1 /* 2 * Copyright (c) 2015 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/openvswitch.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/sctp.h> 19 #include <linux/static_key.h> 20 #include <net/ip.h> 21 #include <net/genetlink.h> 22 #include <net/netfilter/nf_conntrack_core.h> 23 #include <net/netfilter/nf_conntrack_count.h> 24 #include <net/netfilter/nf_conntrack_helper.h> 25 #include <net/netfilter/nf_conntrack_labels.h> 26 #include <net/netfilter/nf_conntrack_seqadj.h> 27 #include <net/netfilter/nf_conntrack_zones.h> 28 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 29 30 #ifdef CONFIG_NF_NAT_NEEDED 31 #include <linux/netfilter/nf_nat.h> 32 #include <net/netfilter/nf_nat_core.h> 33 #include <net/netfilter/nf_nat_l3proto.h> 34 #endif 35 36 #include "datapath.h" 37 #include "conntrack.h" 38 #include "flow.h" 39 #include "flow_netlink.h" 40 41 struct ovs_ct_len_tbl { 42 int maxlen; 43 int minlen; 44 }; 45 46 /* Metadata mark for masked write to conntrack mark */ 47 struct md_mark { 48 u32 value; 49 u32 mask; 50 }; 51 52 /* Metadata label for masked write to conntrack label. */ 53 struct md_labels { 54 struct ovs_key_ct_labels value; 55 struct ovs_key_ct_labels mask; 56 }; 57 58 enum ovs_ct_nat { 59 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 60 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 61 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 62 }; 63 64 /* Conntrack action context for execution. */ 65 struct ovs_conntrack_info { 66 struct nf_conntrack_helper *helper; 67 struct nf_conntrack_zone zone; 68 struct nf_conn *ct; 69 u8 commit : 1; 70 u8 nat : 3; /* enum ovs_ct_nat */ 71 u8 force : 1; 72 u8 have_eventmask : 1; 73 u16 family; 74 u32 eventmask; /* Mask of 1 << IPCT_*. */ 75 struct md_mark mark; 76 struct md_labels labels; 77 #ifdef CONFIG_NF_NAT_NEEDED 78 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */ 79 #endif 80 }; 81 82 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 83 #define OVS_CT_LIMIT_UNLIMITED 0 84 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED 85 #define CT_LIMIT_HASH_BUCKETS 512 86 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled); 87 88 struct ovs_ct_limit { 89 /* Elements in ovs_ct_limit_info->limits hash table */ 90 struct hlist_node hlist_node; 91 struct rcu_head rcu; 92 u16 zone; 93 u32 limit; 94 }; 95 96 struct ovs_ct_limit_info { 97 u32 default_limit; 98 struct hlist_head *limits; 99 struct nf_conncount_data *data; 100 }; 101 102 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = { 103 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, }, 104 }; 105 #endif 106 107 static bool labels_nonzero(const struct ovs_key_ct_labels *labels); 108 109 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 110 111 static u16 key_to_nfproto(const struct sw_flow_key *key) 112 { 113 switch (ntohs(key->eth.type)) { 114 case ETH_P_IP: 115 return NFPROTO_IPV4; 116 case ETH_P_IPV6: 117 return NFPROTO_IPV6; 118 default: 119 return NFPROTO_UNSPEC; 120 } 121 } 122 123 /* Map SKB connection state into the values used by flow definition. */ 124 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 125 { 126 u8 ct_state = OVS_CS_F_TRACKED; 127 128 switch (ctinfo) { 129 case IP_CT_ESTABLISHED_REPLY: 130 case IP_CT_RELATED_REPLY: 131 ct_state |= OVS_CS_F_REPLY_DIR; 132 break; 133 default: 134 break; 135 } 136 137 switch (ctinfo) { 138 case IP_CT_ESTABLISHED: 139 case IP_CT_ESTABLISHED_REPLY: 140 ct_state |= OVS_CS_F_ESTABLISHED; 141 break; 142 case IP_CT_RELATED: 143 case IP_CT_RELATED_REPLY: 144 ct_state |= OVS_CS_F_RELATED; 145 break; 146 case IP_CT_NEW: 147 ct_state |= OVS_CS_F_NEW; 148 break; 149 default: 150 break; 151 } 152 153 return ct_state; 154 } 155 156 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 157 { 158 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 159 return ct ? ct->mark : 0; 160 #else 161 return 0; 162 #endif 163 } 164 165 /* Guard against conntrack labels max size shrinking below 128 bits. */ 166 #if NF_CT_LABELS_MAX_SIZE < 16 167 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes 168 #endif 169 170 static void ovs_ct_get_labels(const struct nf_conn *ct, 171 struct ovs_key_ct_labels *labels) 172 { 173 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 174 175 if (cl) 176 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN); 177 else 178 memset(labels, 0, OVS_CT_LABELS_LEN); 179 } 180 181 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key, 182 const struct nf_conntrack_tuple *orig, 183 u8 icmp_proto) 184 { 185 key->ct_orig_proto = orig->dst.protonum; 186 if (orig->dst.protonum == icmp_proto) { 187 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type); 188 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code); 189 } else { 190 key->ct.orig_tp.src = orig->src.u.all; 191 key->ct.orig_tp.dst = orig->dst.u.all; 192 } 193 } 194 195 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 196 const struct nf_conntrack_zone *zone, 197 const struct nf_conn *ct) 198 { 199 key->ct_state = state; 200 key->ct_zone = zone->id; 201 key->ct.mark = ovs_ct_get_mark(ct); 202 ovs_ct_get_labels(ct, &key->ct.labels); 203 204 if (ct) { 205 const struct nf_conntrack_tuple *orig; 206 207 /* Use the master if we have one. */ 208 if (ct->master) 209 ct = ct->master; 210 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 211 212 /* IP version must match with the master connection. */ 213 if (key->eth.type == htons(ETH_P_IP) && 214 nf_ct_l3num(ct) == NFPROTO_IPV4) { 215 key->ipv4.ct_orig.src = orig->src.u3.ip; 216 key->ipv4.ct_orig.dst = orig->dst.u3.ip; 217 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP); 218 return; 219 } else if (key->eth.type == htons(ETH_P_IPV6) && 220 !sw_flow_key_is_nd(key) && 221 nf_ct_l3num(ct) == NFPROTO_IPV6) { 222 key->ipv6.ct_orig.src = orig->src.u3.in6; 223 key->ipv6.ct_orig.dst = orig->dst.u3.in6; 224 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP); 225 return; 226 } 227 } 228 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack 229 * original direction key fields. 230 */ 231 key->ct_orig_proto = 0; 232 } 233 234 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has 235 * previously sent the packet to conntrack via the ct action. If 236 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 237 * initialized from the connection status. 238 */ 239 static void ovs_ct_update_key(const struct sk_buff *skb, 240 const struct ovs_conntrack_info *info, 241 struct sw_flow_key *key, bool post_ct, 242 bool keep_nat_flags) 243 { 244 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 245 enum ip_conntrack_info ctinfo; 246 struct nf_conn *ct; 247 u8 state = 0; 248 249 ct = nf_ct_get(skb, &ctinfo); 250 if (ct) { 251 state = ovs_ct_get_state(ctinfo); 252 /* All unconfirmed entries are NEW connections. */ 253 if (!nf_ct_is_confirmed(ct)) 254 state |= OVS_CS_F_NEW; 255 /* OVS persists the related flag for the duration of the 256 * connection. 257 */ 258 if (ct->master) 259 state |= OVS_CS_F_RELATED; 260 if (keep_nat_flags) { 261 state |= key->ct_state & OVS_CS_F_NAT_MASK; 262 } else { 263 if (ct->status & IPS_SRC_NAT) 264 state |= OVS_CS_F_SRC_NAT; 265 if (ct->status & IPS_DST_NAT) 266 state |= OVS_CS_F_DST_NAT; 267 } 268 zone = nf_ct_zone(ct); 269 } else if (post_ct) { 270 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 271 if (info) 272 zone = &info->zone; 273 } 274 __ovs_ct_update_key(key, state, zone, ct); 275 } 276 277 /* This is called to initialize CT key fields possibly coming in from the local 278 * stack. 279 */ 280 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 281 { 282 ovs_ct_update_key(skb, NULL, key, false, false); 283 } 284 285 #define IN6_ADDR_INITIALIZER(ADDR) \ 286 { (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \ 287 (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] } 288 289 int ovs_ct_put_key(const struct sw_flow_key *swkey, 290 const struct sw_flow_key *output, struct sk_buff *skb) 291 { 292 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state)) 293 return -EMSGSIZE; 294 295 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 296 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone)) 297 return -EMSGSIZE; 298 299 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 300 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark)) 301 return -EMSGSIZE; 302 303 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 304 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels), 305 &output->ct.labels)) 306 return -EMSGSIZE; 307 308 if (swkey->ct_orig_proto) { 309 if (swkey->eth.type == htons(ETH_P_IP)) { 310 struct ovs_key_ct_tuple_ipv4 orig = { 311 output->ipv4.ct_orig.src, 312 output->ipv4.ct_orig.dst, 313 output->ct.orig_tp.src, 314 output->ct.orig_tp.dst, 315 output->ct_orig_proto, 316 }; 317 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4, 318 sizeof(orig), &orig)) 319 return -EMSGSIZE; 320 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 321 struct ovs_key_ct_tuple_ipv6 orig = { 322 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src), 323 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst), 324 output->ct.orig_tp.src, 325 output->ct.orig_tp.dst, 326 output->ct_orig_proto, 327 }; 328 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6, 329 sizeof(orig), &orig)) 330 return -EMSGSIZE; 331 } 332 } 333 334 return 0; 335 } 336 337 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key, 338 u32 ct_mark, u32 mask) 339 { 340 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 341 u32 new_mark; 342 343 new_mark = ct_mark | (ct->mark & ~(mask)); 344 if (ct->mark != new_mark) { 345 ct->mark = new_mark; 346 if (nf_ct_is_confirmed(ct)) 347 nf_conntrack_event_cache(IPCT_MARK, ct); 348 key->ct.mark = new_mark; 349 } 350 351 return 0; 352 #else 353 return -ENOTSUPP; 354 #endif 355 } 356 357 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct) 358 { 359 struct nf_conn_labels *cl; 360 361 cl = nf_ct_labels_find(ct); 362 if (!cl) { 363 nf_ct_labels_ext_add(ct); 364 cl = nf_ct_labels_find(ct); 365 } 366 367 return cl; 368 } 369 370 /* Initialize labels for a new, yet to be committed conntrack entry. Note that 371 * since the new connection is not yet confirmed, and thus no-one else has 372 * access to it's labels, we simply write them over. 373 */ 374 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key, 375 const struct ovs_key_ct_labels *labels, 376 const struct ovs_key_ct_labels *mask) 377 { 378 struct nf_conn_labels *cl, *master_cl; 379 bool have_mask = labels_nonzero(mask); 380 381 /* Inherit master's labels to the related connection? */ 382 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL; 383 384 if (!master_cl && !have_mask) 385 return 0; /* Nothing to do. */ 386 387 cl = ovs_ct_get_conn_labels(ct); 388 if (!cl) 389 return -ENOSPC; 390 391 /* Inherit the master's labels, if any. */ 392 if (master_cl) 393 *cl = *master_cl; 394 395 if (have_mask) { 396 u32 *dst = (u32 *)cl->bits; 397 int i; 398 399 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 400 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) | 401 (labels->ct_labels_32[i] 402 & mask->ct_labels_32[i]); 403 } 404 405 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the 406 * IPCT_LABEL bit is set in the event cache. 407 */ 408 nf_conntrack_event_cache(IPCT_LABEL, ct); 409 410 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 411 412 return 0; 413 } 414 415 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key, 416 const struct ovs_key_ct_labels *labels, 417 const struct ovs_key_ct_labels *mask) 418 { 419 struct nf_conn_labels *cl; 420 int err; 421 422 cl = ovs_ct_get_conn_labels(ct); 423 if (!cl) 424 return -ENOSPC; 425 426 err = nf_connlabels_replace(ct, labels->ct_labels_32, 427 mask->ct_labels_32, 428 OVS_CT_LABELS_LEN_32); 429 if (err) 430 return err; 431 432 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 433 434 return 0; 435 } 436 437 /* 'skb' should already be pulled to nh_ofs. */ 438 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 439 { 440 const struct nf_conntrack_helper *helper; 441 const struct nf_conn_help *help; 442 enum ip_conntrack_info ctinfo; 443 unsigned int protoff; 444 struct nf_conn *ct; 445 int err; 446 447 ct = nf_ct_get(skb, &ctinfo); 448 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 449 return NF_ACCEPT; 450 451 help = nfct_help(ct); 452 if (!help) 453 return NF_ACCEPT; 454 455 helper = rcu_dereference(help->helper); 456 if (!helper) 457 return NF_ACCEPT; 458 459 switch (proto) { 460 case NFPROTO_IPV4: 461 protoff = ip_hdrlen(skb); 462 break; 463 case NFPROTO_IPV6: { 464 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 465 __be16 frag_off; 466 int ofs; 467 468 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 469 &frag_off); 470 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 471 pr_debug("proto header not found\n"); 472 return NF_ACCEPT; 473 } 474 protoff = ofs; 475 break; 476 } 477 default: 478 WARN_ONCE(1, "helper invoked on non-IP family!"); 479 return NF_DROP; 480 } 481 482 err = helper->help(skb, protoff, ct, ctinfo); 483 if (err != NF_ACCEPT) 484 return err; 485 486 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 487 * FTP with NAT) adusting the TCP payload size when mangling IP 488 * addresses and/or port numbers in the text-based control connection. 489 */ 490 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 491 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 492 return NF_DROP; 493 return NF_ACCEPT; 494 } 495 496 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 497 * value if 'skb' is freed. 498 */ 499 static int handle_fragments(struct net *net, struct sw_flow_key *key, 500 u16 zone, struct sk_buff *skb) 501 { 502 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 503 int err; 504 505 if (key->eth.type == htons(ETH_P_IP)) { 506 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 507 508 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 509 err = ip_defrag(net, skb, user); 510 if (err) 511 return err; 512 513 ovs_cb.mru = IPCB(skb)->frag_max_size; 514 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 515 } else if (key->eth.type == htons(ETH_P_IPV6)) { 516 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 517 518 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 519 err = nf_ct_frag6_gather(net, skb, user); 520 if (err) { 521 if (err != -EINPROGRESS) 522 kfree_skb(skb); 523 return err; 524 } 525 526 key->ip.proto = ipv6_hdr(skb)->nexthdr; 527 ovs_cb.mru = IP6CB(skb)->frag_max_size; 528 #endif 529 } else { 530 kfree_skb(skb); 531 return -EPFNOSUPPORT; 532 } 533 534 key->ip.frag = OVS_FRAG_TYPE_NONE; 535 skb_clear_hash(skb); 536 skb->ignore_df = 1; 537 *OVS_CB(skb) = ovs_cb; 538 539 return 0; 540 } 541 542 static struct nf_conntrack_expect * 543 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 544 u16 proto, const struct sk_buff *skb) 545 { 546 struct nf_conntrack_tuple tuple; 547 struct nf_conntrack_expect *exp; 548 549 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 550 return NULL; 551 552 exp = __nf_ct_expect_find(net, zone, &tuple); 553 if (exp) { 554 struct nf_conntrack_tuple_hash *h; 555 556 /* Delete existing conntrack entry, if it clashes with the 557 * expectation. This can happen since conntrack ALGs do not 558 * check for clashes between (new) expectations and existing 559 * conntrack entries. nf_conntrack_in() will check the 560 * expectations only if a conntrack entry can not be found, 561 * which can lead to OVS finding the expectation (here) in the 562 * init direction, but which will not be removed by the 563 * nf_conntrack_in() call, if a matching conntrack entry is 564 * found instead. In this case all init direction packets 565 * would be reported as new related packets, while reply 566 * direction packets would be reported as un-related 567 * established packets. 568 */ 569 h = nf_conntrack_find_get(net, zone, &tuple); 570 if (h) { 571 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 572 573 nf_ct_delete(ct, 0, 0); 574 nf_conntrack_put(&ct->ct_general); 575 } 576 } 577 578 return exp; 579 } 580 581 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 582 static enum ip_conntrack_info 583 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 584 { 585 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 586 587 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 588 return IP_CT_ESTABLISHED_REPLY; 589 /* Once we've had two way comms, always ESTABLISHED. */ 590 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 591 return IP_CT_ESTABLISHED; 592 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 593 return IP_CT_RELATED; 594 return IP_CT_NEW; 595 } 596 597 /* Find an existing connection which this packet belongs to without 598 * re-attributing statistics or modifying the connection state. This allows an 599 * skb->_nfct lost due to an upcall to be recovered during actions execution. 600 * 601 * Must be called with rcu_read_lock. 602 * 603 * On success, populates skb->_nfct and returns the connection. Returns NULL 604 * if there is no existing entry. 605 */ 606 static struct nf_conn * 607 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 608 u8 l3num, struct sk_buff *skb, bool natted) 609 { 610 const struct nf_conntrack_l3proto *l3proto; 611 const struct nf_conntrack_l4proto *l4proto; 612 struct nf_conntrack_tuple tuple; 613 struct nf_conntrack_tuple_hash *h; 614 struct nf_conn *ct; 615 unsigned int dataoff; 616 u8 protonum; 617 618 l3proto = __nf_ct_l3proto_find(l3num); 619 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff, 620 &protonum) <= 0) { 621 pr_debug("ovs_ct_find_existing: Can't get protonum\n"); 622 return NULL; 623 } 624 l4proto = __nf_ct_l4proto_find(l3num, protonum); 625 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, 626 protonum, net, &tuple, l3proto, l4proto)) { 627 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 628 return NULL; 629 } 630 631 /* Must invert the tuple if skb has been transformed by NAT. */ 632 if (natted) { 633 struct nf_conntrack_tuple inverse; 634 635 if (!nf_ct_invert_tuple(&inverse, &tuple, l3proto, l4proto)) { 636 pr_debug("ovs_ct_find_existing: Inversion failed!\n"); 637 return NULL; 638 } 639 tuple = inverse; 640 } 641 642 /* look for tuple match */ 643 h = nf_conntrack_find_get(net, zone, &tuple); 644 if (!h) 645 return NULL; /* Not found. */ 646 647 ct = nf_ct_tuplehash_to_ctrack(h); 648 649 /* Inverted packet tuple matches the reverse direction conntrack tuple, 650 * select the other tuplehash to get the right 'ctinfo' bits for this 651 * packet. 652 */ 653 if (natted) 654 h = &ct->tuplehash[!h->tuple.dst.dir]; 655 656 nf_ct_set(skb, ct, ovs_ct_get_info(h)); 657 return ct; 658 } 659 660 static 661 struct nf_conn *ovs_ct_executed(struct net *net, 662 const struct sw_flow_key *key, 663 const struct ovs_conntrack_info *info, 664 struct sk_buff *skb, 665 bool *ct_executed) 666 { 667 struct nf_conn *ct = NULL; 668 669 /* If no ct, check if we have evidence that an existing conntrack entry 670 * might be found for this skb. This happens when we lose a skb->_nfct 671 * due to an upcall, or if the direction is being forced. If the 672 * connection was not confirmed, it is not cached and needs to be run 673 * through conntrack again. 674 */ 675 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) && 676 !(key->ct_state & OVS_CS_F_INVALID) && 677 (key->ct_zone == info->zone.id); 678 679 if (*ct_executed || (!key->ct_state && info->force)) { 680 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb, 681 !!(key->ct_state & 682 OVS_CS_F_NAT_MASK)); 683 } 684 685 return ct; 686 } 687 688 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 689 static bool skb_nfct_cached(struct net *net, 690 const struct sw_flow_key *key, 691 const struct ovs_conntrack_info *info, 692 struct sk_buff *skb) 693 { 694 enum ip_conntrack_info ctinfo; 695 struct nf_conn *ct; 696 bool ct_executed = true; 697 698 ct = nf_ct_get(skb, &ctinfo); 699 if (!ct) 700 ct = ovs_ct_executed(net, key, info, skb, &ct_executed); 701 702 if (ct) 703 nf_ct_get(skb, &ctinfo); 704 else 705 return false; 706 707 if (!net_eq(net, read_pnet(&ct->ct_net))) 708 return false; 709 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 710 return false; 711 if (info->helper) { 712 struct nf_conn_help *help; 713 714 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 715 if (help && rcu_access_pointer(help->helper) != info->helper) 716 return false; 717 } 718 /* Force conntrack entry direction to the current packet? */ 719 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 720 /* Delete the conntrack entry if confirmed, else just release 721 * the reference. 722 */ 723 if (nf_ct_is_confirmed(ct)) 724 nf_ct_delete(ct, 0, 0); 725 726 nf_conntrack_put(&ct->ct_general); 727 nf_ct_set(skb, NULL, 0); 728 return false; 729 } 730 731 return ct_executed; 732 } 733 734 #ifdef CONFIG_NF_NAT_NEEDED 735 /* Modelled after nf_nat_ipv[46]_fn(). 736 * range is only used for new, uninitialized NAT state. 737 * Returns either NF_ACCEPT or NF_DROP. 738 */ 739 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 740 enum ip_conntrack_info ctinfo, 741 const struct nf_nat_range2 *range, 742 enum nf_nat_manip_type maniptype) 743 { 744 int hooknum, nh_off, err = NF_ACCEPT; 745 746 nh_off = skb_network_offset(skb); 747 skb_pull_rcsum(skb, nh_off); 748 749 /* See HOOK2MANIP(). */ 750 if (maniptype == NF_NAT_MANIP_SRC) 751 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 752 else 753 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 754 755 switch (ctinfo) { 756 case IP_CT_RELATED: 757 case IP_CT_RELATED_REPLY: 758 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 759 skb->protocol == htons(ETH_P_IP) && 760 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 761 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 762 hooknum)) 763 err = NF_DROP; 764 goto push; 765 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 766 skb->protocol == htons(ETH_P_IPV6)) { 767 __be16 frag_off; 768 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 769 int hdrlen = ipv6_skip_exthdr(skb, 770 sizeof(struct ipv6hdr), 771 &nexthdr, &frag_off); 772 773 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 774 if (!nf_nat_icmpv6_reply_translation(skb, ct, 775 ctinfo, 776 hooknum, 777 hdrlen)) 778 err = NF_DROP; 779 goto push; 780 } 781 } 782 /* Non-ICMP, fall thru to initialize if needed. */ 783 /* fall through */ 784 case IP_CT_NEW: 785 /* Seen it before? This can happen for loopback, retrans, 786 * or local packets. 787 */ 788 if (!nf_nat_initialized(ct, maniptype)) { 789 /* Initialize according to the NAT action. */ 790 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 791 /* Action is set up to establish a new 792 * mapping. 793 */ 794 ? nf_nat_setup_info(ct, range, maniptype) 795 : nf_nat_alloc_null_binding(ct, hooknum); 796 if (err != NF_ACCEPT) 797 goto push; 798 } 799 break; 800 801 case IP_CT_ESTABLISHED: 802 case IP_CT_ESTABLISHED_REPLY: 803 break; 804 805 default: 806 err = NF_DROP; 807 goto push; 808 } 809 810 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 811 push: 812 skb_push(skb, nh_off); 813 skb_postpush_rcsum(skb, skb->data, nh_off); 814 815 return err; 816 } 817 818 static void ovs_nat_update_key(struct sw_flow_key *key, 819 const struct sk_buff *skb, 820 enum nf_nat_manip_type maniptype) 821 { 822 if (maniptype == NF_NAT_MANIP_SRC) { 823 __be16 src; 824 825 key->ct_state |= OVS_CS_F_SRC_NAT; 826 if (key->eth.type == htons(ETH_P_IP)) 827 key->ipv4.addr.src = ip_hdr(skb)->saddr; 828 else if (key->eth.type == htons(ETH_P_IPV6)) 829 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 830 sizeof(key->ipv6.addr.src)); 831 else 832 return; 833 834 if (key->ip.proto == IPPROTO_UDP) 835 src = udp_hdr(skb)->source; 836 else if (key->ip.proto == IPPROTO_TCP) 837 src = tcp_hdr(skb)->source; 838 else if (key->ip.proto == IPPROTO_SCTP) 839 src = sctp_hdr(skb)->source; 840 else 841 return; 842 843 key->tp.src = src; 844 } else { 845 __be16 dst; 846 847 key->ct_state |= OVS_CS_F_DST_NAT; 848 if (key->eth.type == htons(ETH_P_IP)) 849 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 850 else if (key->eth.type == htons(ETH_P_IPV6)) 851 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 852 sizeof(key->ipv6.addr.dst)); 853 else 854 return; 855 856 if (key->ip.proto == IPPROTO_UDP) 857 dst = udp_hdr(skb)->dest; 858 else if (key->ip.proto == IPPROTO_TCP) 859 dst = tcp_hdr(skb)->dest; 860 else if (key->ip.proto == IPPROTO_SCTP) 861 dst = sctp_hdr(skb)->dest; 862 else 863 return; 864 865 key->tp.dst = dst; 866 } 867 } 868 869 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 870 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 871 const struct ovs_conntrack_info *info, 872 struct sk_buff *skb, struct nf_conn *ct, 873 enum ip_conntrack_info ctinfo) 874 { 875 enum nf_nat_manip_type maniptype; 876 int err; 877 878 /* Add NAT extension if not confirmed yet. */ 879 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 880 return NF_ACCEPT; /* Can't NAT. */ 881 882 /* Determine NAT type. 883 * Check if the NAT type can be deduced from the tracked connection. 884 * Make sure new expected connections (IP_CT_RELATED) are NATted only 885 * when committing. 886 */ 887 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 888 ct->status & IPS_NAT_MASK && 889 (ctinfo != IP_CT_RELATED || info->commit)) { 890 /* NAT an established or related connection like before. */ 891 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 892 /* This is the REPLY direction for a connection 893 * for which NAT was applied in the forward 894 * direction. Do the reverse NAT. 895 */ 896 maniptype = ct->status & IPS_SRC_NAT 897 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 898 else 899 maniptype = ct->status & IPS_SRC_NAT 900 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 901 } else if (info->nat & OVS_CT_SRC_NAT) { 902 maniptype = NF_NAT_MANIP_SRC; 903 } else if (info->nat & OVS_CT_DST_NAT) { 904 maniptype = NF_NAT_MANIP_DST; 905 } else { 906 return NF_ACCEPT; /* Connection is not NATed. */ 907 } 908 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 909 910 /* Mark NAT done if successful and update the flow key. */ 911 if (err == NF_ACCEPT) 912 ovs_nat_update_key(key, skb, maniptype); 913 914 return err; 915 } 916 #else /* !CONFIG_NF_NAT_NEEDED */ 917 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 918 const struct ovs_conntrack_info *info, 919 struct sk_buff *skb, struct nf_conn *ct, 920 enum ip_conntrack_info ctinfo) 921 { 922 return NF_ACCEPT; 923 } 924 #endif 925 926 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 927 * not done already. Update key with new CT state after passing the packet 928 * through conntrack. 929 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be 930 * set to NULL and 0 will be returned. 931 */ 932 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 933 const struct ovs_conntrack_info *info, 934 struct sk_buff *skb) 935 { 936 /* If we are recirculating packets to match on conntrack fields and 937 * committing with a separate conntrack action, then we don't need to 938 * actually run the packet through conntrack twice unless it's for a 939 * different zone. 940 */ 941 bool cached = skb_nfct_cached(net, key, info, skb); 942 enum ip_conntrack_info ctinfo; 943 struct nf_conn *ct; 944 945 if (!cached) { 946 struct nf_conn *tmpl = info->ct; 947 int err; 948 949 /* Associate skb with specified zone. */ 950 if (tmpl) { 951 if (skb_nfct(skb)) 952 nf_conntrack_put(skb_nfct(skb)); 953 nf_conntrack_get(&tmpl->ct_general); 954 nf_ct_set(skb, tmpl, IP_CT_NEW); 955 } 956 957 err = nf_conntrack_in(net, info->family, 958 NF_INET_PRE_ROUTING, skb); 959 if (err != NF_ACCEPT) 960 return -ENOENT; 961 962 /* Clear CT state NAT flags to mark that we have not yet done 963 * NAT after the nf_conntrack_in() call. We can actually clear 964 * the whole state, as it will be re-initialized below. 965 */ 966 key->ct_state = 0; 967 968 /* Update the key, but keep the NAT flags. */ 969 ovs_ct_update_key(skb, info, key, true, true); 970 } 971 972 ct = nf_ct_get(skb, &ctinfo); 973 if (ct) { 974 /* Packets starting a new connection must be NATted before the 975 * helper, so that the helper knows about the NAT. We enforce 976 * this by delaying both NAT and helper calls for unconfirmed 977 * connections until the committing CT action. For later 978 * packets NAT and Helper may be called in either order. 979 * 980 * NAT will be done only if the CT action has NAT, and only 981 * once per packet (per zone), as guarded by the NAT bits in 982 * the key->ct_state. 983 */ 984 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) && 985 (nf_ct_is_confirmed(ct) || info->commit) && 986 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 987 return -EINVAL; 988 } 989 990 /* Userspace may decide to perform a ct lookup without a helper 991 * specified followed by a (recirculate and) commit with one. 992 * Therefore, for unconfirmed connections which we will commit, 993 * we need to attach the helper here. 994 */ 995 if (!nf_ct_is_confirmed(ct) && info->commit && 996 info->helper && !nfct_help(ct)) { 997 int err = __nf_ct_try_assign_helper(ct, info->ct, 998 GFP_ATOMIC); 999 if (err) 1000 return err; 1001 } 1002 1003 /* Call the helper only if: 1004 * - nf_conntrack_in() was executed above ("!cached") for a 1005 * confirmed connection, or 1006 * - When committing an unconfirmed connection. 1007 */ 1008 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && 1009 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 1010 return -EINVAL; 1011 } 1012 } 1013 1014 return 0; 1015 } 1016 1017 /* Lookup connection and read fields into key. */ 1018 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 1019 const struct ovs_conntrack_info *info, 1020 struct sk_buff *skb) 1021 { 1022 struct nf_conntrack_expect *exp; 1023 1024 /* If we pass an expected packet through nf_conntrack_in() the 1025 * expectation is typically removed, but the packet could still be 1026 * lost in upcall processing. To prevent this from happening we 1027 * perform an explicit expectation lookup. Expected connections are 1028 * always new, and will be passed through conntrack only when they are 1029 * committed, as it is OK to remove the expectation at that time. 1030 */ 1031 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 1032 if (exp) { 1033 u8 state; 1034 1035 /* NOTE: New connections are NATted and Helped only when 1036 * committed, so we are not calling into NAT here. 1037 */ 1038 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 1039 __ovs_ct_update_key(key, state, &info->zone, exp->master); 1040 } else { 1041 struct nf_conn *ct; 1042 int err; 1043 1044 err = __ovs_ct_lookup(net, key, info, skb); 1045 if (err) 1046 return err; 1047 1048 ct = (struct nf_conn *)skb_nfct(skb); 1049 if (ct) 1050 nf_ct_deliver_cached_events(ct); 1051 } 1052 1053 return 0; 1054 } 1055 1056 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 1057 { 1058 size_t i; 1059 1060 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 1061 if (labels->ct_labels_32[i]) 1062 return true; 1063 1064 return false; 1065 } 1066 1067 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 1068 static struct hlist_head *ct_limit_hash_bucket( 1069 const struct ovs_ct_limit_info *info, u16 zone) 1070 { 1071 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)]; 1072 } 1073 1074 /* Call with ovs_mutex */ 1075 static void ct_limit_set(const struct ovs_ct_limit_info *info, 1076 struct ovs_ct_limit *new_ct_limit) 1077 { 1078 struct ovs_ct_limit *ct_limit; 1079 struct hlist_head *head; 1080 1081 head = ct_limit_hash_bucket(info, new_ct_limit->zone); 1082 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 1083 if (ct_limit->zone == new_ct_limit->zone) { 1084 hlist_replace_rcu(&ct_limit->hlist_node, 1085 &new_ct_limit->hlist_node); 1086 kfree_rcu(ct_limit, rcu); 1087 return; 1088 } 1089 } 1090 1091 hlist_add_head_rcu(&new_ct_limit->hlist_node, head); 1092 } 1093 1094 /* Call with ovs_mutex */ 1095 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone) 1096 { 1097 struct ovs_ct_limit *ct_limit; 1098 struct hlist_head *head; 1099 struct hlist_node *n; 1100 1101 head = ct_limit_hash_bucket(info, zone); 1102 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) { 1103 if (ct_limit->zone == zone) { 1104 hlist_del_rcu(&ct_limit->hlist_node); 1105 kfree_rcu(ct_limit, rcu); 1106 return; 1107 } 1108 } 1109 } 1110 1111 /* Call with RCU read lock */ 1112 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone) 1113 { 1114 struct ovs_ct_limit *ct_limit; 1115 struct hlist_head *head; 1116 1117 head = ct_limit_hash_bucket(info, zone); 1118 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 1119 if (ct_limit->zone == zone) 1120 return ct_limit->limit; 1121 } 1122 1123 return info->default_limit; 1124 } 1125 1126 static int ovs_ct_check_limit(struct net *net, 1127 const struct ovs_conntrack_info *info, 1128 const struct nf_conntrack_tuple *tuple) 1129 { 1130 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1131 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 1132 u32 per_zone_limit, connections; 1133 u32 conncount_key; 1134 1135 conncount_key = info->zone.id; 1136 1137 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id); 1138 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED) 1139 return 0; 1140 1141 connections = nf_conncount_count(net, ct_limit_info->data, 1142 &conncount_key, tuple, &info->zone); 1143 if (connections > per_zone_limit) 1144 return -ENOMEM; 1145 1146 return 0; 1147 } 1148 #endif 1149 1150 /* Lookup connection and confirm if unconfirmed. */ 1151 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 1152 const struct ovs_conntrack_info *info, 1153 struct sk_buff *skb) 1154 { 1155 enum ip_conntrack_info ctinfo; 1156 struct nf_conn *ct; 1157 int err; 1158 1159 err = __ovs_ct_lookup(net, key, info, skb); 1160 if (err) 1161 return err; 1162 1163 /* The connection could be invalid, in which case this is a no-op.*/ 1164 ct = nf_ct_get(skb, &ctinfo); 1165 if (!ct) 1166 return 0; 1167 1168 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 1169 if (static_branch_unlikely(&ovs_ct_limit_enabled)) { 1170 if (!nf_ct_is_confirmed(ct)) { 1171 err = ovs_ct_check_limit(net, info, 1172 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); 1173 if (err) { 1174 net_warn_ratelimited("openvswitch: zone: %u " 1175 "execeeds conntrack limit\n", 1176 info->zone.id); 1177 return err; 1178 } 1179 } 1180 } 1181 #endif 1182 1183 /* Set the conntrack event mask if given. NEW and DELETE events have 1184 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener 1185 * typically would receive many kinds of updates. Setting the event 1186 * mask allows those events to be filtered. The set event mask will 1187 * remain in effect for the lifetime of the connection unless changed 1188 * by a further CT action with both the commit flag and the eventmask 1189 * option. */ 1190 if (info->have_eventmask) { 1191 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct); 1192 1193 if (cache) 1194 cache->ctmask = info->eventmask; 1195 } 1196 1197 /* Apply changes before confirming the connection so that the initial 1198 * conntrack NEW netlink event carries the values given in the CT 1199 * action. 1200 */ 1201 if (info->mark.mask) { 1202 err = ovs_ct_set_mark(ct, key, info->mark.value, 1203 info->mark.mask); 1204 if (err) 1205 return err; 1206 } 1207 if (!nf_ct_is_confirmed(ct)) { 1208 err = ovs_ct_init_labels(ct, key, &info->labels.value, 1209 &info->labels.mask); 1210 if (err) 1211 return err; 1212 } else if (labels_nonzero(&info->labels.mask)) { 1213 err = ovs_ct_set_labels(ct, key, &info->labels.value, 1214 &info->labels.mask); 1215 if (err) 1216 return err; 1217 } 1218 /* This will take care of sending queued events even if the connection 1219 * is already confirmed. 1220 */ 1221 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 1222 return -EINVAL; 1223 1224 return 0; 1225 } 1226 1227 /* Trim the skb to the length specified by the IP/IPv6 header, 1228 * removing any trailing lower-layer padding. This prepares the skb 1229 * for higher-layer processing that assumes skb->len excludes padding 1230 * (such as nf_ip_checksum). The caller needs to pull the skb to the 1231 * network header, and ensure ip_hdr/ipv6_hdr points to valid data. 1232 */ 1233 static int ovs_skb_network_trim(struct sk_buff *skb) 1234 { 1235 unsigned int len; 1236 int err; 1237 1238 switch (skb->protocol) { 1239 case htons(ETH_P_IP): 1240 len = ntohs(ip_hdr(skb)->tot_len); 1241 break; 1242 case htons(ETH_P_IPV6): 1243 len = sizeof(struct ipv6hdr) 1244 + ntohs(ipv6_hdr(skb)->payload_len); 1245 break; 1246 default: 1247 len = skb->len; 1248 } 1249 1250 err = pskb_trim_rcsum(skb, len); 1251 if (err) 1252 kfree_skb(skb); 1253 1254 return err; 1255 } 1256 1257 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 1258 * value if 'skb' is freed. 1259 */ 1260 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 1261 struct sw_flow_key *key, 1262 const struct ovs_conntrack_info *info) 1263 { 1264 int nh_ofs; 1265 int err; 1266 1267 /* The conntrack module expects to be working at L3. */ 1268 nh_ofs = skb_network_offset(skb); 1269 skb_pull_rcsum(skb, nh_ofs); 1270 1271 err = ovs_skb_network_trim(skb); 1272 if (err) 1273 return err; 1274 1275 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 1276 err = handle_fragments(net, key, info->zone.id, skb); 1277 if (err) 1278 return err; 1279 } 1280 1281 if (info->commit) 1282 err = ovs_ct_commit(net, key, info, skb); 1283 else 1284 err = ovs_ct_lookup(net, key, info, skb); 1285 1286 skb_push(skb, nh_ofs); 1287 skb_postpush_rcsum(skb, skb->data, nh_ofs); 1288 if (err) 1289 kfree_skb(skb); 1290 return err; 1291 } 1292 1293 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key) 1294 { 1295 if (skb_nfct(skb)) { 1296 nf_conntrack_put(skb_nfct(skb)); 1297 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 1298 ovs_ct_fill_key(skb, key); 1299 } 1300 1301 return 0; 1302 } 1303 1304 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 1305 const struct sw_flow_key *key, bool log) 1306 { 1307 struct nf_conntrack_helper *helper; 1308 struct nf_conn_help *help; 1309 1310 helper = nf_conntrack_helper_try_module_get(name, info->family, 1311 key->ip.proto); 1312 if (!helper) { 1313 OVS_NLERR(log, "Unknown helper \"%s\"", name); 1314 return -EINVAL; 1315 } 1316 1317 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); 1318 if (!help) { 1319 nf_conntrack_helper_put(helper); 1320 return -ENOMEM; 1321 } 1322 1323 rcu_assign_pointer(help->helper, helper); 1324 info->helper = helper; 1325 return 0; 1326 } 1327 1328 #ifdef CONFIG_NF_NAT_NEEDED 1329 static int parse_nat(const struct nlattr *attr, 1330 struct ovs_conntrack_info *info, bool log) 1331 { 1332 struct nlattr *a; 1333 int rem; 1334 bool have_ip_max = false; 1335 bool have_proto_max = false; 1336 bool ip_vers = (info->family == NFPROTO_IPV6); 1337 1338 nla_for_each_nested(a, attr, rem) { 1339 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 1340 [OVS_NAT_ATTR_SRC] = {0, 0}, 1341 [OVS_NAT_ATTR_DST] = {0, 0}, 1342 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 1343 sizeof(struct in6_addr)}, 1344 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 1345 sizeof(struct in6_addr)}, 1346 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 1347 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 1348 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 1349 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 1350 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 1351 }; 1352 int type = nla_type(a); 1353 1354 if (type > OVS_NAT_ATTR_MAX) { 1355 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)", 1356 type, OVS_NAT_ATTR_MAX); 1357 return -EINVAL; 1358 } 1359 1360 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 1361 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)", 1362 type, nla_len(a), 1363 ovs_nat_attr_lens[type][ip_vers]); 1364 return -EINVAL; 1365 } 1366 1367 switch (type) { 1368 case OVS_NAT_ATTR_SRC: 1369 case OVS_NAT_ATTR_DST: 1370 if (info->nat) { 1371 OVS_NLERR(log, "Only one type of NAT may be specified"); 1372 return -ERANGE; 1373 } 1374 info->nat |= OVS_CT_NAT; 1375 info->nat |= ((type == OVS_NAT_ATTR_SRC) 1376 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 1377 break; 1378 1379 case OVS_NAT_ATTR_IP_MIN: 1380 nla_memcpy(&info->range.min_addr, a, 1381 sizeof(info->range.min_addr)); 1382 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1383 break; 1384 1385 case OVS_NAT_ATTR_IP_MAX: 1386 have_ip_max = true; 1387 nla_memcpy(&info->range.max_addr, a, 1388 sizeof(info->range.max_addr)); 1389 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1390 break; 1391 1392 case OVS_NAT_ATTR_PROTO_MIN: 1393 info->range.min_proto.all = htons(nla_get_u16(a)); 1394 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1395 break; 1396 1397 case OVS_NAT_ATTR_PROTO_MAX: 1398 have_proto_max = true; 1399 info->range.max_proto.all = htons(nla_get_u16(a)); 1400 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1401 break; 1402 1403 case OVS_NAT_ATTR_PERSISTENT: 1404 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1405 break; 1406 1407 case OVS_NAT_ATTR_PROTO_HASH: 1408 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1409 break; 1410 1411 case OVS_NAT_ATTR_PROTO_RANDOM: 1412 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1413 break; 1414 1415 default: 1416 OVS_NLERR(log, "Unknown nat attribute (%d)", type); 1417 return -EINVAL; 1418 } 1419 } 1420 1421 if (rem > 0) { 1422 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem); 1423 return -EINVAL; 1424 } 1425 if (!info->nat) { 1426 /* Do not allow flags if no type is given. */ 1427 if (info->range.flags) { 1428 OVS_NLERR(log, 1429 "NAT flags may be given only when NAT range (SRC or DST) is also specified." 1430 ); 1431 return -EINVAL; 1432 } 1433 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1434 } else if (!info->commit) { 1435 OVS_NLERR(log, 1436 "NAT attributes may be specified only when CT COMMIT flag is also specified." 1437 ); 1438 return -EINVAL; 1439 } 1440 /* Allow missing IP_MAX. */ 1441 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1442 memcpy(&info->range.max_addr, &info->range.min_addr, 1443 sizeof(info->range.max_addr)); 1444 } 1445 /* Allow missing PROTO_MAX. */ 1446 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1447 !have_proto_max) { 1448 info->range.max_proto.all = info->range.min_proto.all; 1449 } 1450 return 0; 1451 } 1452 #endif 1453 1454 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1455 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1456 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1457 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1458 .maxlen = sizeof(u16) }, 1459 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1460 .maxlen = sizeof(struct md_mark) }, 1461 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1462 .maxlen = sizeof(struct md_labels) }, 1463 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1464 .maxlen = NF_CT_HELPER_NAME_LEN }, 1465 #ifdef CONFIG_NF_NAT_NEEDED 1466 /* NAT length is checked when parsing the nested attributes. */ 1467 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1468 #endif 1469 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32), 1470 .maxlen = sizeof(u32) }, 1471 }; 1472 1473 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1474 const char **helper, bool log) 1475 { 1476 struct nlattr *a; 1477 int rem; 1478 1479 nla_for_each_nested(a, attr, rem) { 1480 int type = nla_type(a); 1481 int maxlen; 1482 int minlen; 1483 1484 if (type > OVS_CT_ATTR_MAX) { 1485 OVS_NLERR(log, 1486 "Unknown conntrack attr (type=%d, max=%d)", 1487 type, OVS_CT_ATTR_MAX); 1488 return -EINVAL; 1489 } 1490 1491 maxlen = ovs_ct_attr_lens[type].maxlen; 1492 minlen = ovs_ct_attr_lens[type].minlen; 1493 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1494 OVS_NLERR(log, 1495 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1496 type, nla_len(a), maxlen); 1497 return -EINVAL; 1498 } 1499 1500 switch (type) { 1501 case OVS_CT_ATTR_FORCE_COMMIT: 1502 info->force = true; 1503 /* fall through. */ 1504 case OVS_CT_ATTR_COMMIT: 1505 info->commit = true; 1506 break; 1507 #ifdef CONFIG_NF_CONNTRACK_ZONES 1508 case OVS_CT_ATTR_ZONE: 1509 info->zone.id = nla_get_u16(a); 1510 break; 1511 #endif 1512 #ifdef CONFIG_NF_CONNTRACK_MARK 1513 case OVS_CT_ATTR_MARK: { 1514 struct md_mark *mark = nla_data(a); 1515 1516 if (!mark->mask) { 1517 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1518 return -EINVAL; 1519 } 1520 info->mark = *mark; 1521 break; 1522 } 1523 #endif 1524 #ifdef CONFIG_NF_CONNTRACK_LABELS 1525 case OVS_CT_ATTR_LABELS: { 1526 struct md_labels *labels = nla_data(a); 1527 1528 if (!labels_nonzero(&labels->mask)) { 1529 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1530 return -EINVAL; 1531 } 1532 info->labels = *labels; 1533 break; 1534 } 1535 #endif 1536 case OVS_CT_ATTR_HELPER: 1537 *helper = nla_data(a); 1538 if (!memchr(*helper, '\0', nla_len(a))) { 1539 OVS_NLERR(log, "Invalid conntrack helper"); 1540 return -EINVAL; 1541 } 1542 break; 1543 #ifdef CONFIG_NF_NAT_NEEDED 1544 case OVS_CT_ATTR_NAT: { 1545 int err = parse_nat(a, info, log); 1546 1547 if (err) 1548 return err; 1549 break; 1550 } 1551 #endif 1552 case OVS_CT_ATTR_EVENTMASK: 1553 info->have_eventmask = true; 1554 info->eventmask = nla_get_u32(a); 1555 break; 1556 1557 default: 1558 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1559 type); 1560 return -EINVAL; 1561 } 1562 } 1563 1564 #ifdef CONFIG_NF_CONNTRACK_MARK 1565 if (!info->commit && info->mark.mask) { 1566 OVS_NLERR(log, 1567 "Setting conntrack mark requires 'commit' flag."); 1568 return -EINVAL; 1569 } 1570 #endif 1571 #ifdef CONFIG_NF_CONNTRACK_LABELS 1572 if (!info->commit && labels_nonzero(&info->labels.mask)) { 1573 OVS_NLERR(log, 1574 "Setting conntrack labels requires 'commit' flag."); 1575 return -EINVAL; 1576 } 1577 #endif 1578 if (rem > 0) { 1579 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1580 return -EINVAL; 1581 } 1582 1583 return 0; 1584 } 1585 1586 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1587 { 1588 if (attr == OVS_KEY_ATTR_CT_STATE) 1589 return true; 1590 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1591 attr == OVS_KEY_ATTR_CT_ZONE) 1592 return true; 1593 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1594 attr == OVS_KEY_ATTR_CT_MARK) 1595 return true; 1596 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1597 attr == OVS_KEY_ATTR_CT_LABELS) { 1598 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1599 1600 return ovs_net->xt_label; 1601 } 1602 1603 return false; 1604 } 1605 1606 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1607 const struct sw_flow_key *key, 1608 struct sw_flow_actions **sfa, bool log) 1609 { 1610 struct ovs_conntrack_info ct_info; 1611 const char *helper = NULL; 1612 u16 family; 1613 int err; 1614 1615 family = key_to_nfproto(key); 1616 if (family == NFPROTO_UNSPEC) { 1617 OVS_NLERR(log, "ct family unspecified"); 1618 return -EINVAL; 1619 } 1620 1621 memset(&ct_info, 0, sizeof(ct_info)); 1622 ct_info.family = family; 1623 1624 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1625 NF_CT_DEFAULT_ZONE_DIR, 0); 1626 1627 err = parse_ct(attr, &ct_info, &helper, log); 1628 if (err) 1629 return err; 1630 1631 /* Set up template for tracking connections in specific zones. */ 1632 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1633 if (!ct_info.ct) { 1634 OVS_NLERR(log, "Failed to allocate conntrack template"); 1635 return -ENOMEM; 1636 } 1637 1638 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1639 nf_conntrack_get(&ct_info.ct->ct_general); 1640 1641 if (helper) { 1642 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1643 if (err) 1644 goto err_free_ct; 1645 } 1646 1647 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1648 sizeof(ct_info), log); 1649 if (err) 1650 goto err_free_ct; 1651 1652 return 0; 1653 err_free_ct: 1654 __ovs_ct_free_action(&ct_info); 1655 return err; 1656 } 1657 1658 #ifdef CONFIG_NF_NAT_NEEDED 1659 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1660 struct sk_buff *skb) 1661 { 1662 struct nlattr *start; 1663 1664 start = nla_nest_start(skb, OVS_CT_ATTR_NAT); 1665 if (!start) 1666 return false; 1667 1668 if (info->nat & OVS_CT_SRC_NAT) { 1669 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1670 return false; 1671 } else if (info->nat & OVS_CT_DST_NAT) { 1672 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1673 return false; 1674 } else { 1675 goto out; 1676 } 1677 1678 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1679 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 1680 info->family == NFPROTO_IPV4) { 1681 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1682 info->range.min_addr.ip) || 1683 (info->range.max_addr.ip 1684 != info->range.min_addr.ip && 1685 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1686 info->range.max_addr.ip)))) 1687 return false; 1688 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 1689 info->family == NFPROTO_IPV6) { 1690 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1691 &info->range.min_addr.in6) || 1692 (memcmp(&info->range.max_addr.in6, 1693 &info->range.min_addr.in6, 1694 sizeof(info->range.max_addr.in6)) && 1695 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1696 &info->range.max_addr.in6)))) 1697 return false; 1698 } else { 1699 return false; 1700 } 1701 } 1702 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1703 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1704 ntohs(info->range.min_proto.all)) || 1705 (info->range.max_proto.all != info->range.min_proto.all && 1706 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1707 ntohs(info->range.max_proto.all))))) 1708 return false; 1709 1710 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1711 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1712 return false; 1713 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1714 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1715 return false; 1716 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1717 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1718 return false; 1719 out: 1720 nla_nest_end(skb, start); 1721 1722 return true; 1723 } 1724 #endif 1725 1726 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1727 struct sk_buff *skb) 1728 { 1729 struct nlattr *start; 1730 1731 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); 1732 if (!start) 1733 return -EMSGSIZE; 1734 1735 if (ct_info->commit && nla_put_flag(skb, ct_info->force 1736 ? OVS_CT_ATTR_FORCE_COMMIT 1737 : OVS_CT_ATTR_COMMIT)) 1738 return -EMSGSIZE; 1739 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1740 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1741 return -EMSGSIZE; 1742 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1743 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1744 &ct_info->mark)) 1745 return -EMSGSIZE; 1746 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1747 labels_nonzero(&ct_info->labels.mask) && 1748 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1749 &ct_info->labels)) 1750 return -EMSGSIZE; 1751 if (ct_info->helper) { 1752 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1753 ct_info->helper->name)) 1754 return -EMSGSIZE; 1755 } 1756 if (ct_info->have_eventmask && 1757 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask)) 1758 return -EMSGSIZE; 1759 1760 #ifdef CONFIG_NF_NAT_NEEDED 1761 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1762 return -EMSGSIZE; 1763 #endif 1764 nla_nest_end(skb, start); 1765 1766 return 0; 1767 } 1768 1769 void ovs_ct_free_action(const struct nlattr *a) 1770 { 1771 struct ovs_conntrack_info *ct_info = nla_data(a); 1772 1773 __ovs_ct_free_action(ct_info); 1774 } 1775 1776 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1777 { 1778 if (ct_info->helper) 1779 nf_conntrack_helper_put(ct_info->helper); 1780 if (ct_info->ct) 1781 nf_ct_tmpl_free(ct_info->ct); 1782 } 1783 1784 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 1785 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net) 1786 { 1787 int i, err; 1788 1789 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info), 1790 GFP_KERNEL); 1791 if (!ovs_net->ct_limit_info) 1792 return -ENOMEM; 1793 1794 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT; 1795 ovs_net->ct_limit_info->limits = 1796 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head), 1797 GFP_KERNEL); 1798 if (!ovs_net->ct_limit_info->limits) { 1799 kfree(ovs_net->ct_limit_info); 1800 return -ENOMEM; 1801 } 1802 1803 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++) 1804 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]); 1805 1806 ovs_net->ct_limit_info->data = 1807 nf_conncount_init(net, NFPROTO_INET, sizeof(u32)); 1808 1809 if (IS_ERR(ovs_net->ct_limit_info->data)) { 1810 err = PTR_ERR(ovs_net->ct_limit_info->data); 1811 kfree(ovs_net->ct_limit_info->limits); 1812 kfree(ovs_net->ct_limit_info); 1813 pr_err("openvswitch: failed to init nf_conncount %d\n", err); 1814 return err; 1815 } 1816 return 0; 1817 } 1818 1819 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net) 1820 { 1821 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info; 1822 int i; 1823 1824 nf_conncount_destroy(net, NFPROTO_INET, info->data); 1825 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { 1826 struct hlist_head *head = &info->limits[i]; 1827 struct ovs_ct_limit *ct_limit; 1828 1829 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) 1830 kfree_rcu(ct_limit, rcu); 1831 } 1832 kfree(ovs_net->ct_limit_info->limits); 1833 kfree(ovs_net->ct_limit_info); 1834 } 1835 1836 static struct sk_buff * 1837 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd, 1838 struct ovs_header **ovs_reply_header) 1839 { 1840 struct ovs_header *ovs_header = info->userhdr; 1841 struct sk_buff *skb; 1842 1843 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); 1844 if (!skb) 1845 return ERR_PTR(-ENOMEM); 1846 1847 *ovs_reply_header = genlmsg_put(skb, info->snd_portid, 1848 info->snd_seq, 1849 &dp_ct_limit_genl_family, 0, cmd); 1850 1851 if (!*ovs_reply_header) { 1852 nlmsg_free(skb); 1853 return ERR_PTR(-EMSGSIZE); 1854 } 1855 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex; 1856 1857 return skb; 1858 } 1859 1860 static bool check_zone_id(int zone_id, u16 *pzone) 1861 { 1862 if (zone_id >= 0 && zone_id <= 65535) { 1863 *pzone = (u16)zone_id; 1864 return true; 1865 } 1866 return false; 1867 } 1868 1869 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit, 1870 struct ovs_ct_limit_info *info) 1871 { 1872 struct ovs_zone_limit *zone_limit; 1873 int rem; 1874 u16 zone; 1875 1876 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1877 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1878 1879 while (rem >= sizeof(*zone_limit)) { 1880 if (unlikely(zone_limit->zone_id == 1881 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1882 ovs_lock(); 1883 info->default_limit = zone_limit->limit; 1884 ovs_unlock(); 1885 } else if (unlikely(!check_zone_id( 1886 zone_limit->zone_id, &zone))) { 1887 OVS_NLERR(true, "zone id is out of range"); 1888 } else { 1889 struct ovs_ct_limit *ct_limit; 1890 1891 ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL); 1892 if (!ct_limit) 1893 return -ENOMEM; 1894 1895 ct_limit->zone = zone; 1896 ct_limit->limit = zone_limit->limit; 1897 1898 ovs_lock(); 1899 ct_limit_set(info, ct_limit); 1900 ovs_unlock(); 1901 } 1902 rem -= NLA_ALIGN(sizeof(*zone_limit)); 1903 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 1904 NLA_ALIGN(sizeof(*zone_limit))); 1905 } 1906 1907 if (rem) 1908 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem); 1909 1910 return 0; 1911 } 1912 1913 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit, 1914 struct ovs_ct_limit_info *info) 1915 { 1916 struct ovs_zone_limit *zone_limit; 1917 int rem; 1918 u16 zone; 1919 1920 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1921 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1922 1923 while (rem >= sizeof(*zone_limit)) { 1924 if (unlikely(zone_limit->zone_id == 1925 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1926 ovs_lock(); 1927 info->default_limit = OVS_CT_LIMIT_DEFAULT; 1928 ovs_unlock(); 1929 } else if (unlikely(!check_zone_id( 1930 zone_limit->zone_id, &zone))) { 1931 OVS_NLERR(true, "zone id is out of range"); 1932 } else { 1933 ovs_lock(); 1934 ct_limit_del(info, zone); 1935 ovs_unlock(); 1936 } 1937 rem -= NLA_ALIGN(sizeof(*zone_limit)); 1938 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 1939 NLA_ALIGN(sizeof(*zone_limit))); 1940 } 1941 1942 if (rem) 1943 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem); 1944 1945 return 0; 1946 } 1947 1948 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info, 1949 struct sk_buff *reply) 1950 { 1951 struct ovs_zone_limit zone_limit; 1952 int err; 1953 1954 zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE; 1955 zone_limit.limit = info->default_limit; 1956 err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit); 1957 if (err) 1958 return err; 1959 1960 return 0; 1961 } 1962 1963 static int __ovs_ct_limit_get_zone_limit(struct net *net, 1964 struct nf_conncount_data *data, 1965 u16 zone_id, u32 limit, 1966 struct sk_buff *reply) 1967 { 1968 struct nf_conntrack_zone ct_zone; 1969 struct ovs_zone_limit zone_limit; 1970 u32 conncount_key = zone_id; 1971 1972 zone_limit.zone_id = zone_id; 1973 zone_limit.limit = limit; 1974 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0); 1975 1976 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL, 1977 &ct_zone); 1978 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit); 1979 } 1980 1981 static int ovs_ct_limit_get_zone_limit(struct net *net, 1982 struct nlattr *nla_zone_limit, 1983 struct ovs_ct_limit_info *info, 1984 struct sk_buff *reply) 1985 { 1986 struct ovs_zone_limit *zone_limit; 1987 int rem, err; 1988 u32 limit; 1989 u16 zone; 1990 1991 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1992 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1993 1994 while (rem >= sizeof(*zone_limit)) { 1995 if (unlikely(zone_limit->zone_id == 1996 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1997 err = ovs_ct_limit_get_default_limit(info, reply); 1998 if (err) 1999 return err; 2000 } else if (unlikely(!check_zone_id(zone_limit->zone_id, 2001 &zone))) { 2002 OVS_NLERR(true, "zone id is out of range"); 2003 } else { 2004 rcu_read_lock(); 2005 limit = ct_limit_get(info, zone); 2006 rcu_read_unlock(); 2007 2008 err = __ovs_ct_limit_get_zone_limit( 2009 net, info->data, zone, limit, reply); 2010 if (err) 2011 return err; 2012 } 2013 rem -= NLA_ALIGN(sizeof(*zone_limit)); 2014 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 2015 NLA_ALIGN(sizeof(*zone_limit))); 2016 } 2017 2018 if (rem) 2019 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem); 2020 2021 return 0; 2022 } 2023 2024 static int ovs_ct_limit_get_all_zone_limit(struct net *net, 2025 struct ovs_ct_limit_info *info, 2026 struct sk_buff *reply) 2027 { 2028 struct ovs_ct_limit *ct_limit; 2029 struct hlist_head *head; 2030 int i, err = 0; 2031 2032 err = ovs_ct_limit_get_default_limit(info, reply); 2033 if (err) 2034 return err; 2035 2036 rcu_read_lock(); 2037 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { 2038 head = &info->limits[i]; 2039 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 2040 err = __ovs_ct_limit_get_zone_limit(net, info->data, 2041 ct_limit->zone, ct_limit->limit, reply); 2042 if (err) 2043 goto exit_err; 2044 } 2045 } 2046 2047 exit_err: 2048 rcu_read_unlock(); 2049 return err; 2050 } 2051 2052 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info) 2053 { 2054 struct nlattr **a = info->attrs; 2055 struct sk_buff *reply; 2056 struct ovs_header *ovs_reply_header; 2057 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); 2058 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 2059 int err; 2060 2061 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET, 2062 &ovs_reply_header); 2063 if (IS_ERR(reply)) 2064 return PTR_ERR(reply); 2065 2066 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 2067 err = -EINVAL; 2068 goto exit_err; 2069 } 2070 2071 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], 2072 ct_limit_info); 2073 if (err) 2074 goto exit_err; 2075 2076 static_branch_enable(&ovs_ct_limit_enabled); 2077 2078 genlmsg_end(reply, ovs_reply_header); 2079 return genlmsg_reply(reply, info); 2080 2081 exit_err: 2082 nlmsg_free(reply); 2083 return err; 2084 } 2085 2086 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info) 2087 { 2088 struct nlattr **a = info->attrs; 2089 struct sk_buff *reply; 2090 struct ovs_header *ovs_reply_header; 2091 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); 2092 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 2093 int err; 2094 2095 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL, 2096 &ovs_reply_header); 2097 if (IS_ERR(reply)) 2098 return PTR_ERR(reply); 2099 2100 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 2101 err = -EINVAL; 2102 goto exit_err; 2103 } 2104 2105 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], 2106 ct_limit_info); 2107 if (err) 2108 goto exit_err; 2109 2110 genlmsg_end(reply, ovs_reply_header); 2111 return genlmsg_reply(reply, info); 2112 2113 exit_err: 2114 nlmsg_free(reply); 2115 return err; 2116 } 2117 2118 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info) 2119 { 2120 struct nlattr **a = info->attrs; 2121 struct nlattr *nla_reply; 2122 struct sk_buff *reply; 2123 struct ovs_header *ovs_reply_header; 2124 struct net *net = sock_net(skb->sk); 2125 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 2126 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 2127 int err; 2128 2129 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET, 2130 &ovs_reply_header); 2131 if (IS_ERR(reply)) 2132 return PTR_ERR(reply); 2133 2134 nla_reply = nla_nest_start(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT); 2135 2136 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 2137 err = ovs_ct_limit_get_zone_limit( 2138 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info, 2139 reply); 2140 if (err) 2141 goto exit_err; 2142 } else { 2143 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info, 2144 reply); 2145 if (err) 2146 goto exit_err; 2147 } 2148 2149 nla_nest_end(reply, nla_reply); 2150 genlmsg_end(reply, ovs_reply_header); 2151 return genlmsg_reply(reply, info); 2152 2153 exit_err: 2154 nlmsg_free(reply); 2155 return err; 2156 } 2157 2158 static struct genl_ops ct_limit_genl_ops[] = { 2159 { .cmd = OVS_CT_LIMIT_CMD_SET, 2160 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN 2161 * privilege. */ 2162 .policy = ct_limit_policy, 2163 .doit = ovs_ct_limit_cmd_set, 2164 }, 2165 { .cmd = OVS_CT_LIMIT_CMD_DEL, 2166 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN 2167 * privilege. */ 2168 .policy = ct_limit_policy, 2169 .doit = ovs_ct_limit_cmd_del, 2170 }, 2171 { .cmd = OVS_CT_LIMIT_CMD_GET, 2172 .flags = 0, /* OK for unprivileged users. */ 2173 .policy = ct_limit_policy, 2174 .doit = ovs_ct_limit_cmd_get, 2175 }, 2176 }; 2177 2178 static const struct genl_multicast_group ovs_ct_limit_multicast_group = { 2179 .name = OVS_CT_LIMIT_MCGROUP, 2180 }; 2181 2182 struct genl_family dp_ct_limit_genl_family __ro_after_init = { 2183 .hdrsize = sizeof(struct ovs_header), 2184 .name = OVS_CT_LIMIT_FAMILY, 2185 .version = OVS_CT_LIMIT_VERSION, 2186 .maxattr = OVS_CT_LIMIT_ATTR_MAX, 2187 .netnsok = true, 2188 .parallel_ops = true, 2189 .ops = ct_limit_genl_ops, 2190 .n_ops = ARRAY_SIZE(ct_limit_genl_ops), 2191 .mcgrps = &ovs_ct_limit_multicast_group, 2192 .n_mcgrps = 1, 2193 .module = THIS_MODULE, 2194 }; 2195 #endif 2196 2197 int ovs_ct_init(struct net *net) 2198 { 2199 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 2200 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 2201 2202 if (nf_connlabels_get(net, n_bits - 1)) { 2203 ovs_net->xt_label = false; 2204 OVS_NLERR(true, "Failed to set connlabel length"); 2205 } else { 2206 ovs_net->xt_label = true; 2207 } 2208 2209 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 2210 return ovs_ct_limit_init(net, ovs_net); 2211 #else 2212 return 0; 2213 #endif 2214 } 2215 2216 void ovs_ct_exit(struct net *net) 2217 { 2218 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 2219 2220 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 2221 ovs_ct_limit_exit(net, ovs_net); 2222 #endif 2223 2224 if (ovs_net->xt_label) 2225 nf_connlabels_put(net); 2226 } 2227