569 				struct sk_buff *skb,
570 				bool *ct_executed)
571 {
572 	struct nf_conn *ct = NULL;
573 
574 	/* If no ct, check if we have evidence that an existing conntrack entry
575 	 * might be found for this skb.  This happens when we lose a skb->_nfct
576 	 * due to an upcall, or if the direction is being forced.  If the
577 	 * connection was not confirmed, it is not cached and needs to be run
578 	 * through conntrack again.
579 	 */
580 	*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
581 		       !(key->ct_state & OVS_CS_F_INVALID) &&
582 		       (key->ct_zone == info->zone.id);
583 
584 	if (*ct_executed || (!key->ct_state && info->force)) {
585 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
586 					  !!(key->ct_state &
587 					  OVS_CS_F_NAT_MASK));
588 	}
589 
590 	return ct;
591 }
592 
593 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
594 static bool skb_nfct_cached(struct net *net,
595 			    const struct sw_flow_key *key,
596 			    const struct ovs_conntrack_info *info,
597 			    struct sk_buff *skb)
598 {
599 	enum ip_conntrack_info ctinfo;
600 	struct nf_conn *ct;
601 	bool ct_executed = true;
602 
603 	ct = nf_ct_get(skb, &ctinfo);
604 	if (!ct)
605 		ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
606 
607 	if (ct)
608 		nf_ct_get(skb, &ctinfo);
609 	else
610 		return false;
611 
612 	if (!net_eq(net, read_pnet(&ct->ct_net)))
613 		return false;
614 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
615 		return false;
616 	if (info->helper) {
617 		struct nf_conn_help *help;
618 
619 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
620 		if (help && rcu_access_pointer(help->helper) != info->helper)
621 			return false;
622 	}
623 	if (info->nf_ct_timeout) {
624 		struct nf_conn_timeout *timeout_ext;
625 
626 		timeout_ext = nf_ct_timeout_find(ct);
627 		if (!timeout_ext || info->nf_ct_timeout !=
628 		    rcu_dereference(timeout_ext->timeout))
629 			return false;
630 	}
631 	/* Force conntrack entry direction to the current packet? */
632 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
633 		/* Delete the conntrack entry if confirmed, else just release
634 		 * the reference.
635 		 */
636 		if (nf_ct_is_confirmed(ct))
637 			nf_ct_delete(ct, 0, 0);
638 
639 		nf_ct_put(ct);
640 		nf_ct_set(skb, NULL, 0);
641 		return false;
642 	}
643 
644 	return ct_executed;
645 }
646 
647 #if IS_ENABLED(CONFIG_NF_NAT)
648 static void ovs_nat_update_key(struct sw_flow_key *key,
649 			       const struct sk_buff *skb,
650 			       enum nf_nat_manip_type maniptype)
651 {
652 	if (maniptype == NF_NAT_MANIP_SRC) {
653 		__be16 src;
654 
655 		key->ct_state |= OVS_CS_F_SRC_NAT;
656 		if (key->eth.type == htons(ETH_P_IP))
657 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
658 		else if (key->eth.type == htons(ETH_P_IPV6))
659 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
660 			       sizeof(key->ipv6.addr.src));
661 		else
662 			return;
663 
664 		if (key->ip.proto == IPPROTO_UDP)
665 			src = udp_hdr(skb)->source;
666 		else if (key->ip.proto == IPPROTO_TCP)
667 			src = tcp_hdr(skb)->source;
668 		else if (key->ip.proto == IPPROTO_SCTP)
669 			src = sctp_hdr(skb)->source;
670 		else
671 			return;
672 
673 		key->tp.src = src;
674 	} else {
675 		__be16 dst;
676 
677 		key->ct_state |= OVS_CS_F_DST_NAT;
678 		if (key->eth.type == htons(ETH_P_IP))
679 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
680 		else if (key->eth.type == htons(ETH_P_IPV6))
681 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
682 			       sizeof(key->ipv6.addr.dst));
683 		else
684 			return;
685 
686 		if (key->ip.proto == IPPROTO_UDP)
687 			dst = udp_hdr(skb)->dest;
688 		else if (key->ip.proto == IPPROTO_TCP)
689 			dst = tcp_hdr(skb)->dest;
690 		else if (key->ip.proto == IPPROTO_SCTP)
691 			dst = sctp_hdr(skb)->dest;
692 		else
693 			return;
694 
695 		key->tp.dst = dst;
696 	}
697 }
698 
699 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
700 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
701 		      const struct ovs_conntrack_info *info,
702 		      struct sk_buff *skb, struct nf_conn *ct,
703 		      enum ip_conntrack_info ctinfo)
704 {
705 	int err, action = 0;
706 
707 	if (!(info->nat & OVS_CT_NAT))
708 		return NF_ACCEPT;
709 	if (info->nat & OVS_CT_SRC_NAT)
710 		action |= BIT(NF_NAT_MANIP_SRC);
711 	if (info->nat & OVS_CT_DST_NAT)
712 		action |= BIT(NF_NAT_MANIP_DST);
713 
714 	err = nf_ct_nat(skb, ct, ctinfo, &action, &info->range, info->commit);
715 
716 	if (action & BIT(NF_NAT_MANIP_SRC))
717 		ovs_nat_update_key(key, skb, NF_NAT_MANIP_SRC);
718 	if (action & BIT(NF_NAT_MANIP_DST))
719 		ovs_nat_update_key(key, skb, NF_NAT_MANIP_DST);
720 
721 	return err;
722 }
723 #else /* !CONFIG_NF_NAT */
724 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
725 		      const struct ovs_conntrack_info *info,
726 		      struct sk_buff *skb, struct nf_conn *ct,
727 		      enum ip_conntrack_info ctinfo)
728 {
729 	return NF_ACCEPT;
730 }
731 #endif
732 
733 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
734  * not done already.  Update key with new CT state after passing the packet
735  * through conntrack.
736  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
737  * set to NULL and 0 will be returned.
738  */
739 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
740 			   const struct ovs_conntrack_info *info,
741 			   struct sk_buff *skb)
742 {
743 	/* If we are recirculating packets to match on conntrack fields and
744 	 * committing with a separate conntrack action,  then we don't need to
745 	 * actually run the packet through conntrack twice unless it's for a
746 	 * different zone.
747 	 */
748 	bool cached = skb_nfct_cached(net, key, info, skb);
749 	enum ip_conntrack_info ctinfo;
750 	struct nf_conn *ct;
751 
752 	if (!cached) {
753 		struct nf_hook_state state = {
754 			.hook = NF_INET_PRE_ROUTING,
755 			.pf = info->family,
756 			.net = net,
757 		};
758 		struct nf_conn *tmpl = info->ct;
759 		int err;
760 
761 		/* Associate skb with specified zone. */
762 		if (tmpl) {
763 			ct = nf_ct_get(skb, &ctinfo);
764 			nf_ct_put(ct);
765 			nf_conntrack_get(&tmpl->ct_general);
766 			nf_ct_set(skb, tmpl, IP_CT_NEW);
767 		}
768 
769 		err = nf_conntrack_in(skb, &state);
770 		if (err != NF_ACCEPT)
771 			return -ENOENT;
772 
773 		/* Clear CT state NAT flags to mark that we have not yet done
774 		 * NAT after the nf_conntrack_in() call.  We can actually clear
775 		 * the whole state, as it will be re-initialized below.
776 		 */
777 		key->ct_state = 0;
778 
779 		/* Update the key, but keep the NAT flags. */
780 		ovs_ct_update_key(skb, info, key, true, true);
781 	}
782 
783 	ct = nf_ct_get(skb, &ctinfo);
784 	if (ct) {
785 		bool add_helper = false;
786 
787 		/* Packets starting a new connection must be NATted before the
788 		 * helper, so that the helper knows about the NAT.  We enforce
789 		 * this by delaying both NAT and helper calls for unconfirmed
790 		 * connections until the committing CT action.  For later
791 		 * packets NAT and Helper may be called in either order.
792 		 *
793 		 * NAT will be done only if the CT action has NAT, and only
794 		 * once per packet (per zone), as guarded by the NAT bits in
795 		 * the key->ct_state.
796 		 */
797 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
798 		    (nf_ct_is_confirmed(ct) || info->commit) &&
799 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
800 			return -EINVAL;
801 		}
802 
803 		/* Userspace may decide to perform a ct lookup without a helper
804 		 * specified followed by a (recirculate and) commit with one,
805 		 * or attach a helper in a later commit.  Therefore, for
806 		 * connections which we will commit, we may need to attach
807 		 * the helper here.
808 		 */
809 		if (!nf_ct_is_confirmed(ct) && info->commit &&
810 		    info->helper && !nfct_help(ct)) {
811 			int err = __nf_ct_try_assign_helper(ct, info->ct,
812 							    GFP_ATOMIC);
813 			if (err)
814 				return err;
815 			add_helper = true;
816 
817 			/* helper installed, add seqadj if NAT is required */
818 			if (info->nat && !nfct_seqadj(ct)) {
819 				if (!nfct_seqadj_ext_add(ct))
820 					return -EINVAL;
821 			}
822 		}
823 
824 		/* Call the helper only if:
825 		 * - nf_conntrack_in() was executed above ("!cached") or a
826 		 *   helper was just attached ("add_helper") for a confirmed
827 		 *   connection, or
828 		 * - When committing an unconfirmed connection.
829 		 */
830 		if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
831 					      info->commit) &&
832 		    nf_ct_helper(skb, ct, ctinfo, info->family) != NF_ACCEPT) {
833 			return -EINVAL;
834 		}
835 
836 		if (nf_ct_protonum(ct) == IPPROTO_TCP &&
837 		    nf_ct_is_confirmed(ct) && nf_conntrack_tcp_established(ct)) {
838 			/* Be liberal for tcp packets so that out-of-window
839 			 * packets are not marked invalid.
840 			 */
841 			nf_ct_set_tcp_be_liberal(ct);
842 		}
843 
844 		nf_conn_act_ct_ext_fill(skb, ct, ctinfo);
845 	}
846 
847 	return 0;
848 }
849 
850 /* Lookup connection and read fields into key. */
851 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
852 			 const struct ovs_conntrack_info *info,
853 			 struct sk_buff *skb)
854 {
855 	struct nf_conntrack_expect *exp;
856 
857 	/* If we pass an expected packet through nf_conntrack_in() the
858 	 * expectation is typically removed, but the packet could still be
859 	 * lost in upcall processing.  To prevent this from happening we
860 	 * perform an explicit expectation lookup.  Expected connections are
861 	 * always new, and will be passed through conntrack only when they are
862 	 * committed, as it is OK to remove the expectation at that time.
863 	 */
864 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
865 	if (exp) {
866 		u8 state;
867 
868 		/* NOTE: New connections are NATted and Helped only when
869 		 * committed, so we are not calling into NAT here.
870 		 */
871 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
872 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
873 	} else {
874 		struct nf_conn *ct;
875 		int err;
876 
877 		err = __ovs_ct_lookup(net, key, info, skb);
878 		if (err)
879 			return err;
880 
881 		ct = (struct nf_conn *)skb_nfct(skb);
882 		if (ct)
883 			nf_ct_deliver_cached_events(ct);
884 	}
885 
886 	return 0;
887 }
888 
889 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
890 {
891 	size_t i;
892 
893 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
894 		if (labels->ct_labels_32[i])
895 			return true;
896 
897 	return false;
898 }
899 
900 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
901 static struct hlist_head *ct_limit_hash_bucket(
902 	const struct ovs_ct_limit_info *info, u16 zone)
903 {
904 	return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
905 }
906 
907 /* Call with ovs_mutex */
908 static void ct_limit_set(const struct ovs_ct_limit_info *info,
909 			 struct ovs_ct_limit *new_ct_limit)
910 {
911 	struct ovs_ct_limit *ct_limit;
912 	struct hlist_head *head;
913 
914 	head = ct_limit_hash_bucket(info, new_ct_limit->zone);
915 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
916 		if (ct_limit->zone == new_ct_limit->zone) {
917 			hlist_replace_rcu(&ct_limit->hlist_node,
918 					  &new_ct_limit->hlist_node);
919 			kfree_rcu(ct_limit, rcu);
920 			return;
921 		}
922 	}
923 
924 	hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
925 }
926 
927 /* Call with ovs_mutex */
928 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
929 {
930 	struct ovs_ct_limit *ct_limit;
931 	struct hlist_head *head;
932 	struct hlist_node *n;
933 
934 	head = ct_limit_hash_bucket(info, zone);
935 	hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
936 		if (ct_limit->zone == zone) {
937 			hlist_del_rcu(&ct_limit->hlist_node);
938 			kfree_rcu(ct_limit, rcu);
939 			return;
940 		}
941 	}
942 }
943 
944 /* Call with RCU read lock */
945 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
946 {
947 	struct ovs_ct_limit *ct_limit;
948 	struct hlist_head *head;
949 
950 	head = ct_limit_hash_bucket(info, zone);
951 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
952 		if (ct_limit->zone == zone)
953 			return ct_limit->limit;
954 	}
955 
956 	return info->default_limit;
957 }
958 
959 static int ovs_ct_check_limit(struct net *net,
960 			      const struct ovs_conntrack_info *info,
961 			      const struct nf_conntrack_tuple *tuple)
962 {
963 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
964 	const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
965 	u32 per_zone_limit, connections;
966 	u32 conncount_key;
967 
968 	conncount_key = info->zone.id;
969 
970 	per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
971 	if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
972 		return 0;
973 
974 	connections = nf_conncount_count(net, ct_limit_info->data,
975 					 &conncount_key, tuple, &info->zone);
976 	if (connections > per_zone_limit)
977 		return -ENOMEM;
978 
979 	return 0;
980 }
981 #endif
982 
983 /* Lookup connection and confirm if unconfirmed. */
984 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
985 			 const struct ovs_conntrack_info *info,
986 			 struct sk_buff *skb)
987 {
988 	enum ip_conntrack_info ctinfo;
989 	struct nf_conn *ct;
990 	int err;
991 
992 	err = __ovs_ct_lookup(net, key, info, skb);
993 	if (err)
994 		return err;
995 
996 	/* The connection could be invalid, in which case this is a no-op.*/
997 	ct = nf_ct_get(skb, &ctinfo);
998 	if (!ct)
999 		return 0;
1000 
1001 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1002 	if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1003 		if (!nf_ct_is_confirmed(ct)) {
1004 			err = ovs_ct_check_limit(net, info,
1005 				&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1006 			if (err) {
1007 				net_warn_ratelimited("openvswitch: zone: %u "
1008 					"exceeds conntrack limit\n",
1009 					info->zone.id);
1010 				return err;
1011 			}
1012 		}
1013 	}
1014 #endif
1015 
1016 	/* Set the conntrack event mask if given.  NEW and DELETE events have
1017 	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1018 	 * typically would receive many kinds of updates.  Setting the event
1019 	 * mask allows those events to be filtered.  The set event mask will
1020 	 * remain in effect for the lifetime of the connection unless changed
1021 	 * by a further CT action with both the commit flag and the eventmask
1022 	 * option. */
1023 	if (info->have_eventmask) {
1024 		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1025 
1026 		if (cache)
1027 			cache->ctmask = info->eventmask;
1028 	}
1029 
1030 	/* Apply changes before confirming the connection so that the initial
1031 	 * conntrack NEW netlink event carries the values given in the CT
1032 	 * action.
1033 	 */
1034 	if (info->mark.mask) {
1035 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1036 				      info->mark.mask);
1037 		if (err)
1038 			return err;
1039 	}
1040 	if (!nf_ct_is_confirmed(ct)) {
1041 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1042 					 &info->labels.mask);
1043 		if (err)
1044 			return err;
1045 
1046 		nf_conn_act_ct_ext_add(ct);
1047 	} else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1048 		   labels_nonzero(&info->labels.mask)) {
1049 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1050 					&info->labels.mask);
1051 		if (err)
1052 			return err;
1053 	}
1054 	/* This will take care of sending queued events even if the connection
1055 	 * is already confirmed.
1056 	 */
1057 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1058 		return -EINVAL;
1059 
1060 	return 0;
1061 }
1062 
1063 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1064  * value if 'skb' is freed.
1065  */
1066 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1067 		   struct sw_flow_key *key,
1068 		   const struct ovs_conntrack_info *info)
1069 {
1070 	int nh_ofs;
1071 	int err;
1072 
1073 	/* The conntrack module expects to be working at L3. */
1074 	nh_ofs = skb_network_offset(skb);
1075 	skb_pull_rcsum(skb, nh_ofs);
1076 
1077 	err = nf_ct_skb_network_trim(skb, info->family);
1078 	if (err) {
1079 		kfree_skb(skb);
1080 		return err;
1081 	}
1082 
1083 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1084 		err = ovs_ct_handle_fragments(net, key, info->zone.id,
1085 					      info->family, skb);
1086 		if (err)
1087 			return err;
1088 	}
1089 
1090 	if (info->commit)
1091 		err = ovs_ct_commit(net, key, info, skb);
1092 	else
1093 		err = ovs_ct_lookup(net, key, info, skb);
1094 
1095 	skb_push_rcsum(skb, nh_ofs);
1096 	if (err)
1097 		kfree_skb(skb);
1098 	return err;
1099 }
1100 
1101 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1102 {
1103 	enum ip_conntrack_info ctinfo;
1104 	struct nf_conn *ct;
1105 
1106 	ct = nf_ct_get(skb, &ctinfo);
1107 
1108 	nf_ct_put(ct);
1109 	nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1110 
1111 	if (key)
1112 		ovs_ct_fill_key(skb, key, false);
1113 
1114 	return 0;
1115 }
1116 
1117 #if IS_ENABLED(CONFIG_NF_NAT)
1118 static int parse_nat(const struct nlattr *attr,
1119 		     struct ovs_conntrack_info *info, bool log)
1120 {
1121 	struct nlattr *a;
1122 	int rem;
1123 	bool have_ip_max = false;
1124 	bool have_proto_max = false;
1125 	bool ip_vers = (info->family == NFPROTO_IPV6);
1126 
1127 	nla_for_each_nested(a, attr, rem) {
1128 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1129 			[OVS_NAT_ATTR_SRC] = {0, 0},
1130 			[OVS_NAT_ATTR_DST] = {0, 0},
1131 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1132 						 sizeof(struct in6_addr)},
1133 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1134 						 sizeof(struct in6_addr)},
1135 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1136 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1137 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1138 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1139 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1140 		};
1141 		int type = nla_type(a);
1142 
1143 		if (type > OVS_NAT_ATTR_MAX) {
1144 			OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1145 				  type, OVS_NAT_ATTR_MAX);
1146 			return -EINVAL;
1147 		}
1148 
1149 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1150 			OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1151 				  type, nla_len(a),
1152 				  ovs_nat_attr_lens[type][ip_vers]);
1153 			return -EINVAL;
1154 		}
1155 
1156 		switch (type) {
1157 		case OVS_NAT_ATTR_SRC:
1158 		case OVS_NAT_ATTR_DST:
1159 			if (info->nat) {
1160 				OVS_NLERR(log, "Only one type of NAT may be specified");
1161 				return -ERANGE;
1162 			}
1163 			info->nat |= OVS_CT_NAT;
1164 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1165 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1166 			break;
1167 
1168 		case OVS_NAT_ATTR_IP_MIN:
1169 			nla_memcpy(&info->range.min_addr, a,
1170 				   sizeof(info->range.min_addr));
1171 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1172 			break;
1173 
1174 		case OVS_NAT_ATTR_IP_MAX:
1175 			have_ip_max = true;
1176 			nla_memcpy(&info->range.max_addr, a,
1177 				   sizeof(info->range.max_addr));
1178 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1179 			break;
1180 
1181 		case OVS_NAT_ATTR_PROTO_MIN:
1182 			info->range.min_proto.all = htons(nla_get_u16(a));
1183 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1184 			break;
1185 
1186 		case OVS_NAT_ATTR_PROTO_MAX:
1187 			have_proto_max = true;
1188 			info->range.max_proto.all = htons(nla_get_u16(a));
1189 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1190 			break;
1191 
1192 		case OVS_NAT_ATTR_PERSISTENT:
1193 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1194 			break;
1195 
1196 		case OVS_NAT_ATTR_PROTO_HASH:
1197 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1198 			break;
1199 
1200 		case OVS_NAT_ATTR_PROTO_RANDOM:
1201 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1202 			break;
1203 
1204 		default:
1205 			OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1206 			return -EINVAL;
1207 		}
1208 	}
1209 
1210 	if (rem > 0) {
1211 		OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1212 		return -EINVAL;
1213 	}
1214 	if (!info->nat) {
1215 		/* Do not allow flags if no type is given. */
1216 		if (info->range.flags) {
1217 			OVS_NLERR(log,
1218 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1219 				  );
1220 			return -EINVAL;
1221 		}
1222 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1223 	} else if (!info->commit) {
1224 		OVS_NLERR(log,
1225 			  "NAT attributes may be specified only when CT COMMIT flag is also specified."
1226 			  );
1227 		return -EINVAL;
1228 	}
1229 	/* Allow missing IP_MAX. */
1230 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1231 		memcpy(&info->range.max_addr, &info->range.min_addr,
1232 		       sizeof(info->range.max_addr));
1233 	}
1234 	/* Allow missing PROTO_MAX. */
1235 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1236 	    !have_proto_max) {
1237 		info->range.max_proto.all = info->range.min_proto.all;
1238 	}
1239 	return 0;
1240 }
1241 #endif
1242 
1243 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1244 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1245 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1246 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1247 				    .maxlen = sizeof(u16) },
1248 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1249 				    .maxlen = sizeof(struct md_mark) },
1250 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1251 				    .maxlen = sizeof(struct md_labels) },
1252 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1253 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1254 #if IS_ENABLED(CONFIG_NF_NAT)
1255 	/* NAT length is checked when parsing the nested attributes. */
1256 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1257 #endif
1258 	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1259 				    .maxlen = sizeof(u32) },
1260 	[OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1261 				  .maxlen = CTNL_TIMEOUT_NAME_MAX },
1262 };
1263 
1264 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1265 		    const char **helper, bool log)
1266 {
1267 	struct nlattr *a;
1268 	int rem;
1269 
1270 	nla_for_each_nested(a, attr, rem) {
1271 		int type = nla_type(a);
1272 		int maxlen;
1273 		int minlen;
1274 
1275 		if (type > OVS_CT_ATTR_MAX) {
1276 			OVS_NLERR(log,
1277 				  "Unknown conntrack attr (type=%d, max=%d)",
1278 				  type, OVS_CT_ATTR_MAX);
1279 			return -EINVAL;
1280 		}
1281 
1282 		maxlen = ovs_ct_attr_lens[type].maxlen;
1283 		minlen = ovs_ct_attr_lens[type].minlen;
1284 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1285 			OVS_NLERR(log,
1286 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1287 				  type, nla_len(a), maxlen);
1288 			return -EINVAL;
1289 		}
1290 
1291 		switch (type) {
1292 		case OVS_CT_ATTR_FORCE_COMMIT:
1293 			info->force = true;
1294 			fallthrough;
1295 		case OVS_CT_ATTR_COMMIT:
1296 			info->commit = true;
1297 			break;
1298 #ifdef CONFIG_NF_CONNTRACK_ZONES
1299 		case OVS_CT_ATTR_ZONE:
1300 			info->zone.id = nla_get_u16(a);
1301 			break;
1302 #endif
1303 #ifdef CONFIG_NF_CONNTRACK_MARK
1304 		case OVS_CT_ATTR_MARK: {
1305 			struct md_mark *mark = nla_data(a);
1306 
1307 			if (!mark->mask) {
1308 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1309 				return -EINVAL;
1310 			}
1311 			info->mark = *mark;
1312 			break;
1313 		}
1314 #endif
1315 #ifdef CONFIG_NF_CONNTRACK_LABELS
1316 		case OVS_CT_ATTR_LABELS: {
1317 			struct md_labels *labels = nla_data(a);
1318 
1319 			if (!labels_nonzero(&labels->mask)) {
1320 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1321 				return -EINVAL;
1322 			}
1323 			info->labels = *labels;
1324 			break;
1325 		}
1326 #endif
1327 		case OVS_CT_ATTR_HELPER:
1328 			*helper = nla_data(a);
1329 			if (!string_is_terminated(*helper, nla_len(a))) {
1330 				OVS_NLERR(log, "Invalid conntrack helper");
1331 				return -EINVAL;
1332 			}
1333 			break;
1334 #if IS_ENABLED(CONFIG_NF_NAT)
1335 		case OVS_CT_ATTR_NAT: {
1336 			int err = parse_nat(a, info, log);
1337 
1338 			if (err)
1339 				return err;
1340 			break;
1341 		}
1342 #endif
1343 		case OVS_CT_ATTR_EVENTMASK:
1344 			info->have_eventmask = true;
1345 			info->eventmask = nla_get_u32(a);
1346 			break;
1347 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1348 		case OVS_CT_ATTR_TIMEOUT:
1349 			memcpy(info->timeout, nla_data(a), nla_len(a));
1350 			if (!string_is_terminated(info->timeout, nla_len(a))) {
1351 				OVS_NLERR(log, "Invalid conntrack timeout");
1352 				return -EINVAL;
1353 			}
1354 			break;
1355 #endif
1356 
1357 		default:
1358 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1359 				  type);
1360 			return -EINVAL;
1361 		}
1362 	}
1363 
1364 #ifdef CONFIG_NF_CONNTRACK_MARK
1365 	if (!info->commit && info->mark.mask) {
1366 		OVS_NLERR(log,
1367 			  "Setting conntrack mark requires 'commit' flag.");
1368 		return -EINVAL;
1369 	}
1370 #endif
1371 #ifdef CONFIG_NF_CONNTRACK_LABELS
1372 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1373 		OVS_NLERR(log,
1374 			  "Setting conntrack labels requires 'commit' flag.");
1375 		return -EINVAL;
1376 	}
1377 #endif
1378 	if (rem > 0) {
1379 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1380 		return -EINVAL;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1387 {
1388 	if (attr == OVS_KEY_ATTR_CT_STATE)
1389 		return true;
1390 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1391 	    attr == OVS_KEY_ATTR_CT_ZONE)
1392 		return true;
1393 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1394 	    attr == OVS_KEY_ATTR_CT_MARK)
1395 		return true;
1396 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1397 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1398 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1399 
1400 		return ovs_net->xt_label;
1401 	}
1402 
1403 	return false;
1404 }
1405 
1406 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1407 		       const struct sw_flow_key *key,
1408 		       struct sw_flow_actions **sfa,  bool log)
1409 {
1410 	struct ovs_conntrack_info ct_info;
1411 	const char *helper = NULL;
1412 	u16 family;
1413 	int err;
1414 
1415 	family = key_to_nfproto(key);
1416 	if (family == NFPROTO_UNSPEC) {
1417 		OVS_NLERR(log, "ct family unspecified");
1418 		return -EINVAL;
1419 	}
1420 
1421 	memset(&ct_info, 0, sizeof(ct_info));
1422 	ct_info.family = family;
1423 
1424 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1425 			NF_CT_DEFAULT_ZONE_DIR, 0);
1426 
1427 	err = parse_ct(attr, &ct_info, &helper, log);
1428 	if (err)
1429 		return err;
1430 
1431 	/* Set up template for tracking connections in specific zones. */
1432 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1433 	if (!ct_info.ct) {
1434 		OVS_NLERR(log, "Failed to allocate conntrack template");
1435 		return -ENOMEM;
1436 	}
1437 
1438 	if (ct_info.timeout[0]) {
1439 		if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1440 				      ct_info.timeout))
1441 			pr_info_ratelimited("Failed to associated timeout "
1442 					    "policy `%s'\n", ct_info.timeout);
1443 		else
1444 			ct_info.nf_ct_timeout = rcu_dereference(
1445 				nf_ct_timeout_find(ct_info.ct)->timeout);
1446 
1447 	}
1448 
1449 	if (helper) {
1450 		err = nf_ct_add_helper(ct_info.ct, helper, ct_info.family,
1451 				       key->ip.proto, ct_info.nat, &ct_info.helper);
1452 		if (err) {
1453 			OVS_NLERR(log, "Failed to add %s helper %d", helper, err);
1454 			goto err_free_ct;
1455 		}
1456 	}
1457 
1458 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1459 				 sizeof(ct_info), log);
1460 	if (err)
1461 		goto err_free_ct;
1462 
1463 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1464 	return 0;
1465 err_free_ct:
1466 	__ovs_ct_free_action(&ct_info);
1467 	return err;
1468 }
1469 
1470 #if IS_ENABLED(CONFIG_NF_NAT)
1471 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1472 			       struct sk_buff *skb)
1473 {
1474 	struct nlattr *start;
1475 
1476 	start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1477 	if (!start)
1478 		return false;
1479 
1480 	if (info->nat & OVS_CT_SRC_NAT) {
1481 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1482 			return false;
1483 	} else if (info->nat & OVS_CT_DST_NAT) {
1484 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1485 			return false;
1486 	} else {
1487 		goto out;
1488 	}
1489 
1490 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1491 		if (IS_ENABLED(CONFIG_NF_NAT) &&
1492 		    info->family == NFPROTO_IPV4) {
1493 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1494 					    info->range.min_addr.ip) ||
1495 			    (info->range.max_addr.ip
1496 			     != info->range.min_addr.ip &&
1497 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1498 					      info->range.max_addr.ip))))
1499 				return false;
1500 		} else if (IS_ENABLED(CONFIG_IPV6) &&
1501 			   info->family == NFPROTO_IPV6) {
1502 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1503 					     &info->range.min_addr.in6) ||
1504 			    (memcmp(&info->range.max_addr.in6,
1505 				    &info->range.min_addr.in6,
1506 				    sizeof(info->range.max_addr.in6)) &&
1507 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1508 					       &info->range.max_addr.in6))))
1509 				return false;
1510 		} else {
1511 			return false;
1512 		}
1513 	}
1514 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1515 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1516 			 ntohs(info->range.min_proto.all)) ||
1517 	     (info->range.max_proto.all != info->range.min_proto.all &&
1518 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1519 			  ntohs(info->range.max_proto.all)))))
1520 		return false;
1521 
1522 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1523 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1524 		return false;
1525 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1526 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1527 		return false;
1528 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1529 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1530 		return false;
1531 out:
1532 	nla_nest_end(skb, start);
1533 
1534 	return true;
1535 }
1536 #endif
1537 
1538 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1539 			  struct sk_buff *skb)
1540 {
1541 	struct nlattr *start;
1542 
1543 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1544 	if (!start)
1545 		return -EMSGSIZE;
1546 
1547 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1548 					    ? OVS_CT_ATTR_FORCE_COMMIT
1549 					    : OVS_CT_ATTR_COMMIT))
1550 		return -EMSGSIZE;
1551 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1552 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1553 		return -EMSGSIZE;
1554 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1555 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1556 		    &ct_info->mark))
1557 		return -EMSGSIZE;
1558 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1559 	    labels_nonzero(&ct_info->labels.mask) &&
1560 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1561 		    &ct_info->labels))
1562 		return -EMSGSIZE;
1563 	if (ct_info->helper) {
1564 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1565 				   ct_info->helper->name))
1566 			return -EMSGSIZE;
1567 	}
1568 	if (ct_info->have_eventmask &&
1569 	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1570 		return -EMSGSIZE;
1571 	if (ct_info->timeout[0]) {
1572 		if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1573 			return -EMSGSIZE;
1574 	}
1575 
1576 #if IS_ENABLED(CONFIG_NF_NAT)
1577 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1578 		return -EMSGSIZE;
1579 #endif
1580 	nla_nest_end(skb, start);
1581 
1582 	return 0;
1583 }
1584 
1585 void ovs_ct_free_action(const struct nlattr *a)
1586 {
1587 	struct ovs_conntrack_info *ct_info = nla_data(a);
1588 
1589 	__ovs_ct_free_action(ct_info);
1590 }
1591 
1592 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1593 {
1594 	if (ct_info->helper) {
1595 #if IS_ENABLED(CONFIG_NF_NAT)
1596 		if (ct_info->nat)
1597 			nf_nat_helper_put(ct_info->helper);
1598 #endif
1599 		nf_conntrack_helper_put(ct_info->helper);
1600 	}
1601 	if (ct_info->ct) {
1602 		if (ct_info->timeout[0])
1603 			nf_ct_destroy_timeout(ct_info->ct);
1604 		nf_ct_tmpl_free(ct_info->ct);
1605 	}
1606 }
1607 
1608 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1609 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1610 {
1611 	int i, err;
1612 
1613 	ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1614 					 GFP_KERNEL);
1615 	if (!ovs_net->ct_limit_info)
1616 		return -ENOMEM;
1617 
1618 	ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1619 	ovs_net->ct_limit_info->limits =
1620 		kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1621 			      GFP_KERNEL);
1622 	if (!ovs_net->ct_limit_info->limits) {
1623 		kfree(ovs_net->ct_limit_info);
1624 		return -ENOMEM;
1625 	}
1626 
1627 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1628 		INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1629 
1630 	ovs_net->ct_limit_info->data =
1631 		nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1632 
1633 	if (IS_ERR(ovs_net->ct_limit_info->data)) {
1634 		err = PTR_ERR(ovs_net->ct_limit_info->data);
1635 		kfree(ovs_net->ct_limit_info->limits);
1636 		kfree(ovs_net->ct_limit_info);
1637 		pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1638 		return err;
1639 	}
1640 	return 0;
1641 }
1642 
1643 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1644 {
1645 	const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1646 	int i;
1647 
1648 	nf_conncount_destroy(net, NFPROTO_INET, info->data);
1649 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1650 		struct hlist_head *head = &info->limits[i];
1651 		struct ovs_ct_limit *ct_limit;
1652 
1653 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node,
1654 					 lockdep_ovsl_is_held())
1655 			kfree_rcu(ct_limit, rcu);
1656 	}
1657 	kfree(info->limits);
1658 	kfree(info);
1659 }
1660 
1661 static struct sk_buff *
1662 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1663 			     struct ovs_header **ovs_reply_header)
1664 {
1665 	struct ovs_header *ovs_header = info->userhdr;
1666 	struct sk_buff *skb;
1667 
1668 	skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1669 	if (!skb)
1670 		return ERR_PTR(-ENOMEM);
1671 
1672 	*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1673 					info->snd_seq,
1674 					&dp_ct_limit_genl_family, 0, cmd);
1675 
1676 	if (!*ovs_reply_header) {
1677 		nlmsg_free(skb);
1678 		return ERR_PTR(-EMSGSIZE);
1679 	}
1680 	(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1681 
1682 	return skb;
1683 }
1684 
1685 static bool check_zone_id(int zone_id, u16 *pzone)
1686 {
1687 	if (zone_id >= 0 && zone_id <= 65535) {
1688 		*pzone = (u16)zone_id;
1689 		return true;
1690 	}
1691 	return false;
1692 }
1693 
1694 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1695 				       struct ovs_ct_limit_info *info)
1696 {
1697 	struct ovs_zone_limit *zone_limit;
1698 	int rem;
1699 	u16 zone;
1700 
1701 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1702 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1703 
1704 	while (rem >= sizeof(*zone_limit)) {
1705 		if (unlikely(zone_limit->zone_id ==
1706 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1707 			ovs_lock();
1708 			info->default_limit = zone_limit->limit;
1709 			ovs_unlock();
1710 		} else if (unlikely(!check_zone_id(
1711 				zone_limit->zone_id, &zone))) {
1712 			OVS_NLERR(true, "zone id is out of range");
1713 		} else {
1714 			struct ovs_ct_limit *ct_limit;
1715 
1716 			ct_limit = kmalloc(sizeof(*ct_limit),
1717 					   GFP_KERNEL_ACCOUNT);
1718 			if (!ct_limit)
1719 				return -ENOMEM;
1720 
1721 			ct_limit->zone = zone;
1722 			ct_limit->limit = zone_limit->limit;
1723 
1724 			ovs_lock();
1725 			ct_limit_set(info, ct_limit);
1726 			ovs_unlock();
1727 		}
1728 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1729 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1730 				NLA_ALIGN(sizeof(*zone_limit)));
1731 	}
1732 
1733 	if (rem)
1734 		OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1735 
1736 	return 0;
1737 }
1738 
1739 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1740 				       struct ovs_ct_limit_info *info)
1741 {
1742 	struct ovs_zone_limit *zone_limit;
1743 	int rem;
1744 	u16 zone;
1745 
1746 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1747 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1748 
1749 	while (rem >= sizeof(*zone_limit)) {
1750 		if (unlikely(zone_limit->zone_id ==
1751 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1752 			ovs_lock();
1753 			info->default_limit = OVS_CT_LIMIT_DEFAULT;
1754 			ovs_unlock();
1755 		} else if (unlikely(!check_zone_id(
1756 				zone_limit->zone_id, &zone))) {
1757 			OVS_NLERR(true, "zone id is out of range");
1758 		} else {
1759 			ovs_lock();
1760 			ct_limit_del(info, zone);
1761 			ovs_unlock();
1762 		}
1763 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1764 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1765 				NLA_ALIGN(sizeof(*zone_limit)));
1766 	}
1767 
1768 	if (rem)
1769 		OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
1770 
1771 	return 0;
1772 }
1773 
1774 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
1775 					  struct sk_buff *reply)
1776 {
1777 	struct ovs_zone_limit zone_limit = {
1778 		.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE,
1779 		.limit   = info->default_limit,
1780 	};
1781 
1782 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1783 }
1784 
1785 static int __ovs_ct_limit_get_zone_limit(struct net *net,
1786 					 struct nf_conncount_data *data,
1787 					 u16 zone_id, u32 limit,
1788 					 struct sk_buff *reply)
1789 {
1790 	struct nf_conntrack_zone ct_zone;
1791 	struct ovs_zone_limit zone_limit;
1792 	u32 conncount_key = zone_id;
1793 
1794 	zone_limit.zone_id = zone_id;
1795 	zone_limit.limit = limit;
1796 	nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
1797 
1798 	zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
1799 					      &ct_zone);
1800 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1801 }
1802 
1803 static int ovs_ct_limit_get_zone_limit(struct net *net,
1804 				       struct nlattr *nla_zone_limit,
1805 				       struct ovs_ct_limit_info *info,
1806 				       struct sk_buff *reply)
1807 {
1808 	struct ovs_zone_limit *zone_limit;
1809 	int rem, err;
1810 	u32 limit;
1811 	u16 zone;
1812 
1813 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1814 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1815 
1816 	while (rem >= sizeof(*zone_limit)) {
1817 		if (unlikely(zone_limit->zone_id ==
1818 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1819 			err = ovs_ct_limit_get_default_limit(info, reply);
1820 			if (err)
1821 				return err;
1822 		} else if (unlikely(!check_zone_id(zone_limit->zone_id,
1823 							&zone))) {
1824 			OVS_NLERR(true, "zone id is out of range");
1825 		} else {
1826 			rcu_read_lock();
1827 			limit = ct_limit_get(info, zone);
1828 			rcu_read_unlock();
1829 
1830 			err = __ovs_ct_limit_get_zone_limit(
1831 				net, info->data, zone, limit, reply);
1832 			if (err)
1833 				return err;
1834 		}
1835 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1836 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1837 				NLA_ALIGN(sizeof(*zone_limit)));
1838 	}
1839 
1840 	if (rem)
1841 		OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
1842 
1843 	return 0;
1844 }
1845 
1846 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
1847 					   struct ovs_ct_limit_info *info,
1848 					   struct sk_buff *reply)
1849 {
1850 	struct ovs_ct_limit *ct_limit;
1851 	struct hlist_head *head;
1852 	int i, err = 0;
1853 
1854 	err = ovs_ct_limit_get_default_limit(info, reply);
1855 	if (err)
1856 		return err;
1857 
1858 	rcu_read_lock();
1859 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1860 		head = &info->limits[i];
1861 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1862 			err = __ovs_ct_limit_get_zone_limit(net, info->data,
1863 				ct_limit->zone, ct_limit->limit, reply);
1864 			if (err)
1865 				goto exit_err;
1866 		}
1867 	}
1868 
1869 exit_err:
1870 	rcu_read_unlock();
1871 	return err;
1872 }
1873 
1874 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
1875 {
1876 	struct nlattr **a = info->attrs;
1877 	struct sk_buff *reply;
1878 	struct ovs_header *ovs_reply_header;
1879 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
1880 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1881 	int err;
1882 
1883 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
1884 					     &ovs_reply_header);
1885 	if (IS_ERR(reply))
1886 		return PTR_ERR(reply);
1887 
1888 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1889 		err = -EINVAL;
1890 		goto exit_err;
1891 	}
1892 
1893 	err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
1894 					  ct_limit_info);
1895 	if (err)
1896 		goto exit_err;
1897 
1898 	static_branch_enable(&ovs_ct_limit_enabled);
1899 
1900 	genlmsg_end(reply, ovs_reply_header);
1901 	return genlmsg_reply(reply, info);
1902 
1903 exit_err:
1904 	nlmsg_free(reply);
1905 	return err;
1906 }
1907 
1908 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
1909 {
1910 	struct nlattr **a = info->attrs;
1911 	struct sk_buff *reply;
1912 	struct ovs_header *ovs_reply_header;
1913 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
1914 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1915 	int err;
1916 
1917 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
1918 					     &ovs_reply_header);
1919 	if (IS_ERR(reply))
1920 		return PTR_ERR(reply);
1921 
1922 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1923 		err = -EINVAL;
1924 		goto exit_err;
1925 	}
1926 
1927 	err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
1928 					  ct_limit_info);
1929 	if (err)
1930 		goto exit_err;
1931 
1932 	genlmsg_end(reply, ovs_reply_header);
1933 	return genlmsg_reply(reply, info);
1934 
1935 exit_err:
1936 	nlmsg_free(reply);
1937 	return err;
1938 }
1939 
1940 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
1941 {
1942 	struct nlattr **a = info->attrs;
1943 	struct nlattr *nla_reply;
1944 	struct sk_buff *reply;
1945 	struct ovs_header *ovs_reply_header;
1946 	struct net *net = sock_net(skb->sk);
1947 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1948 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1949 	int err;
1950 
1951 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
1952 					     &ovs_reply_header);
1953 	if (IS_ERR(reply))
1954 		return PTR_ERR(reply);
1955 
1956 	nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
1957 	if (!nla_reply) {
1958 		err = -EMSGSIZE;
1959 		goto exit_err;
1960 	}
1961 
1962 	if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1963 		err = ovs_ct_limit_get_zone_limit(
1964 			net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
1965 			reply);
1966 		if (err)
1967 			goto exit_err;
1968 	} else {
1969 		err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
1970 						      reply);
1971 		if (err)
1972 			goto exit_err;
1973 	}
1974 
1975 	nla_nest_end(reply, nla_reply);
1976 	genlmsg_end(reply, ovs_reply_header);
1977 	return genlmsg_reply(reply, info);
1978 
1979 exit_err:
1980 	nlmsg_free(reply);
1981 	return err;
1982 }
1983 
1984 static const struct genl_small_ops ct_limit_genl_ops[] = {
1985 	{ .cmd = OVS_CT_LIMIT_CMD_SET,
1986 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1987 		.flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN
1988 					       * privilege.
1989 					       */
1990 		.doit = ovs_ct_limit_cmd_set,
1991 	},
1992 	{ .cmd = OVS_CT_LIMIT_CMD_DEL,
1993 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1994 		.flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN
1995 					       * privilege.
1996 					       */
1997 		.doit = ovs_ct_limit_cmd_del,
1998 	},
1999 	{ .cmd = OVS_CT_LIMIT_CMD_GET,
2000 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2001 		.flags = 0,		  /* OK for unprivileged users. */
2002 		.doit = ovs_ct_limit_cmd_get,
2003 	},
2004 };
2005 
2006 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2007 	.name = OVS_CT_LIMIT_MCGROUP,
2008 };
2009 
2010 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2011 	.hdrsize = sizeof(struct ovs_header),
2012 	.name = OVS_CT_LIMIT_FAMILY,
2013 	.version = OVS_CT_LIMIT_VERSION,
2014 	.maxattr = OVS_CT_LIMIT_ATTR_MAX,
2015 	.policy = ct_limit_policy,
2016 	.netnsok = true,
2017 	.parallel_ops = true,
2018 	.small_ops = ct_limit_genl_ops,
2019 	.n_small_ops = ARRAY_SIZE(ct_limit_genl_ops),
2020 	.resv_start_op = OVS_CT_LIMIT_CMD_GET + 1,
2021 	.mcgrps = &ovs_ct_limit_multicast_group,
2022 	.n_mcgrps = 1,
2023 	.module = THIS_MODULE,
2024 };
2025 #endif
2026 
2027 int ovs_ct_init(struct net *net)
2028 {
2029 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2030 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2031 
2032 	if (nf_connlabels_get(net, n_bits - 1)) {
2033 		ovs_net->xt_label = false;
2034 		OVS_NLERR(true, "Failed to set connlabel length");
2035 	} else {
2036 		ovs_net->xt_label = true;
2037 	}
2038 
2039 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2040 	return ovs_ct_limit_init(net, ovs_net);
2041 #else
2042 	return 0;
2043 #endif
2044 }
2045 
2046 void ovs_ct_exit(struct net *net)
2047 {
2048 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2049 
2050 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2051 	ovs_ct_limit_exit(net, ovs_net);
2052 #endif
2053 
2054 	if (ovs_net->xt_label)
2055 		nf_connlabels_put(net);
2056 }
2057