1 /* 2 * Copyright (c) 2015 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/openvswitch.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/sctp.h> 19 #include <net/ip.h> 20 #include <net/netfilter/nf_conntrack_core.h> 21 #include <net/netfilter/nf_conntrack_helper.h> 22 #include <net/netfilter/nf_conntrack_labels.h> 23 #include <net/netfilter/nf_conntrack_seqadj.h> 24 #include <net/netfilter/nf_conntrack_zones.h> 25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 26 27 #ifdef CONFIG_NF_NAT_NEEDED 28 #include <linux/netfilter/nf_nat.h> 29 #include <net/netfilter/nf_nat_core.h> 30 #include <net/netfilter/nf_nat_l3proto.h> 31 #endif 32 33 #include "datapath.h" 34 #include "conntrack.h" 35 #include "flow.h" 36 #include "flow_netlink.h" 37 38 struct ovs_ct_len_tbl { 39 int maxlen; 40 int minlen; 41 }; 42 43 /* Metadata mark for masked write to conntrack mark */ 44 struct md_mark { 45 u32 value; 46 u32 mask; 47 }; 48 49 /* Metadata label for masked write to conntrack label. */ 50 struct md_labels { 51 struct ovs_key_ct_labels value; 52 struct ovs_key_ct_labels mask; 53 }; 54 55 enum ovs_ct_nat { 56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 59 }; 60 61 /* Conntrack action context for execution. */ 62 struct ovs_conntrack_info { 63 struct nf_conntrack_helper *helper; 64 struct nf_conntrack_zone zone; 65 struct nf_conn *ct; 66 u8 commit : 1; 67 u8 nat : 3; /* enum ovs_ct_nat */ 68 u16 family; 69 struct md_mark mark; 70 struct md_labels labels; 71 #ifdef CONFIG_NF_NAT_NEEDED 72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */ 73 #endif 74 }; 75 76 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 77 78 static u16 key_to_nfproto(const struct sw_flow_key *key) 79 { 80 switch (ntohs(key->eth.type)) { 81 case ETH_P_IP: 82 return NFPROTO_IPV4; 83 case ETH_P_IPV6: 84 return NFPROTO_IPV6; 85 default: 86 return NFPROTO_UNSPEC; 87 } 88 } 89 90 /* Map SKB connection state into the values used by flow definition. */ 91 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 92 { 93 u8 ct_state = OVS_CS_F_TRACKED; 94 95 switch (ctinfo) { 96 case IP_CT_ESTABLISHED_REPLY: 97 case IP_CT_RELATED_REPLY: 98 ct_state |= OVS_CS_F_REPLY_DIR; 99 break; 100 default: 101 break; 102 } 103 104 switch (ctinfo) { 105 case IP_CT_ESTABLISHED: 106 case IP_CT_ESTABLISHED_REPLY: 107 ct_state |= OVS_CS_F_ESTABLISHED; 108 break; 109 case IP_CT_RELATED: 110 case IP_CT_RELATED_REPLY: 111 ct_state |= OVS_CS_F_RELATED; 112 break; 113 case IP_CT_NEW: 114 ct_state |= OVS_CS_F_NEW; 115 break; 116 default: 117 break; 118 } 119 120 return ct_state; 121 } 122 123 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 124 { 125 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 126 return ct ? ct->mark : 0; 127 #else 128 return 0; 129 #endif 130 } 131 132 static void ovs_ct_get_labels(const struct nf_conn *ct, 133 struct ovs_key_ct_labels *labels) 134 { 135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 136 137 if (cl) { 138 size_t len = sizeof(cl->bits); 139 140 if (len > OVS_CT_LABELS_LEN) 141 len = OVS_CT_LABELS_LEN; 142 else if (len < OVS_CT_LABELS_LEN) 143 memset(labels, 0, OVS_CT_LABELS_LEN); 144 memcpy(labels, cl->bits, len); 145 } else { 146 memset(labels, 0, OVS_CT_LABELS_LEN); 147 } 148 } 149 150 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 151 const struct nf_conntrack_zone *zone, 152 const struct nf_conn *ct) 153 { 154 key->ct.state = state; 155 key->ct.zone = zone->id; 156 key->ct.mark = ovs_ct_get_mark(ct); 157 ovs_ct_get_labels(ct, &key->ct.labels); 158 } 159 160 /* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has 161 * previously sent the packet to conntrack via the ct action. If 162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 163 * initialized from the connection status. 164 */ 165 static void ovs_ct_update_key(const struct sk_buff *skb, 166 const struct ovs_conntrack_info *info, 167 struct sw_flow_key *key, bool post_ct, 168 bool keep_nat_flags) 169 { 170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 171 enum ip_conntrack_info ctinfo; 172 struct nf_conn *ct; 173 u8 state = 0; 174 175 ct = nf_ct_get(skb, &ctinfo); 176 if (ct) { 177 state = ovs_ct_get_state(ctinfo); 178 /* All unconfirmed entries are NEW connections. */ 179 if (!nf_ct_is_confirmed(ct)) 180 state |= OVS_CS_F_NEW; 181 /* OVS persists the related flag for the duration of the 182 * connection. 183 */ 184 if (ct->master) 185 state |= OVS_CS_F_RELATED; 186 if (keep_nat_flags) { 187 state |= key->ct.state & OVS_CS_F_NAT_MASK; 188 } else { 189 if (ct->status & IPS_SRC_NAT) 190 state |= OVS_CS_F_SRC_NAT; 191 if (ct->status & IPS_DST_NAT) 192 state |= OVS_CS_F_DST_NAT; 193 } 194 zone = nf_ct_zone(ct); 195 } else if (post_ct) { 196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 197 if (info) 198 zone = &info->zone; 199 } 200 __ovs_ct_update_key(key, state, zone, ct); 201 } 202 203 /* This is called to initialize CT key fields possibly coming in from the local 204 * stack. 205 */ 206 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 207 { 208 ovs_ct_update_key(skb, NULL, key, false, false); 209 } 210 211 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb) 212 { 213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state)) 214 return -EMSGSIZE; 215 216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone)) 218 return -EMSGSIZE; 219 220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark)) 222 return -EMSGSIZE; 223 224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels), 226 &key->ct.labels)) 227 return -EMSGSIZE; 228 229 return 0; 230 } 231 232 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key, 233 u32 ct_mark, u32 mask) 234 { 235 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 236 enum ip_conntrack_info ctinfo; 237 struct nf_conn *ct; 238 u32 new_mark; 239 240 /* The connection could be invalid, in which case set_mark is no-op. */ 241 ct = nf_ct_get(skb, &ctinfo); 242 if (!ct) 243 return 0; 244 245 new_mark = ct_mark | (ct->mark & ~(mask)); 246 if (ct->mark != new_mark) { 247 ct->mark = new_mark; 248 nf_conntrack_event_cache(IPCT_MARK, ct); 249 key->ct.mark = new_mark; 250 } 251 252 return 0; 253 #else 254 return -ENOTSUPP; 255 #endif 256 } 257 258 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key, 259 const struct ovs_key_ct_labels *labels, 260 const struct ovs_key_ct_labels *mask) 261 { 262 enum ip_conntrack_info ctinfo; 263 struct nf_conn_labels *cl; 264 struct nf_conn *ct; 265 int err; 266 267 /* The connection could be invalid, in which case set_label is no-op.*/ 268 ct = nf_ct_get(skb, &ctinfo); 269 if (!ct) 270 return 0; 271 272 cl = nf_ct_labels_find(ct); 273 if (!cl) { 274 nf_ct_labels_ext_add(ct); 275 cl = nf_ct_labels_find(ct); 276 } 277 if (!cl || sizeof(cl->bits) < OVS_CT_LABELS_LEN) 278 return -ENOSPC; 279 280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask, 281 OVS_CT_LABELS_LEN / sizeof(u32)); 282 if (err) 283 return err; 284 285 ovs_ct_get_labels(ct, &key->ct.labels); 286 return 0; 287 } 288 289 /* 'skb' should already be pulled to nh_ofs. */ 290 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 291 { 292 const struct nf_conntrack_helper *helper; 293 const struct nf_conn_help *help; 294 enum ip_conntrack_info ctinfo; 295 unsigned int protoff; 296 struct nf_conn *ct; 297 int err; 298 299 ct = nf_ct_get(skb, &ctinfo); 300 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 301 return NF_ACCEPT; 302 303 help = nfct_help(ct); 304 if (!help) 305 return NF_ACCEPT; 306 307 helper = rcu_dereference(help->helper); 308 if (!helper) 309 return NF_ACCEPT; 310 311 switch (proto) { 312 case NFPROTO_IPV4: 313 protoff = ip_hdrlen(skb); 314 break; 315 case NFPROTO_IPV6: { 316 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 317 __be16 frag_off; 318 int ofs; 319 320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 321 &frag_off); 322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 323 pr_debug("proto header not found\n"); 324 return NF_ACCEPT; 325 } 326 protoff = ofs; 327 break; 328 } 329 default: 330 WARN_ONCE(1, "helper invoked on non-IP family!"); 331 return NF_DROP; 332 } 333 334 err = helper->help(skb, protoff, ct, ctinfo); 335 if (err != NF_ACCEPT) 336 return err; 337 338 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 339 * FTP with NAT) adusting the TCP payload size when mangling IP 340 * addresses and/or port numbers in the text-based control connection. 341 */ 342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 344 return NF_DROP; 345 return NF_ACCEPT; 346 } 347 348 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 349 * value if 'skb' is freed. 350 */ 351 static int handle_fragments(struct net *net, struct sw_flow_key *key, 352 u16 zone, struct sk_buff *skb) 353 { 354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 355 int err; 356 357 if (key->eth.type == htons(ETH_P_IP)) { 358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 359 360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 361 err = ip_defrag(net, skb, user); 362 if (err) 363 return err; 364 365 ovs_cb.mru = IPCB(skb)->frag_max_size; 366 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 367 } else if (key->eth.type == htons(ETH_P_IPV6)) { 368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 369 370 skb_orphan(skb); 371 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 372 err = nf_ct_frag6_gather(net, skb, user); 373 if (err) 374 return err; 375 376 key->ip.proto = ipv6_hdr(skb)->nexthdr; 377 ovs_cb.mru = IP6CB(skb)->frag_max_size; 378 #endif 379 } else { 380 kfree_skb(skb); 381 return -EPFNOSUPPORT; 382 } 383 384 key->ip.frag = OVS_FRAG_TYPE_NONE; 385 skb_clear_hash(skb); 386 skb->ignore_df = 1; 387 *OVS_CB(skb) = ovs_cb; 388 389 return 0; 390 } 391 392 static struct nf_conntrack_expect * 393 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 394 u16 proto, const struct sk_buff *skb) 395 { 396 struct nf_conntrack_tuple tuple; 397 398 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 399 return NULL; 400 return __nf_ct_expect_find(net, zone, &tuple); 401 } 402 403 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 404 static enum ip_conntrack_info 405 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 406 { 407 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 408 409 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 410 return IP_CT_ESTABLISHED_REPLY; 411 /* Once we've had two way comms, always ESTABLISHED. */ 412 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 413 return IP_CT_ESTABLISHED; 414 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 415 return IP_CT_RELATED; 416 return IP_CT_NEW; 417 } 418 419 /* Find an existing connection which this packet belongs to without 420 * re-attributing statistics or modifying the connection state. This allows an 421 * skb->nfct lost due to an upcall to be recovered during actions execution. 422 * 423 * Must be called with rcu_read_lock. 424 * 425 * On success, populates skb->nfct and skb->nfctinfo, and returns the 426 * connection. Returns NULL if there is no existing entry. 427 */ 428 static struct nf_conn * 429 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 430 u8 l3num, struct sk_buff *skb) 431 { 432 struct nf_conntrack_l3proto *l3proto; 433 struct nf_conntrack_l4proto *l4proto; 434 struct nf_conntrack_tuple tuple; 435 struct nf_conntrack_tuple_hash *h; 436 struct nf_conn *ct; 437 unsigned int dataoff; 438 u8 protonum; 439 440 l3proto = __nf_ct_l3proto_find(l3num); 441 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff, 442 &protonum) <= 0) { 443 pr_debug("ovs_ct_find_existing: Can't get protonum\n"); 444 return NULL; 445 } 446 l4proto = __nf_ct_l4proto_find(l3num, protonum); 447 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, 448 protonum, net, &tuple, l3proto, l4proto)) { 449 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 450 return NULL; 451 } 452 453 /* look for tuple match */ 454 h = nf_conntrack_find_get(net, zone, &tuple); 455 if (!h) 456 return NULL; /* Not found. */ 457 458 ct = nf_ct_tuplehash_to_ctrack(h); 459 460 skb->nfct = &ct->ct_general; 461 skb->nfctinfo = ovs_ct_get_info(h); 462 return ct; 463 } 464 465 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */ 466 static bool skb_nfct_cached(struct net *net, 467 const struct sw_flow_key *key, 468 const struct ovs_conntrack_info *info, 469 struct sk_buff *skb) 470 { 471 enum ip_conntrack_info ctinfo; 472 struct nf_conn *ct; 473 474 ct = nf_ct_get(skb, &ctinfo); 475 /* If no ct, check if we have evidence that an existing conntrack entry 476 * might be found for this skb. This happens when we lose a skb->nfct 477 * due to an upcall. If the connection was not confirmed, it is not 478 * cached and needs to be run through conntrack again. 479 */ 480 if (!ct && key->ct.state & OVS_CS_F_TRACKED && 481 !(key->ct.state & OVS_CS_F_INVALID) && 482 key->ct.zone == info->zone.id) 483 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb); 484 if (!ct) 485 return false; 486 if (!net_eq(net, read_pnet(&ct->ct_net))) 487 return false; 488 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 489 return false; 490 if (info->helper) { 491 struct nf_conn_help *help; 492 493 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 494 if (help && rcu_access_pointer(help->helper) != info->helper) 495 return false; 496 } 497 498 return true; 499 } 500 501 #ifdef CONFIG_NF_NAT_NEEDED 502 /* Modelled after nf_nat_ipv[46]_fn(). 503 * range is only used for new, uninitialized NAT state. 504 * Returns either NF_ACCEPT or NF_DROP. 505 */ 506 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 507 enum ip_conntrack_info ctinfo, 508 const struct nf_nat_range *range, 509 enum nf_nat_manip_type maniptype) 510 { 511 int hooknum, nh_off, err = NF_ACCEPT; 512 513 nh_off = skb_network_offset(skb); 514 skb_pull(skb, nh_off); 515 516 /* See HOOK2MANIP(). */ 517 if (maniptype == NF_NAT_MANIP_SRC) 518 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 519 else 520 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 521 522 switch (ctinfo) { 523 case IP_CT_RELATED: 524 case IP_CT_RELATED_REPLY: 525 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 526 skb->protocol == htons(ETH_P_IP) && 527 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 528 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 529 hooknum)) 530 err = NF_DROP; 531 goto push; 532 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 533 skb->protocol == htons(ETH_P_IPV6)) { 534 __be16 frag_off; 535 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 536 int hdrlen = ipv6_skip_exthdr(skb, 537 sizeof(struct ipv6hdr), 538 &nexthdr, &frag_off); 539 540 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 541 if (!nf_nat_icmpv6_reply_translation(skb, ct, 542 ctinfo, 543 hooknum, 544 hdrlen)) 545 err = NF_DROP; 546 goto push; 547 } 548 } 549 /* Non-ICMP, fall thru to initialize if needed. */ 550 case IP_CT_NEW: 551 /* Seen it before? This can happen for loopback, retrans, 552 * or local packets. 553 */ 554 if (!nf_nat_initialized(ct, maniptype)) { 555 /* Initialize according to the NAT action. */ 556 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 557 /* Action is set up to establish a new 558 * mapping. 559 */ 560 ? nf_nat_setup_info(ct, range, maniptype) 561 : nf_nat_alloc_null_binding(ct, hooknum); 562 if (err != NF_ACCEPT) 563 goto push; 564 } 565 break; 566 567 case IP_CT_ESTABLISHED: 568 case IP_CT_ESTABLISHED_REPLY: 569 break; 570 571 default: 572 err = NF_DROP; 573 goto push; 574 } 575 576 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 577 push: 578 skb_push(skb, nh_off); 579 580 return err; 581 } 582 583 static void ovs_nat_update_key(struct sw_flow_key *key, 584 const struct sk_buff *skb, 585 enum nf_nat_manip_type maniptype) 586 { 587 if (maniptype == NF_NAT_MANIP_SRC) { 588 __be16 src; 589 590 key->ct.state |= OVS_CS_F_SRC_NAT; 591 if (key->eth.type == htons(ETH_P_IP)) 592 key->ipv4.addr.src = ip_hdr(skb)->saddr; 593 else if (key->eth.type == htons(ETH_P_IPV6)) 594 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 595 sizeof(key->ipv6.addr.src)); 596 else 597 return; 598 599 if (key->ip.proto == IPPROTO_UDP) 600 src = udp_hdr(skb)->source; 601 else if (key->ip.proto == IPPROTO_TCP) 602 src = tcp_hdr(skb)->source; 603 else if (key->ip.proto == IPPROTO_SCTP) 604 src = sctp_hdr(skb)->source; 605 else 606 return; 607 608 key->tp.src = src; 609 } else { 610 __be16 dst; 611 612 key->ct.state |= OVS_CS_F_DST_NAT; 613 if (key->eth.type == htons(ETH_P_IP)) 614 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 615 else if (key->eth.type == htons(ETH_P_IPV6)) 616 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 617 sizeof(key->ipv6.addr.dst)); 618 else 619 return; 620 621 if (key->ip.proto == IPPROTO_UDP) 622 dst = udp_hdr(skb)->dest; 623 else if (key->ip.proto == IPPROTO_TCP) 624 dst = tcp_hdr(skb)->dest; 625 else if (key->ip.proto == IPPROTO_SCTP) 626 dst = sctp_hdr(skb)->dest; 627 else 628 return; 629 630 key->tp.dst = dst; 631 } 632 } 633 634 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 635 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 636 const struct ovs_conntrack_info *info, 637 struct sk_buff *skb, struct nf_conn *ct, 638 enum ip_conntrack_info ctinfo) 639 { 640 enum nf_nat_manip_type maniptype; 641 int err; 642 643 if (nf_ct_is_untracked(ct)) { 644 /* A NAT action may only be performed on tracked packets. */ 645 return NF_ACCEPT; 646 } 647 648 /* Add NAT extension if not confirmed yet. */ 649 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 650 return NF_ACCEPT; /* Can't NAT. */ 651 652 /* Determine NAT type. 653 * Check if the NAT type can be deduced from the tracked connection. 654 * Make sure new expected connections (IP_CT_RELATED) are NATted only 655 * when committing. 656 */ 657 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 658 ct->status & IPS_NAT_MASK && 659 (ctinfo != IP_CT_RELATED || info->commit)) { 660 /* NAT an established or related connection like before. */ 661 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 662 /* This is the REPLY direction for a connection 663 * for which NAT was applied in the forward 664 * direction. Do the reverse NAT. 665 */ 666 maniptype = ct->status & IPS_SRC_NAT 667 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 668 else 669 maniptype = ct->status & IPS_SRC_NAT 670 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 671 } else if (info->nat & OVS_CT_SRC_NAT) { 672 maniptype = NF_NAT_MANIP_SRC; 673 } else if (info->nat & OVS_CT_DST_NAT) { 674 maniptype = NF_NAT_MANIP_DST; 675 } else { 676 return NF_ACCEPT; /* Connection is not NATed. */ 677 } 678 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 679 680 /* Mark NAT done if successful and update the flow key. */ 681 if (err == NF_ACCEPT) 682 ovs_nat_update_key(key, skb, maniptype); 683 684 return err; 685 } 686 #else /* !CONFIG_NF_NAT_NEEDED */ 687 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 688 const struct ovs_conntrack_info *info, 689 struct sk_buff *skb, struct nf_conn *ct, 690 enum ip_conntrack_info ctinfo) 691 { 692 return NF_ACCEPT; 693 } 694 #endif 695 696 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 697 * not done already. Update key with new CT state after passing the packet 698 * through conntrack. 699 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be 700 * set to NULL and 0 will be returned. 701 */ 702 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 703 const struct ovs_conntrack_info *info, 704 struct sk_buff *skb) 705 { 706 /* If we are recirculating packets to match on conntrack fields and 707 * committing with a separate conntrack action, then we don't need to 708 * actually run the packet through conntrack twice unless it's for a 709 * different zone. 710 */ 711 bool cached = skb_nfct_cached(net, key, info, skb); 712 enum ip_conntrack_info ctinfo; 713 struct nf_conn *ct; 714 715 if (!cached) { 716 struct nf_conn *tmpl = info->ct; 717 int err; 718 719 /* Associate skb with specified zone. */ 720 if (tmpl) { 721 if (skb->nfct) 722 nf_conntrack_put(skb->nfct); 723 nf_conntrack_get(&tmpl->ct_general); 724 skb->nfct = &tmpl->ct_general; 725 skb->nfctinfo = IP_CT_NEW; 726 } 727 728 /* Repeat if requested, see nf_iterate(). */ 729 do { 730 err = nf_conntrack_in(net, info->family, 731 NF_INET_PRE_ROUTING, skb); 732 } while (err == NF_REPEAT); 733 734 if (err != NF_ACCEPT) 735 return -ENOENT; 736 737 /* Clear CT state NAT flags to mark that we have not yet done 738 * NAT after the nf_conntrack_in() call. We can actually clear 739 * the whole state, as it will be re-initialized below. 740 */ 741 key->ct.state = 0; 742 743 /* Update the key, but keep the NAT flags. */ 744 ovs_ct_update_key(skb, info, key, true, true); 745 } 746 747 ct = nf_ct_get(skb, &ctinfo); 748 if (ct) { 749 /* Packets starting a new connection must be NATted before the 750 * helper, so that the helper knows about the NAT. We enforce 751 * this by delaying both NAT and helper calls for unconfirmed 752 * connections until the committing CT action. For later 753 * packets NAT and Helper may be called in either order. 754 * 755 * NAT will be done only if the CT action has NAT, and only 756 * once per packet (per zone), as guarded by the NAT bits in 757 * the key->ct.state. 758 */ 759 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) && 760 (nf_ct_is_confirmed(ct) || info->commit) && 761 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 762 return -EINVAL; 763 } 764 765 /* Userspace may decide to perform a ct lookup without a helper 766 * specified followed by a (recirculate and) commit with one. 767 * Therefore, for unconfirmed connections which we will commit, 768 * we need to attach the helper here. 769 */ 770 if (!nf_ct_is_confirmed(ct) && info->commit && 771 info->helper && !nfct_help(ct)) { 772 int err = __nf_ct_try_assign_helper(ct, info->ct, 773 GFP_ATOMIC); 774 if (err) 775 return err; 776 } 777 778 /* Call the helper only if: 779 * - nf_conntrack_in() was executed above ("!cached") for a 780 * confirmed connection, or 781 * - When committing an unconfirmed connection. 782 */ 783 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && 784 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 785 return -EINVAL; 786 } 787 } 788 789 return 0; 790 } 791 792 /* Lookup connection and read fields into key. */ 793 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 794 const struct ovs_conntrack_info *info, 795 struct sk_buff *skb) 796 { 797 struct nf_conntrack_expect *exp; 798 799 /* If we pass an expected packet through nf_conntrack_in() the 800 * expectation is typically removed, but the packet could still be 801 * lost in upcall processing. To prevent this from happening we 802 * perform an explicit expectation lookup. Expected connections are 803 * always new, and will be passed through conntrack only when they are 804 * committed, as it is OK to remove the expectation at that time. 805 */ 806 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 807 if (exp) { 808 u8 state; 809 810 /* NOTE: New connections are NATted and Helped only when 811 * committed, so we are not calling into NAT here. 812 */ 813 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 814 __ovs_ct_update_key(key, state, &info->zone, exp->master); 815 } else { 816 struct nf_conn *ct; 817 int err; 818 819 err = __ovs_ct_lookup(net, key, info, skb); 820 if (err) 821 return err; 822 823 ct = (struct nf_conn *)skb->nfct; 824 if (ct) 825 nf_ct_deliver_cached_events(ct); 826 } 827 828 return 0; 829 } 830 831 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 832 { 833 size_t i; 834 835 for (i = 0; i < sizeof(*labels); i++) 836 if (labels->ct_labels[i]) 837 return true; 838 839 return false; 840 } 841 842 /* Lookup connection and confirm if unconfirmed. */ 843 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 844 const struct ovs_conntrack_info *info, 845 struct sk_buff *skb) 846 { 847 int err; 848 849 err = __ovs_ct_lookup(net, key, info, skb); 850 if (err) 851 return err; 852 853 /* Apply changes before confirming the connection so that the initial 854 * conntrack NEW netlink event carries the values given in the CT 855 * action. 856 */ 857 if (info->mark.mask) { 858 err = ovs_ct_set_mark(skb, key, info->mark.value, 859 info->mark.mask); 860 if (err) 861 return err; 862 } 863 if (labels_nonzero(&info->labels.mask)) { 864 err = ovs_ct_set_labels(skb, key, &info->labels.value, 865 &info->labels.mask); 866 if (err) 867 return err; 868 } 869 /* This will take care of sending queued events even if the connection 870 * is already confirmed. 871 */ 872 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 873 return -EINVAL; 874 875 return 0; 876 } 877 878 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 879 * value if 'skb' is freed. 880 */ 881 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 882 struct sw_flow_key *key, 883 const struct ovs_conntrack_info *info) 884 { 885 int nh_ofs; 886 int err; 887 888 /* The conntrack module expects to be working at L3. */ 889 nh_ofs = skb_network_offset(skb); 890 skb_pull(skb, nh_ofs); 891 892 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 893 err = handle_fragments(net, key, info->zone.id, skb); 894 if (err) 895 return err; 896 } 897 898 if (info->commit) 899 err = ovs_ct_commit(net, key, info, skb); 900 else 901 err = ovs_ct_lookup(net, key, info, skb); 902 903 skb_push(skb, nh_ofs); 904 if (err) 905 kfree_skb(skb); 906 return err; 907 } 908 909 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 910 const struct sw_flow_key *key, bool log) 911 { 912 struct nf_conntrack_helper *helper; 913 struct nf_conn_help *help; 914 915 helper = nf_conntrack_helper_try_module_get(name, info->family, 916 key->ip.proto); 917 if (!helper) { 918 OVS_NLERR(log, "Unknown helper \"%s\"", name); 919 return -EINVAL; 920 } 921 922 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); 923 if (!help) { 924 module_put(helper->me); 925 return -ENOMEM; 926 } 927 928 rcu_assign_pointer(help->helper, helper); 929 info->helper = helper; 930 return 0; 931 } 932 933 #ifdef CONFIG_NF_NAT_NEEDED 934 static int parse_nat(const struct nlattr *attr, 935 struct ovs_conntrack_info *info, bool log) 936 { 937 struct nlattr *a; 938 int rem; 939 bool have_ip_max = false; 940 bool have_proto_max = false; 941 bool ip_vers = (info->family == NFPROTO_IPV6); 942 943 nla_for_each_nested(a, attr, rem) { 944 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 945 [OVS_NAT_ATTR_SRC] = {0, 0}, 946 [OVS_NAT_ATTR_DST] = {0, 0}, 947 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 948 sizeof(struct in6_addr)}, 949 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 950 sizeof(struct in6_addr)}, 951 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 952 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 953 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 954 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 955 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 956 }; 957 int type = nla_type(a); 958 959 if (type > OVS_NAT_ATTR_MAX) { 960 OVS_NLERR(log, 961 "Unknown NAT attribute (type=%d, max=%d).\n", 962 type, OVS_NAT_ATTR_MAX); 963 return -EINVAL; 964 } 965 966 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 967 OVS_NLERR(log, 968 "NAT attribute type %d has unexpected length (%d != %d).\n", 969 type, nla_len(a), 970 ovs_nat_attr_lens[type][ip_vers]); 971 return -EINVAL; 972 } 973 974 switch (type) { 975 case OVS_NAT_ATTR_SRC: 976 case OVS_NAT_ATTR_DST: 977 if (info->nat) { 978 OVS_NLERR(log, 979 "Only one type of NAT may be specified.\n" 980 ); 981 return -ERANGE; 982 } 983 info->nat |= OVS_CT_NAT; 984 info->nat |= ((type == OVS_NAT_ATTR_SRC) 985 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 986 break; 987 988 case OVS_NAT_ATTR_IP_MIN: 989 nla_memcpy(&info->range.min_addr, a, 990 sizeof(info->range.min_addr)); 991 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 992 break; 993 994 case OVS_NAT_ATTR_IP_MAX: 995 have_ip_max = true; 996 nla_memcpy(&info->range.max_addr, a, 997 sizeof(info->range.max_addr)); 998 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 999 break; 1000 1001 case OVS_NAT_ATTR_PROTO_MIN: 1002 info->range.min_proto.all = htons(nla_get_u16(a)); 1003 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1004 break; 1005 1006 case OVS_NAT_ATTR_PROTO_MAX: 1007 have_proto_max = true; 1008 info->range.max_proto.all = htons(nla_get_u16(a)); 1009 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1010 break; 1011 1012 case OVS_NAT_ATTR_PERSISTENT: 1013 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1014 break; 1015 1016 case OVS_NAT_ATTR_PROTO_HASH: 1017 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1018 break; 1019 1020 case OVS_NAT_ATTR_PROTO_RANDOM: 1021 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1022 break; 1023 1024 default: 1025 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type); 1026 return -EINVAL; 1027 } 1028 } 1029 1030 if (rem > 0) { 1031 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem); 1032 return -EINVAL; 1033 } 1034 if (!info->nat) { 1035 /* Do not allow flags if no type is given. */ 1036 if (info->range.flags) { 1037 OVS_NLERR(log, 1038 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n" 1039 ); 1040 return -EINVAL; 1041 } 1042 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1043 } else if (!info->commit) { 1044 OVS_NLERR(log, 1045 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n" 1046 ); 1047 return -EINVAL; 1048 } 1049 /* Allow missing IP_MAX. */ 1050 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1051 memcpy(&info->range.max_addr, &info->range.min_addr, 1052 sizeof(info->range.max_addr)); 1053 } 1054 /* Allow missing PROTO_MAX. */ 1055 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1056 !have_proto_max) { 1057 info->range.max_proto.all = info->range.min_proto.all; 1058 } 1059 return 0; 1060 } 1061 #endif 1062 1063 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1064 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1065 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1066 .maxlen = sizeof(u16) }, 1067 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1068 .maxlen = sizeof(struct md_mark) }, 1069 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1070 .maxlen = sizeof(struct md_labels) }, 1071 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1072 .maxlen = NF_CT_HELPER_NAME_LEN }, 1073 #ifdef CONFIG_NF_NAT_NEEDED 1074 /* NAT length is checked when parsing the nested attributes. */ 1075 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1076 #endif 1077 }; 1078 1079 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1080 const char **helper, bool log) 1081 { 1082 struct nlattr *a; 1083 int rem; 1084 1085 nla_for_each_nested(a, attr, rem) { 1086 int type = nla_type(a); 1087 int maxlen = ovs_ct_attr_lens[type].maxlen; 1088 int minlen = ovs_ct_attr_lens[type].minlen; 1089 1090 if (type > OVS_CT_ATTR_MAX) { 1091 OVS_NLERR(log, 1092 "Unknown conntrack attr (type=%d, max=%d)", 1093 type, OVS_CT_ATTR_MAX); 1094 return -EINVAL; 1095 } 1096 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1097 OVS_NLERR(log, 1098 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1099 type, nla_len(a), maxlen); 1100 return -EINVAL; 1101 } 1102 1103 switch (type) { 1104 case OVS_CT_ATTR_COMMIT: 1105 info->commit = true; 1106 break; 1107 #ifdef CONFIG_NF_CONNTRACK_ZONES 1108 case OVS_CT_ATTR_ZONE: 1109 info->zone.id = nla_get_u16(a); 1110 break; 1111 #endif 1112 #ifdef CONFIG_NF_CONNTRACK_MARK 1113 case OVS_CT_ATTR_MARK: { 1114 struct md_mark *mark = nla_data(a); 1115 1116 if (!mark->mask) { 1117 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1118 return -EINVAL; 1119 } 1120 info->mark = *mark; 1121 break; 1122 } 1123 #endif 1124 #ifdef CONFIG_NF_CONNTRACK_LABELS 1125 case OVS_CT_ATTR_LABELS: { 1126 struct md_labels *labels = nla_data(a); 1127 1128 if (!labels_nonzero(&labels->mask)) { 1129 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1130 return -EINVAL; 1131 } 1132 info->labels = *labels; 1133 break; 1134 } 1135 #endif 1136 case OVS_CT_ATTR_HELPER: 1137 *helper = nla_data(a); 1138 if (!memchr(*helper, '\0', nla_len(a))) { 1139 OVS_NLERR(log, "Invalid conntrack helper"); 1140 return -EINVAL; 1141 } 1142 break; 1143 #ifdef CONFIG_NF_NAT_NEEDED 1144 case OVS_CT_ATTR_NAT: { 1145 int err = parse_nat(a, info, log); 1146 1147 if (err) 1148 return err; 1149 break; 1150 } 1151 #endif 1152 default: 1153 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1154 type); 1155 return -EINVAL; 1156 } 1157 } 1158 1159 #ifdef CONFIG_NF_CONNTRACK_MARK 1160 if (!info->commit && info->mark.mask) { 1161 OVS_NLERR(log, 1162 "Setting conntrack mark requires 'commit' flag."); 1163 return -EINVAL; 1164 } 1165 #endif 1166 #ifdef CONFIG_NF_CONNTRACK_LABELS 1167 if (!info->commit && labels_nonzero(&info->labels.mask)) { 1168 OVS_NLERR(log, 1169 "Setting conntrack labels requires 'commit' flag."); 1170 return -EINVAL; 1171 } 1172 #endif 1173 if (rem > 0) { 1174 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1175 return -EINVAL; 1176 } 1177 1178 return 0; 1179 } 1180 1181 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1182 { 1183 if (attr == OVS_KEY_ATTR_CT_STATE) 1184 return true; 1185 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1186 attr == OVS_KEY_ATTR_CT_ZONE) 1187 return true; 1188 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1189 attr == OVS_KEY_ATTR_CT_MARK) 1190 return true; 1191 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1192 attr == OVS_KEY_ATTR_CT_LABELS) { 1193 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1194 1195 return ovs_net->xt_label; 1196 } 1197 1198 return false; 1199 } 1200 1201 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1202 const struct sw_flow_key *key, 1203 struct sw_flow_actions **sfa, bool log) 1204 { 1205 struct ovs_conntrack_info ct_info; 1206 const char *helper = NULL; 1207 u16 family; 1208 int err; 1209 1210 family = key_to_nfproto(key); 1211 if (family == NFPROTO_UNSPEC) { 1212 OVS_NLERR(log, "ct family unspecified"); 1213 return -EINVAL; 1214 } 1215 1216 memset(&ct_info, 0, sizeof(ct_info)); 1217 ct_info.family = family; 1218 1219 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1220 NF_CT_DEFAULT_ZONE_DIR, 0); 1221 1222 err = parse_ct(attr, &ct_info, &helper, log); 1223 if (err) 1224 return err; 1225 1226 /* Set up template for tracking connections in specific zones. */ 1227 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1228 if (!ct_info.ct) { 1229 OVS_NLERR(log, "Failed to allocate conntrack template"); 1230 return -ENOMEM; 1231 } 1232 1233 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1234 nf_conntrack_get(&ct_info.ct->ct_general); 1235 1236 if (helper) { 1237 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1238 if (err) 1239 goto err_free_ct; 1240 } 1241 1242 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1243 sizeof(ct_info), log); 1244 if (err) 1245 goto err_free_ct; 1246 1247 return 0; 1248 err_free_ct: 1249 __ovs_ct_free_action(&ct_info); 1250 return err; 1251 } 1252 1253 #ifdef CONFIG_NF_NAT_NEEDED 1254 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1255 struct sk_buff *skb) 1256 { 1257 struct nlattr *start; 1258 1259 start = nla_nest_start(skb, OVS_CT_ATTR_NAT); 1260 if (!start) 1261 return false; 1262 1263 if (info->nat & OVS_CT_SRC_NAT) { 1264 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1265 return false; 1266 } else if (info->nat & OVS_CT_DST_NAT) { 1267 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1268 return false; 1269 } else { 1270 goto out; 1271 } 1272 1273 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1274 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 1275 info->family == NFPROTO_IPV4) { 1276 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1277 info->range.min_addr.ip) || 1278 (info->range.max_addr.ip 1279 != info->range.min_addr.ip && 1280 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1281 info->range.max_addr.ip)))) 1282 return false; 1283 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 1284 info->family == NFPROTO_IPV6) { 1285 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1286 &info->range.min_addr.in6) || 1287 (memcmp(&info->range.max_addr.in6, 1288 &info->range.min_addr.in6, 1289 sizeof(info->range.max_addr.in6)) && 1290 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1291 &info->range.max_addr.in6)))) 1292 return false; 1293 } else { 1294 return false; 1295 } 1296 } 1297 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1298 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1299 ntohs(info->range.min_proto.all)) || 1300 (info->range.max_proto.all != info->range.min_proto.all && 1301 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1302 ntohs(info->range.max_proto.all))))) 1303 return false; 1304 1305 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1306 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1307 return false; 1308 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1309 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1310 return false; 1311 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1312 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1313 return false; 1314 out: 1315 nla_nest_end(skb, start); 1316 1317 return true; 1318 } 1319 #endif 1320 1321 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1322 struct sk_buff *skb) 1323 { 1324 struct nlattr *start; 1325 1326 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); 1327 if (!start) 1328 return -EMSGSIZE; 1329 1330 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT)) 1331 return -EMSGSIZE; 1332 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1333 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1334 return -EMSGSIZE; 1335 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1336 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1337 &ct_info->mark)) 1338 return -EMSGSIZE; 1339 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1340 labels_nonzero(&ct_info->labels.mask) && 1341 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1342 &ct_info->labels)) 1343 return -EMSGSIZE; 1344 if (ct_info->helper) { 1345 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1346 ct_info->helper->name)) 1347 return -EMSGSIZE; 1348 } 1349 #ifdef CONFIG_NF_NAT_NEEDED 1350 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1351 return -EMSGSIZE; 1352 #endif 1353 nla_nest_end(skb, start); 1354 1355 return 0; 1356 } 1357 1358 void ovs_ct_free_action(const struct nlattr *a) 1359 { 1360 struct ovs_conntrack_info *ct_info = nla_data(a); 1361 1362 __ovs_ct_free_action(ct_info); 1363 } 1364 1365 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1366 { 1367 if (ct_info->helper) 1368 module_put(ct_info->helper->me); 1369 if (ct_info->ct) 1370 nf_ct_put(ct_info->ct); 1371 } 1372 1373 void ovs_ct_init(struct net *net) 1374 { 1375 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 1376 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1377 1378 if (nf_connlabels_get(net, n_bits - 1)) { 1379 ovs_net->xt_label = false; 1380 OVS_NLERR(true, "Failed to set connlabel length"); 1381 } else { 1382 ovs_net->xt_label = true; 1383 } 1384 } 1385 1386 void ovs_ct_exit(struct net *net) 1387 { 1388 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1389 1390 if (ovs_net->xt_label) 1391 nf_connlabels_put(net); 1392 } 1393