1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015 Nicira, Inc. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/openvswitch.h> 8 #include <linux/tcp.h> 9 #include <linux/udp.h> 10 #include <linux/sctp.h> 11 #include <linux/static_key.h> 12 #include <linux/string_helpers.h> 13 #include <net/ip.h> 14 #include <net/genetlink.h> 15 #include <net/netfilter/nf_conntrack_core.h> 16 #include <net/netfilter/nf_conntrack_count.h> 17 #include <net/netfilter/nf_conntrack_helper.h> 18 #include <net/netfilter/nf_conntrack_labels.h> 19 #include <net/netfilter/nf_conntrack_seqadj.h> 20 #include <net/netfilter/nf_conntrack_timeout.h> 21 #include <net/netfilter/nf_conntrack_zones.h> 22 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 23 #include <net/ipv6_frag.h> 24 25 #if IS_ENABLED(CONFIG_NF_NAT) 26 #include <net/netfilter/nf_nat.h> 27 #endif 28 29 #include <net/netfilter/nf_conntrack_act_ct.h> 30 31 #include "datapath.h" 32 #include "drop.h" 33 #include "conntrack.h" 34 #include "flow.h" 35 #include "flow_netlink.h" 36 37 struct ovs_ct_len_tbl { 38 int maxlen; 39 int minlen; 40 }; 41 42 /* Metadata mark for masked write to conntrack mark */ 43 struct md_mark { 44 u32 value; 45 u32 mask; 46 }; 47 48 /* Metadata label for masked write to conntrack label. */ 49 struct md_labels { 50 struct ovs_key_ct_labels value; 51 struct ovs_key_ct_labels mask; 52 }; 53 54 enum ovs_ct_nat { 55 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 56 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 57 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 58 }; 59 60 /* Conntrack action context for execution. */ 61 struct ovs_conntrack_info { 62 struct nf_conntrack_helper *helper; 63 struct nf_conntrack_zone zone; 64 struct nf_conn *ct; 65 u8 commit : 1; 66 u8 nat : 3; /* enum ovs_ct_nat */ 67 u8 force : 1; 68 u8 have_eventmask : 1; 69 u16 family; 70 u32 eventmask; /* Mask of 1 << IPCT_*. */ 71 struct md_mark mark; 72 struct md_labels labels; 73 char timeout[CTNL_TIMEOUT_NAME_MAX]; 74 struct nf_ct_timeout *nf_ct_timeout; 75 #if IS_ENABLED(CONFIG_NF_NAT) 76 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */ 77 #endif 78 }; 79 80 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 81 #define OVS_CT_LIMIT_UNLIMITED 0 82 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED 83 #define CT_LIMIT_HASH_BUCKETS 512 84 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled); 85 86 struct ovs_ct_limit { 87 /* Elements in ovs_ct_limit_info->limits hash table */ 88 struct hlist_node hlist_node; 89 struct rcu_head rcu; 90 u16 zone; 91 u32 limit; 92 }; 93 94 struct ovs_ct_limit_info { 95 u32 default_limit; 96 struct hlist_head *limits; 97 struct nf_conncount_data *data; 98 }; 99 100 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = { 101 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, }, 102 }; 103 #endif 104 105 static bool labels_nonzero(const struct ovs_key_ct_labels *labels); 106 107 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 108 109 static u16 key_to_nfproto(const struct sw_flow_key *key) 110 { 111 switch (ntohs(key->eth.type)) { 112 case ETH_P_IP: 113 return NFPROTO_IPV4; 114 case ETH_P_IPV6: 115 return NFPROTO_IPV6; 116 default: 117 return NFPROTO_UNSPEC; 118 } 119 } 120 121 /* Map SKB connection state into the values used by flow definition. */ 122 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 123 { 124 u8 ct_state = OVS_CS_F_TRACKED; 125 126 switch (ctinfo) { 127 case IP_CT_ESTABLISHED_REPLY: 128 case IP_CT_RELATED_REPLY: 129 ct_state |= OVS_CS_F_REPLY_DIR; 130 break; 131 default: 132 break; 133 } 134 135 switch (ctinfo) { 136 case IP_CT_ESTABLISHED: 137 case IP_CT_ESTABLISHED_REPLY: 138 ct_state |= OVS_CS_F_ESTABLISHED; 139 break; 140 case IP_CT_RELATED: 141 case IP_CT_RELATED_REPLY: 142 ct_state |= OVS_CS_F_RELATED; 143 break; 144 case IP_CT_NEW: 145 ct_state |= OVS_CS_F_NEW; 146 break; 147 default: 148 break; 149 } 150 151 return ct_state; 152 } 153 154 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 155 { 156 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 157 return ct ? READ_ONCE(ct->mark) : 0; 158 #else 159 return 0; 160 #endif 161 } 162 163 /* Guard against conntrack labels max size shrinking below 128 bits. */ 164 #if NF_CT_LABELS_MAX_SIZE < 16 165 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes 166 #endif 167 168 static void ovs_ct_get_labels(const struct nf_conn *ct, 169 struct ovs_key_ct_labels *labels) 170 { 171 struct nf_conn_labels *cl = NULL; 172 173 if (ct) { 174 if (ct->master && !nf_ct_is_confirmed(ct)) 175 ct = ct->master; 176 cl = nf_ct_labels_find(ct); 177 } 178 if (cl) 179 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN); 180 else 181 memset(labels, 0, OVS_CT_LABELS_LEN); 182 } 183 184 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key, 185 const struct nf_conntrack_tuple *orig, 186 u8 icmp_proto) 187 { 188 key->ct_orig_proto = orig->dst.protonum; 189 if (orig->dst.protonum == icmp_proto) { 190 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type); 191 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code); 192 } else { 193 key->ct.orig_tp.src = orig->src.u.all; 194 key->ct.orig_tp.dst = orig->dst.u.all; 195 } 196 } 197 198 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 199 const struct nf_conntrack_zone *zone, 200 const struct nf_conn *ct) 201 { 202 key->ct_state = state; 203 key->ct_zone = zone->id; 204 key->ct.mark = ovs_ct_get_mark(ct); 205 ovs_ct_get_labels(ct, &key->ct.labels); 206 207 if (ct) { 208 const struct nf_conntrack_tuple *orig; 209 210 /* Use the master if we have one. */ 211 if (ct->master) 212 ct = ct->master; 213 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 214 215 /* IP version must match with the master connection. */ 216 if (key->eth.type == htons(ETH_P_IP) && 217 nf_ct_l3num(ct) == NFPROTO_IPV4) { 218 key->ipv4.ct_orig.src = orig->src.u3.ip; 219 key->ipv4.ct_orig.dst = orig->dst.u3.ip; 220 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP); 221 return; 222 } else if (key->eth.type == htons(ETH_P_IPV6) && 223 !sw_flow_key_is_nd(key) && 224 nf_ct_l3num(ct) == NFPROTO_IPV6) { 225 key->ipv6.ct_orig.src = orig->src.u3.in6; 226 key->ipv6.ct_orig.dst = orig->dst.u3.in6; 227 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP); 228 return; 229 } 230 } 231 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack 232 * original direction key fields. 233 */ 234 key->ct_orig_proto = 0; 235 } 236 237 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has 238 * previously sent the packet to conntrack via the ct action. If 239 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 240 * initialized from the connection status. 241 */ 242 static void ovs_ct_update_key(const struct sk_buff *skb, 243 const struct ovs_conntrack_info *info, 244 struct sw_flow_key *key, bool post_ct, 245 bool keep_nat_flags) 246 { 247 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 248 enum ip_conntrack_info ctinfo; 249 struct nf_conn *ct; 250 u8 state = 0; 251 252 ct = nf_ct_get(skb, &ctinfo); 253 if (ct) { 254 state = ovs_ct_get_state(ctinfo); 255 /* All unconfirmed entries are NEW connections. */ 256 if (!nf_ct_is_confirmed(ct)) 257 state |= OVS_CS_F_NEW; 258 /* OVS persists the related flag for the duration of the 259 * connection. 260 */ 261 if (ct->master) 262 state |= OVS_CS_F_RELATED; 263 if (keep_nat_flags) { 264 state |= key->ct_state & OVS_CS_F_NAT_MASK; 265 } else { 266 if (ct->status & IPS_SRC_NAT) 267 state |= OVS_CS_F_SRC_NAT; 268 if (ct->status & IPS_DST_NAT) 269 state |= OVS_CS_F_DST_NAT; 270 } 271 zone = nf_ct_zone(ct); 272 } else if (post_ct) { 273 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 274 if (info) 275 zone = &info->zone; 276 } 277 __ovs_ct_update_key(key, state, zone, ct); 278 } 279 280 /* This is called to initialize CT key fields possibly coming in from the local 281 * stack. 282 */ 283 void ovs_ct_fill_key(const struct sk_buff *skb, 284 struct sw_flow_key *key, 285 bool post_ct) 286 { 287 ovs_ct_update_key(skb, NULL, key, post_ct, false); 288 } 289 290 int ovs_ct_put_key(const struct sw_flow_key *swkey, 291 const struct sw_flow_key *output, struct sk_buff *skb) 292 { 293 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state)) 294 return -EMSGSIZE; 295 296 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 297 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone)) 298 return -EMSGSIZE; 299 300 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 301 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark)) 302 return -EMSGSIZE; 303 304 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 305 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels), 306 &output->ct.labels)) 307 return -EMSGSIZE; 308 309 if (swkey->ct_orig_proto) { 310 if (swkey->eth.type == htons(ETH_P_IP)) { 311 struct ovs_key_ct_tuple_ipv4 orig; 312 313 memset(&orig, 0, sizeof(orig)); 314 orig.ipv4_src = output->ipv4.ct_orig.src; 315 orig.ipv4_dst = output->ipv4.ct_orig.dst; 316 orig.src_port = output->ct.orig_tp.src; 317 orig.dst_port = output->ct.orig_tp.dst; 318 orig.ipv4_proto = output->ct_orig_proto; 319 320 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4, 321 sizeof(orig), &orig)) 322 return -EMSGSIZE; 323 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 324 struct ovs_key_ct_tuple_ipv6 orig; 325 326 memset(&orig, 0, sizeof(orig)); 327 memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32, 328 sizeof(orig.ipv6_src)); 329 memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32, 330 sizeof(orig.ipv6_dst)); 331 orig.src_port = output->ct.orig_tp.src; 332 orig.dst_port = output->ct.orig_tp.dst; 333 orig.ipv6_proto = output->ct_orig_proto; 334 335 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6, 336 sizeof(orig), &orig)) 337 return -EMSGSIZE; 338 } 339 } 340 341 return 0; 342 } 343 344 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key, 345 u32 ct_mark, u32 mask) 346 { 347 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 348 u32 new_mark; 349 350 new_mark = ct_mark | (READ_ONCE(ct->mark) & ~(mask)); 351 if (READ_ONCE(ct->mark) != new_mark) { 352 WRITE_ONCE(ct->mark, new_mark); 353 if (nf_ct_is_confirmed(ct)) 354 nf_conntrack_event_cache(IPCT_MARK, ct); 355 key->ct.mark = new_mark; 356 } 357 358 return 0; 359 #else 360 return -ENOTSUPP; 361 #endif 362 } 363 364 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct) 365 { 366 struct nf_conn_labels *cl; 367 368 cl = nf_ct_labels_find(ct); 369 if (!cl) { 370 nf_ct_labels_ext_add(ct); 371 cl = nf_ct_labels_find(ct); 372 } 373 374 return cl; 375 } 376 377 /* Initialize labels for a new, yet to be committed conntrack entry. Note that 378 * since the new connection is not yet confirmed, and thus no-one else has 379 * access to it's labels, we simply write them over. 380 */ 381 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key, 382 const struct ovs_key_ct_labels *labels, 383 const struct ovs_key_ct_labels *mask) 384 { 385 struct nf_conn_labels *cl, *master_cl; 386 bool have_mask = labels_nonzero(mask); 387 388 /* Inherit master's labels to the related connection? */ 389 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL; 390 391 if (!master_cl && !have_mask) 392 return 0; /* Nothing to do. */ 393 394 cl = ovs_ct_get_conn_labels(ct); 395 if (!cl) 396 return -ENOSPC; 397 398 /* Inherit the master's labels, if any. */ 399 if (master_cl) 400 *cl = *master_cl; 401 402 if (have_mask) { 403 u32 *dst = (u32 *)cl->bits; 404 int i; 405 406 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 407 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) | 408 (labels->ct_labels_32[i] 409 & mask->ct_labels_32[i]); 410 } 411 412 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the 413 * IPCT_LABEL bit is set in the event cache. 414 */ 415 nf_conntrack_event_cache(IPCT_LABEL, ct); 416 417 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 418 419 return 0; 420 } 421 422 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key, 423 const struct ovs_key_ct_labels *labels, 424 const struct ovs_key_ct_labels *mask) 425 { 426 struct nf_conn_labels *cl; 427 int err; 428 429 cl = ovs_ct_get_conn_labels(ct); 430 if (!cl) 431 return -ENOSPC; 432 433 err = nf_connlabels_replace(ct, labels->ct_labels_32, 434 mask->ct_labels_32, 435 OVS_CT_LABELS_LEN_32); 436 if (err) 437 return err; 438 439 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 440 441 return 0; 442 } 443 444 static int ovs_ct_handle_fragments(struct net *net, struct sw_flow_key *key, 445 u16 zone, int family, struct sk_buff *skb) 446 { 447 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 448 int err; 449 450 err = nf_ct_handle_fragments(net, skb, zone, family, &key->ip.proto, &ovs_cb.mru); 451 if (err) 452 return err; 453 454 /* The key extracted from the fragment that completed this datagram 455 * likely didn't have an L4 header, so regenerate it. 456 */ 457 ovs_flow_key_update_l3l4(skb, key); 458 key->ip.frag = OVS_FRAG_TYPE_NONE; 459 *OVS_CB(skb) = ovs_cb; 460 461 return 0; 462 } 463 464 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 465 static enum ip_conntrack_info 466 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 467 { 468 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 469 470 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 471 return IP_CT_ESTABLISHED_REPLY; 472 /* Once we've had two way comms, always ESTABLISHED. */ 473 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 474 return IP_CT_ESTABLISHED; 475 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 476 return IP_CT_RELATED; 477 return IP_CT_NEW; 478 } 479 480 /* Find an existing connection which this packet belongs to without 481 * re-attributing statistics or modifying the connection state. This allows an 482 * skb->_nfct lost due to an upcall to be recovered during actions execution. 483 * 484 * Must be called with rcu_read_lock. 485 * 486 * On success, populates skb->_nfct and returns the connection. Returns NULL 487 * if there is no existing entry. 488 */ 489 static struct nf_conn * 490 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 491 u8 l3num, struct sk_buff *skb, bool natted) 492 { 493 struct nf_conntrack_tuple tuple; 494 struct nf_conntrack_tuple_hash *h; 495 struct nf_conn *ct; 496 497 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num, 498 net, &tuple)) { 499 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 500 return NULL; 501 } 502 503 /* Must invert the tuple if skb has been transformed by NAT. */ 504 if (natted) { 505 struct nf_conntrack_tuple inverse; 506 507 if (!nf_ct_invert_tuple(&inverse, &tuple)) { 508 pr_debug("ovs_ct_find_existing: Inversion failed!\n"); 509 return NULL; 510 } 511 tuple = inverse; 512 } 513 514 /* look for tuple match */ 515 h = nf_conntrack_find_get(net, zone, &tuple); 516 if (!h) 517 return NULL; /* Not found. */ 518 519 ct = nf_ct_tuplehash_to_ctrack(h); 520 521 /* Inverted packet tuple matches the reverse direction conntrack tuple, 522 * select the other tuplehash to get the right 'ctinfo' bits for this 523 * packet. 524 */ 525 if (natted) 526 h = &ct->tuplehash[!h->tuple.dst.dir]; 527 528 nf_ct_set(skb, ct, ovs_ct_get_info(h)); 529 return ct; 530 } 531 532 static 533 struct nf_conn *ovs_ct_executed(struct net *net, 534 const struct sw_flow_key *key, 535 const struct ovs_conntrack_info *info, 536 struct sk_buff *skb, 537 bool *ct_executed) 538 { 539 struct nf_conn *ct = NULL; 540 541 /* If no ct, check if we have evidence that an existing conntrack entry 542 * might be found for this skb. This happens when we lose a skb->_nfct 543 * due to an upcall, or if the direction is being forced. If the 544 * connection was not confirmed, it is not cached and needs to be run 545 * through conntrack again. 546 */ 547 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) && 548 !(key->ct_state & OVS_CS_F_INVALID) && 549 (key->ct_zone == info->zone.id); 550 551 if (*ct_executed || (!key->ct_state && info->force)) { 552 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb, 553 !!(key->ct_state & 554 OVS_CS_F_NAT_MASK)); 555 } 556 557 return ct; 558 } 559 560 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 561 static bool skb_nfct_cached(struct net *net, 562 const struct sw_flow_key *key, 563 const struct ovs_conntrack_info *info, 564 struct sk_buff *skb) 565 { 566 enum ip_conntrack_info ctinfo; 567 struct nf_conn *ct; 568 bool ct_executed = true; 569 570 ct = nf_ct_get(skb, &ctinfo); 571 if (!ct) 572 ct = ovs_ct_executed(net, key, info, skb, &ct_executed); 573 574 if (ct) 575 nf_ct_get(skb, &ctinfo); 576 else 577 return false; 578 579 if (!net_eq(net, read_pnet(&ct->ct_net))) 580 return false; 581 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 582 return false; 583 if (info->helper) { 584 struct nf_conn_help *help; 585 586 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 587 if (help && rcu_access_pointer(help->helper) != info->helper) 588 return false; 589 } 590 if (info->nf_ct_timeout) { 591 struct nf_conn_timeout *timeout_ext; 592 593 timeout_ext = nf_ct_timeout_find(ct); 594 if (!timeout_ext || info->nf_ct_timeout != 595 rcu_dereference(timeout_ext->timeout)) 596 return false; 597 } 598 /* Force conntrack entry direction to the current packet? */ 599 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 600 /* Delete the conntrack entry if confirmed, else just release 601 * the reference. 602 */ 603 if (nf_ct_is_confirmed(ct)) 604 nf_ct_delete(ct, 0, 0); 605 606 nf_ct_put(ct); 607 nf_ct_set(skb, NULL, 0); 608 return false; 609 } 610 611 return ct_executed; 612 } 613 614 #if IS_ENABLED(CONFIG_NF_NAT) 615 static void ovs_nat_update_key(struct sw_flow_key *key, 616 const struct sk_buff *skb, 617 enum nf_nat_manip_type maniptype) 618 { 619 if (maniptype == NF_NAT_MANIP_SRC) { 620 __be16 src; 621 622 key->ct_state |= OVS_CS_F_SRC_NAT; 623 if (key->eth.type == htons(ETH_P_IP)) 624 key->ipv4.addr.src = ip_hdr(skb)->saddr; 625 else if (key->eth.type == htons(ETH_P_IPV6)) 626 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 627 sizeof(key->ipv6.addr.src)); 628 else 629 return; 630 631 if (key->ip.proto == IPPROTO_UDP) 632 src = udp_hdr(skb)->source; 633 else if (key->ip.proto == IPPROTO_TCP) 634 src = tcp_hdr(skb)->source; 635 else if (key->ip.proto == IPPROTO_SCTP) 636 src = sctp_hdr(skb)->source; 637 else 638 return; 639 640 key->tp.src = src; 641 } else { 642 __be16 dst; 643 644 key->ct_state |= OVS_CS_F_DST_NAT; 645 if (key->eth.type == htons(ETH_P_IP)) 646 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 647 else if (key->eth.type == htons(ETH_P_IPV6)) 648 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 649 sizeof(key->ipv6.addr.dst)); 650 else 651 return; 652 653 if (key->ip.proto == IPPROTO_UDP) 654 dst = udp_hdr(skb)->dest; 655 else if (key->ip.proto == IPPROTO_TCP) 656 dst = tcp_hdr(skb)->dest; 657 else if (key->ip.proto == IPPROTO_SCTP) 658 dst = sctp_hdr(skb)->dest; 659 else 660 return; 661 662 key->tp.dst = dst; 663 } 664 } 665 666 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 667 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 668 const struct ovs_conntrack_info *info, 669 struct sk_buff *skb, struct nf_conn *ct, 670 enum ip_conntrack_info ctinfo) 671 { 672 int err, action = 0; 673 674 if (!(info->nat & OVS_CT_NAT)) 675 return NF_ACCEPT; 676 if (info->nat & OVS_CT_SRC_NAT) 677 action |= BIT(NF_NAT_MANIP_SRC); 678 if (info->nat & OVS_CT_DST_NAT) 679 action |= BIT(NF_NAT_MANIP_DST); 680 681 err = nf_ct_nat(skb, ct, ctinfo, &action, &info->range, info->commit); 682 683 if (action & BIT(NF_NAT_MANIP_SRC)) 684 ovs_nat_update_key(key, skb, NF_NAT_MANIP_SRC); 685 if (action & BIT(NF_NAT_MANIP_DST)) 686 ovs_nat_update_key(key, skb, NF_NAT_MANIP_DST); 687 688 return err; 689 } 690 #else /* !CONFIG_NF_NAT */ 691 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 692 const struct ovs_conntrack_info *info, 693 struct sk_buff *skb, struct nf_conn *ct, 694 enum ip_conntrack_info ctinfo) 695 { 696 return NF_ACCEPT; 697 } 698 #endif 699 700 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 701 * not done already. Update key with new CT state after passing the packet 702 * through conntrack. 703 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be 704 * set to NULL and 0 will be returned. 705 */ 706 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 707 const struct ovs_conntrack_info *info, 708 struct sk_buff *skb) 709 { 710 /* If we are recirculating packets to match on conntrack fields and 711 * committing with a separate conntrack action, then we don't need to 712 * actually run the packet through conntrack twice unless it's for a 713 * different zone. 714 */ 715 bool cached = skb_nfct_cached(net, key, info, skb); 716 enum ip_conntrack_info ctinfo; 717 struct nf_conn *ct; 718 719 if (!cached) { 720 struct nf_hook_state state = { 721 .hook = NF_INET_PRE_ROUTING, 722 .pf = info->family, 723 .net = net, 724 }; 725 struct nf_conn *tmpl = info->ct; 726 int err; 727 728 /* Associate skb with specified zone. */ 729 if (tmpl) { 730 ct = nf_ct_get(skb, &ctinfo); 731 nf_ct_put(ct); 732 nf_conntrack_get(&tmpl->ct_general); 733 nf_ct_set(skb, tmpl, IP_CT_NEW); 734 } 735 736 err = nf_conntrack_in(skb, &state); 737 if (err != NF_ACCEPT) 738 return -ENOENT; 739 740 /* Clear CT state NAT flags to mark that we have not yet done 741 * NAT after the nf_conntrack_in() call. We can actually clear 742 * the whole state, as it will be re-initialized below. 743 */ 744 key->ct_state = 0; 745 746 /* Update the key, but keep the NAT flags. */ 747 ovs_ct_update_key(skb, info, key, true, true); 748 } 749 750 ct = nf_ct_get(skb, &ctinfo); 751 if (ct) { 752 bool add_helper = false; 753 754 /* Packets starting a new connection must be NATted before the 755 * helper, so that the helper knows about the NAT. We enforce 756 * this by delaying both NAT and helper calls for unconfirmed 757 * connections until the committing CT action. For later 758 * packets NAT and Helper may be called in either order. 759 * 760 * NAT will be done only if the CT action has NAT, and only 761 * once per packet (per zone), as guarded by the NAT bits in 762 * the key->ct_state. 763 */ 764 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) && 765 (nf_ct_is_confirmed(ct) || info->commit) && 766 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 767 return -EINVAL; 768 } 769 770 /* Userspace may decide to perform a ct lookup without a helper 771 * specified followed by a (recirculate and) commit with one, 772 * or attach a helper in a later commit. Therefore, for 773 * connections which we will commit, we may need to attach 774 * the helper here. 775 */ 776 if (!nf_ct_is_confirmed(ct) && info->commit && 777 info->helper && !nfct_help(ct)) { 778 int err = __nf_ct_try_assign_helper(ct, info->ct, 779 GFP_ATOMIC); 780 if (err) 781 return err; 782 add_helper = true; 783 784 /* helper installed, add seqadj if NAT is required */ 785 if (info->nat && !nfct_seqadj(ct)) { 786 if (!nfct_seqadj_ext_add(ct)) 787 return -EINVAL; 788 } 789 } 790 791 /* Call the helper only if: 792 * - nf_conntrack_in() was executed above ("!cached") or a 793 * helper was just attached ("add_helper") for a confirmed 794 * connection, or 795 * - When committing an unconfirmed connection. 796 */ 797 if ((nf_ct_is_confirmed(ct) ? !cached || add_helper : 798 info->commit) && 799 nf_ct_helper(skb, ct, ctinfo, info->family) != NF_ACCEPT) { 800 return -EINVAL; 801 } 802 803 if (nf_ct_protonum(ct) == IPPROTO_TCP && 804 nf_ct_is_confirmed(ct) && nf_conntrack_tcp_established(ct)) { 805 /* Be liberal for tcp packets so that out-of-window 806 * packets are not marked invalid. 807 */ 808 nf_ct_set_tcp_be_liberal(ct); 809 } 810 811 nf_conn_act_ct_ext_fill(skb, ct, ctinfo); 812 } 813 814 return 0; 815 } 816 817 /* Lookup connection and read fields into key. */ 818 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 819 const struct ovs_conntrack_info *info, 820 struct sk_buff *skb) 821 { 822 struct nf_conn *ct; 823 int err; 824 825 err = __ovs_ct_lookup(net, key, info, skb); 826 if (err) 827 return err; 828 829 ct = (struct nf_conn *)skb_nfct(skb); 830 if (ct) 831 nf_ct_deliver_cached_events(ct); 832 833 return 0; 834 } 835 836 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 837 { 838 size_t i; 839 840 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 841 if (labels->ct_labels_32[i]) 842 return true; 843 844 return false; 845 } 846 847 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 848 static struct hlist_head *ct_limit_hash_bucket( 849 const struct ovs_ct_limit_info *info, u16 zone) 850 { 851 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)]; 852 } 853 854 /* Call with ovs_mutex */ 855 static void ct_limit_set(const struct ovs_ct_limit_info *info, 856 struct ovs_ct_limit *new_ct_limit) 857 { 858 struct ovs_ct_limit *ct_limit; 859 struct hlist_head *head; 860 861 head = ct_limit_hash_bucket(info, new_ct_limit->zone); 862 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 863 if (ct_limit->zone == new_ct_limit->zone) { 864 hlist_replace_rcu(&ct_limit->hlist_node, 865 &new_ct_limit->hlist_node); 866 kfree_rcu(ct_limit, rcu); 867 return; 868 } 869 } 870 871 hlist_add_head_rcu(&new_ct_limit->hlist_node, head); 872 } 873 874 /* Call with ovs_mutex */ 875 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone) 876 { 877 struct ovs_ct_limit *ct_limit; 878 struct hlist_head *head; 879 struct hlist_node *n; 880 881 head = ct_limit_hash_bucket(info, zone); 882 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) { 883 if (ct_limit->zone == zone) { 884 hlist_del_rcu(&ct_limit->hlist_node); 885 kfree_rcu(ct_limit, rcu); 886 return; 887 } 888 } 889 } 890 891 /* Call with RCU read lock */ 892 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone) 893 { 894 struct ovs_ct_limit *ct_limit; 895 struct hlist_head *head; 896 897 head = ct_limit_hash_bucket(info, zone); 898 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 899 if (ct_limit->zone == zone) 900 return ct_limit->limit; 901 } 902 903 return info->default_limit; 904 } 905 906 static int ovs_ct_check_limit(struct net *net, 907 const struct ovs_conntrack_info *info, 908 const struct nf_conntrack_tuple *tuple) 909 { 910 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 911 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 912 u32 per_zone_limit, connections; 913 u32 conncount_key; 914 915 conncount_key = info->zone.id; 916 917 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id); 918 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED) 919 return 0; 920 921 connections = nf_conncount_count(net, ct_limit_info->data, 922 &conncount_key, tuple, &info->zone); 923 if (connections > per_zone_limit) 924 return -ENOMEM; 925 926 return 0; 927 } 928 #endif 929 930 /* Lookup connection and confirm if unconfirmed. */ 931 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 932 const struct ovs_conntrack_info *info, 933 struct sk_buff *skb) 934 { 935 enum ip_conntrack_info ctinfo; 936 struct nf_conn *ct; 937 int err; 938 939 err = __ovs_ct_lookup(net, key, info, skb); 940 if (err) 941 return err; 942 943 /* The connection could be invalid, in which case this is a no-op.*/ 944 ct = nf_ct_get(skb, &ctinfo); 945 if (!ct) 946 return 0; 947 948 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 949 if (static_branch_unlikely(&ovs_ct_limit_enabled)) { 950 if (!nf_ct_is_confirmed(ct)) { 951 err = ovs_ct_check_limit(net, info, 952 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); 953 if (err) { 954 net_warn_ratelimited("openvswitch: zone: %u " 955 "exceeds conntrack limit\n", 956 info->zone.id); 957 return err; 958 } 959 } 960 } 961 #endif 962 963 /* Set the conntrack event mask if given. NEW and DELETE events have 964 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener 965 * typically would receive many kinds of updates. Setting the event 966 * mask allows those events to be filtered. The set event mask will 967 * remain in effect for the lifetime of the connection unless changed 968 * by a further CT action with both the commit flag and the eventmask 969 * option. */ 970 if (info->have_eventmask) { 971 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct); 972 973 if (cache) 974 cache->ctmask = info->eventmask; 975 } 976 977 /* Apply changes before confirming the connection so that the initial 978 * conntrack NEW netlink event carries the values given in the CT 979 * action. 980 */ 981 if (info->mark.mask) { 982 err = ovs_ct_set_mark(ct, key, info->mark.value, 983 info->mark.mask); 984 if (err) 985 return err; 986 } 987 if (!nf_ct_is_confirmed(ct)) { 988 err = ovs_ct_init_labels(ct, key, &info->labels.value, 989 &info->labels.mask); 990 if (err) 991 return err; 992 993 nf_conn_act_ct_ext_add(skb, ct, ctinfo); 994 } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 995 labels_nonzero(&info->labels.mask)) { 996 err = ovs_ct_set_labels(ct, key, &info->labels.value, 997 &info->labels.mask); 998 if (err) 999 return err; 1000 } 1001 /* This will take care of sending queued events even if the connection 1002 * is already confirmed. 1003 */ 1004 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 1005 return -EINVAL; 1006 1007 return 0; 1008 } 1009 1010 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 1011 * value if 'skb' is freed. 1012 */ 1013 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 1014 struct sw_flow_key *key, 1015 const struct ovs_conntrack_info *info) 1016 { 1017 int nh_ofs; 1018 int err; 1019 1020 /* The conntrack module expects to be working at L3. */ 1021 nh_ofs = skb_network_offset(skb); 1022 skb_pull_rcsum(skb, nh_ofs); 1023 1024 err = nf_ct_skb_network_trim(skb, info->family); 1025 if (err) { 1026 kfree_skb(skb); 1027 return err; 1028 } 1029 1030 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 1031 err = ovs_ct_handle_fragments(net, key, info->zone.id, 1032 info->family, skb); 1033 if (err) 1034 return err; 1035 } 1036 1037 if (info->commit) 1038 err = ovs_ct_commit(net, key, info, skb); 1039 else 1040 err = ovs_ct_lookup(net, key, info, skb); 1041 1042 skb_push_rcsum(skb, nh_ofs); 1043 if (err) 1044 ovs_kfree_skb_reason(skb, OVS_DROP_CONNTRACK); 1045 return err; 1046 } 1047 1048 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key) 1049 { 1050 enum ip_conntrack_info ctinfo; 1051 struct nf_conn *ct; 1052 1053 ct = nf_ct_get(skb, &ctinfo); 1054 1055 nf_ct_put(ct); 1056 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 1057 1058 if (key) 1059 ovs_ct_fill_key(skb, key, false); 1060 1061 return 0; 1062 } 1063 1064 #if IS_ENABLED(CONFIG_NF_NAT) 1065 static int parse_nat(const struct nlattr *attr, 1066 struct ovs_conntrack_info *info, bool log) 1067 { 1068 struct nlattr *a; 1069 int rem; 1070 bool have_ip_max = false; 1071 bool have_proto_max = false; 1072 bool ip_vers = (info->family == NFPROTO_IPV6); 1073 1074 nla_for_each_nested(a, attr, rem) { 1075 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 1076 [OVS_NAT_ATTR_SRC] = {0, 0}, 1077 [OVS_NAT_ATTR_DST] = {0, 0}, 1078 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 1079 sizeof(struct in6_addr)}, 1080 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 1081 sizeof(struct in6_addr)}, 1082 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 1083 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 1084 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 1085 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 1086 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 1087 }; 1088 int type = nla_type(a); 1089 1090 if (type > OVS_NAT_ATTR_MAX) { 1091 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)", 1092 type, OVS_NAT_ATTR_MAX); 1093 return -EINVAL; 1094 } 1095 1096 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 1097 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)", 1098 type, nla_len(a), 1099 ovs_nat_attr_lens[type][ip_vers]); 1100 return -EINVAL; 1101 } 1102 1103 switch (type) { 1104 case OVS_NAT_ATTR_SRC: 1105 case OVS_NAT_ATTR_DST: 1106 if (info->nat) { 1107 OVS_NLERR(log, "Only one type of NAT may be specified"); 1108 return -ERANGE; 1109 } 1110 info->nat |= OVS_CT_NAT; 1111 info->nat |= ((type == OVS_NAT_ATTR_SRC) 1112 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 1113 break; 1114 1115 case OVS_NAT_ATTR_IP_MIN: 1116 nla_memcpy(&info->range.min_addr, a, 1117 sizeof(info->range.min_addr)); 1118 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1119 break; 1120 1121 case OVS_NAT_ATTR_IP_MAX: 1122 have_ip_max = true; 1123 nla_memcpy(&info->range.max_addr, a, 1124 sizeof(info->range.max_addr)); 1125 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1126 break; 1127 1128 case OVS_NAT_ATTR_PROTO_MIN: 1129 info->range.min_proto.all = htons(nla_get_u16(a)); 1130 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1131 break; 1132 1133 case OVS_NAT_ATTR_PROTO_MAX: 1134 have_proto_max = true; 1135 info->range.max_proto.all = htons(nla_get_u16(a)); 1136 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1137 break; 1138 1139 case OVS_NAT_ATTR_PERSISTENT: 1140 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1141 break; 1142 1143 case OVS_NAT_ATTR_PROTO_HASH: 1144 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1145 break; 1146 1147 case OVS_NAT_ATTR_PROTO_RANDOM: 1148 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1149 break; 1150 1151 default: 1152 OVS_NLERR(log, "Unknown nat attribute (%d)", type); 1153 return -EINVAL; 1154 } 1155 } 1156 1157 if (rem > 0) { 1158 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem); 1159 return -EINVAL; 1160 } 1161 if (!info->nat) { 1162 /* Do not allow flags if no type is given. */ 1163 if (info->range.flags) { 1164 OVS_NLERR(log, 1165 "NAT flags may be given only when NAT range (SRC or DST) is also specified." 1166 ); 1167 return -EINVAL; 1168 } 1169 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1170 } else if (!info->commit) { 1171 OVS_NLERR(log, 1172 "NAT attributes may be specified only when CT COMMIT flag is also specified." 1173 ); 1174 return -EINVAL; 1175 } 1176 /* Allow missing IP_MAX. */ 1177 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1178 memcpy(&info->range.max_addr, &info->range.min_addr, 1179 sizeof(info->range.max_addr)); 1180 } 1181 /* Allow missing PROTO_MAX. */ 1182 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1183 !have_proto_max) { 1184 info->range.max_proto.all = info->range.min_proto.all; 1185 } 1186 return 0; 1187 } 1188 #endif 1189 1190 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1191 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1192 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1193 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1194 .maxlen = sizeof(u16) }, 1195 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1196 .maxlen = sizeof(struct md_mark) }, 1197 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1198 .maxlen = sizeof(struct md_labels) }, 1199 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1200 .maxlen = NF_CT_HELPER_NAME_LEN }, 1201 #if IS_ENABLED(CONFIG_NF_NAT) 1202 /* NAT length is checked when parsing the nested attributes. */ 1203 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1204 #endif 1205 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32), 1206 .maxlen = sizeof(u32) }, 1207 [OVS_CT_ATTR_TIMEOUT] = { .minlen = 1, 1208 .maxlen = CTNL_TIMEOUT_NAME_MAX }, 1209 }; 1210 1211 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1212 const char **helper, bool log) 1213 { 1214 struct nlattr *a; 1215 int rem; 1216 1217 nla_for_each_nested(a, attr, rem) { 1218 int type = nla_type(a); 1219 int maxlen; 1220 int minlen; 1221 1222 if (type > OVS_CT_ATTR_MAX) { 1223 OVS_NLERR(log, 1224 "Unknown conntrack attr (type=%d, max=%d)", 1225 type, OVS_CT_ATTR_MAX); 1226 return -EINVAL; 1227 } 1228 1229 maxlen = ovs_ct_attr_lens[type].maxlen; 1230 minlen = ovs_ct_attr_lens[type].minlen; 1231 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1232 OVS_NLERR(log, 1233 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1234 type, nla_len(a), maxlen); 1235 return -EINVAL; 1236 } 1237 1238 switch (type) { 1239 case OVS_CT_ATTR_FORCE_COMMIT: 1240 info->force = true; 1241 fallthrough; 1242 case OVS_CT_ATTR_COMMIT: 1243 info->commit = true; 1244 break; 1245 #ifdef CONFIG_NF_CONNTRACK_ZONES 1246 case OVS_CT_ATTR_ZONE: 1247 info->zone.id = nla_get_u16(a); 1248 break; 1249 #endif 1250 #ifdef CONFIG_NF_CONNTRACK_MARK 1251 case OVS_CT_ATTR_MARK: { 1252 struct md_mark *mark = nla_data(a); 1253 1254 if (!mark->mask) { 1255 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1256 return -EINVAL; 1257 } 1258 info->mark = *mark; 1259 break; 1260 } 1261 #endif 1262 #ifdef CONFIG_NF_CONNTRACK_LABELS 1263 case OVS_CT_ATTR_LABELS: { 1264 struct md_labels *labels = nla_data(a); 1265 1266 if (!labels_nonzero(&labels->mask)) { 1267 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1268 return -EINVAL; 1269 } 1270 info->labels = *labels; 1271 break; 1272 } 1273 #endif 1274 case OVS_CT_ATTR_HELPER: 1275 *helper = nla_data(a); 1276 if (!string_is_terminated(*helper, nla_len(a))) { 1277 OVS_NLERR(log, "Invalid conntrack helper"); 1278 return -EINVAL; 1279 } 1280 break; 1281 #if IS_ENABLED(CONFIG_NF_NAT) 1282 case OVS_CT_ATTR_NAT: { 1283 int err = parse_nat(a, info, log); 1284 1285 if (err) 1286 return err; 1287 break; 1288 } 1289 #endif 1290 case OVS_CT_ATTR_EVENTMASK: 1291 info->have_eventmask = true; 1292 info->eventmask = nla_get_u32(a); 1293 break; 1294 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT 1295 case OVS_CT_ATTR_TIMEOUT: 1296 memcpy(info->timeout, nla_data(a), nla_len(a)); 1297 if (!string_is_terminated(info->timeout, nla_len(a))) { 1298 OVS_NLERR(log, "Invalid conntrack timeout"); 1299 return -EINVAL; 1300 } 1301 break; 1302 #endif 1303 1304 default: 1305 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1306 type); 1307 return -EINVAL; 1308 } 1309 } 1310 1311 #ifdef CONFIG_NF_CONNTRACK_MARK 1312 if (!info->commit && info->mark.mask) { 1313 OVS_NLERR(log, 1314 "Setting conntrack mark requires 'commit' flag."); 1315 return -EINVAL; 1316 } 1317 #endif 1318 #ifdef CONFIG_NF_CONNTRACK_LABELS 1319 if (!info->commit && labels_nonzero(&info->labels.mask)) { 1320 OVS_NLERR(log, 1321 "Setting conntrack labels requires 'commit' flag."); 1322 return -EINVAL; 1323 } 1324 #endif 1325 if (rem > 0) { 1326 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1327 return -EINVAL; 1328 } 1329 1330 return 0; 1331 } 1332 1333 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1334 { 1335 if (attr == OVS_KEY_ATTR_CT_STATE) 1336 return true; 1337 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1338 attr == OVS_KEY_ATTR_CT_ZONE) 1339 return true; 1340 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1341 attr == OVS_KEY_ATTR_CT_MARK) 1342 return true; 1343 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1344 attr == OVS_KEY_ATTR_CT_LABELS) { 1345 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1346 1347 return ovs_net->xt_label; 1348 } 1349 1350 return false; 1351 } 1352 1353 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1354 const struct sw_flow_key *key, 1355 struct sw_flow_actions **sfa, bool log) 1356 { 1357 struct ovs_conntrack_info ct_info; 1358 const char *helper = NULL; 1359 u16 family; 1360 int err; 1361 1362 family = key_to_nfproto(key); 1363 if (family == NFPROTO_UNSPEC) { 1364 OVS_NLERR(log, "ct family unspecified"); 1365 return -EINVAL; 1366 } 1367 1368 memset(&ct_info, 0, sizeof(ct_info)); 1369 ct_info.family = family; 1370 1371 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1372 NF_CT_DEFAULT_ZONE_DIR, 0); 1373 1374 err = parse_ct(attr, &ct_info, &helper, log); 1375 if (err) 1376 return err; 1377 1378 /* Set up template for tracking connections in specific zones. */ 1379 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1380 if (!ct_info.ct) { 1381 OVS_NLERR(log, "Failed to allocate conntrack template"); 1382 return -ENOMEM; 1383 } 1384 1385 if (ct_info.timeout[0]) { 1386 if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto, 1387 ct_info.timeout)) 1388 OVS_NLERR(log, 1389 "Failed to associated timeout policy '%s'", 1390 ct_info.timeout); 1391 else 1392 ct_info.nf_ct_timeout = rcu_dereference( 1393 nf_ct_timeout_find(ct_info.ct)->timeout); 1394 1395 } 1396 1397 if (helper) { 1398 err = nf_ct_add_helper(ct_info.ct, helper, ct_info.family, 1399 key->ip.proto, ct_info.nat, &ct_info.helper); 1400 if (err) { 1401 OVS_NLERR(log, "Failed to add %s helper %d", helper, err); 1402 goto err_free_ct; 1403 } 1404 } 1405 1406 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1407 sizeof(ct_info), log); 1408 if (err) 1409 goto err_free_ct; 1410 1411 if (ct_info.commit) 1412 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1413 return 0; 1414 err_free_ct: 1415 __ovs_ct_free_action(&ct_info); 1416 return err; 1417 } 1418 1419 #if IS_ENABLED(CONFIG_NF_NAT) 1420 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1421 struct sk_buff *skb) 1422 { 1423 struct nlattr *start; 1424 1425 start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT); 1426 if (!start) 1427 return false; 1428 1429 if (info->nat & OVS_CT_SRC_NAT) { 1430 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1431 return false; 1432 } else if (info->nat & OVS_CT_DST_NAT) { 1433 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1434 return false; 1435 } else { 1436 goto out; 1437 } 1438 1439 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1440 if (IS_ENABLED(CONFIG_NF_NAT) && 1441 info->family == NFPROTO_IPV4) { 1442 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1443 info->range.min_addr.ip) || 1444 (info->range.max_addr.ip 1445 != info->range.min_addr.ip && 1446 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1447 info->range.max_addr.ip)))) 1448 return false; 1449 } else if (IS_ENABLED(CONFIG_IPV6) && 1450 info->family == NFPROTO_IPV6) { 1451 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1452 &info->range.min_addr.in6) || 1453 (memcmp(&info->range.max_addr.in6, 1454 &info->range.min_addr.in6, 1455 sizeof(info->range.max_addr.in6)) && 1456 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1457 &info->range.max_addr.in6)))) 1458 return false; 1459 } else { 1460 return false; 1461 } 1462 } 1463 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1464 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1465 ntohs(info->range.min_proto.all)) || 1466 (info->range.max_proto.all != info->range.min_proto.all && 1467 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1468 ntohs(info->range.max_proto.all))))) 1469 return false; 1470 1471 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1472 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1473 return false; 1474 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1475 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1476 return false; 1477 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1478 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1479 return false; 1480 out: 1481 nla_nest_end(skb, start); 1482 1483 return true; 1484 } 1485 #endif 1486 1487 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1488 struct sk_buff *skb) 1489 { 1490 struct nlattr *start; 1491 1492 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT); 1493 if (!start) 1494 return -EMSGSIZE; 1495 1496 if (ct_info->commit && nla_put_flag(skb, ct_info->force 1497 ? OVS_CT_ATTR_FORCE_COMMIT 1498 : OVS_CT_ATTR_COMMIT)) 1499 return -EMSGSIZE; 1500 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1501 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1502 return -EMSGSIZE; 1503 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1504 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1505 &ct_info->mark)) 1506 return -EMSGSIZE; 1507 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1508 labels_nonzero(&ct_info->labels.mask) && 1509 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1510 &ct_info->labels)) 1511 return -EMSGSIZE; 1512 if (ct_info->helper) { 1513 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1514 ct_info->helper->name)) 1515 return -EMSGSIZE; 1516 } 1517 if (ct_info->have_eventmask && 1518 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask)) 1519 return -EMSGSIZE; 1520 if (ct_info->timeout[0]) { 1521 if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout)) 1522 return -EMSGSIZE; 1523 } 1524 1525 #if IS_ENABLED(CONFIG_NF_NAT) 1526 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1527 return -EMSGSIZE; 1528 #endif 1529 nla_nest_end(skb, start); 1530 1531 return 0; 1532 } 1533 1534 void ovs_ct_free_action(const struct nlattr *a) 1535 { 1536 struct ovs_conntrack_info *ct_info = nla_data(a); 1537 1538 __ovs_ct_free_action(ct_info); 1539 } 1540 1541 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1542 { 1543 if (ct_info->helper) { 1544 #if IS_ENABLED(CONFIG_NF_NAT) 1545 if (ct_info->nat) 1546 nf_nat_helper_put(ct_info->helper); 1547 #endif 1548 nf_conntrack_helper_put(ct_info->helper); 1549 } 1550 if (ct_info->ct) { 1551 if (ct_info->timeout[0]) 1552 nf_ct_destroy_timeout(ct_info->ct); 1553 nf_ct_tmpl_free(ct_info->ct); 1554 } 1555 } 1556 1557 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 1558 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net) 1559 { 1560 int i, err; 1561 1562 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info), 1563 GFP_KERNEL); 1564 if (!ovs_net->ct_limit_info) 1565 return -ENOMEM; 1566 1567 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT; 1568 ovs_net->ct_limit_info->limits = 1569 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head), 1570 GFP_KERNEL); 1571 if (!ovs_net->ct_limit_info->limits) { 1572 kfree(ovs_net->ct_limit_info); 1573 return -ENOMEM; 1574 } 1575 1576 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++) 1577 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]); 1578 1579 ovs_net->ct_limit_info->data = 1580 nf_conncount_init(net, NFPROTO_INET, sizeof(u32)); 1581 1582 if (IS_ERR(ovs_net->ct_limit_info->data)) { 1583 err = PTR_ERR(ovs_net->ct_limit_info->data); 1584 kfree(ovs_net->ct_limit_info->limits); 1585 kfree(ovs_net->ct_limit_info); 1586 pr_err("openvswitch: failed to init nf_conncount %d\n", err); 1587 return err; 1588 } 1589 return 0; 1590 } 1591 1592 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net) 1593 { 1594 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info; 1595 int i; 1596 1597 nf_conncount_destroy(net, NFPROTO_INET, info->data); 1598 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { 1599 struct hlist_head *head = &info->limits[i]; 1600 struct ovs_ct_limit *ct_limit; 1601 struct hlist_node *next; 1602 1603 hlist_for_each_entry_safe(ct_limit, next, head, hlist_node) 1604 kfree_rcu(ct_limit, rcu); 1605 } 1606 kfree(info->limits); 1607 kfree(info); 1608 } 1609 1610 static struct sk_buff * 1611 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd, 1612 struct ovs_header **ovs_reply_header) 1613 { 1614 struct ovs_header *ovs_header = genl_info_userhdr(info); 1615 struct sk_buff *skb; 1616 1617 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); 1618 if (!skb) 1619 return ERR_PTR(-ENOMEM); 1620 1621 *ovs_reply_header = genlmsg_put(skb, info->snd_portid, 1622 info->snd_seq, 1623 &dp_ct_limit_genl_family, 0, cmd); 1624 1625 if (!*ovs_reply_header) { 1626 nlmsg_free(skb); 1627 return ERR_PTR(-EMSGSIZE); 1628 } 1629 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex; 1630 1631 return skb; 1632 } 1633 1634 static bool check_zone_id(int zone_id, u16 *pzone) 1635 { 1636 if (zone_id >= 0 && zone_id <= 65535) { 1637 *pzone = (u16)zone_id; 1638 return true; 1639 } 1640 return false; 1641 } 1642 1643 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit, 1644 struct ovs_ct_limit_info *info) 1645 { 1646 struct ovs_zone_limit *zone_limit; 1647 int rem; 1648 u16 zone; 1649 1650 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1651 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1652 1653 while (rem >= sizeof(*zone_limit)) { 1654 if (unlikely(zone_limit->zone_id == 1655 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1656 ovs_lock(); 1657 info->default_limit = zone_limit->limit; 1658 ovs_unlock(); 1659 } else if (unlikely(!check_zone_id( 1660 zone_limit->zone_id, &zone))) { 1661 OVS_NLERR(true, "zone id is out of range"); 1662 } else { 1663 struct ovs_ct_limit *ct_limit; 1664 1665 ct_limit = kmalloc(sizeof(*ct_limit), 1666 GFP_KERNEL_ACCOUNT); 1667 if (!ct_limit) 1668 return -ENOMEM; 1669 1670 ct_limit->zone = zone; 1671 ct_limit->limit = zone_limit->limit; 1672 1673 ovs_lock(); 1674 ct_limit_set(info, ct_limit); 1675 ovs_unlock(); 1676 } 1677 rem -= NLA_ALIGN(sizeof(*zone_limit)); 1678 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 1679 NLA_ALIGN(sizeof(*zone_limit))); 1680 } 1681 1682 if (rem) 1683 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem); 1684 1685 return 0; 1686 } 1687 1688 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit, 1689 struct ovs_ct_limit_info *info) 1690 { 1691 struct ovs_zone_limit *zone_limit; 1692 int rem; 1693 u16 zone; 1694 1695 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1696 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1697 1698 while (rem >= sizeof(*zone_limit)) { 1699 if (unlikely(zone_limit->zone_id == 1700 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1701 ovs_lock(); 1702 info->default_limit = OVS_CT_LIMIT_DEFAULT; 1703 ovs_unlock(); 1704 } else if (unlikely(!check_zone_id( 1705 zone_limit->zone_id, &zone))) { 1706 OVS_NLERR(true, "zone id is out of range"); 1707 } else { 1708 ovs_lock(); 1709 ct_limit_del(info, zone); 1710 ovs_unlock(); 1711 } 1712 rem -= NLA_ALIGN(sizeof(*zone_limit)); 1713 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 1714 NLA_ALIGN(sizeof(*zone_limit))); 1715 } 1716 1717 if (rem) 1718 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem); 1719 1720 return 0; 1721 } 1722 1723 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info, 1724 struct sk_buff *reply) 1725 { 1726 struct ovs_zone_limit zone_limit = { 1727 .zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE, 1728 .limit = info->default_limit, 1729 }; 1730 1731 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit); 1732 } 1733 1734 static int __ovs_ct_limit_get_zone_limit(struct net *net, 1735 struct nf_conncount_data *data, 1736 u16 zone_id, u32 limit, 1737 struct sk_buff *reply) 1738 { 1739 struct nf_conntrack_zone ct_zone; 1740 struct ovs_zone_limit zone_limit; 1741 u32 conncount_key = zone_id; 1742 1743 zone_limit.zone_id = zone_id; 1744 zone_limit.limit = limit; 1745 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0); 1746 1747 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL, 1748 &ct_zone); 1749 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit); 1750 } 1751 1752 static int ovs_ct_limit_get_zone_limit(struct net *net, 1753 struct nlattr *nla_zone_limit, 1754 struct ovs_ct_limit_info *info, 1755 struct sk_buff *reply) 1756 { 1757 struct ovs_zone_limit *zone_limit; 1758 int rem, err; 1759 u32 limit; 1760 u16 zone; 1761 1762 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1763 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1764 1765 while (rem >= sizeof(*zone_limit)) { 1766 if (unlikely(zone_limit->zone_id == 1767 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1768 err = ovs_ct_limit_get_default_limit(info, reply); 1769 if (err) 1770 return err; 1771 } else if (unlikely(!check_zone_id(zone_limit->zone_id, 1772 &zone))) { 1773 OVS_NLERR(true, "zone id is out of range"); 1774 } else { 1775 rcu_read_lock(); 1776 limit = ct_limit_get(info, zone); 1777 rcu_read_unlock(); 1778 1779 err = __ovs_ct_limit_get_zone_limit( 1780 net, info->data, zone, limit, reply); 1781 if (err) 1782 return err; 1783 } 1784 rem -= NLA_ALIGN(sizeof(*zone_limit)); 1785 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 1786 NLA_ALIGN(sizeof(*zone_limit))); 1787 } 1788 1789 if (rem) 1790 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem); 1791 1792 return 0; 1793 } 1794 1795 static int ovs_ct_limit_get_all_zone_limit(struct net *net, 1796 struct ovs_ct_limit_info *info, 1797 struct sk_buff *reply) 1798 { 1799 struct ovs_ct_limit *ct_limit; 1800 struct hlist_head *head; 1801 int i, err = 0; 1802 1803 err = ovs_ct_limit_get_default_limit(info, reply); 1804 if (err) 1805 return err; 1806 1807 rcu_read_lock(); 1808 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { 1809 head = &info->limits[i]; 1810 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 1811 err = __ovs_ct_limit_get_zone_limit(net, info->data, 1812 ct_limit->zone, ct_limit->limit, reply); 1813 if (err) 1814 goto exit_err; 1815 } 1816 } 1817 1818 exit_err: 1819 rcu_read_unlock(); 1820 return err; 1821 } 1822 1823 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info) 1824 { 1825 struct nlattr **a = info->attrs; 1826 struct sk_buff *reply; 1827 struct ovs_header *ovs_reply_header; 1828 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); 1829 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 1830 int err; 1831 1832 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET, 1833 &ovs_reply_header); 1834 if (IS_ERR(reply)) 1835 return PTR_ERR(reply); 1836 1837 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 1838 err = -EINVAL; 1839 goto exit_err; 1840 } 1841 1842 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], 1843 ct_limit_info); 1844 if (err) 1845 goto exit_err; 1846 1847 static_branch_enable(&ovs_ct_limit_enabled); 1848 1849 genlmsg_end(reply, ovs_reply_header); 1850 return genlmsg_reply(reply, info); 1851 1852 exit_err: 1853 nlmsg_free(reply); 1854 return err; 1855 } 1856 1857 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info) 1858 { 1859 struct nlattr **a = info->attrs; 1860 struct sk_buff *reply; 1861 struct ovs_header *ovs_reply_header; 1862 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); 1863 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 1864 int err; 1865 1866 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL, 1867 &ovs_reply_header); 1868 if (IS_ERR(reply)) 1869 return PTR_ERR(reply); 1870 1871 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 1872 err = -EINVAL; 1873 goto exit_err; 1874 } 1875 1876 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], 1877 ct_limit_info); 1878 if (err) 1879 goto exit_err; 1880 1881 genlmsg_end(reply, ovs_reply_header); 1882 return genlmsg_reply(reply, info); 1883 1884 exit_err: 1885 nlmsg_free(reply); 1886 return err; 1887 } 1888 1889 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info) 1890 { 1891 struct nlattr **a = info->attrs; 1892 struct nlattr *nla_reply; 1893 struct sk_buff *reply; 1894 struct ovs_header *ovs_reply_header; 1895 struct net *net = sock_net(skb->sk); 1896 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1897 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 1898 int err; 1899 1900 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET, 1901 &ovs_reply_header); 1902 if (IS_ERR(reply)) 1903 return PTR_ERR(reply); 1904 1905 nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT); 1906 if (!nla_reply) { 1907 err = -EMSGSIZE; 1908 goto exit_err; 1909 } 1910 1911 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 1912 err = ovs_ct_limit_get_zone_limit( 1913 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info, 1914 reply); 1915 if (err) 1916 goto exit_err; 1917 } else { 1918 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info, 1919 reply); 1920 if (err) 1921 goto exit_err; 1922 } 1923 1924 nla_nest_end(reply, nla_reply); 1925 genlmsg_end(reply, ovs_reply_header); 1926 return genlmsg_reply(reply, info); 1927 1928 exit_err: 1929 nlmsg_free(reply); 1930 return err; 1931 } 1932 1933 static const struct genl_small_ops ct_limit_genl_ops[] = { 1934 { .cmd = OVS_CT_LIMIT_CMD_SET, 1935 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 1936 .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN 1937 * privilege. 1938 */ 1939 .doit = ovs_ct_limit_cmd_set, 1940 }, 1941 { .cmd = OVS_CT_LIMIT_CMD_DEL, 1942 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 1943 .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN 1944 * privilege. 1945 */ 1946 .doit = ovs_ct_limit_cmd_del, 1947 }, 1948 { .cmd = OVS_CT_LIMIT_CMD_GET, 1949 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 1950 .flags = 0, /* OK for unprivileged users. */ 1951 .doit = ovs_ct_limit_cmd_get, 1952 }, 1953 }; 1954 1955 static const struct genl_multicast_group ovs_ct_limit_multicast_group = { 1956 .name = OVS_CT_LIMIT_MCGROUP, 1957 }; 1958 1959 struct genl_family dp_ct_limit_genl_family __ro_after_init = { 1960 .hdrsize = sizeof(struct ovs_header), 1961 .name = OVS_CT_LIMIT_FAMILY, 1962 .version = OVS_CT_LIMIT_VERSION, 1963 .maxattr = OVS_CT_LIMIT_ATTR_MAX, 1964 .policy = ct_limit_policy, 1965 .netnsok = true, 1966 .parallel_ops = true, 1967 .small_ops = ct_limit_genl_ops, 1968 .n_small_ops = ARRAY_SIZE(ct_limit_genl_ops), 1969 .resv_start_op = OVS_CT_LIMIT_CMD_GET + 1, 1970 .mcgrps = &ovs_ct_limit_multicast_group, 1971 .n_mcgrps = 1, 1972 .module = THIS_MODULE, 1973 }; 1974 #endif 1975 1976 int ovs_ct_init(struct net *net) 1977 { 1978 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 1979 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1980 1981 if (nf_connlabels_get(net, n_bits - 1)) { 1982 ovs_net->xt_label = false; 1983 OVS_NLERR(true, "Failed to set connlabel length"); 1984 } else { 1985 ovs_net->xt_label = true; 1986 } 1987 1988 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 1989 return ovs_ct_limit_init(net, ovs_net); 1990 #else 1991 return 0; 1992 #endif 1993 } 1994 1995 void ovs_ct_exit(struct net *net) 1996 { 1997 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1998 1999 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 2000 ovs_ct_limit_exit(net, ovs_net); 2001 #endif 2002 2003 if (ovs_net->xt_label) 2004 nf_connlabels_put(net); 2005 } 2006