xref: /openbmc/linux/net/openvswitch/conntrack.c (revision dd1fc3c5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 Nicira, Inc.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/openvswitch.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/sctp.h>
11 #include <linux/static_key.h>
12 #include <net/ip.h>
13 #include <net/genetlink.h>
14 #include <net/netfilter/nf_conntrack_core.h>
15 #include <net/netfilter/nf_conntrack_count.h>
16 #include <net/netfilter/nf_conntrack_helper.h>
17 #include <net/netfilter/nf_conntrack_labels.h>
18 #include <net/netfilter/nf_conntrack_seqadj.h>
19 #include <net/netfilter/nf_conntrack_timeout.h>
20 #include <net/netfilter/nf_conntrack_zones.h>
21 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
22 #include <net/ipv6_frag.h>
23 
24 #if IS_ENABLED(CONFIG_NF_NAT)
25 #include <net/netfilter/nf_nat.h>
26 #endif
27 
28 #include "datapath.h"
29 #include "conntrack.h"
30 #include "flow.h"
31 #include "flow_netlink.h"
32 
33 struct ovs_ct_len_tbl {
34 	int maxlen;
35 	int minlen;
36 };
37 
38 /* Metadata mark for masked write to conntrack mark */
39 struct md_mark {
40 	u32 value;
41 	u32 mask;
42 };
43 
44 /* Metadata label for masked write to conntrack label. */
45 struct md_labels {
46 	struct ovs_key_ct_labels value;
47 	struct ovs_key_ct_labels mask;
48 };
49 
50 enum ovs_ct_nat {
51 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
52 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
53 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
54 };
55 
56 /* Conntrack action context for execution. */
57 struct ovs_conntrack_info {
58 	struct nf_conntrack_helper *helper;
59 	struct nf_conntrack_zone zone;
60 	struct nf_conn *ct;
61 	u8 commit : 1;
62 	u8 nat : 3;                 /* enum ovs_ct_nat */
63 	u8 force : 1;
64 	u8 have_eventmask : 1;
65 	u16 family;
66 	u32 eventmask;              /* Mask of 1 << IPCT_*. */
67 	struct md_mark mark;
68 	struct md_labels labels;
69 	char timeout[CTNL_TIMEOUT_NAME_MAX];
70 	struct nf_ct_timeout *nf_ct_timeout;
71 #if IS_ENABLED(CONFIG_NF_NAT)
72 	struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
73 #endif
74 };
75 
76 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
77 #define OVS_CT_LIMIT_UNLIMITED	0
78 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
79 #define CT_LIMIT_HASH_BUCKETS 512
80 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
81 
82 struct ovs_ct_limit {
83 	/* Elements in ovs_ct_limit_info->limits hash table */
84 	struct hlist_node hlist_node;
85 	struct rcu_head rcu;
86 	u16 zone;
87 	u32 limit;
88 };
89 
90 struct ovs_ct_limit_info {
91 	u32 default_limit;
92 	struct hlist_head *limits;
93 	struct nf_conncount_data *data;
94 };
95 
96 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
97 	[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
98 };
99 #endif
100 
101 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
102 
103 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
104 
105 static u16 key_to_nfproto(const struct sw_flow_key *key)
106 {
107 	switch (ntohs(key->eth.type)) {
108 	case ETH_P_IP:
109 		return NFPROTO_IPV4;
110 	case ETH_P_IPV6:
111 		return NFPROTO_IPV6;
112 	default:
113 		return NFPROTO_UNSPEC;
114 	}
115 }
116 
117 /* Map SKB connection state into the values used by flow definition. */
118 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
119 {
120 	u8 ct_state = OVS_CS_F_TRACKED;
121 
122 	switch (ctinfo) {
123 	case IP_CT_ESTABLISHED_REPLY:
124 	case IP_CT_RELATED_REPLY:
125 		ct_state |= OVS_CS_F_REPLY_DIR;
126 		break;
127 	default:
128 		break;
129 	}
130 
131 	switch (ctinfo) {
132 	case IP_CT_ESTABLISHED:
133 	case IP_CT_ESTABLISHED_REPLY:
134 		ct_state |= OVS_CS_F_ESTABLISHED;
135 		break;
136 	case IP_CT_RELATED:
137 	case IP_CT_RELATED_REPLY:
138 		ct_state |= OVS_CS_F_RELATED;
139 		break;
140 	case IP_CT_NEW:
141 		ct_state |= OVS_CS_F_NEW;
142 		break;
143 	default:
144 		break;
145 	}
146 
147 	return ct_state;
148 }
149 
150 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
151 {
152 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
153 	return ct ? ct->mark : 0;
154 #else
155 	return 0;
156 #endif
157 }
158 
159 /* Guard against conntrack labels max size shrinking below 128 bits. */
160 #if NF_CT_LABELS_MAX_SIZE < 16
161 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
162 #endif
163 
164 static void ovs_ct_get_labels(const struct nf_conn *ct,
165 			      struct ovs_key_ct_labels *labels)
166 {
167 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
168 
169 	if (cl)
170 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
171 	else
172 		memset(labels, 0, OVS_CT_LABELS_LEN);
173 }
174 
175 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
176 					const struct nf_conntrack_tuple *orig,
177 					u8 icmp_proto)
178 {
179 	key->ct_orig_proto = orig->dst.protonum;
180 	if (orig->dst.protonum == icmp_proto) {
181 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
182 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
183 	} else {
184 		key->ct.orig_tp.src = orig->src.u.all;
185 		key->ct.orig_tp.dst = orig->dst.u.all;
186 	}
187 }
188 
189 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
190 				const struct nf_conntrack_zone *zone,
191 				const struct nf_conn *ct)
192 {
193 	key->ct_state = state;
194 	key->ct_zone = zone->id;
195 	key->ct.mark = ovs_ct_get_mark(ct);
196 	ovs_ct_get_labels(ct, &key->ct.labels);
197 
198 	if (ct) {
199 		const struct nf_conntrack_tuple *orig;
200 
201 		/* Use the master if we have one. */
202 		if (ct->master)
203 			ct = ct->master;
204 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
205 
206 		/* IP version must match with the master connection. */
207 		if (key->eth.type == htons(ETH_P_IP) &&
208 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
209 			key->ipv4.ct_orig.src = orig->src.u3.ip;
210 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
211 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
212 			return;
213 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
214 			   !sw_flow_key_is_nd(key) &&
215 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
216 			key->ipv6.ct_orig.src = orig->src.u3.in6;
217 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
218 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
219 			return;
220 		}
221 	}
222 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
223 	 * original direction key fields.
224 	 */
225 	key->ct_orig_proto = 0;
226 }
227 
228 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
229  * previously sent the packet to conntrack via the ct action.  If
230  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
231  * initialized from the connection status.
232  */
233 static void ovs_ct_update_key(const struct sk_buff *skb,
234 			      const struct ovs_conntrack_info *info,
235 			      struct sw_flow_key *key, bool post_ct,
236 			      bool keep_nat_flags)
237 {
238 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
239 	enum ip_conntrack_info ctinfo;
240 	struct nf_conn *ct;
241 	u8 state = 0;
242 
243 	ct = nf_ct_get(skb, &ctinfo);
244 	if (ct) {
245 		state = ovs_ct_get_state(ctinfo);
246 		/* All unconfirmed entries are NEW connections. */
247 		if (!nf_ct_is_confirmed(ct))
248 			state |= OVS_CS_F_NEW;
249 		/* OVS persists the related flag for the duration of the
250 		 * connection.
251 		 */
252 		if (ct->master)
253 			state |= OVS_CS_F_RELATED;
254 		if (keep_nat_flags) {
255 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
256 		} else {
257 			if (ct->status & IPS_SRC_NAT)
258 				state |= OVS_CS_F_SRC_NAT;
259 			if (ct->status & IPS_DST_NAT)
260 				state |= OVS_CS_F_DST_NAT;
261 		}
262 		zone = nf_ct_zone(ct);
263 	} else if (post_ct) {
264 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
265 		if (info)
266 			zone = &info->zone;
267 	}
268 	__ovs_ct_update_key(key, state, zone, ct);
269 }
270 
271 /* This is called to initialize CT key fields possibly coming in from the local
272  * stack.
273  */
274 void ovs_ct_fill_key(const struct sk_buff *skb,
275 		     struct sw_flow_key *key,
276 		     bool post_ct)
277 {
278 	ovs_ct_update_key(skb, NULL, key, post_ct, false);
279 }
280 
281 int ovs_ct_put_key(const struct sw_flow_key *swkey,
282 		   const struct sw_flow_key *output, struct sk_buff *skb)
283 {
284 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
285 		return -EMSGSIZE;
286 
287 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
288 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
289 		return -EMSGSIZE;
290 
291 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
292 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
293 		return -EMSGSIZE;
294 
295 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
296 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
297 		    &output->ct.labels))
298 		return -EMSGSIZE;
299 
300 	if (swkey->ct_orig_proto) {
301 		if (swkey->eth.type == htons(ETH_P_IP)) {
302 			struct ovs_key_ct_tuple_ipv4 orig;
303 
304 			memset(&orig, 0, sizeof(orig));
305 			orig.ipv4_src = output->ipv4.ct_orig.src;
306 			orig.ipv4_dst = output->ipv4.ct_orig.dst;
307 			orig.src_port = output->ct.orig_tp.src;
308 			orig.dst_port = output->ct.orig_tp.dst;
309 			orig.ipv4_proto = output->ct_orig_proto;
310 
311 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
312 				    sizeof(orig), &orig))
313 				return -EMSGSIZE;
314 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
315 			struct ovs_key_ct_tuple_ipv6 orig;
316 
317 			memset(&orig, 0, sizeof(orig));
318 			memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
319 			       sizeof(orig.ipv6_src));
320 			memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
321 			       sizeof(orig.ipv6_dst));
322 			orig.src_port = output->ct.orig_tp.src;
323 			orig.dst_port = output->ct.orig_tp.dst;
324 			orig.ipv6_proto = output->ct_orig_proto;
325 
326 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
327 				    sizeof(orig), &orig))
328 				return -EMSGSIZE;
329 		}
330 	}
331 
332 	return 0;
333 }
334 
335 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
336 			   u32 ct_mark, u32 mask)
337 {
338 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
339 	u32 new_mark;
340 
341 	new_mark = ct_mark | (ct->mark & ~(mask));
342 	if (ct->mark != new_mark) {
343 		ct->mark = new_mark;
344 		if (nf_ct_is_confirmed(ct))
345 			nf_conntrack_event_cache(IPCT_MARK, ct);
346 		key->ct.mark = new_mark;
347 	}
348 
349 	return 0;
350 #else
351 	return -ENOTSUPP;
352 #endif
353 }
354 
355 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
356 {
357 	struct nf_conn_labels *cl;
358 
359 	cl = nf_ct_labels_find(ct);
360 	if (!cl) {
361 		nf_ct_labels_ext_add(ct);
362 		cl = nf_ct_labels_find(ct);
363 	}
364 
365 	return cl;
366 }
367 
368 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
369  * since the new connection is not yet confirmed, and thus no-one else has
370  * access to it's labels, we simply write them over.
371  */
372 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
373 			      const struct ovs_key_ct_labels *labels,
374 			      const struct ovs_key_ct_labels *mask)
375 {
376 	struct nf_conn_labels *cl, *master_cl;
377 	bool have_mask = labels_nonzero(mask);
378 
379 	/* Inherit master's labels to the related connection? */
380 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
381 
382 	if (!master_cl && !have_mask)
383 		return 0;   /* Nothing to do. */
384 
385 	cl = ovs_ct_get_conn_labels(ct);
386 	if (!cl)
387 		return -ENOSPC;
388 
389 	/* Inherit the master's labels, if any. */
390 	if (master_cl)
391 		*cl = *master_cl;
392 
393 	if (have_mask) {
394 		u32 *dst = (u32 *)cl->bits;
395 		int i;
396 
397 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
398 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
399 				(labels->ct_labels_32[i]
400 				 & mask->ct_labels_32[i]);
401 	}
402 
403 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
404 	 * IPCT_LABEL bit is set in the event cache.
405 	 */
406 	nf_conntrack_event_cache(IPCT_LABEL, ct);
407 
408 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
409 
410 	return 0;
411 }
412 
413 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
414 			     const struct ovs_key_ct_labels *labels,
415 			     const struct ovs_key_ct_labels *mask)
416 {
417 	struct nf_conn_labels *cl;
418 	int err;
419 
420 	cl = ovs_ct_get_conn_labels(ct);
421 	if (!cl)
422 		return -ENOSPC;
423 
424 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
425 				    mask->ct_labels_32,
426 				    OVS_CT_LABELS_LEN_32);
427 	if (err)
428 		return err;
429 
430 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
431 
432 	return 0;
433 }
434 
435 /* 'skb' should already be pulled to nh_ofs. */
436 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
437 {
438 	const struct nf_conntrack_helper *helper;
439 	const struct nf_conn_help *help;
440 	enum ip_conntrack_info ctinfo;
441 	unsigned int protoff;
442 	struct nf_conn *ct;
443 	int err;
444 
445 	ct = nf_ct_get(skb, &ctinfo);
446 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
447 		return NF_ACCEPT;
448 
449 	help = nfct_help(ct);
450 	if (!help)
451 		return NF_ACCEPT;
452 
453 	helper = rcu_dereference(help->helper);
454 	if (!helper)
455 		return NF_ACCEPT;
456 
457 	switch (proto) {
458 	case NFPROTO_IPV4:
459 		protoff = ip_hdrlen(skb);
460 		break;
461 	case NFPROTO_IPV6: {
462 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
463 		__be16 frag_off;
464 		int ofs;
465 
466 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
467 				       &frag_off);
468 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
469 			pr_debug("proto header not found\n");
470 			return NF_ACCEPT;
471 		}
472 		protoff = ofs;
473 		break;
474 	}
475 	default:
476 		WARN_ONCE(1, "helper invoked on non-IP family!");
477 		return NF_DROP;
478 	}
479 
480 	err = helper->help(skb, protoff, ct, ctinfo);
481 	if (err != NF_ACCEPT)
482 		return err;
483 
484 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
485 	 * FTP with NAT) adusting the TCP payload size when mangling IP
486 	 * addresses and/or port numbers in the text-based control connection.
487 	 */
488 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
489 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
490 		return NF_DROP;
491 	return NF_ACCEPT;
492 }
493 
494 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
495  * value if 'skb' is freed.
496  */
497 static int handle_fragments(struct net *net, struct sw_flow_key *key,
498 			    u16 zone, struct sk_buff *skb)
499 {
500 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
501 	int err;
502 
503 	if (key->eth.type == htons(ETH_P_IP)) {
504 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
505 
506 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
507 		err = ip_defrag(net, skb, user);
508 		if (err)
509 			return err;
510 
511 		ovs_cb.mru = IPCB(skb)->frag_max_size;
512 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
513 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
514 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
515 
516 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
517 		err = nf_ct_frag6_gather(net, skb, user);
518 		if (err) {
519 			if (err != -EINPROGRESS)
520 				kfree_skb(skb);
521 			return err;
522 		}
523 
524 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
525 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
526 #endif
527 	} else {
528 		kfree_skb(skb);
529 		return -EPFNOSUPPORT;
530 	}
531 
532 	/* The key extracted from the fragment that completed this datagram
533 	 * likely didn't have an L4 header, so regenerate it.
534 	 */
535 	ovs_flow_key_update_l3l4(skb, key);
536 
537 	key->ip.frag = OVS_FRAG_TYPE_NONE;
538 	skb_clear_hash(skb);
539 	skb->ignore_df = 1;
540 	*OVS_CB(skb) = ovs_cb;
541 
542 	return 0;
543 }
544 
545 static struct nf_conntrack_expect *
546 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
547 		   u16 proto, const struct sk_buff *skb)
548 {
549 	struct nf_conntrack_tuple tuple;
550 	struct nf_conntrack_expect *exp;
551 
552 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
553 		return NULL;
554 
555 	exp = __nf_ct_expect_find(net, zone, &tuple);
556 	if (exp) {
557 		struct nf_conntrack_tuple_hash *h;
558 
559 		/* Delete existing conntrack entry, if it clashes with the
560 		 * expectation.  This can happen since conntrack ALGs do not
561 		 * check for clashes between (new) expectations and existing
562 		 * conntrack entries.  nf_conntrack_in() will check the
563 		 * expectations only if a conntrack entry can not be found,
564 		 * which can lead to OVS finding the expectation (here) in the
565 		 * init direction, but which will not be removed by the
566 		 * nf_conntrack_in() call, if a matching conntrack entry is
567 		 * found instead.  In this case all init direction packets
568 		 * would be reported as new related packets, while reply
569 		 * direction packets would be reported as un-related
570 		 * established packets.
571 		 */
572 		h = nf_conntrack_find_get(net, zone, &tuple);
573 		if (h) {
574 			struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
575 
576 			nf_ct_delete(ct, 0, 0);
577 			nf_conntrack_put(&ct->ct_general);
578 		}
579 	}
580 
581 	return exp;
582 }
583 
584 /* This replicates logic from nf_conntrack_core.c that is not exported. */
585 static enum ip_conntrack_info
586 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
587 {
588 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
589 
590 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
591 		return IP_CT_ESTABLISHED_REPLY;
592 	/* Once we've had two way comms, always ESTABLISHED. */
593 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
594 		return IP_CT_ESTABLISHED;
595 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
596 		return IP_CT_RELATED;
597 	return IP_CT_NEW;
598 }
599 
600 /* Find an existing connection which this packet belongs to without
601  * re-attributing statistics or modifying the connection state.  This allows an
602  * skb->_nfct lost due to an upcall to be recovered during actions execution.
603  *
604  * Must be called with rcu_read_lock.
605  *
606  * On success, populates skb->_nfct and returns the connection.  Returns NULL
607  * if there is no existing entry.
608  */
609 static struct nf_conn *
610 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
611 		     u8 l3num, struct sk_buff *skb, bool natted)
612 {
613 	struct nf_conntrack_tuple tuple;
614 	struct nf_conntrack_tuple_hash *h;
615 	struct nf_conn *ct;
616 
617 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
618 			       net, &tuple)) {
619 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
620 		return NULL;
621 	}
622 
623 	/* Must invert the tuple if skb has been transformed by NAT. */
624 	if (natted) {
625 		struct nf_conntrack_tuple inverse;
626 
627 		if (!nf_ct_invert_tuple(&inverse, &tuple)) {
628 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
629 			return NULL;
630 		}
631 		tuple = inverse;
632 	}
633 
634 	/* look for tuple match */
635 	h = nf_conntrack_find_get(net, zone, &tuple);
636 	if (!h)
637 		return NULL;   /* Not found. */
638 
639 	ct = nf_ct_tuplehash_to_ctrack(h);
640 
641 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
642 	 * select the other tuplehash to get the right 'ctinfo' bits for this
643 	 * packet.
644 	 */
645 	if (natted)
646 		h = &ct->tuplehash[!h->tuple.dst.dir];
647 
648 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
649 	return ct;
650 }
651 
652 static
653 struct nf_conn *ovs_ct_executed(struct net *net,
654 				const struct sw_flow_key *key,
655 				const struct ovs_conntrack_info *info,
656 				struct sk_buff *skb,
657 				bool *ct_executed)
658 {
659 	struct nf_conn *ct = NULL;
660 
661 	/* If no ct, check if we have evidence that an existing conntrack entry
662 	 * might be found for this skb.  This happens when we lose a skb->_nfct
663 	 * due to an upcall, or if the direction is being forced.  If the
664 	 * connection was not confirmed, it is not cached and needs to be run
665 	 * through conntrack again.
666 	 */
667 	*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
668 		       !(key->ct_state & OVS_CS_F_INVALID) &&
669 		       (key->ct_zone == info->zone.id);
670 
671 	if (*ct_executed || (!key->ct_state && info->force)) {
672 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
673 					  !!(key->ct_state &
674 					  OVS_CS_F_NAT_MASK));
675 	}
676 
677 	return ct;
678 }
679 
680 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
681 static bool skb_nfct_cached(struct net *net,
682 			    const struct sw_flow_key *key,
683 			    const struct ovs_conntrack_info *info,
684 			    struct sk_buff *skb)
685 {
686 	enum ip_conntrack_info ctinfo;
687 	struct nf_conn *ct;
688 	bool ct_executed = true;
689 
690 	ct = nf_ct_get(skb, &ctinfo);
691 	if (!ct)
692 		ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
693 
694 	if (ct)
695 		nf_ct_get(skb, &ctinfo);
696 	else
697 		return false;
698 
699 	if (!net_eq(net, read_pnet(&ct->ct_net)))
700 		return false;
701 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
702 		return false;
703 	if (info->helper) {
704 		struct nf_conn_help *help;
705 
706 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
707 		if (help && rcu_access_pointer(help->helper) != info->helper)
708 			return false;
709 	}
710 	if (info->nf_ct_timeout) {
711 		struct nf_conn_timeout *timeout_ext;
712 
713 		timeout_ext = nf_ct_timeout_find(ct);
714 		if (!timeout_ext || info->nf_ct_timeout !=
715 		    rcu_dereference(timeout_ext->timeout))
716 			return false;
717 	}
718 	/* Force conntrack entry direction to the current packet? */
719 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
720 		/* Delete the conntrack entry if confirmed, else just release
721 		 * the reference.
722 		 */
723 		if (nf_ct_is_confirmed(ct))
724 			nf_ct_delete(ct, 0, 0);
725 
726 		nf_conntrack_put(&ct->ct_general);
727 		nf_ct_set(skb, NULL, 0);
728 		return false;
729 	}
730 
731 	return ct_executed;
732 }
733 
734 #if IS_ENABLED(CONFIG_NF_NAT)
735 /* Modelled after nf_nat_ipv[46]_fn().
736  * range is only used for new, uninitialized NAT state.
737  * Returns either NF_ACCEPT or NF_DROP.
738  */
739 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
740 			      enum ip_conntrack_info ctinfo,
741 			      const struct nf_nat_range2 *range,
742 			      enum nf_nat_manip_type maniptype)
743 {
744 	int hooknum, nh_off, err = NF_ACCEPT;
745 
746 	nh_off = skb_network_offset(skb);
747 	skb_pull_rcsum(skb, nh_off);
748 
749 	/* See HOOK2MANIP(). */
750 	if (maniptype == NF_NAT_MANIP_SRC)
751 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
752 	else
753 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
754 
755 	switch (ctinfo) {
756 	case IP_CT_RELATED:
757 	case IP_CT_RELATED_REPLY:
758 		if (IS_ENABLED(CONFIG_NF_NAT) &&
759 		    skb->protocol == htons(ETH_P_IP) &&
760 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
761 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
762 							   hooknum))
763 				err = NF_DROP;
764 			goto push;
765 		} else if (IS_ENABLED(CONFIG_IPV6) &&
766 			   skb->protocol == htons(ETH_P_IPV6)) {
767 			__be16 frag_off;
768 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
769 			int hdrlen = ipv6_skip_exthdr(skb,
770 						      sizeof(struct ipv6hdr),
771 						      &nexthdr, &frag_off);
772 
773 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
774 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
775 								     ctinfo,
776 								     hooknum,
777 								     hdrlen))
778 					err = NF_DROP;
779 				goto push;
780 			}
781 		}
782 		/* Non-ICMP, fall thru to initialize if needed. */
783 		fallthrough;
784 	case IP_CT_NEW:
785 		/* Seen it before?  This can happen for loopback, retrans,
786 		 * or local packets.
787 		 */
788 		if (!nf_nat_initialized(ct, maniptype)) {
789 			/* Initialize according to the NAT action. */
790 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
791 				/* Action is set up to establish a new
792 				 * mapping.
793 				 */
794 				? nf_nat_setup_info(ct, range, maniptype)
795 				: nf_nat_alloc_null_binding(ct, hooknum);
796 			if (err != NF_ACCEPT)
797 				goto push;
798 		}
799 		break;
800 
801 	case IP_CT_ESTABLISHED:
802 	case IP_CT_ESTABLISHED_REPLY:
803 		break;
804 
805 	default:
806 		err = NF_DROP;
807 		goto push;
808 	}
809 
810 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
811 push:
812 	skb_push_rcsum(skb, nh_off);
813 
814 	return err;
815 }
816 
817 static void ovs_nat_update_key(struct sw_flow_key *key,
818 			       const struct sk_buff *skb,
819 			       enum nf_nat_manip_type maniptype)
820 {
821 	if (maniptype == NF_NAT_MANIP_SRC) {
822 		__be16 src;
823 
824 		key->ct_state |= OVS_CS_F_SRC_NAT;
825 		if (key->eth.type == htons(ETH_P_IP))
826 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
827 		else if (key->eth.type == htons(ETH_P_IPV6))
828 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
829 			       sizeof(key->ipv6.addr.src));
830 		else
831 			return;
832 
833 		if (key->ip.proto == IPPROTO_UDP)
834 			src = udp_hdr(skb)->source;
835 		else if (key->ip.proto == IPPROTO_TCP)
836 			src = tcp_hdr(skb)->source;
837 		else if (key->ip.proto == IPPROTO_SCTP)
838 			src = sctp_hdr(skb)->source;
839 		else
840 			return;
841 
842 		key->tp.src = src;
843 	} else {
844 		__be16 dst;
845 
846 		key->ct_state |= OVS_CS_F_DST_NAT;
847 		if (key->eth.type == htons(ETH_P_IP))
848 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
849 		else if (key->eth.type == htons(ETH_P_IPV6))
850 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
851 			       sizeof(key->ipv6.addr.dst));
852 		else
853 			return;
854 
855 		if (key->ip.proto == IPPROTO_UDP)
856 			dst = udp_hdr(skb)->dest;
857 		else if (key->ip.proto == IPPROTO_TCP)
858 			dst = tcp_hdr(skb)->dest;
859 		else if (key->ip.proto == IPPROTO_SCTP)
860 			dst = sctp_hdr(skb)->dest;
861 		else
862 			return;
863 
864 		key->tp.dst = dst;
865 	}
866 }
867 
868 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
869 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
870 		      const struct ovs_conntrack_info *info,
871 		      struct sk_buff *skb, struct nf_conn *ct,
872 		      enum ip_conntrack_info ctinfo)
873 {
874 	enum nf_nat_manip_type maniptype;
875 	int err;
876 
877 	/* Add NAT extension if not confirmed yet. */
878 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
879 		return NF_ACCEPT;   /* Can't NAT. */
880 
881 	/* Determine NAT type.
882 	 * Check if the NAT type can be deduced from the tracked connection.
883 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
884 	 * when committing.
885 	 */
886 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
887 	    ct->status & IPS_NAT_MASK &&
888 	    (ctinfo != IP_CT_RELATED || info->commit)) {
889 		/* NAT an established or related connection like before. */
890 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
891 			/* This is the REPLY direction for a connection
892 			 * for which NAT was applied in the forward
893 			 * direction.  Do the reverse NAT.
894 			 */
895 			maniptype = ct->status & IPS_SRC_NAT
896 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
897 		else
898 			maniptype = ct->status & IPS_SRC_NAT
899 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
900 	} else if (info->nat & OVS_CT_SRC_NAT) {
901 		maniptype = NF_NAT_MANIP_SRC;
902 	} else if (info->nat & OVS_CT_DST_NAT) {
903 		maniptype = NF_NAT_MANIP_DST;
904 	} else {
905 		return NF_ACCEPT; /* Connection is not NATed. */
906 	}
907 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
908 
909 	if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) {
910 		if (ct->status & IPS_SRC_NAT) {
911 			if (maniptype == NF_NAT_MANIP_SRC)
912 				maniptype = NF_NAT_MANIP_DST;
913 			else
914 				maniptype = NF_NAT_MANIP_SRC;
915 
916 			err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range,
917 						 maniptype);
918 		} else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) {
919 			err = ovs_ct_nat_execute(skb, ct, ctinfo, NULL,
920 						 NF_NAT_MANIP_SRC);
921 		}
922 	}
923 
924 	/* Mark NAT done if successful and update the flow key. */
925 	if (err == NF_ACCEPT)
926 		ovs_nat_update_key(key, skb, maniptype);
927 
928 	return err;
929 }
930 #else /* !CONFIG_NF_NAT */
931 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
932 		      const struct ovs_conntrack_info *info,
933 		      struct sk_buff *skb, struct nf_conn *ct,
934 		      enum ip_conntrack_info ctinfo)
935 {
936 	return NF_ACCEPT;
937 }
938 #endif
939 
940 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
941  * not done already.  Update key with new CT state after passing the packet
942  * through conntrack.
943  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
944  * set to NULL and 0 will be returned.
945  */
946 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
947 			   const struct ovs_conntrack_info *info,
948 			   struct sk_buff *skb)
949 {
950 	/* If we are recirculating packets to match on conntrack fields and
951 	 * committing with a separate conntrack action,  then we don't need to
952 	 * actually run the packet through conntrack twice unless it's for a
953 	 * different zone.
954 	 */
955 	bool cached = skb_nfct_cached(net, key, info, skb);
956 	enum ip_conntrack_info ctinfo;
957 	struct nf_conn *ct;
958 
959 	if (!cached) {
960 		struct nf_hook_state state = {
961 			.hook = NF_INET_PRE_ROUTING,
962 			.pf = info->family,
963 			.net = net,
964 		};
965 		struct nf_conn *tmpl = info->ct;
966 		int err;
967 
968 		/* Associate skb with specified zone. */
969 		if (tmpl) {
970 			if (skb_nfct(skb))
971 				nf_conntrack_put(skb_nfct(skb));
972 			nf_conntrack_get(&tmpl->ct_general);
973 			nf_ct_set(skb, tmpl, IP_CT_NEW);
974 		}
975 
976 		err = nf_conntrack_in(skb, &state);
977 		if (err != NF_ACCEPT)
978 			return -ENOENT;
979 
980 		/* Clear CT state NAT flags to mark that we have not yet done
981 		 * NAT after the nf_conntrack_in() call.  We can actually clear
982 		 * the whole state, as it will be re-initialized below.
983 		 */
984 		key->ct_state = 0;
985 
986 		/* Update the key, but keep the NAT flags. */
987 		ovs_ct_update_key(skb, info, key, true, true);
988 	}
989 
990 	ct = nf_ct_get(skb, &ctinfo);
991 	if (ct) {
992 		bool add_helper = false;
993 
994 		/* Packets starting a new connection must be NATted before the
995 		 * helper, so that the helper knows about the NAT.  We enforce
996 		 * this by delaying both NAT and helper calls for unconfirmed
997 		 * connections until the committing CT action.  For later
998 		 * packets NAT and Helper may be called in either order.
999 		 *
1000 		 * NAT will be done only if the CT action has NAT, and only
1001 		 * once per packet (per zone), as guarded by the NAT bits in
1002 		 * the key->ct_state.
1003 		 */
1004 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
1005 		    (nf_ct_is_confirmed(ct) || info->commit) &&
1006 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
1007 			return -EINVAL;
1008 		}
1009 
1010 		/* Userspace may decide to perform a ct lookup without a helper
1011 		 * specified followed by a (recirculate and) commit with one,
1012 		 * or attach a helper in a later commit.  Therefore, for
1013 		 * connections which we will commit, we may need to attach
1014 		 * the helper here.
1015 		 */
1016 		if (info->commit && info->helper && !nfct_help(ct)) {
1017 			int err = __nf_ct_try_assign_helper(ct, info->ct,
1018 							    GFP_ATOMIC);
1019 			if (err)
1020 				return err;
1021 			add_helper = true;
1022 
1023 			/* helper installed, add seqadj if NAT is required */
1024 			if (info->nat && !nfct_seqadj(ct)) {
1025 				if (!nfct_seqadj_ext_add(ct))
1026 					return -EINVAL;
1027 			}
1028 		}
1029 
1030 		/* Call the helper only if:
1031 		 * - nf_conntrack_in() was executed above ("!cached") or a
1032 		 *   helper was just attached ("add_helper") for a confirmed
1033 		 *   connection, or
1034 		 * - When committing an unconfirmed connection.
1035 		 */
1036 		if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
1037 					      info->commit) &&
1038 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1039 			return -EINVAL;
1040 		}
1041 
1042 		if (nf_ct_protonum(ct) == IPPROTO_TCP &&
1043 		    nf_ct_is_confirmed(ct) && nf_conntrack_tcp_established(ct)) {
1044 			/* Be liberal for tcp packets so that out-of-window
1045 			 * packets are not marked invalid.
1046 			 */
1047 			nf_ct_set_tcp_be_liberal(ct);
1048 		}
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 /* Lookup connection and read fields into key. */
1055 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1056 			 const struct ovs_conntrack_info *info,
1057 			 struct sk_buff *skb)
1058 {
1059 	struct nf_conntrack_expect *exp;
1060 
1061 	/* If we pass an expected packet through nf_conntrack_in() the
1062 	 * expectation is typically removed, but the packet could still be
1063 	 * lost in upcall processing.  To prevent this from happening we
1064 	 * perform an explicit expectation lookup.  Expected connections are
1065 	 * always new, and will be passed through conntrack only when they are
1066 	 * committed, as it is OK to remove the expectation at that time.
1067 	 */
1068 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1069 	if (exp) {
1070 		u8 state;
1071 
1072 		/* NOTE: New connections are NATted and Helped only when
1073 		 * committed, so we are not calling into NAT here.
1074 		 */
1075 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1076 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
1077 	} else {
1078 		struct nf_conn *ct;
1079 		int err;
1080 
1081 		err = __ovs_ct_lookup(net, key, info, skb);
1082 		if (err)
1083 			return err;
1084 
1085 		ct = (struct nf_conn *)skb_nfct(skb);
1086 		if (ct)
1087 			nf_ct_deliver_cached_events(ct);
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1094 {
1095 	size_t i;
1096 
1097 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1098 		if (labels->ct_labels_32[i])
1099 			return true;
1100 
1101 	return false;
1102 }
1103 
1104 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1105 static struct hlist_head *ct_limit_hash_bucket(
1106 	const struct ovs_ct_limit_info *info, u16 zone)
1107 {
1108 	return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1109 }
1110 
1111 /* Call with ovs_mutex */
1112 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1113 			 struct ovs_ct_limit *new_ct_limit)
1114 {
1115 	struct ovs_ct_limit *ct_limit;
1116 	struct hlist_head *head;
1117 
1118 	head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1119 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1120 		if (ct_limit->zone == new_ct_limit->zone) {
1121 			hlist_replace_rcu(&ct_limit->hlist_node,
1122 					  &new_ct_limit->hlist_node);
1123 			kfree_rcu(ct_limit, rcu);
1124 			return;
1125 		}
1126 	}
1127 
1128 	hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1129 }
1130 
1131 /* Call with ovs_mutex */
1132 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1133 {
1134 	struct ovs_ct_limit *ct_limit;
1135 	struct hlist_head *head;
1136 	struct hlist_node *n;
1137 
1138 	head = ct_limit_hash_bucket(info, zone);
1139 	hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1140 		if (ct_limit->zone == zone) {
1141 			hlist_del_rcu(&ct_limit->hlist_node);
1142 			kfree_rcu(ct_limit, rcu);
1143 			return;
1144 		}
1145 	}
1146 }
1147 
1148 /* Call with RCU read lock */
1149 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1150 {
1151 	struct ovs_ct_limit *ct_limit;
1152 	struct hlist_head *head;
1153 
1154 	head = ct_limit_hash_bucket(info, zone);
1155 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1156 		if (ct_limit->zone == zone)
1157 			return ct_limit->limit;
1158 	}
1159 
1160 	return info->default_limit;
1161 }
1162 
1163 static int ovs_ct_check_limit(struct net *net,
1164 			      const struct ovs_conntrack_info *info,
1165 			      const struct nf_conntrack_tuple *tuple)
1166 {
1167 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1168 	const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1169 	u32 per_zone_limit, connections;
1170 	u32 conncount_key;
1171 
1172 	conncount_key = info->zone.id;
1173 
1174 	per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1175 	if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1176 		return 0;
1177 
1178 	connections = nf_conncount_count(net, ct_limit_info->data,
1179 					 &conncount_key, tuple, &info->zone);
1180 	if (connections > per_zone_limit)
1181 		return -ENOMEM;
1182 
1183 	return 0;
1184 }
1185 #endif
1186 
1187 /* Lookup connection and confirm if unconfirmed. */
1188 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1189 			 const struct ovs_conntrack_info *info,
1190 			 struct sk_buff *skb)
1191 {
1192 	enum ip_conntrack_info ctinfo;
1193 	struct nf_conn *ct;
1194 	int err;
1195 
1196 	err = __ovs_ct_lookup(net, key, info, skb);
1197 	if (err)
1198 		return err;
1199 
1200 	/* The connection could be invalid, in which case this is a no-op.*/
1201 	ct = nf_ct_get(skb, &ctinfo);
1202 	if (!ct)
1203 		return 0;
1204 
1205 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1206 	if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1207 		if (!nf_ct_is_confirmed(ct)) {
1208 			err = ovs_ct_check_limit(net, info,
1209 				&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1210 			if (err) {
1211 				net_warn_ratelimited("openvswitch: zone: %u "
1212 					"exceeds conntrack limit\n",
1213 					info->zone.id);
1214 				return err;
1215 			}
1216 		}
1217 	}
1218 #endif
1219 
1220 	/* Set the conntrack event mask if given.  NEW and DELETE events have
1221 	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1222 	 * typically would receive many kinds of updates.  Setting the event
1223 	 * mask allows those events to be filtered.  The set event mask will
1224 	 * remain in effect for the lifetime of the connection unless changed
1225 	 * by a further CT action with both the commit flag and the eventmask
1226 	 * option. */
1227 	if (info->have_eventmask) {
1228 		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1229 
1230 		if (cache)
1231 			cache->ctmask = info->eventmask;
1232 	}
1233 
1234 	/* Apply changes before confirming the connection so that the initial
1235 	 * conntrack NEW netlink event carries the values given in the CT
1236 	 * action.
1237 	 */
1238 	if (info->mark.mask) {
1239 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1240 				      info->mark.mask);
1241 		if (err)
1242 			return err;
1243 	}
1244 	if (!nf_ct_is_confirmed(ct)) {
1245 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1246 					 &info->labels.mask);
1247 		if (err)
1248 			return err;
1249 	} else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1250 		   labels_nonzero(&info->labels.mask)) {
1251 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1252 					&info->labels.mask);
1253 		if (err)
1254 			return err;
1255 	}
1256 	/* This will take care of sending queued events even if the connection
1257 	 * is already confirmed.
1258 	 */
1259 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1260 		return -EINVAL;
1261 
1262 	return 0;
1263 }
1264 
1265 /* Trim the skb to the length specified by the IP/IPv6 header,
1266  * removing any trailing lower-layer padding. This prepares the skb
1267  * for higher-layer processing that assumes skb->len excludes padding
1268  * (such as nf_ip_checksum). The caller needs to pull the skb to the
1269  * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1270  */
1271 static int ovs_skb_network_trim(struct sk_buff *skb)
1272 {
1273 	unsigned int len;
1274 	int err;
1275 
1276 	switch (skb->protocol) {
1277 	case htons(ETH_P_IP):
1278 		len = ntohs(ip_hdr(skb)->tot_len);
1279 		break;
1280 	case htons(ETH_P_IPV6):
1281 		len = sizeof(struct ipv6hdr)
1282 			+ ntohs(ipv6_hdr(skb)->payload_len);
1283 		break;
1284 	default:
1285 		len = skb->len;
1286 	}
1287 
1288 	err = pskb_trim_rcsum(skb, len);
1289 	if (err)
1290 		kfree_skb(skb);
1291 
1292 	return err;
1293 }
1294 
1295 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1296  * value if 'skb' is freed.
1297  */
1298 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1299 		   struct sw_flow_key *key,
1300 		   const struct ovs_conntrack_info *info)
1301 {
1302 	int nh_ofs;
1303 	int err;
1304 
1305 	/* The conntrack module expects to be working at L3. */
1306 	nh_ofs = skb_network_offset(skb);
1307 	skb_pull_rcsum(skb, nh_ofs);
1308 
1309 	err = ovs_skb_network_trim(skb);
1310 	if (err)
1311 		return err;
1312 
1313 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1314 		err = handle_fragments(net, key, info->zone.id, skb);
1315 		if (err)
1316 			return err;
1317 	}
1318 
1319 	if (info->commit)
1320 		err = ovs_ct_commit(net, key, info, skb);
1321 	else
1322 		err = ovs_ct_lookup(net, key, info, skb);
1323 
1324 	skb_push_rcsum(skb, nh_ofs);
1325 	if (err)
1326 		kfree_skb(skb);
1327 	return err;
1328 }
1329 
1330 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1331 {
1332 	if (skb_nfct(skb)) {
1333 		nf_conntrack_put(skb_nfct(skb));
1334 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1335 		ovs_ct_fill_key(skb, key, false);
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1342 			     const struct sw_flow_key *key, bool log)
1343 {
1344 	struct nf_conntrack_helper *helper;
1345 	struct nf_conn_help *help;
1346 	int ret = 0;
1347 
1348 	helper = nf_conntrack_helper_try_module_get(name, info->family,
1349 						    key->ip.proto);
1350 	if (!helper) {
1351 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1352 		return -EINVAL;
1353 	}
1354 
1355 	help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1356 	if (!help) {
1357 		nf_conntrack_helper_put(helper);
1358 		return -ENOMEM;
1359 	}
1360 
1361 #if IS_ENABLED(CONFIG_NF_NAT)
1362 	if (info->nat) {
1363 		ret = nf_nat_helper_try_module_get(name, info->family,
1364 						   key->ip.proto);
1365 		if (ret) {
1366 			nf_conntrack_helper_put(helper);
1367 			OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d",
1368 				  name, ret);
1369 			return ret;
1370 		}
1371 	}
1372 #endif
1373 	rcu_assign_pointer(help->helper, helper);
1374 	info->helper = helper;
1375 	return ret;
1376 }
1377 
1378 #if IS_ENABLED(CONFIG_NF_NAT)
1379 static int parse_nat(const struct nlattr *attr,
1380 		     struct ovs_conntrack_info *info, bool log)
1381 {
1382 	struct nlattr *a;
1383 	int rem;
1384 	bool have_ip_max = false;
1385 	bool have_proto_max = false;
1386 	bool ip_vers = (info->family == NFPROTO_IPV6);
1387 
1388 	nla_for_each_nested(a, attr, rem) {
1389 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1390 			[OVS_NAT_ATTR_SRC] = {0, 0},
1391 			[OVS_NAT_ATTR_DST] = {0, 0},
1392 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1393 						 sizeof(struct in6_addr)},
1394 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1395 						 sizeof(struct in6_addr)},
1396 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1397 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1398 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1399 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1400 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1401 		};
1402 		int type = nla_type(a);
1403 
1404 		if (type > OVS_NAT_ATTR_MAX) {
1405 			OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1406 				  type, OVS_NAT_ATTR_MAX);
1407 			return -EINVAL;
1408 		}
1409 
1410 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1411 			OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1412 				  type, nla_len(a),
1413 				  ovs_nat_attr_lens[type][ip_vers]);
1414 			return -EINVAL;
1415 		}
1416 
1417 		switch (type) {
1418 		case OVS_NAT_ATTR_SRC:
1419 		case OVS_NAT_ATTR_DST:
1420 			if (info->nat) {
1421 				OVS_NLERR(log, "Only one type of NAT may be specified");
1422 				return -ERANGE;
1423 			}
1424 			info->nat |= OVS_CT_NAT;
1425 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1426 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1427 			break;
1428 
1429 		case OVS_NAT_ATTR_IP_MIN:
1430 			nla_memcpy(&info->range.min_addr, a,
1431 				   sizeof(info->range.min_addr));
1432 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1433 			break;
1434 
1435 		case OVS_NAT_ATTR_IP_MAX:
1436 			have_ip_max = true;
1437 			nla_memcpy(&info->range.max_addr, a,
1438 				   sizeof(info->range.max_addr));
1439 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1440 			break;
1441 
1442 		case OVS_NAT_ATTR_PROTO_MIN:
1443 			info->range.min_proto.all = htons(nla_get_u16(a));
1444 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1445 			break;
1446 
1447 		case OVS_NAT_ATTR_PROTO_MAX:
1448 			have_proto_max = true;
1449 			info->range.max_proto.all = htons(nla_get_u16(a));
1450 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1451 			break;
1452 
1453 		case OVS_NAT_ATTR_PERSISTENT:
1454 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1455 			break;
1456 
1457 		case OVS_NAT_ATTR_PROTO_HASH:
1458 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1459 			break;
1460 
1461 		case OVS_NAT_ATTR_PROTO_RANDOM:
1462 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1463 			break;
1464 
1465 		default:
1466 			OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1467 			return -EINVAL;
1468 		}
1469 	}
1470 
1471 	if (rem > 0) {
1472 		OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1473 		return -EINVAL;
1474 	}
1475 	if (!info->nat) {
1476 		/* Do not allow flags if no type is given. */
1477 		if (info->range.flags) {
1478 			OVS_NLERR(log,
1479 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1480 				  );
1481 			return -EINVAL;
1482 		}
1483 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1484 	} else if (!info->commit) {
1485 		OVS_NLERR(log,
1486 			  "NAT attributes may be specified only when CT COMMIT flag is also specified."
1487 			  );
1488 		return -EINVAL;
1489 	}
1490 	/* Allow missing IP_MAX. */
1491 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1492 		memcpy(&info->range.max_addr, &info->range.min_addr,
1493 		       sizeof(info->range.max_addr));
1494 	}
1495 	/* Allow missing PROTO_MAX. */
1496 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1497 	    !have_proto_max) {
1498 		info->range.max_proto.all = info->range.min_proto.all;
1499 	}
1500 	return 0;
1501 }
1502 #endif
1503 
1504 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1505 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1506 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1507 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1508 				    .maxlen = sizeof(u16) },
1509 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1510 				    .maxlen = sizeof(struct md_mark) },
1511 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1512 				    .maxlen = sizeof(struct md_labels) },
1513 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1514 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1515 #if IS_ENABLED(CONFIG_NF_NAT)
1516 	/* NAT length is checked when parsing the nested attributes. */
1517 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1518 #endif
1519 	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1520 				    .maxlen = sizeof(u32) },
1521 	[OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1522 				  .maxlen = CTNL_TIMEOUT_NAME_MAX },
1523 };
1524 
1525 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1526 		    const char **helper, bool log)
1527 {
1528 	struct nlattr *a;
1529 	int rem;
1530 
1531 	nla_for_each_nested(a, attr, rem) {
1532 		int type = nla_type(a);
1533 		int maxlen;
1534 		int minlen;
1535 
1536 		if (type > OVS_CT_ATTR_MAX) {
1537 			OVS_NLERR(log,
1538 				  "Unknown conntrack attr (type=%d, max=%d)",
1539 				  type, OVS_CT_ATTR_MAX);
1540 			return -EINVAL;
1541 		}
1542 
1543 		maxlen = ovs_ct_attr_lens[type].maxlen;
1544 		minlen = ovs_ct_attr_lens[type].minlen;
1545 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1546 			OVS_NLERR(log,
1547 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1548 				  type, nla_len(a), maxlen);
1549 			return -EINVAL;
1550 		}
1551 
1552 		switch (type) {
1553 		case OVS_CT_ATTR_FORCE_COMMIT:
1554 			info->force = true;
1555 			fallthrough;
1556 		case OVS_CT_ATTR_COMMIT:
1557 			info->commit = true;
1558 			break;
1559 #ifdef CONFIG_NF_CONNTRACK_ZONES
1560 		case OVS_CT_ATTR_ZONE:
1561 			info->zone.id = nla_get_u16(a);
1562 			break;
1563 #endif
1564 #ifdef CONFIG_NF_CONNTRACK_MARK
1565 		case OVS_CT_ATTR_MARK: {
1566 			struct md_mark *mark = nla_data(a);
1567 
1568 			if (!mark->mask) {
1569 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1570 				return -EINVAL;
1571 			}
1572 			info->mark = *mark;
1573 			break;
1574 		}
1575 #endif
1576 #ifdef CONFIG_NF_CONNTRACK_LABELS
1577 		case OVS_CT_ATTR_LABELS: {
1578 			struct md_labels *labels = nla_data(a);
1579 
1580 			if (!labels_nonzero(&labels->mask)) {
1581 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1582 				return -EINVAL;
1583 			}
1584 			info->labels = *labels;
1585 			break;
1586 		}
1587 #endif
1588 		case OVS_CT_ATTR_HELPER:
1589 			*helper = nla_data(a);
1590 			if (!memchr(*helper, '\0', nla_len(a))) {
1591 				OVS_NLERR(log, "Invalid conntrack helper");
1592 				return -EINVAL;
1593 			}
1594 			break;
1595 #if IS_ENABLED(CONFIG_NF_NAT)
1596 		case OVS_CT_ATTR_NAT: {
1597 			int err = parse_nat(a, info, log);
1598 
1599 			if (err)
1600 				return err;
1601 			break;
1602 		}
1603 #endif
1604 		case OVS_CT_ATTR_EVENTMASK:
1605 			info->have_eventmask = true;
1606 			info->eventmask = nla_get_u32(a);
1607 			break;
1608 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1609 		case OVS_CT_ATTR_TIMEOUT:
1610 			memcpy(info->timeout, nla_data(a), nla_len(a));
1611 			if (!memchr(info->timeout, '\0', nla_len(a))) {
1612 				OVS_NLERR(log, "Invalid conntrack timeout");
1613 				return -EINVAL;
1614 			}
1615 			break;
1616 #endif
1617 
1618 		default:
1619 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1620 				  type);
1621 			return -EINVAL;
1622 		}
1623 	}
1624 
1625 #ifdef CONFIG_NF_CONNTRACK_MARK
1626 	if (!info->commit && info->mark.mask) {
1627 		OVS_NLERR(log,
1628 			  "Setting conntrack mark requires 'commit' flag.");
1629 		return -EINVAL;
1630 	}
1631 #endif
1632 #ifdef CONFIG_NF_CONNTRACK_LABELS
1633 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1634 		OVS_NLERR(log,
1635 			  "Setting conntrack labels requires 'commit' flag.");
1636 		return -EINVAL;
1637 	}
1638 #endif
1639 	if (rem > 0) {
1640 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1641 		return -EINVAL;
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1648 {
1649 	if (attr == OVS_KEY_ATTR_CT_STATE)
1650 		return true;
1651 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1652 	    attr == OVS_KEY_ATTR_CT_ZONE)
1653 		return true;
1654 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1655 	    attr == OVS_KEY_ATTR_CT_MARK)
1656 		return true;
1657 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1658 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1659 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1660 
1661 		return ovs_net->xt_label;
1662 	}
1663 
1664 	return false;
1665 }
1666 
1667 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1668 		       const struct sw_flow_key *key,
1669 		       struct sw_flow_actions **sfa,  bool log)
1670 {
1671 	struct ovs_conntrack_info ct_info;
1672 	const char *helper = NULL;
1673 	u16 family;
1674 	int err;
1675 
1676 	family = key_to_nfproto(key);
1677 	if (family == NFPROTO_UNSPEC) {
1678 		OVS_NLERR(log, "ct family unspecified");
1679 		return -EINVAL;
1680 	}
1681 
1682 	memset(&ct_info, 0, sizeof(ct_info));
1683 	ct_info.family = family;
1684 
1685 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1686 			NF_CT_DEFAULT_ZONE_DIR, 0);
1687 
1688 	err = parse_ct(attr, &ct_info, &helper, log);
1689 	if (err)
1690 		return err;
1691 
1692 	/* Set up template for tracking connections in specific zones. */
1693 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1694 	if (!ct_info.ct) {
1695 		OVS_NLERR(log, "Failed to allocate conntrack template");
1696 		return -ENOMEM;
1697 	}
1698 
1699 	if (ct_info.timeout[0]) {
1700 		if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1701 				      ct_info.timeout))
1702 			pr_info_ratelimited("Failed to associated timeout "
1703 					    "policy `%s'\n", ct_info.timeout);
1704 		else
1705 			ct_info.nf_ct_timeout = rcu_dereference(
1706 				nf_ct_timeout_find(ct_info.ct)->timeout);
1707 
1708 	}
1709 
1710 	if (helper) {
1711 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1712 		if (err)
1713 			goto err_free_ct;
1714 	}
1715 
1716 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1717 				 sizeof(ct_info), log);
1718 	if (err)
1719 		goto err_free_ct;
1720 
1721 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1722 	nf_conntrack_get(&ct_info.ct->ct_general);
1723 	return 0;
1724 err_free_ct:
1725 	__ovs_ct_free_action(&ct_info);
1726 	return err;
1727 }
1728 
1729 #if IS_ENABLED(CONFIG_NF_NAT)
1730 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1731 			       struct sk_buff *skb)
1732 {
1733 	struct nlattr *start;
1734 
1735 	start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1736 	if (!start)
1737 		return false;
1738 
1739 	if (info->nat & OVS_CT_SRC_NAT) {
1740 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1741 			return false;
1742 	} else if (info->nat & OVS_CT_DST_NAT) {
1743 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1744 			return false;
1745 	} else {
1746 		goto out;
1747 	}
1748 
1749 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1750 		if (IS_ENABLED(CONFIG_NF_NAT) &&
1751 		    info->family == NFPROTO_IPV4) {
1752 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1753 					    info->range.min_addr.ip) ||
1754 			    (info->range.max_addr.ip
1755 			     != info->range.min_addr.ip &&
1756 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1757 					      info->range.max_addr.ip))))
1758 				return false;
1759 		} else if (IS_ENABLED(CONFIG_IPV6) &&
1760 			   info->family == NFPROTO_IPV6) {
1761 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1762 					     &info->range.min_addr.in6) ||
1763 			    (memcmp(&info->range.max_addr.in6,
1764 				    &info->range.min_addr.in6,
1765 				    sizeof(info->range.max_addr.in6)) &&
1766 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1767 					       &info->range.max_addr.in6))))
1768 				return false;
1769 		} else {
1770 			return false;
1771 		}
1772 	}
1773 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1774 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1775 			 ntohs(info->range.min_proto.all)) ||
1776 	     (info->range.max_proto.all != info->range.min_proto.all &&
1777 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1778 			  ntohs(info->range.max_proto.all)))))
1779 		return false;
1780 
1781 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1782 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1783 		return false;
1784 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1785 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1786 		return false;
1787 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1788 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1789 		return false;
1790 out:
1791 	nla_nest_end(skb, start);
1792 
1793 	return true;
1794 }
1795 #endif
1796 
1797 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1798 			  struct sk_buff *skb)
1799 {
1800 	struct nlattr *start;
1801 
1802 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1803 	if (!start)
1804 		return -EMSGSIZE;
1805 
1806 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1807 					    ? OVS_CT_ATTR_FORCE_COMMIT
1808 					    : OVS_CT_ATTR_COMMIT))
1809 		return -EMSGSIZE;
1810 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1811 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1812 		return -EMSGSIZE;
1813 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1814 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1815 		    &ct_info->mark))
1816 		return -EMSGSIZE;
1817 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1818 	    labels_nonzero(&ct_info->labels.mask) &&
1819 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1820 		    &ct_info->labels))
1821 		return -EMSGSIZE;
1822 	if (ct_info->helper) {
1823 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1824 				   ct_info->helper->name))
1825 			return -EMSGSIZE;
1826 	}
1827 	if (ct_info->have_eventmask &&
1828 	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1829 		return -EMSGSIZE;
1830 	if (ct_info->timeout[0]) {
1831 		if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1832 			return -EMSGSIZE;
1833 	}
1834 
1835 #if IS_ENABLED(CONFIG_NF_NAT)
1836 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1837 		return -EMSGSIZE;
1838 #endif
1839 	nla_nest_end(skb, start);
1840 
1841 	return 0;
1842 }
1843 
1844 void ovs_ct_free_action(const struct nlattr *a)
1845 {
1846 	struct ovs_conntrack_info *ct_info = nla_data(a);
1847 
1848 	__ovs_ct_free_action(ct_info);
1849 }
1850 
1851 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1852 {
1853 	if (ct_info->helper) {
1854 #if IS_ENABLED(CONFIG_NF_NAT)
1855 		if (ct_info->nat)
1856 			nf_nat_helper_put(ct_info->helper);
1857 #endif
1858 		nf_conntrack_helper_put(ct_info->helper);
1859 	}
1860 	if (ct_info->ct) {
1861 		if (ct_info->timeout[0])
1862 			nf_ct_destroy_timeout(ct_info->ct);
1863 		nf_ct_tmpl_free(ct_info->ct);
1864 	}
1865 }
1866 
1867 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1868 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1869 {
1870 	int i, err;
1871 
1872 	ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1873 					 GFP_KERNEL);
1874 	if (!ovs_net->ct_limit_info)
1875 		return -ENOMEM;
1876 
1877 	ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1878 	ovs_net->ct_limit_info->limits =
1879 		kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1880 			      GFP_KERNEL);
1881 	if (!ovs_net->ct_limit_info->limits) {
1882 		kfree(ovs_net->ct_limit_info);
1883 		return -ENOMEM;
1884 	}
1885 
1886 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1887 		INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1888 
1889 	ovs_net->ct_limit_info->data =
1890 		nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1891 
1892 	if (IS_ERR(ovs_net->ct_limit_info->data)) {
1893 		err = PTR_ERR(ovs_net->ct_limit_info->data);
1894 		kfree(ovs_net->ct_limit_info->limits);
1895 		kfree(ovs_net->ct_limit_info);
1896 		pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1897 		return err;
1898 	}
1899 	return 0;
1900 }
1901 
1902 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1903 {
1904 	const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1905 	int i;
1906 
1907 	nf_conncount_destroy(net, NFPROTO_INET, info->data);
1908 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1909 		struct hlist_head *head = &info->limits[i];
1910 		struct ovs_ct_limit *ct_limit;
1911 
1912 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node,
1913 					 lockdep_ovsl_is_held())
1914 			kfree_rcu(ct_limit, rcu);
1915 	}
1916 	kfree(info->limits);
1917 	kfree(info);
1918 }
1919 
1920 static struct sk_buff *
1921 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1922 			     struct ovs_header **ovs_reply_header)
1923 {
1924 	struct ovs_header *ovs_header = info->userhdr;
1925 	struct sk_buff *skb;
1926 
1927 	skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1928 	if (!skb)
1929 		return ERR_PTR(-ENOMEM);
1930 
1931 	*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1932 					info->snd_seq,
1933 					&dp_ct_limit_genl_family, 0, cmd);
1934 
1935 	if (!*ovs_reply_header) {
1936 		nlmsg_free(skb);
1937 		return ERR_PTR(-EMSGSIZE);
1938 	}
1939 	(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1940 
1941 	return skb;
1942 }
1943 
1944 static bool check_zone_id(int zone_id, u16 *pzone)
1945 {
1946 	if (zone_id >= 0 && zone_id <= 65535) {
1947 		*pzone = (u16)zone_id;
1948 		return true;
1949 	}
1950 	return false;
1951 }
1952 
1953 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1954 				       struct ovs_ct_limit_info *info)
1955 {
1956 	struct ovs_zone_limit *zone_limit;
1957 	int rem;
1958 	u16 zone;
1959 
1960 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1961 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1962 
1963 	while (rem >= sizeof(*zone_limit)) {
1964 		if (unlikely(zone_limit->zone_id ==
1965 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1966 			ovs_lock();
1967 			info->default_limit = zone_limit->limit;
1968 			ovs_unlock();
1969 		} else if (unlikely(!check_zone_id(
1970 				zone_limit->zone_id, &zone))) {
1971 			OVS_NLERR(true, "zone id is out of range");
1972 		} else {
1973 			struct ovs_ct_limit *ct_limit;
1974 
1975 			ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1976 			if (!ct_limit)
1977 				return -ENOMEM;
1978 
1979 			ct_limit->zone = zone;
1980 			ct_limit->limit = zone_limit->limit;
1981 
1982 			ovs_lock();
1983 			ct_limit_set(info, ct_limit);
1984 			ovs_unlock();
1985 		}
1986 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1987 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1988 				NLA_ALIGN(sizeof(*zone_limit)));
1989 	}
1990 
1991 	if (rem)
1992 		OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1993 
1994 	return 0;
1995 }
1996 
1997 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1998 				       struct ovs_ct_limit_info *info)
1999 {
2000 	struct ovs_zone_limit *zone_limit;
2001 	int rem;
2002 	u16 zone;
2003 
2004 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
2005 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2006 
2007 	while (rem >= sizeof(*zone_limit)) {
2008 		if (unlikely(zone_limit->zone_id ==
2009 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2010 			ovs_lock();
2011 			info->default_limit = OVS_CT_LIMIT_DEFAULT;
2012 			ovs_unlock();
2013 		} else if (unlikely(!check_zone_id(
2014 				zone_limit->zone_id, &zone))) {
2015 			OVS_NLERR(true, "zone id is out of range");
2016 		} else {
2017 			ovs_lock();
2018 			ct_limit_del(info, zone);
2019 			ovs_unlock();
2020 		}
2021 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2022 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2023 				NLA_ALIGN(sizeof(*zone_limit)));
2024 	}
2025 
2026 	if (rem)
2027 		OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
2028 
2029 	return 0;
2030 }
2031 
2032 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
2033 					  struct sk_buff *reply)
2034 {
2035 	struct ovs_zone_limit zone_limit = {
2036 		.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE,
2037 		.limit   = info->default_limit,
2038 	};
2039 
2040 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2041 }
2042 
2043 static int __ovs_ct_limit_get_zone_limit(struct net *net,
2044 					 struct nf_conncount_data *data,
2045 					 u16 zone_id, u32 limit,
2046 					 struct sk_buff *reply)
2047 {
2048 	struct nf_conntrack_zone ct_zone;
2049 	struct ovs_zone_limit zone_limit;
2050 	u32 conncount_key = zone_id;
2051 
2052 	zone_limit.zone_id = zone_id;
2053 	zone_limit.limit = limit;
2054 	nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
2055 
2056 	zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
2057 					      &ct_zone);
2058 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2059 }
2060 
2061 static int ovs_ct_limit_get_zone_limit(struct net *net,
2062 				       struct nlattr *nla_zone_limit,
2063 				       struct ovs_ct_limit_info *info,
2064 				       struct sk_buff *reply)
2065 {
2066 	struct ovs_zone_limit *zone_limit;
2067 	int rem, err;
2068 	u32 limit;
2069 	u16 zone;
2070 
2071 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
2072 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2073 
2074 	while (rem >= sizeof(*zone_limit)) {
2075 		if (unlikely(zone_limit->zone_id ==
2076 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2077 			err = ovs_ct_limit_get_default_limit(info, reply);
2078 			if (err)
2079 				return err;
2080 		} else if (unlikely(!check_zone_id(zone_limit->zone_id,
2081 							&zone))) {
2082 			OVS_NLERR(true, "zone id is out of range");
2083 		} else {
2084 			rcu_read_lock();
2085 			limit = ct_limit_get(info, zone);
2086 			rcu_read_unlock();
2087 
2088 			err = __ovs_ct_limit_get_zone_limit(
2089 				net, info->data, zone, limit, reply);
2090 			if (err)
2091 				return err;
2092 		}
2093 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2094 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2095 				NLA_ALIGN(sizeof(*zone_limit)));
2096 	}
2097 
2098 	if (rem)
2099 		OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2100 
2101 	return 0;
2102 }
2103 
2104 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2105 					   struct ovs_ct_limit_info *info,
2106 					   struct sk_buff *reply)
2107 {
2108 	struct ovs_ct_limit *ct_limit;
2109 	struct hlist_head *head;
2110 	int i, err = 0;
2111 
2112 	err = ovs_ct_limit_get_default_limit(info, reply);
2113 	if (err)
2114 		return err;
2115 
2116 	rcu_read_lock();
2117 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2118 		head = &info->limits[i];
2119 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2120 			err = __ovs_ct_limit_get_zone_limit(net, info->data,
2121 				ct_limit->zone, ct_limit->limit, reply);
2122 			if (err)
2123 				goto exit_err;
2124 		}
2125 	}
2126 
2127 exit_err:
2128 	rcu_read_unlock();
2129 	return err;
2130 }
2131 
2132 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2133 {
2134 	struct nlattr **a = info->attrs;
2135 	struct sk_buff *reply;
2136 	struct ovs_header *ovs_reply_header;
2137 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2138 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2139 	int err;
2140 
2141 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2142 					     &ovs_reply_header);
2143 	if (IS_ERR(reply))
2144 		return PTR_ERR(reply);
2145 
2146 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2147 		err = -EINVAL;
2148 		goto exit_err;
2149 	}
2150 
2151 	err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2152 					  ct_limit_info);
2153 	if (err)
2154 		goto exit_err;
2155 
2156 	static_branch_enable(&ovs_ct_limit_enabled);
2157 
2158 	genlmsg_end(reply, ovs_reply_header);
2159 	return genlmsg_reply(reply, info);
2160 
2161 exit_err:
2162 	nlmsg_free(reply);
2163 	return err;
2164 }
2165 
2166 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2167 {
2168 	struct nlattr **a = info->attrs;
2169 	struct sk_buff *reply;
2170 	struct ovs_header *ovs_reply_header;
2171 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2172 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2173 	int err;
2174 
2175 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2176 					     &ovs_reply_header);
2177 	if (IS_ERR(reply))
2178 		return PTR_ERR(reply);
2179 
2180 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2181 		err = -EINVAL;
2182 		goto exit_err;
2183 	}
2184 
2185 	err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2186 					  ct_limit_info);
2187 	if (err)
2188 		goto exit_err;
2189 
2190 	genlmsg_end(reply, ovs_reply_header);
2191 	return genlmsg_reply(reply, info);
2192 
2193 exit_err:
2194 	nlmsg_free(reply);
2195 	return err;
2196 }
2197 
2198 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2199 {
2200 	struct nlattr **a = info->attrs;
2201 	struct nlattr *nla_reply;
2202 	struct sk_buff *reply;
2203 	struct ovs_header *ovs_reply_header;
2204 	struct net *net = sock_net(skb->sk);
2205 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2206 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2207 	int err;
2208 
2209 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2210 					     &ovs_reply_header);
2211 	if (IS_ERR(reply))
2212 		return PTR_ERR(reply);
2213 
2214 	nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2215 	if (!nla_reply) {
2216 		err = -EMSGSIZE;
2217 		goto exit_err;
2218 	}
2219 
2220 	if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2221 		err = ovs_ct_limit_get_zone_limit(
2222 			net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2223 			reply);
2224 		if (err)
2225 			goto exit_err;
2226 	} else {
2227 		err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2228 						      reply);
2229 		if (err)
2230 			goto exit_err;
2231 	}
2232 
2233 	nla_nest_end(reply, nla_reply);
2234 	genlmsg_end(reply, ovs_reply_header);
2235 	return genlmsg_reply(reply, info);
2236 
2237 exit_err:
2238 	nlmsg_free(reply);
2239 	return err;
2240 }
2241 
2242 static const struct genl_small_ops ct_limit_genl_ops[] = {
2243 	{ .cmd = OVS_CT_LIMIT_CMD_SET,
2244 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2245 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2246 					   * privilege. */
2247 		.doit = ovs_ct_limit_cmd_set,
2248 	},
2249 	{ .cmd = OVS_CT_LIMIT_CMD_DEL,
2250 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2251 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2252 					   * privilege. */
2253 		.doit = ovs_ct_limit_cmd_del,
2254 	},
2255 	{ .cmd = OVS_CT_LIMIT_CMD_GET,
2256 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2257 		.flags = 0,		  /* OK for unprivileged users. */
2258 		.doit = ovs_ct_limit_cmd_get,
2259 	},
2260 };
2261 
2262 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2263 	.name = OVS_CT_LIMIT_MCGROUP,
2264 };
2265 
2266 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2267 	.hdrsize = sizeof(struct ovs_header),
2268 	.name = OVS_CT_LIMIT_FAMILY,
2269 	.version = OVS_CT_LIMIT_VERSION,
2270 	.maxattr = OVS_CT_LIMIT_ATTR_MAX,
2271 	.policy = ct_limit_policy,
2272 	.netnsok = true,
2273 	.parallel_ops = true,
2274 	.small_ops = ct_limit_genl_ops,
2275 	.n_small_ops = ARRAY_SIZE(ct_limit_genl_ops),
2276 	.mcgrps = &ovs_ct_limit_multicast_group,
2277 	.n_mcgrps = 1,
2278 	.module = THIS_MODULE,
2279 };
2280 #endif
2281 
2282 int ovs_ct_init(struct net *net)
2283 {
2284 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2285 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2286 
2287 	if (nf_connlabels_get(net, n_bits - 1)) {
2288 		ovs_net->xt_label = false;
2289 		OVS_NLERR(true, "Failed to set connlabel length");
2290 	} else {
2291 		ovs_net->xt_label = true;
2292 	}
2293 
2294 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2295 	return ovs_ct_limit_init(net, ovs_net);
2296 #else
2297 	return 0;
2298 #endif
2299 }
2300 
2301 void ovs_ct_exit(struct net *net)
2302 {
2303 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2304 
2305 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2306 	ovs_ct_limit_exit(net, ovs_net);
2307 #endif
2308 
2309 	if (ovs_net->xt_label)
2310 		nf_connlabels_put(net);
2311 }
2312