xref: /openbmc/linux/net/openvswitch/conntrack.c (revision e7bae9bb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 Nicira, Inc.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/openvswitch.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/sctp.h>
11 #include <linux/static_key.h>
12 #include <net/ip.h>
13 #include <net/genetlink.h>
14 #include <net/netfilter/nf_conntrack_core.h>
15 #include <net/netfilter/nf_conntrack_count.h>
16 #include <net/netfilter/nf_conntrack_helper.h>
17 #include <net/netfilter/nf_conntrack_labels.h>
18 #include <net/netfilter/nf_conntrack_seqadj.h>
19 #include <net/netfilter/nf_conntrack_timeout.h>
20 #include <net/netfilter/nf_conntrack_zones.h>
21 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
22 #include <net/ipv6_frag.h>
23 
24 #if IS_ENABLED(CONFIG_NF_NAT)
25 #include <net/netfilter/nf_nat.h>
26 #endif
27 
28 #include "datapath.h"
29 #include "conntrack.h"
30 #include "flow.h"
31 #include "flow_netlink.h"
32 
33 struct ovs_ct_len_tbl {
34 	int maxlen;
35 	int minlen;
36 };
37 
38 /* Metadata mark for masked write to conntrack mark */
39 struct md_mark {
40 	u32 value;
41 	u32 mask;
42 };
43 
44 /* Metadata label for masked write to conntrack label. */
45 struct md_labels {
46 	struct ovs_key_ct_labels value;
47 	struct ovs_key_ct_labels mask;
48 };
49 
50 enum ovs_ct_nat {
51 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
52 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
53 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
54 };
55 
56 /* Conntrack action context for execution. */
57 struct ovs_conntrack_info {
58 	struct nf_conntrack_helper *helper;
59 	struct nf_conntrack_zone zone;
60 	struct nf_conn *ct;
61 	u8 commit : 1;
62 	u8 nat : 3;                 /* enum ovs_ct_nat */
63 	u8 force : 1;
64 	u8 have_eventmask : 1;
65 	u16 family;
66 	u32 eventmask;              /* Mask of 1 << IPCT_*. */
67 	struct md_mark mark;
68 	struct md_labels labels;
69 	char timeout[CTNL_TIMEOUT_NAME_MAX];
70 	struct nf_ct_timeout *nf_ct_timeout;
71 #if IS_ENABLED(CONFIG_NF_NAT)
72 	struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
73 #endif
74 };
75 
76 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
77 #define OVS_CT_LIMIT_UNLIMITED	0
78 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
79 #define CT_LIMIT_HASH_BUCKETS 512
80 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
81 
82 struct ovs_ct_limit {
83 	/* Elements in ovs_ct_limit_info->limits hash table */
84 	struct hlist_node hlist_node;
85 	struct rcu_head rcu;
86 	u16 zone;
87 	u32 limit;
88 };
89 
90 struct ovs_ct_limit_info {
91 	u32 default_limit;
92 	struct hlist_head *limits;
93 	struct nf_conncount_data *data;
94 };
95 
96 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
97 	[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
98 };
99 #endif
100 
101 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
102 
103 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
104 
105 static u16 key_to_nfproto(const struct sw_flow_key *key)
106 {
107 	switch (ntohs(key->eth.type)) {
108 	case ETH_P_IP:
109 		return NFPROTO_IPV4;
110 	case ETH_P_IPV6:
111 		return NFPROTO_IPV6;
112 	default:
113 		return NFPROTO_UNSPEC;
114 	}
115 }
116 
117 /* Map SKB connection state into the values used by flow definition. */
118 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
119 {
120 	u8 ct_state = OVS_CS_F_TRACKED;
121 
122 	switch (ctinfo) {
123 	case IP_CT_ESTABLISHED_REPLY:
124 	case IP_CT_RELATED_REPLY:
125 		ct_state |= OVS_CS_F_REPLY_DIR;
126 		break;
127 	default:
128 		break;
129 	}
130 
131 	switch (ctinfo) {
132 	case IP_CT_ESTABLISHED:
133 	case IP_CT_ESTABLISHED_REPLY:
134 		ct_state |= OVS_CS_F_ESTABLISHED;
135 		break;
136 	case IP_CT_RELATED:
137 	case IP_CT_RELATED_REPLY:
138 		ct_state |= OVS_CS_F_RELATED;
139 		break;
140 	case IP_CT_NEW:
141 		ct_state |= OVS_CS_F_NEW;
142 		break;
143 	default:
144 		break;
145 	}
146 
147 	return ct_state;
148 }
149 
150 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
151 {
152 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
153 	return ct ? ct->mark : 0;
154 #else
155 	return 0;
156 #endif
157 }
158 
159 /* Guard against conntrack labels max size shrinking below 128 bits. */
160 #if NF_CT_LABELS_MAX_SIZE < 16
161 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
162 #endif
163 
164 static void ovs_ct_get_labels(const struct nf_conn *ct,
165 			      struct ovs_key_ct_labels *labels)
166 {
167 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
168 
169 	if (cl)
170 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
171 	else
172 		memset(labels, 0, OVS_CT_LABELS_LEN);
173 }
174 
175 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
176 					const struct nf_conntrack_tuple *orig,
177 					u8 icmp_proto)
178 {
179 	key->ct_orig_proto = orig->dst.protonum;
180 	if (orig->dst.protonum == icmp_proto) {
181 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
182 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
183 	} else {
184 		key->ct.orig_tp.src = orig->src.u.all;
185 		key->ct.orig_tp.dst = orig->dst.u.all;
186 	}
187 }
188 
189 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
190 				const struct nf_conntrack_zone *zone,
191 				const struct nf_conn *ct)
192 {
193 	key->ct_state = state;
194 	key->ct_zone = zone->id;
195 	key->ct.mark = ovs_ct_get_mark(ct);
196 	ovs_ct_get_labels(ct, &key->ct.labels);
197 
198 	if (ct) {
199 		const struct nf_conntrack_tuple *orig;
200 
201 		/* Use the master if we have one. */
202 		if (ct->master)
203 			ct = ct->master;
204 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
205 
206 		/* IP version must match with the master connection. */
207 		if (key->eth.type == htons(ETH_P_IP) &&
208 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
209 			key->ipv4.ct_orig.src = orig->src.u3.ip;
210 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
211 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
212 			return;
213 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
214 			   !sw_flow_key_is_nd(key) &&
215 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
216 			key->ipv6.ct_orig.src = orig->src.u3.in6;
217 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
218 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
219 			return;
220 		}
221 	}
222 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
223 	 * original direction key fields.
224 	 */
225 	key->ct_orig_proto = 0;
226 }
227 
228 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
229  * previously sent the packet to conntrack via the ct action.  If
230  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
231  * initialized from the connection status.
232  */
233 static void ovs_ct_update_key(const struct sk_buff *skb,
234 			      const struct ovs_conntrack_info *info,
235 			      struct sw_flow_key *key, bool post_ct,
236 			      bool keep_nat_flags)
237 {
238 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
239 	enum ip_conntrack_info ctinfo;
240 	struct nf_conn *ct;
241 	u8 state = 0;
242 
243 	ct = nf_ct_get(skb, &ctinfo);
244 	if (ct) {
245 		state = ovs_ct_get_state(ctinfo);
246 		/* All unconfirmed entries are NEW connections. */
247 		if (!nf_ct_is_confirmed(ct))
248 			state |= OVS_CS_F_NEW;
249 		/* OVS persists the related flag for the duration of the
250 		 * connection.
251 		 */
252 		if (ct->master)
253 			state |= OVS_CS_F_RELATED;
254 		if (keep_nat_flags) {
255 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
256 		} else {
257 			if (ct->status & IPS_SRC_NAT)
258 				state |= OVS_CS_F_SRC_NAT;
259 			if (ct->status & IPS_DST_NAT)
260 				state |= OVS_CS_F_DST_NAT;
261 		}
262 		zone = nf_ct_zone(ct);
263 	} else if (post_ct) {
264 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
265 		if (info)
266 			zone = &info->zone;
267 	}
268 	__ovs_ct_update_key(key, state, zone, ct);
269 }
270 
271 /* This is called to initialize CT key fields possibly coming in from the local
272  * stack.
273  */
274 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
275 {
276 	ovs_ct_update_key(skb, NULL, key, false, false);
277 }
278 
279 int ovs_ct_put_key(const struct sw_flow_key *swkey,
280 		   const struct sw_flow_key *output, struct sk_buff *skb)
281 {
282 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
283 		return -EMSGSIZE;
284 
285 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
286 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
287 		return -EMSGSIZE;
288 
289 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
290 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
291 		return -EMSGSIZE;
292 
293 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
294 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
295 		    &output->ct.labels))
296 		return -EMSGSIZE;
297 
298 	if (swkey->ct_orig_proto) {
299 		if (swkey->eth.type == htons(ETH_P_IP)) {
300 			struct ovs_key_ct_tuple_ipv4 orig;
301 
302 			memset(&orig, 0, sizeof(orig));
303 			orig.ipv4_src = output->ipv4.ct_orig.src;
304 			orig.ipv4_dst = output->ipv4.ct_orig.dst;
305 			orig.src_port = output->ct.orig_tp.src;
306 			orig.dst_port = output->ct.orig_tp.dst;
307 			orig.ipv4_proto = output->ct_orig_proto;
308 
309 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
310 				    sizeof(orig), &orig))
311 				return -EMSGSIZE;
312 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
313 			struct ovs_key_ct_tuple_ipv6 orig;
314 
315 			memset(&orig, 0, sizeof(orig));
316 			memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
317 			       sizeof(orig.ipv6_src));
318 			memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
319 			       sizeof(orig.ipv6_dst));
320 			orig.src_port = output->ct.orig_tp.src;
321 			orig.dst_port = output->ct.orig_tp.dst;
322 			orig.ipv6_proto = output->ct_orig_proto;
323 
324 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
325 				    sizeof(orig), &orig))
326 				return -EMSGSIZE;
327 		}
328 	}
329 
330 	return 0;
331 }
332 
333 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
334 			   u32 ct_mark, u32 mask)
335 {
336 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
337 	u32 new_mark;
338 
339 	new_mark = ct_mark | (ct->mark & ~(mask));
340 	if (ct->mark != new_mark) {
341 		ct->mark = new_mark;
342 		if (nf_ct_is_confirmed(ct))
343 			nf_conntrack_event_cache(IPCT_MARK, ct);
344 		key->ct.mark = new_mark;
345 	}
346 
347 	return 0;
348 #else
349 	return -ENOTSUPP;
350 #endif
351 }
352 
353 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
354 {
355 	struct nf_conn_labels *cl;
356 
357 	cl = nf_ct_labels_find(ct);
358 	if (!cl) {
359 		nf_ct_labels_ext_add(ct);
360 		cl = nf_ct_labels_find(ct);
361 	}
362 
363 	return cl;
364 }
365 
366 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
367  * since the new connection is not yet confirmed, and thus no-one else has
368  * access to it's labels, we simply write them over.
369  */
370 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
371 			      const struct ovs_key_ct_labels *labels,
372 			      const struct ovs_key_ct_labels *mask)
373 {
374 	struct nf_conn_labels *cl, *master_cl;
375 	bool have_mask = labels_nonzero(mask);
376 
377 	/* Inherit master's labels to the related connection? */
378 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
379 
380 	if (!master_cl && !have_mask)
381 		return 0;   /* Nothing to do. */
382 
383 	cl = ovs_ct_get_conn_labels(ct);
384 	if (!cl)
385 		return -ENOSPC;
386 
387 	/* Inherit the master's labels, if any. */
388 	if (master_cl)
389 		*cl = *master_cl;
390 
391 	if (have_mask) {
392 		u32 *dst = (u32 *)cl->bits;
393 		int i;
394 
395 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
396 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
397 				(labels->ct_labels_32[i]
398 				 & mask->ct_labels_32[i]);
399 	}
400 
401 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
402 	 * IPCT_LABEL bit is set in the event cache.
403 	 */
404 	nf_conntrack_event_cache(IPCT_LABEL, ct);
405 
406 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
407 
408 	return 0;
409 }
410 
411 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
412 			     const struct ovs_key_ct_labels *labels,
413 			     const struct ovs_key_ct_labels *mask)
414 {
415 	struct nf_conn_labels *cl;
416 	int err;
417 
418 	cl = ovs_ct_get_conn_labels(ct);
419 	if (!cl)
420 		return -ENOSPC;
421 
422 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
423 				    mask->ct_labels_32,
424 				    OVS_CT_LABELS_LEN_32);
425 	if (err)
426 		return err;
427 
428 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
429 
430 	return 0;
431 }
432 
433 /* 'skb' should already be pulled to nh_ofs. */
434 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
435 {
436 	const struct nf_conntrack_helper *helper;
437 	const struct nf_conn_help *help;
438 	enum ip_conntrack_info ctinfo;
439 	unsigned int protoff;
440 	struct nf_conn *ct;
441 	int err;
442 
443 	ct = nf_ct_get(skb, &ctinfo);
444 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
445 		return NF_ACCEPT;
446 
447 	help = nfct_help(ct);
448 	if (!help)
449 		return NF_ACCEPT;
450 
451 	helper = rcu_dereference(help->helper);
452 	if (!helper)
453 		return NF_ACCEPT;
454 
455 	switch (proto) {
456 	case NFPROTO_IPV4:
457 		protoff = ip_hdrlen(skb);
458 		break;
459 	case NFPROTO_IPV6: {
460 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
461 		__be16 frag_off;
462 		int ofs;
463 
464 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
465 				       &frag_off);
466 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
467 			pr_debug("proto header not found\n");
468 			return NF_ACCEPT;
469 		}
470 		protoff = ofs;
471 		break;
472 	}
473 	default:
474 		WARN_ONCE(1, "helper invoked on non-IP family!");
475 		return NF_DROP;
476 	}
477 
478 	err = helper->help(skb, protoff, ct, ctinfo);
479 	if (err != NF_ACCEPT)
480 		return err;
481 
482 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
483 	 * FTP with NAT) adusting the TCP payload size when mangling IP
484 	 * addresses and/or port numbers in the text-based control connection.
485 	 */
486 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
487 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
488 		return NF_DROP;
489 	return NF_ACCEPT;
490 }
491 
492 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
493  * value if 'skb' is freed.
494  */
495 static int handle_fragments(struct net *net, struct sw_flow_key *key,
496 			    u16 zone, struct sk_buff *skb)
497 {
498 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
499 	int err;
500 
501 	if (key->eth.type == htons(ETH_P_IP)) {
502 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
503 
504 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
505 		err = ip_defrag(net, skb, user);
506 		if (err)
507 			return err;
508 
509 		ovs_cb.mru = IPCB(skb)->frag_max_size;
510 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
511 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
512 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
513 
514 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
515 		err = nf_ct_frag6_gather(net, skb, user);
516 		if (err) {
517 			if (err != -EINPROGRESS)
518 				kfree_skb(skb);
519 			return err;
520 		}
521 
522 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
523 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
524 #endif
525 	} else {
526 		kfree_skb(skb);
527 		return -EPFNOSUPPORT;
528 	}
529 
530 	/* The key extracted from the fragment that completed this datagram
531 	 * likely didn't have an L4 header, so regenerate it.
532 	 */
533 	ovs_flow_key_update_l3l4(skb, key);
534 
535 	key->ip.frag = OVS_FRAG_TYPE_NONE;
536 	skb_clear_hash(skb);
537 	skb->ignore_df = 1;
538 	*OVS_CB(skb) = ovs_cb;
539 
540 	return 0;
541 }
542 
543 static struct nf_conntrack_expect *
544 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
545 		   u16 proto, const struct sk_buff *skb)
546 {
547 	struct nf_conntrack_tuple tuple;
548 	struct nf_conntrack_expect *exp;
549 
550 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
551 		return NULL;
552 
553 	exp = __nf_ct_expect_find(net, zone, &tuple);
554 	if (exp) {
555 		struct nf_conntrack_tuple_hash *h;
556 
557 		/* Delete existing conntrack entry, if it clashes with the
558 		 * expectation.  This can happen since conntrack ALGs do not
559 		 * check for clashes between (new) expectations and existing
560 		 * conntrack entries.  nf_conntrack_in() will check the
561 		 * expectations only if a conntrack entry can not be found,
562 		 * which can lead to OVS finding the expectation (here) in the
563 		 * init direction, but which will not be removed by the
564 		 * nf_conntrack_in() call, if a matching conntrack entry is
565 		 * found instead.  In this case all init direction packets
566 		 * would be reported as new related packets, while reply
567 		 * direction packets would be reported as un-related
568 		 * established packets.
569 		 */
570 		h = nf_conntrack_find_get(net, zone, &tuple);
571 		if (h) {
572 			struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
573 
574 			nf_ct_delete(ct, 0, 0);
575 			nf_conntrack_put(&ct->ct_general);
576 		}
577 	}
578 
579 	return exp;
580 }
581 
582 /* This replicates logic from nf_conntrack_core.c that is not exported. */
583 static enum ip_conntrack_info
584 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
585 {
586 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
587 
588 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
589 		return IP_CT_ESTABLISHED_REPLY;
590 	/* Once we've had two way comms, always ESTABLISHED. */
591 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
592 		return IP_CT_ESTABLISHED;
593 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
594 		return IP_CT_RELATED;
595 	return IP_CT_NEW;
596 }
597 
598 /* Find an existing connection which this packet belongs to without
599  * re-attributing statistics or modifying the connection state.  This allows an
600  * skb->_nfct lost due to an upcall to be recovered during actions execution.
601  *
602  * Must be called with rcu_read_lock.
603  *
604  * On success, populates skb->_nfct and returns the connection.  Returns NULL
605  * if there is no existing entry.
606  */
607 static struct nf_conn *
608 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
609 		     u8 l3num, struct sk_buff *skb, bool natted)
610 {
611 	struct nf_conntrack_tuple tuple;
612 	struct nf_conntrack_tuple_hash *h;
613 	struct nf_conn *ct;
614 
615 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
616 			       net, &tuple)) {
617 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
618 		return NULL;
619 	}
620 
621 	/* Must invert the tuple if skb has been transformed by NAT. */
622 	if (natted) {
623 		struct nf_conntrack_tuple inverse;
624 
625 		if (!nf_ct_invert_tuple(&inverse, &tuple)) {
626 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
627 			return NULL;
628 		}
629 		tuple = inverse;
630 	}
631 
632 	/* look for tuple match */
633 	h = nf_conntrack_find_get(net, zone, &tuple);
634 	if (!h)
635 		return NULL;   /* Not found. */
636 
637 	ct = nf_ct_tuplehash_to_ctrack(h);
638 
639 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
640 	 * select the other tuplehash to get the right 'ctinfo' bits for this
641 	 * packet.
642 	 */
643 	if (natted)
644 		h = &ct->tuplehash[!h->tuple.dst.dir];
645 
646 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
647 	return ct;
648 }
649 
650 static
651 struct nf_conn *ovs_ct_executed(struct net *net,
652 				const struct sw_flow_key *key,
653 				const struct ovs_conntrack_info *info,
654 				struct sk_buff *skb,
655 				bool *ct_executed)
656 {
657 	struct nf_conn *ct = NULL;
658 
659 	/* If no ct, check if we have evidence that an existing conntrack entry
660 	 * might be found for this skb.  This happens when we lose a skb->_nfct
661 	 * due to an upcall, or if the direction is being forced.  If the
662 	 * connection was not confirmed, it is not cached and needs to be run
663 	 * through conntrack again.
664 	 */
665 	*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
666 		       !(key->ct_state & OVS_CS_F_INVALID) &&
667 		       (key->ct_zone == info->zone.id);
668 
669 	if (*ct_executed || (!key->ct_state && info->force)) {
670 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
671 					  !!(key->ct_state &
672 					  OVS_CS_F_NAT_MASK));
673 	}
674 
675 	return ct;
676 }
677 
678 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
679 static bool skb_nfct_cached(struct net *net,
680 			    const struct sw_flow_key *key,
681 			    const struct ovs_conntrack_info *info,
682 			    struct sk_buff *skb)
683 {
684 	enum ip_conntrack_info ctinfo;
685 	struct nf_conn *ct;
686 	bool ct_executed = true;
687 
688 	ct = nf_ct_get(skb, &ctinfo);
689 	if (!ct)
690 		ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
691 
692 	if (ct)
693 		nf_ct_get(skb, &ctinfo);
694 	else
695 		return false;
696 
697 	if (!net_eq(net, read_pnet(&ct->ct_net)))
698 		return false;
699 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
700 		return false;
701 	if (info->helper) {
702 		struct nf_conn_help *help;
703 
704 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
705 		if (help && rcu_access_pointer(help->helper) != info->helper)
706 			return false;
707 	}
708 	if (info->nf_ct_timeout) {
709 		struct nf_conn_timeout *timeout_ext;
710 
711 		timeout_ext = nf_ct_timeout_find(ct);
712 		if (!timeout_ext || info->nf_ct_timeout !=
713 		    rcu_dereference(timeout_ext->timeout))
714 			return false;
715 	}
716 	/* Force conntrack entry direction to the current packet? */
717 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
718 		/* Delete the conntrack entry if confirmed, else just release
719 		 * the reference.
720 		 */
721 		if (nf_ct_is_confirmed(ct))
722 			nf_ct_delete(ct, 0, 0);
723 
724 		nf_conntrack_put(&ct->ct_general);
725 		nf_ct_set(skb, NULL, 0);
726 		return false;
727 	}
728 
729 	return ct_executed;
730 }
731 
732 #if IS_ENABLED(CONFIG_NF_NAT)
733 /* Modelled after nf_nat_ipv[46]_fn().
734  * range is only used for new, uninitialized NAT state.
735  * Returns either NF_ACCEPT or NF_DROP.
736  */
737 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
738 			      enum ip_conntrack_info ctinfo,
739 			      const struct nf_nat_range2 *range,
740 			      enum nf_nat_manip_type maniptype)
741 {
742 	int hooknum, nh_off, err = NF_ACCEPT;
743 
744 	nh_off = skb_network_offset(skb);
745 	skb_pull_rcsum(skb, nh_off);
746 
747 	/* See HOOK2MANIP(). */
748 	if (maniptype == NF_NAT_MANIP_SRC)
749 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
750 	else
751 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
752 
753 	switch (ctinfo) {
754 	case IP_CT_RELATED:
755 	case IP_CT_RELATED_REPLY:
756 		if (IS_ENABLED(CONFIG_NF_NAT) &&
757 		    skb->protocol == htons(ETH_P_IP) &&
758 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
759 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
760 							   hooknum))
761 				err = NF_DROP;
762 			goto push;
763 		} else if (IS_ENABLED(CONFIG_IPV6) &&
764 			   skb->protocol == htons(ETH_P_IPV6)) {
765 			__be16 frag_off;
766 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
767 			int hdrlen = ipv6_skip_exthdr(skb,
768 						      sizeof(struct ipv6hdr),
769 						      &nexthdr, &frag_off);
770 
771 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
772 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
773 								     ctinfo,
774 								     hooknum,
775 								     hdrlen))
776 					err = NF_DROP;
777 				goto push;
778 			}
779 		}
780 		/* Non-ICMP, fall thru to initialize if needed. */
781 		fallthrough;
782 	case IP_CT_NEW:
783 		/* Seen it before?  This can happen for loopback, retrans,
784 		 * or local packets.
785 		 */
786 		if (!nf_nat_initialized(ct, maniptype)) {
787 			/* Initialize according to the NAT action. */
788 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
789 				/* Action is set up to establish a new
790 				 * mapping.
791 				 */
792 				? nf_nat_setup_info(ct, range, maniptype)
793 				: nf_nat_alloc_null_binding(ct, hooknum);
794 			if (err != NF_ACCEPT)
795 				goto push;
796 		}
797 		break;
798 
799 	case IP_CT_ESTABLISHED:
800 	case IP_CT_ESTABLISHED_REPLY:
801 		break;
802 
803 	default:
804 		err = NF_DROP;
805 		goto push;
806 	}
807 
808 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
809 push:
810 	skb_push(skb, nh_off);
811 	skb_postpush_rcsum(skb, skb->data, nh_off);
812 
813 	return err;
814 }
815 
816 static void ovs_nat_update_key(struct sw_flow_key *key,
817 			       const struct sk_buff *skb,
818 			       enum nf_nat_manip_type maniptype)
819 {
820 	if (maniptype == NF_NAT_MANIP_SRC) {
821 		__be16 src;
822 
823 		key->ct_state |= OVS_CS_F_SRC_NAT;
824 		if (key->eth.type == htons(ETH_P_IP))
825 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
826 		else if (key->eth.type == htons(ETH_P_IPV6))
827 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
828 			       sizeof(key->ipv6.addr.src));
829 		else
830 			return;
831 
832 		if (key->ip.proto == IPPROTO_UDP)
833 			src = udp_hdr(skb)->source;
834 		else if (key->ip.proto == IPPROTO_TCP)
835 			src = tcp_hdr(skb)->source;
836 		else if (key->ip.proto == IPPROTO_SCTP)
837 			src = sctp_hdr(skb)->source;
838 		else
839 			return;
840 
841 		key->tp.src = src;
842 	} else {
843 		__be16 dst;
844 
845 		key->ct_state |= OVS_CS_F_DST_NAT;
846 		if (key->eth.type == htons(ETH_P_IP))
847 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
848 		else if (key->eth.type == htons(ETH_P_IPV6))
849 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
850 			       sizeof(key->ipv6.addr.dst));
851 		else
852 			return;
853 
854 		if (key->ip.proto == IPPROTO_UDP)
855 			dst = udp_hdr(skb)->dest;
856 		else if (key->ip.proto == IPPROTO_TCP)
857 			dst = tcp_hdr(skb)->dest;
858 		else if (key->ip.proto == IPPROTO_SCTP)
859 			dst = sctp_hdr(skb)->dest;
860 		else
861 			return;
862 
863 		key->tp.dst = dst;
864 	}
865 }
866 
867 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
868 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
869 		      const struct ovs_conntrack_info *info,
870 		      struct sk_buff *skb, struct nf_conn *ct,
871 		      enum ip_conntrack_info ctinfo)
872 {
873 	enum nf_nat_manip_type maniptype;
874 	int err;
875 
876 	/* Add NAT extension if not confirmed yet. */
877 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
878 		return NF_ACCEPT;   /* Can't NAT. */
879 
880 	/* Determine NAT type.
881 	 * Check if the NAT type can be deduced from the tracked connection.
882 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
883 	 * when committing.
884 	 */
885 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
886 	    ct->status & IPS_NAT_MASK &&
887 	    (ctinfo != IP_CT_RELATED || info->commit)) {
888 		/* NAT an established or related connection like before. */
889 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
890 			/* This is the REPLY direction for a connection
891 			 * for which NAT was applied in the forward
892 			 * direction.  Do the reverse NAT.
893 			 */
894 			maniptype = ct->status & IPS_SRC_NAT
895 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
896 		else
897 			maniptype = ct->status & IPS_SRC_NAT
898 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
899 	} else if (info->nat & OVS_CT_SRC_NAT) {
900 		maniptype = NF_NAT_MANIP_SRC;
901 	} else if (info->nat & OVS_CT_DST_NAT) {
902 		maniptype = NF_NAT_MANIP_DST;
903 	} else {
904 		return NF_ACCEPT; /* Connection is not NATed. */
905 	}
906 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
907 
908 	if (err == NF_ACCEPT &&
909 	    ct->status & IPS_SRC_NAT && ct->status & IPS_DST_NAT) {
910 		if (maniptype == NF_NAT_MANIP_SRC)
911 			maniptype = NF_NAT_MANIP_DST;
912 		else
913 			maniptype = NF_NAT_MANIP_SRC;
914 
915 		err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range,
916 					 maniptype);
917 	}
918 
919 	/* Mark NAT done if successful and update the flow key. */
920 	if (err == NF_ACCEPT)
921 		ovs_nat_update_key(key, skb, maniptype);
922 
923 	return err;
924 }
925 #else /* !CONFIG_NF_NAT */
926 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
927 		      const struct ovs_conntrack_info *info,
928 		      struct sk_buff *skb, struct nf_conn *ct,
929 		      enum ip_conntrack_info ctinfo)
930 {
931 	return NF_ACCEPT;
932 }
933 #endif
934 
935 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
936  * not done already.  Update key with new CT state after passing the packet
937  * through conntrack.
938  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
939  * set to NULL and 0 will be returned.
940  */
941 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
942 			   const struct ovs_conntrack_info *info,
943 			   struct sk_buff *skb)
944 {
945 	/* If we are recirculating packets to match on conntrack fields and
946 	 * committing with a separate conntrack action,  then we don't need to
947 	 * actually run the packet through conntrack twice unless it's for a
948 	 * different zone.
949 	 */
950 	bool cached = skb_nfct_cached(net, key, info, skb);
951 	enum ip_conntrack_info ctinfo;
952 	struct nf_conn *ct;
953 
954 	if (!cached) {
955 		struct nf_hook_state state = {
956 			.hook = NF_INET_PRE_ROUTING,
957 			.pf = info->family,
958 			.net = net,
959 		};
960 		struct nf_conn *tmpl = info->ct;
961 		int err;
962 
963 		/* Associate skb with specified zone. */
964 		if (tmpl) {
965 			if (skb_nfct(skb))
966 				nf_conntrack_put(skb_nfct(skb));
967 			nf_conntrack_get(&tmpl->ct_general);
968 			nf_ct_set(skb, tmpl, IP_CT_NEW);
969 		}
970 
971 		err = nf_conntrack_in(skb, &state);
972 		if (err != NF_ACCEPT)
973 			return -ENOENT;
974 
975 		/* Clear CT state NAT flags to mark that we have not yet done
976 		 * NAT after the nf_conntrack_in() call.  We can actually clear
977 		 * the whole state, as it will be re-initialized below.
978 		 */
979 		key->ct_state = 0;
980 
981 		/* Update the key, but keep the NAT flags. */
982 		ovs_ct_update_key(skb, info, key, true, true);
983 	}
984 
985 	ct = nf_ct_get(skb, &ctinfo);
986 	if (ct) {
987 		bool add_helper = false;
988 
989 		/* Packets starting a new connection must be NATted before the
990 		 * helper, so that the helper knows about the NAT.  We enforce
991 		 * this by delaying both NAT and helper calls for unconfirmed
992 		 * connections until the committing CT action.  For later
993 		 * packets NAT and Helper may be called in either order.
994 		 *
995 		 * NAT will be done only if the CT action has NAT, and only
996 		 * once per packet (per zone), as guarded by the NAT bits in
997 		 * the key->ct_state.
998 		 */
999 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
1000 		    (nf_ct_is_confirmed(ct) || info->commit) &&
1001 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
1002 			return -EINVAL;
1003 		}
1004 
1005 		/* Userspace may decide to perform a ct lookup without a helper
1006 		 * specified followed by a (recirculate and) commit with one,
1007 		 * or attach a helper in a later commit.  Therefore, for
1008 		 * connections which we will commit, we may need to attach
1009 		 * the helper here.
1010 		 */
1011 		if (info->commit && info->helper && !nfct_help(ct)) {
1012 			int err = __nf_ct_try_assign_helper(ct, info->ct,
1013 							    GFP_ATOMIC);
1014 			if (err)
1015 				return err;
1016 			add_helper = true;
1017 
1018 			/* helper installed, add seqadj if NAT is required */
1019 			if (info->nat && !nfct_seqadj(ct)) {
1020 				if (!nfct_seqadj_ext_add(ct))
1021 					return -EINVAL;
1022 			}
1023 		}
1024 
1025 		/* Call the helper only if:
1026 		 * - nf_conntrack_in() was executed above ("!cached") or a
1027 		 *   helper was just attached ("add_helper") for a confirmed
1028 		 *   connection, or
1029 		 * - When committing an unconfirmed connection.
1030 		 */
1031 		if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
1032 					      info->commit) &&
1033 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1034 			return -EINVAL;
1035 		}
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 /* Lookup connection and read fields into key. */
1042 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1043 			 const struct ovs_conntrack_info *info,
1044 			 struct sk_buff *skb)
1045 {
1046 	struct nf_conntrack_expect *exp;
1047 
1048 	/* If we pass an expected packet through nf_conntrack_in() the
1049 	 * expectation is typically removed, but the packet could still be
1050 	 * lost in upcall processing.  To prevent this from happening we
1051 	 * perform an explicit expectation lookup.  Expected connections are
1052 	 * always new, and will be passed through conntrack only when they are
1053 	 * committed, as it is OK to remove the expectation at that time.
1054 	 */
1055 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1056 	if (exp) {
1057 		u8 state;
1058 
1059 		/* NOTE: New connections are NATted and Helped only when
1060 		 * committed, so we are not calling into NAT here.
1061 		 */
1062 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1063 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
1064 	} else {
1065 		struct nf_conn *ct;
1066 		int err;
1067 
1068 		err = __ovs_ct_lookup(net, key, info, skb);
1069 		if (err)
1070 			return err;
1071 
1072 		ct = (struct nf_conn *)skb_nfct(skb);
1073 		if (ct)
1074 			nf_ct_deliver_cached_events(ct);
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1081 {
1082 	size_t i;
1083 
1084 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1085 		if (labels->ct_labels_32[i])
1086 			return true;
1087 
1088 	return false;
1089 }
1090 
1091 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1092 static struct hlist_head *ct_limit_hash_bucket(
1093 	const struct ovs_ct_limit_info *info, u16 zone)
1094 {
1095 	return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1096 }
1097 
1098 /* Call with ovs_mutex */
1099 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1100 			 struct ovs_ct_limit *new_ct_limit)
1101 {
1102 	struct ovs_ct_limit *ct_limit;
1103 	struct hlist_head *head;
1104 
1105 	head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1106 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1107 		if (ct_limit->zone == new_ct_limit->zone) {
1108 			hlist_replace_rcu(&ct_limit->hlist_node,
1109 					  &new_ct_limit->hlist_node);
1110 			kfree_rcu(ct_limit, rcu);
1111 			return;
1112 		}
1113 	}
1114 
1115 	hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1116 }
1117 
1118 /* Call with ovs_mutex */
1119 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1120 {
1121 	struct ovs_ct_limit *ct_limit;
1122 	struct hlist_head *head;
1123 	struct hlist_node *n;
1124 
1125 	head = ct_limit_hash_bucket(info, zone);
1126 	hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1127 		if (ct_limit->zone == zone) {
1128 			hlist_del_rcu(&ct_limit->hlist_node);
1129 			kfree_rcu(ct_limit, rcu);
1130 			return;
1131 		}
1132 	}
1133 }
1134 
1135 /* Call with RCU read lock */
1136 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1137 {
1138 	struct ovs_ct_limit *ct_limit;
1139 	struct hlist_head *head;
1140 
1141 	head = ct_limit_hash_bucket(info, zone);
1142 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1143 		if (ct_limit->zone == zone)
1144 			return ct_limit->limit;
1145 	}
1146 
1147 	return info->default_limit;
1148 }
1149 
1150 static int ovs_ct_check_limit(struct net *net,
1151 			      const struct ovs_conntrack_info *info,
1152 			      const struct nf_conntrack_tuple *tuple)
1153 {
1154 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1155 	const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1156 	u32 per_zone_limit, connections;
1157 	u32 conncount_key;
1158 
1159 	conncount_key = info->zone.id;
1160 
1161 	per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1162 	if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1163 		return 0;
1164 
1165 	connections = nf_conncount_count(net, ct_limit_info->data,
1166 					 &conncount_key, tuple, &info->zone);
1167 	if (connections > per_zone_limit)
1168 		return -ENOMEM;
1169 
1170 	return 0;
1171 }
1172 #endif
1173 
1174 /* Lookup connection and confirm if unconfirmed. */
1175 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1176 			 const struct ovs_conntrack_info *info,
1177 			 struct sk_buff *skb)
1178 {
1179 	enum ip_conntrack_info ctinfo;
1180 	struct nf_conn *ct;
1181 	int err;
1182 
1183 	err = __ovs_ct_lookup(net, key, info, skb);
1184 	if (err)
1185 		return err;
1186 
1187 	/* The connection could be invalid, in which case this is a no-op.*/
1188 	ct = nf_ct_get(skb, &ctinfo);
1189 	if (!ct)
1190 		return 0;
1191 
1192 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1193 	if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1194 		if (!nf_ct_is_confirmed(ct)) {
1195 			err = ovs_ct_check_limit(net, info,
1196 				&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1197 			if (err) {
1198 				net_warn_ratelimited("openvswitch: zone: %u "
1199 					"exceeds conntrack limit\n",
1200 					info->zone.id);
1201 				return err;
1202 			}
1203 		}
1204 	}
1205 #endif
1206 
1207 	/* Set the conntrack event mask if given.  NEW and DELETE events have
1208 	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1209 	 * typically would receive many kinds of updates.  Setting the event
1210 	 * mask allows those events to be filtered.  The set event mask will
1211 	 * remain in effect for the lifetime of the connection unless changed
1212 	 * by a further CT action with both the commit flag and the eventmask
1213 	 * option. */
1214 	if (info->have_eventmask) {
1215 		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1216 
1217 		if (cache)
1218 			cache->ctmask = info->eventmask;
1219 	}
1220 
1221 	/* Apply changes before confirming the connection so that the initial
1222 	 * conntrack NEW netlink event carries the values given in the CT
1223 	 * action.
1224 	 */
1225 	if (info->mark.mask) {
1226 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1227 				      info->mark.mask);
1228 		if (err)
1229 			return err;
1230 	}
1231 	if (!nf_ct_is_confirmed(ct)) {
1232 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1233 					 &info->labels.mask);
1234 		if (err)
1235 			return err;
1236 	} else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1237 		   labels_nonzero(&info->labels.mask)) {
1238 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1239 					&info->labels.mask);
1240 		if (err)
1241 			return err;
1242 	}
1243 	/* This will take care of sending queued events even if the connection
1244 	 * is already confirmed.
1245 	 */
1246 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1247 		return -EINVAL;
1248 
1249 	return 0;
1250 }
1251 
1252 /* Trim the skb to the length specified by the IP/IPv6 header,
1253  * removing any trailing lower-layer padding. This prepares the skb
1254  * for higher-layer processing that assumes skb->len excludes padding
1255  * (such as nf_ip_checksum). The caller needs to pull the skb to the
1256  * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1257  */
1258 static int ovs_skb_network_trim(struct sk_buff *skb)
1259 {
1260 	unsigned int len;
1261 	int err;
1262 
1263 	switch (skb->protocol) {
1264 	case htons(ETH_P_IP):
1265 		len = ntohs(ip_hdr(skb)->tot_len);
1266 		break;
1267 	case htons(ETH_P_IPV6):
1268 		len = sizeof(struct ipv6hdr)
1269 			+ ntohs(ipv6_hdr(skb)->payload_len);
1270 		break;
1271 	default:
1272 		len = skb->len;
1273 	}
1274 
1275 	err = pskb_trim_rcsum(skb, len);
1276 	if (err)
1277 		kfree_skb(skb);
1278 
1279 	return err;
1280 }
1281 
1282 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1283  * value if 'skb' is freed.
1284  */
1285 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1286 		   struct sw_flow_key *key,
1287 		   const struct ovs_conntrack_info *info)
1288 {
1289 	int nh_ofs;
1290 	int err;
1291 
1292 	/* The conntrack module expects to be working at L3. */
1293 	nh_ofs = skb_network_offset(skb);
1294 	skb_pull_rcsum(skb, nh_ofs);
1295 
1296 	err = ovs_skb_network_trim(skb);
1297 	if (err)
1298 		return err;
1299 
1300 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1301 		err = handle_fragments(net, key, info->zone.id, skb);
1302 		if (err)
1303 			return err;
1304 	}
1305 
1306 	if (info->commit)
1307 		err = ovs_ct_commit(net, key, info, skb);
1308 	else
1309 		err = ovs_ct_lookup(net, key, info, skb);
1310 
1311 	skb_push(skb, nh_ofs);
1312 	skb_postpush_rcsum(skb, skb->data, nh_ofs);
1313 	if (err)
1314 		kfree_skb(skb);
1315 	return err;
1316 }
1317 
1318 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1319 {
1320 	if (skb_nfct(skb)) {
1321 		nf_conntrack_put(skb_nfct(skb));
1322 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1323 		ovs_ct_fill_key(skb, key);
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1330 			     const struct sw_flow_key *key, bool log)
1331 {
1332 	struct nf_conntrack_helper *helper;
1333 	struct nf_conn_help *help;
1334 	int ret = 0;
1335 
1336 	helper = nf_conntrack_helper_try_module_get(name, info->family,
1337 						    key->ip.proto);
1338 	if (!helper) {
1339 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1340 		return -EINVAL;
1341 	}
1342 
1343 	help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1344 	if (!help) {
1345 		nf_conntrack_helper_put(helper);
1346 		return -ENOMEM;
1347 	}
1348 
1349 #if IS_ENABLED(CONFIG_NF_NAT)
1350 	if (info->nat) {
1351 		ret = nf_nat_helper_try_module_get(name, info->family,
1352 						   key->ip.proto);
1353 		if (ret) {
1354 			nf_conntrack_helper_put(helper);
1355 			OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d",
1356 				  name, ret);
1357 			return ret;
1358 		}
1359 	}
1360 #endif
1361 	rcu_assign_pointer(help->helper, helper);
1362 	info->helper = helper;
1363 	return ret;
1364 }
1365 
1366 #if IS_ENABLED(CONFIG_NF_NAT)
1367 static int parse_nat(const struct nlattr *attr,
1368 		     struct ovs_conntrack_info *info, bool log)
1369 {
1370 	struct nlattr *a;
1371 	int rem;
1372 	bool have_ip_max = false;
1373 	bool have_proto_max = false;
1374 	bool ip_vers = (info->family == NFPROTO_IPV6);
1375 
1376 	nla_for_each_nested(a, attr, rem) {
1377 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1378 			[OVS_NAT_ATTR_SRC] = {0, 0},
1379 			[OVS_NAT_ATTR_DST] = {0, 0},
1380 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1381 						 sizeof(struct in6_addr)},
1382 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1383 						 sizeof(struct in6_addr)},
1384 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1385 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1386 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1387 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1388 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1389 		};
1390 		int type = nla_type(a);
1391 
1392 		if (type > OVS_NAT_ATTR_MAX) {
1393 			OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1394 				  type, OVS_NAT_ATTR_MAX);
1395 			return -EINVAL;
1396 		}
1397 
1398 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1399 			OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1400 				  type, nla_len(a),
1401 				  ovs_nat_attr_lens[type][ip_vers]);
1402 			return -EINVAL;
1403 		}
1404 
1405 		switch (type) {
1406 		case OVS_NAT_ATTR_SRC:
1407 		case OVS_NAT_ATTR_DST:
1408 			if (info->nat) {
1409 				OVS_NLERR(log, "Only one type of NAT may be specified");
1410 				return -ERANGE;
1411 			}
1412 			info->nat |= OVS_CT_NAT;
1413 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1414 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1415 			break;
1416 
1417 		case OVS_NAT_ATTR_IP_MIN:
1418 			nla_memcpy(&info->range.min_addr, a,
1419 				   sizeof(info->range.min_addr));
1420 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1421 			break;
1422 
1423 		case OVS_NAT_ATTR_IP_MAX:
1424 			have_ip_max = true;
1425 			nla_memcpy(&info->range.max_addr, a,
1426 				   sizeof(info->range.max_addr));
1427 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1428 			break;
1429 
1430 		case OVS_NAT_ATTR_PROTO_MIN:
1431 			info->range.min_proto.all = htons(nla_get_u16(a));
1432 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1433 			break;
1434 
1435 		case OVS_NAT_ATTR_PROTO_MAX:
1436 			have_proto_max = true;
1437 			info->range.max_proto.all = htons(nla_get_u16(a));
1438 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1439 			break;
1440 
1441 		case OVS_NAT_ATTR_PERSISTENT:
1442 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1443 			break;
1444 
1445 		case OVS_NAT_ATTR_PROTO_HASH:
1446 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1447 			break;
1448 
1449 		case OVS_NAT_ATTR_PROTO_RANDOM:
1450 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1451 			break;
1452 
1453 		default:
1454 			OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1455 			return -EINVAL;
1456 		}
1457 	}
1458 
1459 	if (rem > 0) {
1460 		OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1461 		return -EINVAL;
1462 	}
1463 	if (!info->nat) {
1464 		/* Do not allow flags if no type is given. */
1465 		if (info->range.flags) {
1466 			OVS_NLERR(log,
1467 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1468 				  );
1469 			return -EINVAL;
1470 		}
1471 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1472 	} else if (!info->commit) {
1473 		OVS_NLERR(log,
1474 			  "NAT attributes may be specified only when CT COMMIT flag is also specified."
1475 			  );
1476 		return -EINVAL;
1477 	}
1478 	/* Allow missing IP_MAX. */
1479 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1480 		memcpy(&info->range.max_addr, &info->range.min_addr,
1481 		       sizeof(info->range.max_addr));
1482 	}
1483 	/* Allow missing PROTO_MAX. */
1484 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1485 	    !have_proto_max) {
1486 		info->range.max_proto.all = info->range.min_proto.all;
1487 	}
1488 	return 0;
1489 }
1490 #endif
1491 
1492 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1493 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1494 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1495 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1496 				    .maxlen = sizeof(u16) },
1497 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1498 				    .maxlen = sizeof(struct md_mark) },
1499 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1500 				    .maxlen = sizeof(struct md_labels) },
1501 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1502 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1503 #if IS_ENABLED(CONFIG_NF_NAT)
1504 	/* NAT length is checked when parsing the nested attributes. */
1505 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1506 #endif
1507 	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1508 				    .maxlen = sizeof(u32) },
1509 	[OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1510 				  .maxlen = CTNL_TIMEOUT_NAME_MAX },
1511 };
1512 
1513 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1514 		    const char **helper, bool log)
1515 {
1516 	struct nlattr *a;
1517 	int rem;
1518 
1519 	nla_for_each_nested(a, attr, rem) {
1520 		int type = nla_type(a);
1521 		int maxlen;
1522 		int minlen;
1523 
1524 		if (type > OVS_CT_ATTR_MAX) {
1525 			OVS_NLERR(log,
1526 				  "Unknown conntrack attr (type=%d, max=%d)",
1527 				  type, OVS_CT_ATTR_MAX);
1528 			return -EINVAL;
1529 		}
1530 
1531 		maxlen = ovs_ct_attr_lens[type].maxlen;
1532 		minlen = ovs_ct_attr_lens[type].minlen;
1533 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1534 			OVS_NLERR(log,
1535 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1536 				  type, nla_len(a), maxlen);
1537 			return -EINVAL;
1538 		}
1539 
1540 		switch (type) {
1541 		case OVS_CT_ATTR_FORCE_COMMIT:
1542 			info->force = true;
1543 			fallthrough;
1544 		case OVS_CT_ATTR_COMMIT:
1545 			info->commit = true;
1546 			break;
1547 #ifdef CONFIG_NF_CONNTRACK_ZONES
1548 		case OVS_CT_ATTR_ZONE:
1549 			info->zone.id = nla_get_u16(a);
1550 			break;
1551 #endif
1552 #ifdef CONFIG_NF_CONNTRACK_MARK
1553 		case OVS_CT_ATTR_MARK: {
1554 			struct md_mark *mark = nla_data(a);
1555 
1556 			if (!mark->mask) {
1557 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1558 				return -EINVAL;
1559 			}
1560 			info->mark = *mark;
1561 			break;
1562 		}
1563 #endif
1564 #ifdef CONFIG_NF_CONNTRACK_LABELS
1565 		case OVS_CT_ATTR_LABELS: {
1566 			struct md_labels *labels = nla_data(a);
1567 
1568 			if (!labels_nonzero(&labels->mask)) {
1569 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1570 				return -EINVAL;
1571 			}
1572 			info->labels = *labels;
1573 			break;
1574 		}
1575 #endif
1576 		case OVS_CT_ATTR_HELPER:
1577 			*helper = nla_data(a);
1578 			if (!memchr(*helper, '\0', nla_len(a))) {
1579 				OVS_NLERR(log, "Invalid conntrack helper");
1580 				return -EINVAL;
1581 			}
1582 			break;
1583 #if IS_ENABLED(CONFIG_NF_NAT)
1584 		case OVS_CT_ATTR_NAT: {
1585 			int err = parse_nat(a, info, log);
1586 
1587 			if (err)
1588 				return err;
1589 			break;
1590 		}
1591 #endif
1592 		case OVS_CT_ATTR_EVENTMASK:
1593 			info->have_eventmask = true;
1594 			info->eventmask = nla_get_u32(a);
1595 			break;
1596 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1597 		case OVS_CT_ATTR_TIMEOUT:
1598 			memcpy(info->timeout, nla_data(a), nla_len(a));
1599 			if (!memchr(info->timeout, '\0', nla_len(a))) {
1600 				OVS_NLERR(log, "Invalid conntrack timeout");
1601 				return -EINVAL;
1602 			}
1603 			break;
1604 #endif
1605 
1606 		default:
1607 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1608 				  type);
1609 			return -EINVAL;
1610 		}
1611 	}
1612 
1613 #ifdef CONFIG_NF_CONNTRACK_MARK
1614 	if (!info->commit && info->mark.mask) {
1615 		OVS_NLERR(log,
1616 			  "Setting conntrack mark requires 'commit' flag.");
1617 		return -EINVAL;
1618 	}
1619 #endif
1620 #ifdef CONFIG_NF_CONNTRACK_LABELS
1621 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1622 		OVS_NLERR(log,
1623 			  "Setting conntrack labels requires 'commit' flag.");
1624 		return -EINVAL;
1625 	}
1626 #endif
1627 	if (rem > 0) {
1628 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1629 		return -EINVAL;
1630 	}
1631 
1632 	return 0;
1633 }
1634 
1635 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1636 {
1637 	if (attr == OVS_KEY_ATTR_CT_STATE)
1638 		return true;
1639 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1640 	    attr == OVS_KEY_ATTR_CT_ZONE)
1641 		return true;
1642 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1643 	    attr == OVS_KEY_ATTR_CT_MARK)
1644 		return true;
1645 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1646 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1647 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1648 
1649 		return ovs_net->xt_label;
1650 	}
1651 
1652 	return false;
1653 }
1654 
1655 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1656 		       const struct sw_flow_key *key,
1657 		       struct sw_flow_actions **sfa,  bool log)
1658 {
1659 	struct ovs_conntrack_info ct_info;
1660 	const char *helper = NULL;
1661 	u16 family;
1662 	int err;
1663 
1664 	family = key_to_nfproto(key);
1665 	if (family == NFPROTO_UNSPEC) {
1666 		OVS_NLERR(log, "ct family unspecified");
1667 		return -EINVAL;
1668 	}
1669 
1670 	memset(&ct_info, 0, sizeof(ct_info));
1671 	ct_info.family = family;
1672 
1673 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1674 			NF_CT_DEFAULT_ZONE_DIR, 0);
1675 
1676 	err = parse_ct(attr, &ct_info, &helper, log);
1677 	if (err)
1678 		return err;
1679 
1680 	/* Set up template for tracking connections in specific zones. */
1681 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1682 	if (!ct_info.ct) {
1683 		OVS_NLERR(log, "Failed to allocate conntrack template");
1684 		return -ENOMEM;
1685 	}
1686 
1687 	if (ct_info.timeout[0]) {
1688 		if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1689 				      ct_info.timeout))
1690 			pr_info_ratelimited("Failed to associated timeout "
1691 					    "policy `%s'\n", ct_info.timeout);
1692 		else
1693 			ct_info.nf_ct_timeout = rcu_dereference(
1694 				nf_ct_timeout_find(ct_info.ct)->timeout);
1695 
1696 	}
1697 
1698 	if (helper) {
1699 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1700 		if (err)
1701 			goto err_free_ct;
1702 	}
1703 
1704 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1705 				 sizeof(ct_info), log);
1706 	if (err)
1707 		goto err_free_ct;
1708 
1709 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1710 	nf_conntrack_get(&ct_info.ct->ct_general);
1711 	return 0;
1712 err_free_ct:
1713 	__ovs_ct_free_action(&ct_info);
1714 	return err;
1715 }
1716 
1717 #if IS_ENABLED(CONFIG_NF_NAT)
1718 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1719 			       struct sk_buff *skb)
1720 {
1721 	struct nlattr *start;
1722 
1723 	start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1724 	if (!start)
1725 		return false;
1726 
1727 	if (info->nat & OVS_CT_SRC_NAT) {
1728 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1729 			return false;
1730 	} else if (info->nat & OVS_CT_DST_NAT) {
1731 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1732 			return false;
1733 	} else {
1734 		goto out;
1735 	}
1736 
1737 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1738 		if (IS_ENABLED(CONFIG_NF_NAT) &&
1739 		    info->family == NFPROTO_IPV4) {
1740 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1741 					    info->range.min_addr.ip) ||
1742 			    (info->range.max_addr.ip
1743 			     != info->range.min_addr.ip &&
1744 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1745 					      info->range.max_addr.ip))))
1746 				return false;
1747 		} else if (IS_ENABLED(CONFIG_IPV6) &&
1748 			   info->family == NFPROTO_IPV6) {
1749 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1750 					     &info->range.min_addr.in6) ||
1751 			    (memcmp(&info->range.max_addr.in6,
1752 				    &info->range.min_addr.in6,
1753 				    sizeof(info->range.max_addr.in6)) &&
1754 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1755 					       &info->range.max_addr.in6))))
1756 				return false;
1757 		} else {
1758 			return false;
1759 		}
1760 	}
1761 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1762 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1763 			 ntohs(info->range.min_proto.all)) ||
1764 	     (info->range.max_proto.all != info->range.min_proto.all &&
1765 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1766 			  ntohs(info->range.max_proto.all)))))
1767 		return false;
1768 
1769 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1770 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1771 		return false;
1772 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1773 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1774 		return false;
1775 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1776 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1777 		return false;
1778 out:
1779 	nla_nest_end(skb, start);
1780 
1781 	return true;
1782 }
1783 #endif
1784 
1785 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1786 			  struct sk_buff *skb)
1787 {
1788 	struct nlattr *start;
1789 
1790 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1791 	if (!start)
1792 		return -EMSGSIZE;
1793 
1794 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1795 					    ? OVS_CT_ATTR_FORCE_COMMIT
1796 					    : OVS_CT_ATTR_COMMIT))
1797 		return -EMSGSIZE;
1798 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1799 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1800 		return -EMSGSIZE;
1801 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1802 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1803 		    &ct_info->mark))
1804 		return -EMSGSIZE;
1805 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1806 	    labels_nonzero(&ct_info->labels.mask) &&
1807 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1808 		    &ct_info->labels))
1809 		return -EMSGSIZE;
1810 	if (ct_info->helper) {
1811 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1812 				   ct_info->helper->name))
1813 			return -EMSGSIZE;
1814 	}
1815 	if (ct_info->have_eventmask &&
1816 	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1817 		return -EMSGSIZE;
1818 	if (ct_info->timeout[0]) {
1819 		if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1820 			return -EMSGSIZE;
1821 	}
1822 
1823 #if IS_ENABLED(CONFIG_NF_NAT)
1824 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1825 		return -EMSGSIZE;
1826 #endif
1827 	nla_nest_end(skb, start);
1828 
1829 	return 0;
1830 }
1831 
1832 void ovs_ct_free_action(const struct nlattr *a)
1833 {
1834 	struct ovs_conntrack_info *ct_info = nla_data(a);
1835 
1836 	__ovs_ct_free_action(ct_info);
1837 }
1838 
1839 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1840 {
1841 	if (ct_info->helper) {
1842 #if IS_ENABLED(CONFIG_NF_NAT)
1843 		if (ct_info->nat)
1844 			nf_nat_helper_put(ct_info->helper);
1845 #endif
1846 		nf_conntrack_helper_put(ct_info->helper);
1847 	}
1848 	if (ct_info->ct) {
1849 		if (ct_info->timeout[0])
1850 			nf_ct_destroy_timeout(ct_info->ct);
1851 		nf_ct_tmpl_free(ct_info->ct);
1852 	}
1853 }
1854 
1855 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1856 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1857 {
1858 	int i, err;
1859 
1860 	ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1861 					 GFP_KERNEL);
1862 	if (!ovs_net->ct_limit_info)
1863 		return -ENOMEM;
1864 
1865 	ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1866 	ovs_net->ct_limit_info->limits =
1867 		kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1868 			      GFP_KERNEL);
1869 	if (!ovs_net->ct_limit_info->limits) {
1870 		kfree(ovs_net->ct_limit_info);
1871 		return -ENOMEM;
1872 	}
1873 
1874 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1875 		INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1876 
1877 	ovs_net->ct_limit_info->data =
1878 		nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1879 
1880 	if (IS_ERR(ovs_net->ct_limit_info->data)) {
1881 		err = PTR_ERR(ovs_net->ct_limit_info->data);
1882 		kfree(ovs_net->ct_limit_info->limits);
1883 		kfree(ovs_net->ct_limit_info);
1884 		pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1885 		return err;
1886 	}
1887 	return 0;
1888 }
1889 
1890 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1891 {
1892 	const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1893 	int i;
1894 
1895 	nf_conncount_destroy(net, NFPROTO_INET, info->data);
1896 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1897 		struct hlist_head *head = &info->limits[i];
1898 		struct ovs_ct_limit *ct_limit;
1899 
1900 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node,
1901 					 lockdep_ovsl_is_held())
1902 			kfree_rcu(ct_limit, rcu);
1903 	}
1904 	kfree(ovs_net->ct_limit_info->limits);
1905 	kfree(ovs_net->ct_limit_info);
1906 }
1907 
1908 static struct sk_buff *
1909 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1910 			     struct ovs_header **ovs_reply_header)
1911 {
1912 	struct ovs_header *ovs_header = info->userhdr;
1913 	struct sk_buff *skb;
1914 
1915 	skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1916 	if (!skb)
1917 		return ERR_PTR(-ENOMEM);
1918 
1919 	*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1920 					info->snd_seq,
1921 					&dp_ct_limit_genl_family, 0, cmd);
1922 
1923 	if (!*ovs_reply_header) {
1924 		nlmsg_free(skb);
1925 		return ERR_PTR(-EMSGSIZE);
1926 	}
1927 	(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1928 
1929 	return skb;
1930 }
1931 
1932 static bool check_zone_id(int zone_id, u16 *pzone)
1933 {
1934 	if (zone_id >= 0 && zone_id <= 65535) {
1935 		*pzone = (u16)zone_id;
1936 		return true;
1937 	}
1938 	return false;
1939 }
1940 
1941 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1942 				       struct ovs_ct_limit_info *info)
1943 {
1944 	struct ovs_zone_limit *zone_limit;
1945 	int rem;
1946 	u16 zone;
1947 
1948 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1949 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1950 
1951 	while (rem >= sizeof(*zone_limit)) {
1952 		if (unlikely(zone_limit->zone_id ==
1953 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1954 			ovs_lock();
1955 			info->default_limit = zone_limit->limit;
1956 			ovs_unlock();
1957 		} else if (unlikely(!check_zone_id(
1958 				zone_limit->zone_id, &zone))) {
1959 			OVS_NLERR(true, "zone id is out of range");
1960 		} else {
1961 			struct ovs_ct_limit *ct_limit;
1962 
1963 			ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1964 			if (!ct_limit)
1965 				return -ENOMEM;
1966 
1967 			ct_limit->zone = zone;
1968 			ct_limit->limit = zone_limit->limit;
1969 
1970 			ovs_lock();
1971 			ct_limit_set(info, ct_limit);
1972 			ovs_unlock();
1973 		}
1974 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1975 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1976 				NLA_ALIGN(sizeof(*zone_limit)));
1977 	}
1978 
1979 	if (rem)
1980 		OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1981 
1982 	return 0;
1983 }
1984 
1985 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1986 				       struct ovs_ct_limit_info *info)
1987 {
1988 	struct ovs_zone_limit *zone_limit;
1989 	int rem;
1990 	u16 zone;
1991 
1992 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1993 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1994 
1995 	while (rem >= sizeof(*zone_limit)) {
1996 		if (unlikely(zone_limit->zone_id ==
1997 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1998 			ovs_lock();
1999 			info->default_limit = OVS_CT_LIMIT_DEFAULT;
2000 			ovs_unlock();
2001 		} else if (unlikely(!check_zone_id(
2002 				zone_limit->zone_id, &zone))) {
2003 			OVS_NLERR(true, "zone id is out of range");
2004 		} else {
2005 			ovs_lock();
2006 			ct_limit_del(info, zone);
2007 			ovs_unlock();
2008 		}
2009 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2010 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2011 				NLA_ALIGN(sizeof(*zone_limit)));
2012 	}
2013 
2014 	if (rem)
2015 		OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
2016 
2017 	return 0;
2018 }
2019 
2020 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
2021 					  struct sk_buff *reply)
2022 {
2023 	struct ovs_zone_limit zone_limit;
2024 	int err;
2025 
2026 	zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
2027 	zone_limit.limit = info->default_limit;
2028 	err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2029 	if (err)
2030 		return err;
2031 
2032 	return 0;
2033 }
2034 
2035 static int __ovs_ct_limit_get_zone_limit(struct net *net,
2036 					 struct nf_conncount_data *data,
2037 					 u16 zone_id, u32 limit,
2038 					 struct sk_buff *reply)
2039 {
2040 	struct nf_conntrack_zone ct_zone;
2041 	struct ovs_zone_limit zone_limit;
2042 	u32 conncount_key = zone_id;
2043 
2044 	zone_limit.zone_id = zone_id;
2045 	zone_limit.limit = limit;
2046 	nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
2047 
2048 	zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
2049 					      &ct_zone);
2050 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2051 }
2052 
2053 static int ovs_ct_limit_get_zone_limit(struct net *net,
2054 				       struct nlattr *nla_zone_limit,
2055 				       struct ovs_ct_limit_info *info,
2056 				       struct sk_buff *reply)
2057 {
2058 	struct ovs_zone_limit *zone_limit;
2059 	int rem, err;
2060 	u32 limit;
2061 	u16 zone;
2062 
2063 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
2064 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2065 
2066 	while (rem >= sizeof(*zone_limit)) {
2067 		if (unlikely(zone_limit->zone_id ==
2068 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2069 			err = ovs_ct_limit_get_default_limit(info, reply);
2070 			if (err)
2071 				return err;
2072 		} else if (unlikely(!check_zone_id(zone_limit->zone_id,
2073 							&zone))) {
2074 			OVS_NLERR(true, "zone id is out of range");
2075 		} else {
2076 			rcu_read_lock();
2077 			limit = ct_limit_get(info, zone);
2078 			rcu_read_unlock();
2079 
2080 			err = __ovs_ct_limit_get_zone_limit(
2081 				net, info->data, zone, limit, reply);
2082 			if (err)
2083 				return err;
2084 		}
2085 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2086 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2087 				NLA_ALIGN(sizeof(*zone_limit)));
2088 	}
2089 
2090 	if (rem)
2091 		OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2092 
2093 	return 0;
2094 }
2095 
2096 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2097 					   struct ovs_ct_limit_info *info,
2098 					   struct sk_buff *reply)
2099 {
2100 	struct ovs_ct_limit *ct_limit;
2101 	struct hlist_head *head;
2102 	int i, err = 0;
2103 
2104 	err = ovs_ct_limit_get_default_limit(info, reply);
2105 	if (err)
2106 		return err;
2107 
2108 	rcu_read_lock();
2109 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2110 		head = &info->limits[i];
2111 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2112 			err = __ovs_ct_limit_get_zone_limit(net, info->data,
2113 				ct_limit->zone, ct_limit->limit, reply);
2114 			if (err)
2115 				goto exit_err;
2116 		}
2117 	}
2118 
2119 exit_err:
2120 	rcu_read_unlock();
2121 	return err;
2122 }
2123 
2124 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2125 {
2126 	struct nlattr **a = info->attrs;
2127 	struct sk_buff *reply;
2128 	struct ovs_header *ovs_reply_header;
2129 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2130 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2131 	int err;
2132 
2133 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2134 					     &ovs_reply_header);
2135 	if (IS_ERR(reply))
2136 		return PTR_ERR(reply);
2137 
2138 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2139 		err = -EINVAL;
2140 		goto exit_err;
2141 	}
2142 
2143 	err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2144 					  ct_limit_info);
2145 	if (err)
2146 		goto exit_err;
2147 
2148 	static_branch_enable(&ovs_ct_limit_enabled);
2149 
2150 	genlmsg_end(reply, ovs_reply_header);
2151 	return genlmsg_reply(reply, info);
2152 
2153 exit_err:
2154 	nlmsg_free(reply);
2155 	return err;
2156 }
2157 
2158 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2159 {
2160 	struct nlattr **a = info->attrs;
2161 	struct sk_buff *reply;
2162 	struct ovs_header *ovs_reply_header;
2163 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2164 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2165 	int err;
2166 
2167 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2168 					     &ovs_reply_header);
2169 	if (IS_ERR(reply))
2170 		return PTR_ERR(reply);
2171 
2172 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2173 		err = -EINVAL;
2174 		goto exit_err;
2175 	}
2176 
2177 	err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2178 					  ct_limit_info);
2179 	if (err)
2180 		goto exit_err;
2181 
2182 	genlmsg_end(reply, ovs_reply_header);
2183 	return genlmsg_reply(reply, info);
2184 
2185 exit_err:
2186 	nlmsg_free(reply);
2187 	return err;
2188 }
2189 
2190 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2191 {
2192 	struct nlattr **a = info->attrs;
2193 	struct nlattr *nla_reply;
2194 	struct sk_buff *reply;
2195 	struct ovs_header *ovs_reply_header;
2196 	struct net *net = sock_net(skb->sk);
2197 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2198 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2199 	int err;
2200 
2201 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2202 					     &ovs_reply_header);
2203 	if (IS_ERR(reply))
2204 		return PTR_ERR(reply);
2205 
2206 	nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2207 	if (!nla_reply) {
2208 		err = -EMSGSIZE;
2209 		goto exit_err;
2210 	}
2211 
2212 	if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2213 		err = ovs_ct_limit_get_zone_limit(
2214 			net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2215 			reply);
2216 		if (err)
2217 			goto exit_err;
2218 	} else {
2219 		err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2220 						      reply);
2221 		if (err)
2222 			goto exit_err;
2223 	}
2224 
2225 	nla_nest_end(reply, nla_reply);
2226 	genlmsg_end(reply, ovs_reply_header);
2227 	return genlmsg_reply(reply, info);
2228 
2229 exit_err:
2230 	nlmsg_free(reply);
2231 	return err;
2232 }
2233 
2234 static struct genl_ops ct_limit_genl_ops[] = {
2235 	{ .cmd = OVS_CT_LIMIT_CMD_SET,
2236 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2237 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2238 					   * privilege. */
2239 		.doit = ovs_ct_limit_cmd_set,
2240 	},
2241 	{ .cmd = OVS_CT_LIMIT_CMD_DEL,
2242 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2243 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2244 					   * privilege. */
2245 		.doit = ovs_ct_limit_cmd_del,
2246 	},
2247 	{ .cmd = OVS_CT_LIMIT_CMD_GET,
2248 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2249 		.flags = 0,		  /* OK for unprivileged users. */
2250 		.doit = ovs_ct_limit_cmd_get,
2251 	},
2252 };
2253 
2254 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2255 	.name = OVS_CT_LIMIT_MCGROUP,
2256 };
2257 
2258 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2259 	.hdrsize = sizeof(struct ovs_header),
2260 	.name = OVS_CT_LIMIT_FAMILY,
2261 	.version = OVS_CT_LIMIT_VERSION,
2262 	.maxattr = OVS_CT_LIMIT_ATTR_MAX,
2263 	.policy = ct_limit_policy,
2264 	.netnsok = true,
2265 	.parallel_ops = true,
2266 	.ops = ct_limit_genl_ops,
2267 	.n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2268 	.mcgrps = &ovs_ct_limit_multicast_group,
2269 	.n_mcgrps = 1,
2270 	.module = THIS_MODULE,
2271 };
2272 #endif
2273 
2274 int ovs_ct_init(struct net *net)
2275 {
2276 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2277 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2278 
2279 	if (nf_connlabels_get(net, n_bits - 1)) {
2280 		ovs_net->xt_label = false;
2281 		OVS_NLERR(true, "Failed to set connlabel length");
2282 	} else {
2283 		ovs_net->xt_label = true;
2284 	}
2285 
2286 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2287 	return ovs_ct_limit_init(net, ovs_net);
2288 #else
2289 	return 0;
2290 #endif
2291 }
2292 
2293 void ovs_ct_exit(struct net *net)
2294 {
2295 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2296 
2297 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2298 	ovs_ct_limit_exit(net, ovs_net);
2299 #endif
2300 
2301 	if (ovs_net->xt_label)
2302 		nf_connlabels_put(net);
2303 }
2304