1 /* 2 * Copyright (c) 2015 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/openvswitch.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/sctp.h> 19 #include <net/ip.h> 20 #include <net/netfilter/nf_conntrack_core.h> 21 #include <net/netfilter/nf_conntrack_helper.h> 22 #include <net/netfilter/nf_conntrack_labels.h> 23 #include <net/netfilter/nf_conntrack_seqadj.h> 24 #include <net/netfilter/nf_conntrack_zones.h> 25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 26 27 #ifdef CONFIG_NF_NAT_NEEDED 28 #include <linux/netfilter/nf_nat.h> 29 #include <net/netfilter/nf_nat_core.h> 30 #include <net/netfilter/nf_nat_l3proto.h> 31 #endif 32 33 #include "datapath.h" 34 #include "conntrack.h" 35 #include "flow.h" 36 #include "flow_netlink.h" 37 38 struct ovs_ct_len_tbl { 39 int maxlen; 40 int minlen; 41 }; 42 43 /* Metadata mark for masked write to conntrack mark */ 44 struct md_mark { 45 u32 value; 46 u32 mask; 47 }; 48 49 /* Metadata label for masked write to conntrack label. */ 50 struct md_labels { 51 struct ovs_key_ct_labels value; 52 struct ovs_key_ct_labels mask; 53 }; 54 55 enum ovs_ct_nat { 56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 59 }; 60 61 /* Conntrack action context for execution. */ 62 struct ovs_conntrack_info { 63 struct nf_conntrack_helper *helper; 64 struct nf_conntrack_zone zone; 65 struct nf_conn *ct; 66 u8 commit : 1; 67 u8 nat : 3; /* enum ovs_ct_nat */ 68 u16 family; 69 struct md_mark mark; 70 struct md_labels labels; 71 #ifdef CONFIG_NF_NAT_NEEDED 72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */ 73 #endif 74 }; 75 76 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 77 78 static u16 key_to_nfproto(const struct sw_flow_key *key) 79 { 80 switch (ntohs(key->eth.type)) { 81 case ETH_P_IP: 82 return NFPROTO_IPV4; 83 case ETH_P_IPV6: 84 return NFPROTO_IPV6; 85 default: 86 return NFPROTO_UNSPEC; 87 } 88 } 89 90 /* Map SKB connection state into the values used by flow definition. */ 91 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 92 { 93 u8 ct_state = OVS_CS_F_TRACKED; 94 95 switch (ctinfo) { 96 case IP_CT_ESTABLISHED_REPLY: 97 case IP_CT_RELATED_REPLY: 98 ct_state |= OVS_CS_F_REPLY_DIR; 99 break; 100 default: 101 break; 102 } 103 104 switch (ctinfo) { 105 case IP_CT_ESTABLISHED: 106 case IP_CT_ESTABLISHED_REPLY: 107 ct_state |= OVS_CS_F_ESTABLISHED; 108 break; 109 case IP_CT_RELATED: 110 case IP_CT_RELATED_REPLY: 111 ct_state |= OVS_CS_F_RELATED; 112 break; 113 case IP_CT_NEW: 114 ct_state |= OVS_CS_F_NEW; 115 break; 116 default: 117 break; 118 } 119 120 return ct_state; 121 } 122 123 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 124 { 125 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 126 return ct ? ct->mark : 0; 127 #else 128 return 0; 129 #endif 130 } 131 132 static void ovs_ct_get_labels(const struct nf_conn *ct, 133 struct ovs_key_ct_labels *labels) 134 { 135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 136 137 if (cl) { 138 size_t len = sizeof(cl->bits); 139 140 if (len > OVS_CT_LABELS_LEN) 141 len = OVS_CT_LABELS_LEN; 142 else if (len < OVS_CT_LABELS_LEN) 143 memset(labels, 0, OVS_CT_LABELS_LEN); 144 memcpy(labels, cl->bits, len); 145 } else { 146 memset(labels, 0, OVS_CT_LABELS_LEN); 147 } 148 } 149 150 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 151 const struct nf_conntrack_zone *zone, 152 const struct nf_conn *ct) 153 { 154 key->ct.state = state; 155 key->ct.zone = zone->id; 156 key->ct.mark = ovs_ct_get_mark(ct); 157 ovs_ct_get_labels(ct, &key->ct.labels); 158 } 159 160 /* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has 161 * previously sent the packet to conntrack via the ct action. If 162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 163 * initialized from the connection status. 164 */ 165 static void ovs_ct_update_key(const struct sk_buff *skb, 166 const struct ovs_conntrack_info *info, 167 struct sw_flow_key *key, bool post_ct, 168 bool keep_nat_flags) 169 { 170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 171 enum ip_conntrack_info ctinfo; 172 struct nf_conn *ct; 173 u8 state = 0; 174 175 ct = nf_ct_get(skb, &ctinfo); 176 if (ct) { 177 state = ovs_ct_get_state(ctinfo); 178 /* All unconfirmed entries are NEW connections. */ 179 if (!nf_ct_is_confirmed(ct)) 180 state |= OVS_CS_F_NEW; 181 /* OVS persists the related flag for the duration of the 182 * connection. 183 */ 184 if (ct->master) 185 state |= OVS_CS_F_RELATED; 186 if (keep_nat_flags) { 187 state |= key->ct.state & OVS_CS_F_NAT_MASK; 188 } else { 189 if (ct->status & IPS_SRC_NAT) 190 state |= OVS_CS_F_SRC_NAT; 191 if (ct->status & IPS_DST_NAT) 192 state |= OVS_CS_F_DST_NAT; 193 } 194 zone = nf_ct_zone(ct); 195 } else if (post_ct) { 196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 197 if (info) 198 zone = &info->zone; 199 } 200 __ovs_ct_update_key(key, state, zone, ct); 201 } 202 203 /* This is called to initialize CT key fields possibly coming in from the local 204 * stack. 205 */ 206 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 207 { 208 ovs_ct_update_key(skb, NULL, key, false, false); 209 } 210 211 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb) 212 { 213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state)) 214 return -EMSGSIZE; 215 216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone)) 218 return -EMSGSIZE; 219 220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark)) 222 return -EMSGSIZE; 223 224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels), 226 &key->ct.labels)) 227 return -EMSGSIZE; 228 229 return 0; 230 } 231 232 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key, 233 u32 ct_mark, u32 mask) 234 { 235 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 236 enum ip_conntrack_info ctinfo; 237 struct nf_conn *ct; 238 u32 new_mark; 239 240 /* The connection could be invalid, in which case set_mark is no-op. */ 241 ct = nf_ct_get(skb, &ctinfo); 242 if (!ct) 243 return 0; 244 245 new_mark = ct_mark | (ct->mark & ~(mask)); 246 if (ct->mark != new_mark) { 247 ct->mark = new_mark; 248 nf_conntrack_event_cache(IPCT_MARK, ct); 249 key->ct.mark = new_mark; 250 } 251 252 return 0; 253 #else 254 return -ENOTSUPP; 255 #endif 256 } 257 258 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key, 259 const struct ovs_key_ct_labels *labels, 260 const struct ovs_key_ct_labels *mask) 261 { 262 enum ip_conntrack_info ctinfo; 263 struct nf_conn_labels *cl; 264 struct nf_conn *ct; 265 int err; 266 267 /* The connection could be invalid, in which case set_label is no-op.*/ 268 ct = nf_ct_get(skb, &ctinfo); 269 if (!ct) 270 return 0; 271 272 cl = nf_ct_labels_find(ct); 273 if (!cl) { 274 nf_ct_labels_ext_add(ct); 275 cl = nf_ct_labels_find(ct); 276 } 277 if (!cl || sizeof(cl->bits) < OVS_CT_LABELS_LEN) 278 return -ENOSPC; 279 280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask, 281 OVS_CT_LABELS_LEN / sizeof(u32)); 282 if (err) 283 return err; 284 285 ovs_ct_get_labels(ct, &key->ct.labels); 286 return 0; 287 } 288 289 /* 'skb' should already be pulled to nh_ofs. */ 290 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 291 { 292 const struct nf_conntrack_helper *helper; 293 const struct nf_conn_help *help; 294 enum ip_conntrack_info ctinfo; 295 unsigned int protoff; 296 struct nf_conn *ct; 297 int err; 298 299 ct = nf_ct_get(skb, &ctinfo); 300 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 301 return NF_ACCEPT; 302 303 help = nfct_help(ct); 304 if (!help) 305 return NF_ACCEPT; 306 307 helper = rcu_dereference(help->helper); 308 if (!helper) 309 return NF_ACCEPT; 310 311 switch (proto) { 312 case NFPROTO_IPV4: 313 protoff = ip_hdrlen(skb); 314 break; 315 case NFPROTO_IPV6: { 316 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 317 __be16 frag_off; 318 int ofs; 319 320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 321 &frag_off); 322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 323 pr_debug("proto header not found\n"); 324 return NF_ACCEPT; 325 } 326 protoff = ofs; 327 break; 328 } 329 default: 330 WARN_ONCE(1, "helper invoked on non-IP family!"); 331 return NF_DROP; 332 } 333 334 err = helper->help(skb, protoff, ct, ctinfo); 335 if (err != NF_ACCEPT) 336 return err; 337 338 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 339 * FTP with NAT) adusting the TCP payload size when mangling IP 340 * addresses and/or port numbers in the text-based control connection. 341 */ 342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 344 return NF_DROP; 345 return NF_ACCEPT; 346 } 347 348 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 349 * value if 'skb' is freed. 350 */ 351 static int handle_fragments(struct net *net, struct sw_flow_key *key, 352 u16 zone, struct sk_buff *skb) 353 { 354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 355 int err; 356 357 if (key->eth.type == htons(ETH_P_IP)) { 358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 359 360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 361 err = ip_defrag(net, skb, user); 362 if (err) 363 return err; 364 365 ovs_cb.mru = IPCB(skb)->frag_max_size; 366 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 367 } else if (key->eth.type == htons(ETH_P_IPV6)) { 368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 369 370 skb_orphan(skb); 371 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 372 err = nf_ct_frag6_gather(net, skb, user); 373 if (err) { 374 if (err != -EINPROGRESS) 375 kfree_skb(skb); 376 return err; 377 } 378 379 key->ip.proto = ipv6_hdr(skb)->nexthdr; 380 ovs_cb.mru = IP6CB(skb)->frag_max_size; 381 #endif 382 } else { 383 kfree_skb(skb); 384 return -EPFNOSUPPORT; 385 } 386 387 key->ip.frag = OVS_FRAG_TYPE_NONE; 388 skb_clear_hash(skb); 389 skb->ignore_df = 1; 390 *OVS_CB(skb) = ovs_cb; 391 392 return 0; 393 } 394 395 static struct nf_conntrack_expect * 396 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 397 u16 proto, const struct sk_buff *skb) 398 { 399 struct nf_conntrack_tuple tuple; 400 401 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 402 return NULL; 403 return __nf_ct_expect_find(net, zone, &tuple); 404 } 405 406 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 407 static enum ip_conntrack_info 408 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 409 { 410 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 411 412 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 413 return IP_CT_ESTABLISHED_REPLY; 414 /* Once we've had two way comms, always ESTABLISHED. */ 415 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 416 return IP_CT_ESTABLISHED; 417 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 418 return IP_CT_RELATED; 419 return IP_CT_NEW; 420 } 421 422 /* Find an existing connection which this packet belongs to without 423 * re-attributing statistics or modifying the connection state. This allows an 424 * skb->nfct lost due to an upcall to be recovered during actions execution. 425 * 426 * Must be called with rcu_read_lock. 427 * 428 * On success, populates skb->nfct and skb->nfctinfo, and returns the 429 * connection. Returns NULL if there is no existing entry. 430 */ 431 static struct nf_conn * 432 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 433 u8 l3num, struct sk_buff *skb) 434 { 435 struct nf_conntrack_l3proto *l3proto; 436 struct nf_conntrack_l4proto *l4proto; 437 struct nf_conntrack_tuple tuple; 438 struct nf_conntrack_tuple_hash *h; 439 struct nf_conn *ct; 440 unsigned int dataoff; 441 u8 protonum; 442 443 l3proto = __nf_ct_l3proto_find(l3num); 444 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff, 445 &protonum) <= 0) { 446 pr_debug("ovs_ct_find_existing: Can't get protonum\n"); 447 return NULL; 448 } 449 l4proto = __nf_ct_l4proto_find(l3num, protonum); 450 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, 451 protonum, net, &tuple, l3proto, l4proto)) { 452 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 453 return NULL; 454 } 455 456 /* look for tuple match */ 457 h = nf_conntrack_find_get(net, zone, &tuple); 458 if (!h) 459 return NULL; /* Not found. */ 460 461 ct = nf_ct_tuplehash_to_ctrack(h); 462 463 skb->nfct = &ct->ct_general; 464 skb->nfctinfo = ovs_ct_get_info(h); 465 return ct; 466 } 467 468 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */ 469 static bool skb_nfct_cached(struct net *net, 470 const struct sw_flow_key *key, 471 const struct ovs_conntrack_info *info, 472 struct sk_buff *skb) 473 { 474 enum ip_conntrack_info ctinfo; 475 struct nf_conn *ct; 476 477 ct = nf_ct_get(skb, &ctinfo); 478 /* If no ct, check if we have evidence that an existing conntrack entry 479 * might be found for this skb. This happens when we lose a skb->nfct 480 * due to an upcall. If the connection was not confirmed, it is not 481 * cached and needs to be run through conntrack again. 482 */ 483 if (!ct && key->ct.state & OVS_CS_F_TRACKED && 484 !(key->ct.state & OVS_CS_F_INVALID) && 485 key->ct.zone == info->zone.id) 486 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb); 487 if (!ct) 488 return false; 489 if (!net_eq(net, read_pnet(&ct->ct_net))) 490 return false; 491 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 492 return false; 493 if (info->helper) { 494 struct nf_conn_help *help; 495 496 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 497 if (help && rcu_access_pointer(help->helper) != info->helper) 498 return false; 499 } 500 501 return true; 502 } 503 504 #ifdef CONFIG_NF_NAT_NEEDED 505 /* Modelled after nf_nat_ipv[46]_fn(). 506 * range is only used for new, uninitialized NAT state. 507 * Returns either NF_ACCEPT or NF_DROP. 508 */ 509 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 510 enum ip_conntrack_info ctinfo, 511 const struct nf_nat_range *range, 512 enum nf_nat_manip_type maniptype) 513 { 514 int hooknum, nh_off, err = NF_ACCEPT; 515 516 nh_off = skb_network_offset(skb); 517 skb_pull(skb, nh_off); 518 519 /* See HOOK2MANIP(). */ 520 if (maniptype == NF_NAT_MANIP_SRC) 521 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 522 else 523 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 524 525 switch (ctinfo) { 526 case IP_CT_RELATED: 527 case IP_CT_RELATED_REPLY: 528 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 529 skb->protocol == htons(ETH_P_IP) && 530 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 531 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 532 hooknum)) 533 err = NF_DROP; 534 goto push; 535 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 536 skb->protocol == htons(ETH_P_IPV6)) { 537 __be16 frag_off; 538 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 539 int hdrlen = ipv6_skip_exthdr(skb, 540 sizeof(struct ipv6hdr), 541 &nexthdr, &frag_off); 542 543 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 544 if (!nf_nat_icmpv6_reply_translation(skb, ct, 545 ctinfo, 546 hooknum, 547 hdrlen)) 548 err = NF_DROP; 549 goto push; 550 } 551 } 552 /* Non-ICMP, fall thru to initialize if needed. */ 553 case IP_CT_NEW: 554 /* Seen it before? This can happen for loopback, retrans, 555 * or local packets. 556 */ 557 if (!nf_nat_initialized(ct, maniptype)) { 558 /* Initialize according to the NAT action. */ 559 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 560 /* Action is set up to establish a new 561 * mapping. 562 */ 563 ? nf_nat_setup_info(ct, range, maniptype) 564 : nf_nat_alloc_null_binding(ct, hooknum); 565 if (err != NF_ACCEPT) 566 goto push; 567 } 568 break; 569 570 case IP_CT_ESTABLISHED: 571 case IP_CT_ESTABLISHED_REPLY: 572 break; 573 574 default: 575 err = NF_DROP; 576 goto push; 577 } 578 579 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 580 push: 581 skb_push(skb, nh_off); 582 583 return err; 584 } 585 586 static void ovs_nat_update_key(struct sw_flow_key *key, 587 const struct sk_buff *skb, 588 enum nf_nat_manip_type maniptype) 589 { 590 if (maniptype == NF_NAT_MANIP_SRC) { 591 __be16 src; 592 593 key->ct.state |= OVS_CS_F_SRC_NAT; 594 if (key->eth.type == htons(ETH_P_IP)) 595 key->ipv4.addr.src = ip_hdr(skb)->saddr; 596 else if (key->eth.type == htons(ETH_P_IPV6)) 597 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 598 sizeof(key->ipv6.addr.src)); 599 else 600 return; 601 602 if (key->ip.proto == IPPROTO_UDP) 603 src = udp_hdr(skb)->source; 604 else if (key->ip.proto == IPPROTO_TCP) 605 src = tcp_hdr(skb)->source; 606 else if (key->ip.proto == IPPROTO_SCTP) 607 src = sctp_hdr(skb)->source; 608 else 609 return; 610 611 key->tp.src = src; 612 } else { 613 __be16 dst; 614 615 key->ct.state |= OVS_CS_F_DST_NAT; 616 if (key->eth.type == htons(ETH_P_IP)) 617 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 618 else if (key->eth.type == htons(ETH_P_IPV6)) 619 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 620 sizeof(key->ipv6.addr.dst)); 621 else 622 return; 623 624 if (key->ip.proto == IPPROTO_UDP) 625 dst = udp_hdr(skb)->dest; 626 else if (key->ip.proto == IPPROTO_TCP) 627 dst = tcp_hdr(skb)->dest; 628 else if (key->ip.proto == IPPROTO_SCTP) 629 dst = sctp_hdr(skb)->dest; 630 else 631 return; 632 633 key->tp.dst = dst; 634 } 635 } 636 637 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 638 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 639 const struct ovs_conntrack_info *info, 640 struct sk_buff *skb, struct nf_conn *ct, 641 enum ip_conntrack_info ctinfo) 642 { 643 enum nf_nat_manip_type maniptype; 644 int err; 645 646 if (nf_ct_is_untracked(ct)) { 647 /* A NAT action may only be performed on tracked packets. */ 648 return NF_ACCEPT; 649 } 650 651 /* Add NAT extension if not confirmed yet. */ 652 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 653 return NF_ACCEPT; /* Can't NAT. */ 654 655 /* Determine NAT type. 656 * Check if the NAT type can be deduced from the tracked connection. 657 * Make sure new expected connections (IP_CT_RELATED) are NATted only 658 * when committing. 659 */ 660 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 661 ct->status & IPS_NAT_MASK && 662 (ctinfo != IP_CT_RELATED || info->commit)) { 663 /* NAT an established or related connection like before. */ 664 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 665 /* This is the REPLY direction for a connection 666 * for which NAT was applied in the forward 667 * direction. Do the reverse NAT. 668 */ 669 maniptype = ct->status & IPS_SRC_NAT 670 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 671 else 672 maniptype = ct->status & IPS_SRC_NAT 673 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 674 } else if (info->nat & OVS_CT_SRC_NAT) { 675 maniptype = NF_NAT_MANIP_SRC; 676 } else if (info->nat & OVS_CT_DST_NAT) { 677 maniptype = NF_NAT_MANIP_DST; 678 } else { 679 return NF_ACCEPT; /* Connection is not NATed. */ 680 } 681 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 682 683 /* Mark NAT done if successful and update the flow key. */ 684 if (err == NF_ACCEPT) 685 ovs_nat_update_key(key, skb, maniptype); 686 687 return err; 688 } 689 #else /* !CONFIG_NF_NAT_NEEDED */ 690 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 691 const struct ovs_conntrack_info *info, 692 struct sk_buff *skb, struct nf_conn *ct, 693 enum ip_conntrack_info ctinfo) 694 { 695 return NF_ACCEPT; 696 } 697 #endif 698 699 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 700 * not done already. Update key with new CT state after passing the packet 701 * through conntrack. 702 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be 703 * set to NULL and 0 will be returned. 704 */ 705 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 706 const struct ovs_conntrack_info *info, 707 struct sk_buff *skb) 708 { 709 /* If we are recirculating packets to match on conntrack fields and 710 * committing with a separate conntrack action, then we don't need to 711 * actually run the packet through conntrack twice unless it's for a 712 * different zone. 713 */ 714 bool cached = skb_nfct_cached(net, key, info, skb); 715 enum ip_conntrack_info ctinfo; 716 struct nf_conn *ct; 717 718 if (!cached) { 719 struct nf_conn *tmpl = info->ct; 720 int err; 721 722 /* Associate skb with specified zone. */ 723 if (tmpl) { 724 if (skb->nfct) 725 nf_conntrack_put(skb->nfct); 726 nf_conntrack_get(&tmpl->ct_general); 727 skb->nfct = &tmpl->ct_general; 728 skb->nfctinfo = IP_CT_NEW; 729 } 730 731 err = nf_conntrack_in(net, info->family, 732 NF_INET_PRE_ROUTING, skb); 733 if (err != NF_ACCEPT) 734 return -ENOENT; 735 736 /* Clear CT state NAT flags to mark that we have not yet done 737 * NAT after the nf_conntrack_in() call. We can actually clear 738 * the whole state, as it will be re-initialized below. 739 */ 740 key->ct.state = 0; 741 742 /* Update the key, but keep the NAT flags. */ 743 ovs_ct_update_key(skb, info, key, true, true); 744 } 745 746 ct = nf_ct_get(skb, &ctinfo); 747 if (ct) { 748 /* Packets starting a new connection must be NATted before the 749 * helper, so that the helper knows about the NAT. We enforce 750 * this by delaying both NAT and helper calls for unconfirmed 751 * connections until the committing CT action. For later 752 * packets NAT and Helper may be called in either order. 753 * 754 * NAT will be done only if the CT action has NAT, and only 755 * once per packet (per zone), as guarded by the NAT bits in 756 * the key->ct.state. 757 */ 758 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) && 759 (nf_ct_is_confirmed(ct) || info->commit) && 760 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 761 return -EINVAL; 762 } 763 764 /* Userspace may decide to perform a ct lookup without a helper 765 * specified followed by a (recirculate and) commit with one. 766 * Therefore, for unconfirmed connections which we will commit, 767 * we need to attach the helper here. 768 */ 769 if (!nf_ct_is_confirmed(ct) && info->commit && 770 info->helper && !nfct_help(ct)) { 771 int err = __nf_ct_try_assign_helper(ct, info->ct, 772 GFP_ATOMIC); 773 if (err) 774 return err; 775 } 776 777 /* Call the helper only if: 778 * - nf_conntrack_in() was executed above ("!cached") for a 779 * confirmed connection, or 780 * - When committing an unconfirmed connection. 781 */ 782 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && 783 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 784 return -EINVAL; 785 } 786 } 787 788 return 0; 789 } 790 791 /* Lookup connection and read fields into key. */ 792 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 793 const struct ovs_conntrack_info *info, 794 struct sk_buff *skb) 795 { 796 struct nf_conntrack_expect *exp; 797 798 /* If we pass an expected packet through nf_conntrack_in() the 799 * expectation is typically removed, but the packet could still be 800 * lost in upcall processing. To prevent this from happening we 801 * perform an explicit expectation lookup. Expected connections are 802 * always new, and will be passed through conntrack only when they are 803 * committed, as it is OK to remove the expectation at that time. 804 */ 805 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 806 if (exp) { 807 u8 state; 808 809 /* NOTE: New connections are NATted and Helped only when 810 * committed, so we are not calling into NAT here. 811 */ 812 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 813 __ovs_ct_update_key(key, state, &info->zone, exp->master); 814 } else { 815 struct nf_conn *ct; 816 int err; 817 818 err = __ovs_ct_lookup(net, key, info, skb); 819 if (err) 820 return err; 821 822 ct = (struct nf_conn *)skb->nfct; 823 if (ct) 824 nf_ct_deliver_cached_events(ct); 825 } 826 827 return 0; 828 } 829 830 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 831 { 832 size_t i; 833 834 for (i = 0; i < sizeof(*labels); i++) 835 if (labels->ct_labels[i]) 836 return true; 837 838 return false; 839 } 840 841 /* Lookup connection and confirm if unconfirmed. */ 842 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 843 const struct ovs_conntrack_info *info, 844 struct sk_buff *skb) 845 { 846 int err; 847 848 err = __ovs_ct_lookup(net, key, info, skb); 849 if (err) 850 return err; 851 852 /* Apply changes before confirming the connection so that the initial 853 * conntrack NEW netlink event carries the values given in the CT 854 * action. 855 */ 856 if (info->mark.mask) { 857 err = ovs_ct_set_mark(skb, key, info->mark.value, 858 info->mark.mask); 859 if (err) 860 return err; 861 } 862 if (labels_nonzero(&info->labels.mask)) { 863 err = ovs_ct_set_labels(skb, key, &info->labels.value, 864 &info->labels.mask); 865 if (err) 866 return err; 867 } 868 /* This will take care of sending queued events even if the connection 869 * is already confirmed. 870 */ 871 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 872 return -EINVAL; 873 874 return 0; 875 } 876 877 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 878 * value if 'skb' is freed. 879 */ 880 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 881 struct sw_flow_key *key, 882 const struct ovs_conntrack_info *info) 883 { 884 int nh_ofs; 885 int err; 886 887 /* The conntrack module expects to be working at L3. */ 888 nh_ofs = skb_network_offset(skb); 889 skb_pull(skb, nh_ofs); 890 891 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 892 err = handle_fragments(net, key, info->zone.id, skb); 893 if (err) 894 return err; 895 } 896 897 if (info->commit) 898 err = ovs_ct_commit(net, key, info, skb); 899 else 900 err = ovs_ct_lookup(net, key, info, skb); 901 902 skb_push(skb, nh_ofs); 903 if (err) 904 kfree_skb(skb); 905 return err; 906 } 907 908 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 909 const struct sw_flow_key *key, bool log) 910 { 911 struct nf_conntrack_helper *helper; 912 struct nf_conn_help *help; 913 914 helper = nf_conntrack_helper_try_module_get(name, info->family, 915 key->ip.proto); 916 if (!helper) { 917 OVS_NLERR(log, "Unknown helper \"%s\"", name); 918 return -EINVAL; 919 } 920 921 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); 922 if (!help) { 923 module_put(helper->me); 924 return -ENOMEM; 925 } 926 927 rcu_assign_pointer(help->helper, helper); 928 info->helper = helper; 929 return 0; 930 } 931 932 #ifdef CONFIG_NF_NAT_NEEDED 933 static int parse_nat(const struct nlattr *attr, 934 struct ovs_conntrack_info *info, bool log) 935 { 936 struct nlattr *a; 937 int rem; 938 bool have_ip_max = false; 939 bool have_proto_max = false; 940 bool ip_vers = (info->family == NFPROTO_IPV6); 941 942 nla_for_each_nested(a, attr, rem) { 943 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 944 [OVS_NAT_ATTR_SRC] = {0, 0}, 945 [OVS_NAT_ATTR_DST] = {0, 0}, 946 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 947 sizeof(struct in6_addr)}, 948 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 949 sizeof(struct in6_addr)}, 950 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 951 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 952 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 953 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 954 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 955 }; 956 int type = nla_type(a); 957 958 if (type > OVS_NAT_ATTR_MAX) { 959 OVS_NLERR(log, 960 "Unknown NAT attribute (type=%d, max=%d).\n", 961 type, OVS_NAT_ATTR_MAX); 962 return -EINVAL; 963 } 964 965 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 966 OVS_NLERR(log, 967 "NAT attribute type %d has unexpected length (%d != %d).\n", 968 type, nla_len(a), 969 ovs_nat_attr_lens[type][ip_vers]); 970 return -EINVAL; 971 } 972 973 switch (type) { 974 case OVS_NAT_ATTR_SRC: 975 case OVS_NAT_ATTR_DST: 976 if (info->nat) { 977 OVS_NLERR(log, 978 "Only one type of NAT may be specified.\n" 979 ); 980 return -ERANGE; 981 } 982 info->nat |= OVS_CT_NAT; 983 info->nat |= ((type == OVS_NAT_ATTR_SRC) 984 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 985 break; 986 987 case OVS_NAT_ATTR_IP_MIN: 988 nla_memcpy(&info->range.min_addr, a, 989 sizeof(info->range.min_addr)); 990 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 991 break; 992 993 case OVS_NAT_ATTR_IP_MAX: 994 have_ip_max = true; 995 nla_memcpy(&info->range.max_addr, a, 996 sizeof(info->range.max_addr)); 997 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 998 break; 999 1000 case OVS_NAT_ATTR_PROTO_MIN: 1001 info->range.min_proto.all = htons(nla_get_u16(a)); 1002 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1003 break; 1004 1005 case OVS_NAT_ATTR_PROTO_MAX: 1006 have_proto_max = true; 1007 info->range.max_proto.all = htons(nla_get_u16(a)); 1008 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1009 break; 1010 1011 case OVS_NAT_ATTR_PERSISTENT: 1012 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1013 break; 1014 1015 case OVS_NAT_ATTR_PROTO_HASH: 1016 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1017 break; 1018 1019 case OVS_NAT_ATTR_PROTO_RANDOM: 1020 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1021 break; 1022 1023 default: 1024 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type); 1025 return -EINVAL; 1026 } 1027 } 1028 1029 if (rem > 0) { 1030 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem); 1031 return -EINVAL; 1032 } 1033 if (!info->nat) { 1034 /* Do not allow flags if no type is given. */ 1035 if (info->range.flags) { 1036 OVS_NLERR(log, 1037 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n" 1038 ); 1039 return -EINVAL; 1040 } 1041 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1042 } else if (!info->commit) { 1043 OVS_NLERR(log, 1044 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n" 1045 ); 1046 return -EINVAL; 1047 } 1048 /* Allow missing IP_MAX. */ 1049 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1050 memcpy(&info->range.max_addr, &info->range.min_addr, 1051 sizeof(info->range.max_addr)); 1052 } 1053 /* Allow missing PROTO_MAX. */ 1054 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1055 !have_proto_max) { 1056 info->range.max_proto.all = info->range.min_proto.all; 1057 } 1058 return 0; 1059 } 1060 #endif 1061 1062 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1063 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1064 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1065 .maxlen = sizeof(u16) }, 1066 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1067 .maxlen = sizeof(struct md_mark) }, 1068 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1069 .maxlen = sizeof(struct md_labels) }, 1070 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1071 .maxlen = NF_CT_HELPER_NAME_LEN }, 1072 #ifdef CONFIG_NF_NAT_NEEDED 1073 /* NAT length is checked when parsing the nested attributes. */ 1074 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1075 #endif 1076 }; 1077 1078 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1079 const char **helper, bool log) 1080 { 1081 struct nlattr *a; 1082 int rem; 1083 1084 nla_for_each_nested(a, attr, rem) { 1085 int type = nla_type(a); 1086 int maxlen = ovs_ct_attr_lens[type].maxlen; 1087 int minlen = ovs_ct_attr_lens[type].minlen; 1088 1089 if (type > OVS_CT_ATTR_MAX) { 1090 OVS_NLERR(log, 1091 "Unknown conntrack attr (type=%d, max=%d)", 1092 type, OVS_CT_ATTR_MAX); 1093 return -EINVAL; 1094 } 1095 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1096 OVS_NLERR(log, 1097 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1098 type, nla_len(a), maxlen); 1099 return -EINVAL; 1100 } 1101 1102 switch (type) { 1103 case OVS_CT_ATTR_COMMIT: 1104 info->commit = true; 1105 break; 1106 #ifdef CONFIG_NF_CONNTRACK_ZONES 1107 case OVS_CT_ATTR_ZONE: 1108 info->zone.id = nla_get_u16(a); 1109 break; 1110 #endif 1111 #ifdef CONFIG_NF_CONNTRACK_MARK 1112 case OVS_CT_ATTR_MARK: { 1113 struct md_mark *mark = nla_data(a); 1114 1115 if (!mark->mask) { 1116 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1117 return -EINVAL; 1118 } 1119 info->mark = *mark; 1120 break; 1121 } 1122 #endif 1123 #ifdef CONFIG_NF_CONNTRACK_LABELS 1124 case OVS_CT_ATTR_LABELS: { 1125 struct md_labels *labels = nla_data(a); 1126 1127 if (!labels_nonzero(&labels->mask)) { 1128 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1129 return -EINVAL; 1130 } 1131 info->labels = *labels; 1132 break; 1133 } 1134 #endif 1135 case OVS_CT_ATTR_HELPER: 1136 *helper = nla_data(a); 1137 if (!memchr(*helper, '\0', nla_len(a))) { 1138 OVS_NLERR(log, "Invalid conntrack helper"); 1139 return -EINVAL; 1140 } 1141 break; 1142 #ifdef CONFIG_NF_NAT_NEEDED 1143 case OVS_CT_ATTR_NAT: { 1144 int err = parse_nat(a, info, log); 1145 1146 if (err) 1147 return err; 1148 break; 1149 } 1150 #endif 1151 default: 1152 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1153 type); 1154 return -EINVAL; 1155 } 1156 } 1157 1158 #ifdef CONFIG_NF_CONNTRACK_MARK 1159 if (!info->commit && info->mark.mask) { 1160 OVS_NLERR(log, 1161 "Setting conntrack mark requires 'commit' flag."); 1162 return -EINVAL; 1163 } 1164 #endif 1165 #ifdef CONFIG_NF_CONNTRACK_LABELS 1166 if (!info->commit && labels_nonzero(&info->labels.mask)) { 1167 OVS_NLERR(log, 1168 "Setting conntrack labels requires 'commit' flag."); 1169 return -EINVAL; 1170 } 1171 #endif 1172 if (rem > 0) { 1173 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1174 return -EINVAL; 1175 } 1176 1177 return 0; 1178 } 1179 1180 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1181 { 1182 if (attr == OVS_KEY_ATTR_CT_STATE) 1183 return true; 1184 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1185 attr == OVS_KEY_ATTR_CT_ZONE) 1186 return true; 1187 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1188 attr == OVS_KEY_ATTR_CT_MARK) 1189 return true; 1190 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1191 attr == OVS_KEY_ATTR_CT_LABELS) { 1192 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1193 1194 return ovs_net->xt_label; 1195 } 1196 1197 return false; 1198 } 1199 1200 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1201 const struct sw_flow_key *key, 1202 struct sw_flow_actions **sfa, bool log) 1203 { 1204 struct ovs_conntrack_info ct_info; 1205 const char *helper = NULL; 1206 u16 family; 1207 int err; 1208 1209 family = key_to_nfproto(key); 1210 if (family == NFPROTO_UNSPEC) { 1211 OVS_NLERR(log, "ct family unspecified"); 1212 return -EINVAL; 1213 } 1214 1215 memset(&ct_info, 0, sizeof(ct_info)); 1216 ct_info.family = family; 1217 1218 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1219 NF_CT_DEFAULT_ZONE_DIR, 0); 1220 1221 err = parse_ct(attr, &ct_info, &helper, log); 1222 if (err) 1223 return err; 1224 1225 /* Set up template for tracking connections in specific zones. */ 1226 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1227 if (!ct_info.ct) { 1228 OVS_NLERR(log, "Failed to allocate conntrack template"); 1229 return -ENOMEM; 1230 } 1231 1232 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1233 nf_conntrack_get(&ct_info.ct->ct_general); 1234 1235 if (helper) { 1236 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1237 if (err) 1238 goto err_free_ct; 1239 } 1240 1241 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1242 sizeof(ct_info), log); 1243 if (err) 1244 goto err_free_ct; 1245 1246 return 0; 1247 err_free_ct: 1248 __ovs_ct_free_action(&ct_info); 1249 return err; 1250 } 1251 1252 #ifdef CONFIG_NF_NAT_NEEDED 1253 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1254 struct sk_buff *skb) 1255 { 1256 struct nlattr *start; 1257 1258 start = nla_nest_start(skb, OVS_CT_ATTR_NAT); 1259 if (!start) 1260 return false; 1261 1262 if (info->nat & OVS_CT_SRC_NAT) { 1263 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1264 return false; 1265 } else if (info->nat & OVS_CT_DST_NAT) { 1266 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1267 return false; 1268 } else { 1269 goto out; 1270 } 1271 1272 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1273 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 1274 info->family == NFPROTO_IPV4) { 1275 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1276 info->range.min_addr.ip) || 1277 (info->range.max_addr.ip 1278 != info->range.min_addr.ip && 1279 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1280 info->range.max_addr.ip)))) 1281 return false; 1282 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 1283 info->family == NFPROTO_IPV6) { 1284 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1285 &info->range.min_addr.in6) || 1286 (memcmp(&info->range.max_addr.in6, 1287 &info->range.min_addr.in6, 1288 sizeof(info->range.max_addr.in6)) && 1289 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1290 &info->range.max_addr.in6)))) 1291 return false; 1292 } else { 1293 return false; 1294 } 1295 } 1296 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1297 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1298 ntohs(info->range.min_proto.all)) || 1299 (info->range.max_proto.all != info->range.min_proto.all && 1300 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1301 ntohs(info->range.max_proto.all))))) 1302 return false; 1303 1304 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1305 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1306 return false; 1307 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1308 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1309 return false; 1310 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1311 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1312 return false; 1313 out: 1314 nla_nest_end(skb, start); 1315 1316 return true; 1317 } 1318 #endif 1319 1320 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1321 struct sk_buff *skb) 1322 { 1323 struct nlattr *start; 1324 1325 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); 1326 if (!start) 1327 return -EMSGSIZE; 1328 1329 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT)) 1330 return -EMSGSIZE; 1331 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1332 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1333 return -EMSGSIZE; 1334 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1335 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1336 &ct_info->mark)) 1337 return -EMSGSIZE; 1338 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1339 labels_nonzero(&ct_info->labels.mask) && 1340 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1341 &ct_info->labels)) 1342 return -EMSGSIZE; 1343 if (ct_info->helper) { 1344 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1345 ct_info->helper->name)) 1346 return -EMSGSIZE; 1347 } 1348 #ifdef CONFIG_NF_NAT_NEEDED 1349 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1350 return -EMSGSIZE; 1351 #endif 1352 nla_nest_end(skb, start); 1353 1354 return 0; 1355 } 1356 1357 void ovs_ct_free_action(const struct nlattr *a) 1358 { 1359 struct ovs_conntrack_info *ct_info = nla_data(a); 1360 1361 __ovs_ct_free_action(ct_info); 1362 } 1363 1364 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1365 { 1366 if (ct_info->helper) 1367 module_put(ct_info->helper->me); 1368 if (ct_info->ct) 1369 nf_ct_tmpl_free(ct_info->ct); 1370 } 1371 1372 void ovs_ct_init(struct net *net) 1373 { 1374 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 1375 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1376 1377 if (nf_connlabels_get(net, n_bits - 1)) { 1378 ovs_net->xt_label = false; 1379 OVS_NLERR(true, "Failed to set connlabel length"); 1380 } else { 1381 ovs_net->xt_label = true; 1382 } 1383 } 1384 1385 void ovs_ct_exit(struct net *net) 1386 { 1387 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1388 1389 if (ovs_net->xt_label) 1390 nf_connlabels_put(net); 1391 } 1392