xref: /openbmc/linux/net/openvswitch/conntrack.c (revision bcb84fb4)
1 /*
2  * Copyright (c) 2015 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <net/ip.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_labels.h>
23 #include <net/netfilter/nf_conntrack_seqadj.h>
24 #include <net/netfilter/nf_conntrack_zones.h>
25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26 
27 #ifdef CONFIG_NF_NAT_NEEDED
28 #include <linux/netfilter/nf_nat.h>
29 #include <net/netfilter/nf_nat_core.h>
30 #include <net/netfilter/nf_nat_l3proto.h>
31 #endif
32 
33 #include "datapath.h"
34 #include "conntrack.h"
35 #include "flow.h"
36 #include "flow_netlink.h"
37 
38 struct ovs_ct_len_tbl {
39 	int maxlen;
40 	int minlen;
41 };
42 
43 /* Metadata mark for masked write to conntrack mark */
44 struct md_mark {
45 	u32 value;
46 	u32 mask;
47 };
48 
49 /* Metadata label for masked write to conntrack label. */
50 struct md_labels {
51 	struct ovs_key_ct_labels value;
52 	struct ovs_key_ct_labels mask;
53 };
54 
55 enum ovs_ct_nat {
56 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
57 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59 };
60 
61 /* Conntrack action context for execution. */
62 struct ovs_conntrack_info {
63 	struct nf_conntrack_helper *helper;
64 	struct nf_conntrack_zone zone;
65 	struct nf_conn *ct;
66 	u8 commit : 1;
67 	u8 nat : 3;                 /* enum ovs_ct_nat */
68 	u8 force : 1;
69 	u16 family;
70 	struct md_mark mark;
71 	struct md_labels labels;
72 #ifdef CONFIG_NF_NAT_NEEDED
73 	struct nf_nat_range range;  /* Only present for SRC NAT and DST NAT. */
74 #endif
75 };
76 
77 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
78 
79 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
80 
81 static u16 key_to_nfproto(const struct sw_flow_key *key)
82 {
83 	switch (ntohs(key->eth.type)) {
84 	case ETH_P_IP:
85 		return NFPROTO_IPV4;
86 	case ETH_P_IPV6:
87 		return NFPROTO_IPV6;
88 	default:
89 		return NFPROTO_UNSPEC;
90 	}
91 }
92 
93 /* Map SKB connection state into the values used by flow definition. */
94 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
95 {
96 	u8 ct_state = OVS_CS_F_TRACKED;
97 
98 	switch (ctinfo) {
99 	case IP_CT_ESTABLISHED_REPLY:
100 	case IP_CT_RELATED_REPLY:
101 		ct_state |= OVS_CS_F_REPLY_DIR;
102 		break;
103 	default:
104 		break;
105 	}
106 
107 	switch (ctinfo) {
108 	case IP_CT_ESTABLISHED:
109 	case IP_CT_ESTABLISHED_REPLY:
110 		ct_state |= OVS_CS_F_ESTABLISHED;
111 		break;
112 	case IP_CT_RELATED:
113 	case IP_CT_RELATED_REPLY:
114 		ct_state |= OVS_CS_F_RELATED;
115 		break;
116 	case IP_CT_NEW:
117 		ct_state |= OVS_CS_F_NEW;
118 		break;
119 	default:
120 		break;
121 	}
122 
123 	return ct_state;
124 }
125 
126 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
127 {
128 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
129 	return ct ? ct->mark : 0;
130 #else
131 	return 0;
132 #endif
133 }
134 
135 /* Guard against conntrack labels max size shrinking below 128 bits. */
136 #if NF_CT_LABELS_MAX_SIZE < 16
137 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
138 #endif
139 
140 static void ovs_ct_get_labels(const struct nf_conn *ct,
141 			      struct ovs_key_ct_labels *labels)
142 {
143 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
144 
145 	if (cl)
146 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
147 	else
148 		memset(labels, 0, OVS_CT_LABELS_LEN);
149 }
150 
151 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
152 					const struct nf_conntrack_tuple *orig,
153 					u8 icmp_proto)
154 {
155 	key->ct_orig_proto = orig->dst.protonum;
156 	if (orig->dst.protonum == icmp_proto) {
157 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
158 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
159 	} else {
160 		key->ct.orig_tp.src = orig->src.u.all;
161 		key->ct.orig_tp.dst = orig->dst.u.all;
162 	}
163 }
164 
165 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
166 				const struct nf_conntrack_zone *zone,
167 				const struct nf_conn *ct)
168 {
169 	key->ct_state = state;
170 	key->ct_zone = zone->id;
171 	key->ct.mark = ovs_ct_get_mark(ct);
172 	ovs_ct_get_labels(ct, &key->ct.labels);
173 
174 	if (ct) {
175 		const struct nf_conntrack_tuple *orig;
176 
177 		/* Use the master if we have one. */
178 		if (ct->master)
179 			ct = ct->master;
180 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
181 
182 		/* IP version must match with the master connection. */
183 		if (key->eth.type == htons(ETH_P_IP) &&
184 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
185 			key->ipv4.ct_orig.src = orig->src.u3.ip;
186 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
187 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
188 			return;
189 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
190 			   !sw_flow_key_is_nd(key) &&
191 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
192 			key->ipv6.ct_orig.src = orig->src.u3.in6;
193 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
194 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
195 			return;
196 		}
197 	}
198 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
199 	 * original direction key fields.
200 	 */
201 	key->ct_orig_proto = 0;
202 }
203 
204 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
205  * previously sent the packet to conntrack via the ct action.  If
206  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
207  * initialized from the connection status.
208  */
209 static void ovs_ct_update_key(const struct sk_buff *skb,
210 			      const struct ovs_conntrack_info *info,
211 			      struct sw_flow_key *key, bool post_ct,
212 			      bool keep_nat_flags)
213 {
214 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
215 	enum ip_conntrack_info ctinfo;
216 	struct nf_conn *ct;
217 	u8 state = 0;
218 
219 	ct = nf_ct_get(skb, &ctinfo);
220 	if (ct) {
221 		state = ovs_ct_get_state(ctinfo);
222 		/* All unconfirmed entries are NEW connections. */
223 		if (!nf_ct_is_confirmed(ct))
224 			state |= OVS_CS_F_NEW;
225 		/* OVS persists the related flag for the duration of the
226 		 * connection.
227 		 */
228 		if (ct->master)
229 			state |= OVS_CS_F_RELATED;
230 		if (keep_nat_flags) {
231 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
232 		} else {
233 			if (ct->status & IPS_SRC_NAT)
234 				state |= OVS_CS_F_SRC_NAT;
235 			if (ct->status & IPS_DST_NAT)
236 				state |= OVS_CS_F_DST_NAT;
237 		}
238 		zone = nf_ct_zone(ct);
239 	} else if (post_ct) {
240 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
241 		if (info)
242 			zone = &info->zone;
243 	}
244 	__ovs_ct_update_key(key, state, zone, ct);
245 }
246 
247 /* This is called to initialize CT key fields possibly coming in from the local
248  * stack.
249  */
250 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
251 {
252 	ovs_ct_update_key(skb, NULL, key, false, false);
253 }
254 
255 #define IN6_ADDR_INITIALIZER(ADDR) \
256 	{ (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
257 	  (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
258 
259 int ovs_ct_put_key(const struct sw_flow_key *swkey,
260 		   const struct sw_flow_key *output, struct sk_buff *skb)
261 {
262 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
263 		return -EMSGSIZE;
264 
265 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
266 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
267 		return -EMSGSIZE;
268 
269 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
270 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
271 		return -EMSGSIZE;
272 
273 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
274 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
275 		    &output->ct.labels))
276 		return -EMSGSIZE;
277 
278 	if (swkey->ct_orig_proto) {
279 		if (swkey->eth.type == htons(ETH_P_IP)) {
280 			struct ovs_key_ct_tuple_ipv4 orig = {
281 				output->ipv4.ct_orig.src,
282 				output->ipv4.ct_orig.dst,
283 				output->ct.orig_tp.src,
284 				output->ct.orig_tp.dst,
285 				output->ct_orig_proto,
286 			};
287 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
288 				    sizeof(orig), &orig))
289 				return -EMSGSIZE;
290 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
291 			struct ovs_key_ct_tuple_ipv6 orig = {
292 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
293 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
294 				output->ct.orig_tp.src,
295 				output->ct.orig_tp.dst,
296 				output->ct_orig_proto,
297 			};
298 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
299 				    sizeof(orig), &orig))
300 				return -EMSGSIZE;
301 		}
302 	}
303 
304 	return 0;
305 }
306 
307 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
308 			   u32 ct_mark, u32 mask)
309 {
310 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
311 	u32 new_mark;
312 
313 	new_mark = ct_mark | (ct->mark & ~(mask));
314 	if (ct->mark != new_mark) {
315 		ct->mark = new_mark;
316 		if (nf_ct_is_confirmed(ct))
317 			nf_conntrack_event_cache(IPCT_MARK, ct);
318 		key->ct.mark = new_mark;
319 	}
320 
321 	return 0;
322 #else
323 	return -ENOTSUPP;
324 #endif
325 }
326 
327 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
328 {
329 	struct nf_conn_labels *cl;
330 
331 	cl = nf_ct_labels_find(ct);
332 	if (!cl) {
333 		nf_ct_labels_ext_add(ct);
334 		cl = nf_ct_labels_find(ct);
335 	}
336 
337 	return cl;
338 }
339 
340 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
341  * since the new connection is not yet confirmed, and thus no-one else has
342  * access to it's labels, we simply write them over.
343  */
344 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
345 			      const struct ovs_key_ct_labels *labels,
346 			      const struct ovs_key_ct_labels *mask)
347 {
348 	struct nf_conn_labels *cl, *master_cl;
349 	bool have_mask = labels_nonzero(mask);
350 
351 	/* Inherit master's labels to the related connection? */
352 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
353 
354 	if (!master_cl && !have_mask)
355 		return 0;   /* Nothing to do. */
356 
357 	cl = ovs_ct_get_conn_labels(ct);
358 	if (!cl)
359 		return -ENOSPC;
360 
361 	/* Inherit the master's labels, if any. */
362 	if (master_cl)
363 		*cl = *master_cl;
364 
365 	if (have_mask) {
366 		u32 *dst = (u32 *)cl->bits;
367 		int i;
368 
369 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
370 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
371 				(labels->ct_labels_32[i]
372 				 & mask->ct_labels_32[i]);
373 	}
374 
375 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
376 	 * IPCT_LABEL bit it set in the event cache.
377 	 */
378 	nf_conntrack_event_cache(IPCT_LABEL, ct);
379 
380 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
381 
382 	return 0;
383 }
384 
385 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
386 			     const struct ovs_key_ct_labels *labels,
387 			     const struct ovs_key_ct_labels *mask)
388 {
389 	struct nf_conn_labels *cl;
390 	int err;
391 
392 	cl = ovs_ct_get_conn_labels(ct);
393 	if (!cl)
394 		return -ENOSPC;
395 
396 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
397 				    mask->ct_labels_32,
398 				    OVS_CT_LABELS_LEN_32);
399 	if (err)
400 		return err;
401 
402 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
403 
404 	return 0;
405 }
406 
407 /* 'skb' should already be pulled to nh_ofs. */
408 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
409 {
410 	const struct nf_conntrack_helper *helper;
411 	const struct nf_conn_help *help;
412 	enum ip_conntrack_info ctinfo;
413 	unsigned int protoff;
414 	struct nf_conn *ct;
415 	int err;
416 
417 	ct = nf_ct_get(skb, &ctinfo);
418 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
419 		return NF_ACCEPT;
420 
421 	help = nfct_help(ct);
422 	if (!help)
423 		return NF_ACCEPT;
424 
425 	helper = rcu_dereference(help->helper);
426 	if (!helper)
427 		return NF_ACCEPT;
428 
429 	switch (proto) {
430 	case NFPROTO_IPV4:
431 		protoff = ip_hdrlen(skb);
432 		break;
433 	case NFPROTO_IPV6: {
434 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
435 		__be16 frag_off;
436 		int ofs;
437 
438 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
439 				       &frag_off);
440 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
441 			pr_debug("proto header not found\n");
442 			return NF_ACCEPT;
443 		}
444 		protoff = ofs;
445 		break;
446 	}
447 	default:
448 		WARN_ONCE(1, "helper invoked on non-IP family!");
449 		return NF_DROP;
450 	}
451 
452 	err = helper->help(skb, protoff, ct, ctinfo);
453 	if (err != NF_ACCEPT)
454 		return err;
455 
456 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
457 	 * FTP with NAT) adusting the TCP payload size when mangling IP
458 	 * addresses and/or port numbers in the text-based control connection.
459 	 */
460 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
461 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
462 		return NF_DROP;
463 	return NF_ACCEPT;
464 }
465 
466 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
467  * value if 'skb' is freed.
468  */
469 static int handle_fragments(struct net *net, struct sw_flow_key *key,
470 			    u16 zone, struct sk_buff *skb)
471 {
472 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
473 	int err;
474 
475 	if (key->eth.type == htons(ETH_P_IP)) {
476 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
477 
478 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
479 		err = ip_defrag(net, skb, user);
480 		if (err)
481 			return err;
482 
483 		ovs_cb.mru = IPCB(skb)->frag_max_size;
484 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
485 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
486 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
487 
488 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
489 		err = nf_ct_frag6_gather(net, skb, user);
490 		if (err) {
491 			if (err != -EINPROGRESS)
492 				kfree_skb(skb);
493 			return err;
494 		}
495 
496 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
497 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
498 #endif
499 	} else {
500 		kfree_skb(skb);
501 		return -EPFNOSUPPORT;
502 	}
503 
504 	key->ip.frag = OVS_FRAG_TYPE_NONE;
505 	skb_clear_hash(skb);
506 	skb->ignore_df = 1;
507 	*OVS_CB(skb) = ovs_cb;
508 
509 	return 0;
510 }
511 
512 static struct nf_conntrack_expect *
513 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
514 		   u16 proto, const struct sk_buff *skb)
515 {
516 	struct nf_conntrack_tuple tuple;
517 
518 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
519 		return NULL;
520 	return __nf_ct_expect_find(net, zone, &tuple);
521 }
522 
523 /* This replicates logic from nf_conntrack_core.c that is not exported. */
524 static enum ip_conntrack_info
525 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
526 {
527 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
528 
529 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
530 		return IP_CT_ESTABLISHED_REPLY;
531 	/* Once we've had two way comms, always ESTABLISHED. */
532 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
533 		return IP_CT_ESTABLISHED;
534 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
535 		return IP_CT_RELATED;
536 	return IP_CT_NEW;
537 }
538 
539 /* Find an existing connection which this packet belongs to without
540  * re-attributing statistics or modifying the connection state.  This allows an
541  * skb->_nfct lost due to an upcall to be recovered during actions execution.
542  *
543  * Must be called with rcu_read_lock.
544  *
545  * On success, populates skb->_nfct and returns the connection.  Returns NULL
546  * if there is no existing entry.
547  */
548 static struct nf_conn *
549 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
550 		     u8 l3num, struct sk_buff *skb, bool natted)
551 {
552 	struct nf_conntrack_l3proto *l3proto;
553 	struct nf_conntrack_l4proto *l4proto;
554 	struct nf_conntrack_tuple tuple;
555 	struct nf_conntrack_tuple_hash *h;
556 	struct nf_conn *ct;
557 	unsigned int dataoff;
558 	u8 protonum;
559 
560 	l3proto = __nf_ct_l3proto_find(l3num);
561 	if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
562 				 &protonum) <= 0) {
563 		pr_debug("ovs_ct_find_existing: Can't get protonum\n");
564 		return NULL;
565 	}
566 	l4proto = __nf_ct_l4proto_find(l3num, protonum);
567 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
568 			     protonum, net, &tuple, l3proto, l4proto)) {
569 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
570 		return NULL;
571 	}
572 
573 	/* Must invert the tuple if skb has been transformed by NAT. */
574 	if (natted) {
575 		struct nf_conntrack_tuple inverse;
576 
577 		if (!nf_ct_invert_tuple(&inverse, &tuple, l3proto, l4proto)) {
578 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
579 			return NULL;
580 		}
581 		tuple = inverse;
582 	}
583 
584 	/* look for tuple match */
585 	h = nf_conntrack_find_get(net, zone, &tuple);
586 	if (!h)
587 		return NULL;   /* Not found. */
588 
589 	ct = nf_ct_tuplehash_to_ctrack(h);
590 
591 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
592 	 * select the other tuplehash to get the right 'ctinfo' bits for this
593 	 * packet.
594 	 */
595 	if (natted)
596 		h = &ct->tuplehash[!h->tuple.dst.dir];
597 
598 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
599 	return ct;
600 }
601 
602 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
603 static bool skb_nfct_cached(struct net *net,
604 			    const struct sw_flow_key *key,
605 			    const struct ovs_conntrack_info *info,
606 			    struct sk_buff *skb)
607 {
608 	enum ip_conntrack_info ctinfo;
609 	struct nf_conn *ct;
610 
611 	ct = nf_ct_get(skb, &ctinfo);
612 	/* If no ct, check if we have evidence that an existing conntrack entry
613 	 * might be found for this skb.  This happens when we lose a skb->_nfct
614 	 * due to an upcall.  If the connection was not confirmed, it is not
615 	 * cached and needs to be run through conntrack again.
616 	 */
617 	if (!ct && key->ct_state & OVS_CS_F_TRACKED &&
618 	    !(key->ct_state & OVS_CS_F_INVALID) &&
619 	    key->ct_zone == info->zone.id) {
620 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
621 					  !!(key->ct_state
622 					     & OVS_CS_F_NAT_MASK));
623 		if (ct)
624 			nf_ct_get(skb, &ctinfo);
625 	}
626 	if (!ct)
627 		return false;
628 	if (!net_eq(net, read_pnet(&ct->ct_net)))
629 		return false;
630 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
631 		return false;
632 	if (info->helper) {
633 		struct nf_conn_help *help;
634 
635 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
636 		if (help && rcu_access_pointer(help->helper) != info->helper)
637 			return false;
638 	}
639 	/* Force conntrack entry direction to the current packet? */
640 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
641 		/* Delete the conntrack entry if confirmed, else just release
642 		 * the reference.
643 		 */
644 		if (nf_ct_is_confirmed(ct))
645 			nf_ct_delete(ct, 0, 0);
646 		else
647 			nf_conntrack_put(&ct->ct_general);
648 		nf_ct_set(skb, NULL, 0);
649 		return false;
650 	}
651 
652 	return true;
653 }
654 
655 #ifdef CONFIG_NF_NAT_NEEDED
656 /* Modelled after nf_nat_ipv[46]_fn().
657  * range is only used for new, uninitialized NAT state.
658  * Returns either NF_ACCEPT or NF_DROP.
659  */
660 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
661 			      enum ip_conntrack_info ctinfo,
662 			      const struct nf_nat_range *range,
663 			      enum nf_nat_manip_type maniptype)
664 {
665 	int hooknum, nh_off, err = NF_ACCEPT;
666 
667 	nh_off = skb_network_offset(skb);
668 	skb_pull_rcsum(skb, nh_off);
669 
670 	/* See HOOK2MANIP(). */
671 	if (maniptype == NF_NAT_MANIP_SRC)
672 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
673 	else
674 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
675 
676 	switch (ctinfo) {
677 	case IP_CT_RELATED:
678 	case IP_CT_RELATED_REPLY:
679 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
680 		    skb->protocol == htons(ETH_P_IP) &&
681 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
682 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
683 							   hooknum))
684 				err = NF_DROP;
685 			goto push;
686 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
687 			   skb->protocol == htons(ETH_P_IPV6)) {
688 			__be16 frag_off;
689 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
690 			int hdrlen = ipv6_skip_exthdr(skb,
691 						      sizeof(struct ipv6hdr),
692 						      &nexthdr, &frag_off);
693 
694 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
695 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
696 								     ctinfo,
697 								     hooknum,
698 								     hdrlen))
699 					err = NF_DROP;
700 				goto push;
701 			}
702 		}
703 		/* Non-ICMP, fall thru to initialize if needed. */
704 	case IP_CT_NEW:
705 		/* Seen it before?  This can happen for loopback, retrans,
706 		 * or local packets.
707 		 */
708 		if (!nf_nat_initialized(ct, maniptype)) {
709 			/* Initialize according to the NAT action. */
710 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
711 				/* Action is set up to establish a new
712 				 * mapping.
713 				 */
714 				? nf_nat_setup_info(ct, range, maniptype)
715 				: nf_nat_alloc_null_binding(ct, hooknum);
716 			if (err != NF_ACCEPT)
717 				goto push;
718 		}
719 		break;
720 
721 	case IP_CT_ESTABLISHED:
722 	case IP_CT_ESTABLISHED_REPLY:
723 		break;
724 
725 	default:
726 		err = NF_DROP;
727 		goto push;
728 	}
729 
730 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
731 push:
732 	skb_push(skb, nh_off);
733 	skb_postpush_rcsum(skb, skb->data, nh_off);
734 
735 	return err;
736 }
737 
738 static void ovs_nat_update_key(struct sw_flow_key *key,
739 			       const struct sk_buff *skb,
740 			       enum nf_nat_manip_type maniptype)
741 {
742 	if (maniptype == NF_NAT_MANIP_SRC) {
743 		__be16 src;
744 
745 		key->ct_state |= OVS_CS_F_SRC_NAT;
746 		if (key->eth.type == htons(ETH_P_IP))
747 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
748 		else if (key->eth.type == htons(ETH_P_IPV6))
749 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
750 			       sizeof(key->ipv6.addr.src));
751 		else
752 			return;
753 
754 		if (key->ip.proto == IPPROTO_UDP)
755 			src = udp_hdr(skb)->source;
756 		else if (key->ip.proto == IPPROTO_TCP)
757 			src = tcp_hdr(skb)->source;
758 		else if (key->ip.proto == IPPROTO_SCTP)
759 			src = sctp_hdr(skb)->source;
760 		else
761 			return;
762 
763 		key->tp.src = src;
764 	} else {
765 		__be16 dst;
766 
767 		key->ct_state |= OVS_CS_F_DST_NAT;
768 		if (key->eth.type == htons(ETH_P_IP))
769 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
770 		else if (key->eth.type == htons(ETH_P_IPV6))
771 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
772 			       sizeof(key->ipv6.addr.dst));
773 		else
774 			return;
775 
776 		if (key->ip.proto == IPPROTO_UDP)
777 			dst = udp_hdr(skb)->dest;
778 		else if (key->ip.proto == IPPROTO_TCP)
779 			dst = tcp_hdr(skb)->dest;
780 		else if (key->ip.proto == IPPROTO_SCTP)
781 			dst = sctp_hdr(skb)->dest;
782 		else
783 			return;
784 
785 		key->tp.dst = dst;
786 	}
787 }
788 
789 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
790 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
791 		      const struct ovs_conntrack_info *info,
792 		      struct sk_buff *skb, struct nf_conn *ct,
793 		      enum ip_conntrack_info ctinfo)
794 {
795 	enum nf_nat_manip_type maniptype;
796 	int err;
797 
798 	if (nf_ct_is_untracked(ct)) {
799 		/* A NAT action may only be performed on tracked packets. */
800 		return NF_ACCEPT;
801 	}
802 
803 	/* Add NAT extension if not confirmed yet. */
804 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
805 		return NF_ACCEPT;   /* Can't NAT. */
806 
807 	/* Determine NAT type.
808 	 * Check if the NAT type can be deduced from the tracked connection.
809 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
810 	 * when committing.
811 	 */
812 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
813 	    ct->status & IPS_NAT_MASK &&
814 	    (ctinfo != IP_CT_RELATED || info->commit)) {
815 		/* NAT an established or related connection like before. */
816 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
817 			/* This is the REPLY direction for a connection
818 			 * for which NAT was applied in the forward
819 			 * direction.  Do the reverse NAT.
820 			 */
821 			maniptype = ct->status & IPS_SRC_NAT
822 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
823 		else
824 			maniptype = ct->status & IPS_SRC_NAT
825 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
826 	} else if (info->nat & OVS_CT_SRC_NAT) {
827 		maniptype = NF_NAT_MANIP_SRC;
828 	} else if (info->nat & OVS_CT_DST_NAT) {
829 		maniptype = NF_NAT_MANIP_DST;
830 	} else {
831 		return NF_ACCEPT; /* Connection is not NATed. */
832 	}
833 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
834 
835 	/* Mark NAT done if successful and update the flow key. */
836 	if (err == NF_ACCEPT)
837 		ovs_nat_update_key(key, skb, maniptype);
838 
839 	return err;
840 }
841 #else /* !CONFIG_NF_NAT_NEEDED */
842 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
843 		      const struct ovs_conntrack_info *info,
844 		      struct sk_buff *skb, struct nf_conn *ct,
845 		      enum ip_conntrack_info ctinfo)
846 {
847 	return NF_ACCEPT;
848 }
849 #endif
850 
851 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
852  * not done already.  Update key with new CT state after passing the packet
853  * through conntrack.
854  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
855  * set to NULL and 0 will be returned.
856  */
857 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
858 			   const struct ovs_conntrack_info *info,
859 			   struct sk_buff *skb)
860 {
861 	/* If we are recirculating packets to match on conntrack fields and
862 	 * committing with a separate conntrack action,  then we don't need to
863 	 * actually run the packet through conntrack twice unless it's for a
864 	 * different zone.
865 	 */
866 	bool cached = skb_nfct_cached(net, key, info, skb);
867 	enum ip_conntrack_info ctinfo;
868 	struct nf_conn *ct;
869 
870 	if (!cached) {
871 		struct nf_conn *tmpl = info->ct;
872 		int err;
873 
874 		/* Associate skb with specified zone. */
875 		if (tmpl) {
876 			if (skb_nfct(skb))
877 				nf_conntrack_put(skb_nfct(skb));
878 			nf_conntrack_get(&tmpl->ct_general);
879 			nf_ct_set(skb, tmpl, IP_CT_NEW);
880 		}
881 
882 		err = nf_conntrack_in(net, info->family,
883 				      NF_INET_PRE_ROUTING, skb);
884 		if (err != NF_ACCEPT)
885 			return -ENOENT;
886 
887 		/* Clear CT state NAT flags to mark that we have not yet done
888 		 * NAT after the nf_conntrack_in() call.  We can actually clear
889 		 * the whole state, as it will be re-initialized below.
890 		 */
891 		key->ct_state = 0;
892 
893 		/* Update the key, but keep the NAT flags. */
894 		ovs_ct_update_key(skb, info, key, true, true);
895 	}
896 
897 	ct = nf_ct_get(skb, &ctinfo);
898 	if (ct) {
899 		/* Packets starting a new connection must be NATted before the
900 		 * helper, so that the helper knows about the NAT.  We enforce
901 		 * this by delaying both NAT and helper calls for unconfirmed
902 		 * connections until the committing CT action.  For later
903 		 * packets NAT and Helper may be called in either order.
904 		 *
905 		 * NAT will be done only if the CT action has NAT, and only
906 		 * once per packet (per zone), as guarded by the NAT bits in
907 		 * the key->ct_state.
908 		 */
909 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
910 		    (nf_ct_is_confirmed(ct) || info->commit) &&
911 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
912 			return -EINVAL;
913 		}
914 
915 		/* Userspace may decide to perform a ct lookup without a helper
916 		 * specified followed by a (recirculate and) commit with one.
917 		 * Therefore, for unconfirmed connections which we will commit,
918 		 * we need to attach the helper here.
919 		 */
920 		if (!nf_ct_is_confirmed(ct) && info->commit &&
921 		    info->helper && !nfct_help(ct)) {
922 			int err = __nf_ct_try_assign_helper(ct, info->ct,
923 							    GFP_ATOMIC);
924 			if (err)
925 				return err;
926 		}
927 
928 		/* Call the helper only if:
929 		 * - nf_conntrack_in() was executed above ("!cached") for a
930 		 *   confirmed connection, or
931 		 * - When committing an unconfirmed connection.
932 		 */
933 		if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
934 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
935 			return -EINVAL;
936 		}
937 	}
938 
939 	return 0;
940 }
941 
942 /* Lookup connection and read fields into key. */
943 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
944 			 const struct ovs_conntrack_info *info,
945 			 struct sk_buff *skb)
946 {
947 	struct nf_conntrack_expect *exp;
948 
949 	/* If we pass an expected packet through nf_conntrack_in() the
950 	 * expectation is typically removed, but the packet could still be
951 	 * lost in upcall processing.  To prevent this from happening we
952 	 * perform an explicit expectation lookup.  Expected connections are
953 	 * always new, and will be passed through conntrack only when they are
954 	 * committed, as it is OK to remove the expectation at that time.
955 	 */
956 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
957 	if (exp) {
958 		u8 state;
959 
960 		/* NOTE: New connections are NATted and Helped only when
961 		 * committed, so we are not calling into NAT here.
962 		 */
963 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
964 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
965 	} else {
966 		struct nf_conn *ct;
967 		int err;
968 
969 		err = __ovs_ct_lookup(net, key, info, skb);
970 		if (err)
971 			return err;
972 
973 		ct = (struct nf_conn *)skb_nfct(skb);
974 		if (ct)
975 			nf_ct_deliver_cached_events(ct);
976 	}
977 
978 	return 0;
979 }
980 
981 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
982 {
983 	size_t i;
984 
985 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
986 		if (labels->ct_labels_32[i])
987 			return true;
988 
989 	return false;
990 }
991 
992 /* Lookup connection and confirm if unconfirmed. */
993 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
994 			 const struct ovs_conntrack_info *info,
995 			 struct sk_buff *skb)
996 {
997 	enum ip_conntrack_info ctinfo;
998 	struct nf_conn *ct;
999 	int err;
1000 
1001 	err = __ovs_ct_lookup(net, key, info, skb);
1002 	if (err)
1003 		return err;
1004 
1005 	/* The connection could be invalid, in which case this is a no-op.*/
1006 	ct = nf_ct_get(skb, &ctinfo);
1007 	if (!ct)
1008 		return 0;
1009 
1010 	/* Apply changes before confirming the connection so that the initial
1011 	 * conntrack NEW netlink event carries the values given in the CT
1012 	 * action.
1013 	 */
1014 	if (info->mark.mask) {
1015 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1016 				      info->mark.mask);
1017 		if (err)
1018 			return err;
1019 	}
1020 	if (!nf_ct_is_confirmed(ct)) {
1021 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1022 					 &info->labels.mask);
1023 		if (err)
1024 			return err;
1025 	} else if (labels_nonzero(&info->labels.mask)) {
1026 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1027 					&info->labels.mask);
1028 		if (err)
1029 			return err;
1030 	}
1031 	/* This will take care of sending queued events even if the connection
1032 	 * is already confirmed.
1033 	 */
1034 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1035 		return -EINVAL;
1036 
1037 	return 0;
1038 }
1039 
1040 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1041  * value if 'skb' is freed.
1042  */
1043 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1044 		   struct sw_flow_key *key,
1045 		   const struct ovs_conntrack_info *info)
1046 {
1047 	int nh_ofs;
1048 	int err;
1049 
1050 	/* The conntrack module expects to be working at L3. */
1051 	nh_ofs = skb_network_offset(skb);
1052 	skb_pull_rcsum(skb, nh_ofs);
1053 
1054 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1055 		err = handle_fragments(net, key, info->zone.id, skb);
1056 		if (err)
1057 			return err;
1058 	}
1059 
1060 	if (info->commit)
1061 		err = ovs_ct_commit(net, key, info, skb);
1062 	else
1063 		err = ovs_ct_lookup(net, key, info, skb);
1064 
1065 	skb_push(skb, nh_ofs);
1066 	skb_postpush_rcsum(skb, skb->data, nh_ofs);
1067 	if (err)
1068 		kfree_skb(skb);
1069 	return err;
1070 }
1071 
1072 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1073 			     const struct sw_flow_key *key, bool log)
1074 {
1075 	struct nf_conntrack_helper *helper;
1076 	struct nf_conn_help *help;
1077 
1078 	helper = nf_conntrack_helper_try_module_get(name, info->family,
1079 						    key->ip.proto);
1080 	if (!helper) {
1081 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1082 		return -EINVAL;
1083 	}
1084 
1085 	help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
1086 	if (!help) {
1087 		module_put(helper->me);
1088 		return -ENOMEM;
1089 	}
1090 
1091 	rcu_assign_pointer(help->helper, helper);
1092 	info->helper = helper;
1093 	return 0;
1094 }
1095 
1096 #ifdef CONFIG_NF_NAT_NEEDED
1097 static int parse_nat(const struct nlattr *attr,
1098 		     struct ovs_conntrack_info *info, bool log)
1099 {
1100 	struct nlattr *a;
1101 	int rem;
1102 	bool have_ip_max = false;
1103 	bool have_proto_max = false;
1104 	bool ip_vers = (info->family == NFPROTO_IPV6);
1105 
1106 	nla_for_each_nested(a, attr, rem) {
1107 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1108 			[OVS_NAT_ATTR_SRC] = {0, 0},
1109 			[OVS_NAT_ATTR_DST] = {0, 0},
1110 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1111 						 sizeof(struct in6_addr)},
1112 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1113 						 sizeof(struct in6_addr)},
1114 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1115 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1116 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1117 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1118 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1119 		};
1120 		int type = nla_type(a);
1121 
1122 		if (type > OVS_NAT_ATTR_MAX) {
1123 			OVS_NLERR(log,
1124 				  "Unknown NAT attribute (type=%d, max=%d).\n",
1125 				  type, OVS_NAT_ATTR_MAX);
1126 			return -EINVAL;
1127 		}
1128 
1129 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1130 			OVS_NLERR(log,
1131 				  "NAT attribute type %d has unexpected length (%d != %d).\n",
1132 				  type, nla_len(a),
1133 				  ovs_nat_attr_lens[type][ip_vers]);
1134 			return -EINVAL;
1135 		}
1136 
1137 		switch (type) {
1138 		case OVS_NAT_ATTR_SRC:
1139 		case OVS_NAT_ATTR_DST:
1140 			if (info->nat) {
1141 				OVS_NLERR(log,
1142 					  "Only one type of NAT may be specified.\n"
1143 					  );
1144 				return -ERANGE;
1145 			}
1146 			info->nat |= OVS_CT_NAT;
1147 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1148 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1149 			break;
1150 
1151 		case OVS_NAT_ATTR_IP_MIN:
1152 			nla_memcpy(&info->range.min_addr, a,
1153 				   sizeof(info->range.min_addr));
1154 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1155 			break;
1156 
1157 		case OVS_NAT_ATTR_IP_MAX:
1158 			have_ip_max = true;
1159 			nla_memcpy(&info->range.max_addr, a,
1160 				   sizeof(info->range.max_addr));
1161 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1162 			break;
1163 
1164 		case OVS_NAT_ATTR_PROTO_MIN:
1165 			info->range.min_proto.all = htons(nla_get_u16(a));
1166 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1167 			break;
1168 
1169 		case OVS_NAT_ATTR_PROTO_MAX:
1170 			have_proto_max = true;
1171 			info->range.max_proto.all = htons(nla_get_u16(a));
1172 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1173 			break;
1174 
1175 		case OVS_NAT_ATTR_PERSISTENT:
1176 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1177 			break;
1178 
1179 		case OVS_NAT_ATTR_PROTO_HASH:
1180 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1181 			break;
1182 
1183 		case OVS_NAT_ATTR_PROTO_RANDOM:
1184 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1185 			break;
1186 
1187 		default:
1188 			OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1189 			return -EINVAL;
1190 		}
1191 	}
1192 
1193 	if (rem > 0) {
1194 		OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1195 		return -EINVAL;
1196 	}
1197 	if (!info->nat) {
1198 		/* Do not allow flags if no type is given. */
1199 		if (info->range.flags) {
1200 			OVS_NLERR(log,
1201 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1202 				  );
1203 			return -EINVAL;
1204 		}
1205 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1206 	} else if (!info->commit) {
1207 		OVS_NLERR(log,
1208 			  "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1209 			  );
1210 		return -EINVAL;
1211 	}
1212 	/* Allow missing IP_MAX. */
1213 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1214 		memcpy(&info->range.max_addr, &info->range.min_addr,
1215 		       sizeof(info->range.max_addr));
1216 	}
1217 	/* Allow missing PROTO_MAX. */
1218 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1219 	    !have_proto_max) {
1220 		info->range.max_proto.all = info->range.min_proto.all;
1221 	}
1222 	return 0;
1223 }
1224 #endif
1225 
1226 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1227 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1228 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1229 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1230 				    .maxlen = sizeof(u16) },
1231 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1232 				    .maxlen = sizeof(struct md_mark) },
1233 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1234 				    .maxlen = sizeof(struct md_labels) },
1235 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1236 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1237 #ifdef CONFIG_NF_NAT_NEEDED
1238 	/* NAT length is checked when parsing the nested attributes. */
1239 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1240 #endif
1241 };
1242 
1243 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1244 		    const char **helper, bool log)
1245 {
1246 	struct nlattr *a;
1247 	int rem;
1248 
1249 	nla_for_each_nested(a, attr, rem) {
1250 		int type = nla_type(a);
1251 		int maxlen = ovs_ct_attr_lens[type].maxlen;
1252 		int minlen = ovs_ct_attr_lens[type].minlen;
1253 
1254 		if (type > OVS_CT_ATTR_MAX) {
1255 			OVS_NLERR(log,
1256 				  "Unknown conntrack attr (type=%d, max=%d)",
1257 				  type, OVS_CT_ATTR_MAX);
1258 			return -EINVAL;
1259 		}
1260 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1261 			OVS_NLERR(log,
1262 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1263 				  type, nla_len(a), maxlen);
1264 			return -EINVAL;
1265 		}
1266 
1267 		switch (type) {
1268 		case OVS_CT_ATTR_FORCE_COMMIT:
1269 			info->force = true;
1270 			/* fall through. */
1271 		case OVS_CT_ATTR_COMMIT:
1272 			info->commit = true;
1273 			break;
1274 #ifdef CONFIG_NF_CONNTRACK_ZONES
1275 		case OVS_CT_ATTR_ZONE:
1276 			info->zone.id = nla_get_u16(a);
1277 			break;
1278 #endif
1279 #ifdef CONFIG_NF_CONNTRACK_MARK
1280 		case OVS_CT_ATTR_MARK: {
1281 			struct md_mark *mark = nla_data(a);
1282 
1283 			if (!mark->mask) {
1284 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1285 				return -EINVAL;
1286 			}
1287 			info->mark = *mark;
1288 			break;
1289 		}
1290 #endif
1291 #ifdef CONFIG_NF_CONNTRACK_LABELS
1292 		case OVS_CT_ATTR_LABELS: {
1293 			struct md_labels *labels = nla_data(a);
1294 
1295 			if (!labels_nonzero(&labels->mask)) {
1296 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1297 				return -EINVAL;
1298 			}
1299 			info->labels = *labels;
1300 			break;
1301 		}
1302 #endif
1303 		case OVS_CT_ATTR_HELPER:
1304 			*helper = nla_data(a);
1305 			if (!memchr(*helper, '\0', nla_len(a))) {
1306 				OVS_NLERR(log, "Invalid conntrack helper");
1307 				return -EINVAL;
1308 			}
1309 			break;
1310 #ifdef CONFIG_NF_NAT_NEEDED
1311 		case OVS_CT_ATTR_NAT: {
1312 			int err = parse_nat(a, info, log);
1313 
1314 			if (err)
1315 				return err;
1316 			break;
1317 		}
1318 #endif
1319 		default:
1320 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1321 				  type);
1322 			return -EINVAL;
1323 		}
1324 	}
1325 
1326 #ifdef CONFIG_NF_CONNTRACK_MARK
1327 	if (!info->commit && info->mark.mask) {
1328 		OVS_NLERR(log,
1329 			  "Setting conntrack mark requires 'commit' flag.");
1330 		return -EINVAL;
1331 	}
1332 #endif
1333 #ifdef CONFIG_NF_CONNTRACK_LABELS
1334 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1335 		OVS_NLERR(log,
1336 			  "Setting conntrack labels requires 'commit' flag.");
1337 		return -EINVAL;
1338 	}
1339 #endif
1340 	if (rem > 0) {
1341 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1342 		return -EINVAL;
1343 	}
1344 
1345 	return 0;
1346 }
1347 
1348 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1349 {
1350 	if (attr == OVS_KEY_ATTR_CT_STATE)
1351 		return true;
1352 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1353 	    attr == OVS_KEY_ATTR_CT_ZONE)
1354 		return true;
1355 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1356 	    attr == OVS_KEY_ATTR_CT_MARK)
1357 		return true;
1358 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1359 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1360 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1361 
1362 		return ovs_net->xt_label;
1363 	}
1364 
1365 	return false;
1366 }
1367 
1368 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1369 		       const struct sw_flow_key *key,
1370 		       struct sw_flow_actions **sfa,  bool log)
1371 {
1372 	struct ovs_conntrack_info ct_info;
1373 	const char *helper = NULL;
1374 	u16 family;
1375 	int err;
1376 
1377 	family = key_to_nfproto(key);
1378 	if (family == NFPROTO_UNSPEC) {
1379 		OVS_NLERR(log, "ct family unspecified");
1380 		return -EINVAL;
1381 	}
1382 
1383 	memset(&ct_info, 0, sizeof(ct_info));
1384 	ct_info.family = family;
1385 
1386 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1387 			NF_CT_DEFAULT_ZONE_DIR, 0);
1388 
1389 	err = parse_ct(attr, &ct_info, &helper, log);
1390 	if (err)
1391 		return err;
1392 
1393 	/* Set up template for tracking connections in specific zones. */
1394 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1395 	if (!ct_info.ct) {
1396 		OVS_NLERR(log, "Failed to allocate conntrack template");
1397 		return -ENOMEM;
1398 	}
1399 
1400 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1401 	nf_conntrack_get(&ct_info.ct->ct_general);
1402 
1403 	if (helper) {
1404 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1405 		if (err)
1406 			goto err_free_ct;
1407 	}
1408 
1409 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1410 				 sizeof(ct_info), log);
1411 	if (err)
1412 		goto err_free_ct;
1413 
1414 	return 0;
1415 err_free_ct:
1416 	__ovs_ct_free_action(&ct_info);
1417 	return err;
1418 }
1419 
1420 #ifdef CONFIG_NF_NAT_NEEDED
1421 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1422 			       struct sk_buff *skb)
1423 {
1424 	struct nlattr *start;
1425 
1426 	start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1427 	if (!start)
1428 		return false;
1429 
1430 	if (info->nat & OVS_CT_SRC_NAT) {
1431 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1432 			return false;
1433 	} else if (info->nat & OVS_CT_DST_NAT) {
1434 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1435 			return false;
1436 	} else {
1437 		goto out;
1438 	}
1439 
1440 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1441 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1442 		    info->family == NFPROTO_IPV4) {
1443 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1444 					    info->range.min_addr.ip) ||
1445 			    (info->range.max_addr.ip
1446 			     != info->range.min_addr.ip &&
1447 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1448 					      info->range.max_addr.ip))))
1449 				return false;
1450 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1451 			   info->family == NFPROTO_IPV6) {
1452 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1453 					     &info->range.min_addr.in6) ||
1454 			    (memcmp(&info->range.max_addr.in6,
1455 				    &info->range.min_addr.in6,
1456 				    sizeof(info->range.max_addr.in6)) &&
1457 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1458 					       &info->range.max_addr.in6))))
1459 				return false;
1460 		} else {
1461 			return false;
1462 		}
1463 	}
1464 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1465 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1466 			 ntohs(info->range.min_proto.all)) ||
1467 	     (info->range.max_proto.all != info->range.min_proto.all &&
1468 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1469 			  ntohs(info->range.max_proto.all)))))
1470 		return false;
1471 
1472 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1473 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1474 		return false;
1475 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1476 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1477 		return false;
1478 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1479 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1480 		return false;
1481 out:
1482 	nla_nest_end(skb, start);
1483 
1484 	return true;
1485 }
1486 #endif
1487 
1488 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1489 			  struct sk_buff *skb)
1490 {
1491 	struct nlattr *start;
1492 
1493 	start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1494 	if (!start)
1495 		return -EMSGSIZE;
1496 
1497 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1498 					    ? OVS_CT_ATTR_FORCE_COMMIT
1499 					    : OVS_CT_ATTR_COMMIT))
1500 		return -EMSGSIZE;
1501 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1502 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1503 		return -EMSGSIZE;
1504 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1505 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1506 		    &ct_info->mark))
1507 		return -EMSGSIZE;
1508 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1509 	    labels_nonzero(&ct_info->labels.mask) &&
1510 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1511 		    &ct_info->labels))
1512 		return -EMSGSIZE;
1513 	if (ct_info->helper) {
1514 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1515 				   ct_info->helper->name))
1516 			return -EMSGSIZE;
1517 	}
1518 #ifdef CONFIG_NF_NAT_NEEDED
1519 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1520 		return -EMSGSIZE;
1521 #endif
1522 	nla_nest_end(skb, start);
1523 
1524 	return 0;
1525 }
1526 
1527 void ovs_ct_free_action(const struct nlattr *a)
1528 {
1529 	struct ovs_conntrack_info *ct_info = nla_data(a);
1530 
1531 	__ovs_ct_free_action(ct_info);
1532 }
1533 
1534 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1535 {
1536 	if (ct_info->helper)
1537 		module_put(ct_info->helper->me);
1538 	if (ct_info->ct)
1539 		nf_ct_tmpl_free(ct_info->ct);
1540 }
1541 
1542 void ovs_ct_init(struct net *net)
1543 {
1544 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1545 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1546 
1547 	if (nf_connlabels_get(net, n_bits - 1)) {
1548 		ovs_net->xt_label = false;
1549 		OVS_NLERR(true, "Failed to set connlabel length");
1550 	} else {
1551 		ovs_net->xt_label = true;
1552 	}
1553 }
1554 
1555 void ovs_ct_exit(struct net *net)
1556 {
1557 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1558 
1559 	if (ovs_net->xt_label)
1560 		nf_connlabels_put(net);
1561 }
1562