xref: /openbmc/linux/net/openvswitch/conntrack.c (revision 8730046c)
1 /*
2  * Copyright (c) 2015 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <net/ip.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_labels.h>
23 #include <net/netfilter/nf_conntrack_seqadj.h>
24 #include <net/netfilter/nf_conntrack_zones.h>
25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26 
27 #ifdef CONFIG_NF_NAT_NEEDED
28 #include <linux/netfilter/nf_nat.h>
29 #include <net/netfilter/nf_nat_core.h>
30 #include <net/netfilter/nf_nat_l3proto.h>
31 #endif
32 
33 #include "datapath.h"
34 #include "conntrack.h"
35 #include "flow.h"
36 #include "flow_netlink.h"
37 
38 struct ovs_ct_len_tbl {
39 	int maxlen;
40 	int minlen;
41 };
42 
43 /* Metadata mark for masked write to conntrack mark */
44 struct md_mark {
45 	u32 value;
46 	u32 mask;
47 };
48 
49 /* Metadata label for masked write to conntrack label. */
50 struct md_labels {
51 	struct ovs_key_ct_labels value;
52 	struct ovs_key_ct_labels mask;
53 };
54 
55 enum ovs_ct_nat {
56 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
57 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59 };
60 
61 /* Conntrack action context for execution. */
62 struct ovs_conntrack_info {
63 	struct nf_conntrack_helper *helper;
64 	struct nf_conntrack_zone zone;
65 	struct nf_conn *ct;
66 	u8 commit : 1;
67 	u8 nat : 3;                 /* enum ovs_ct_nat */
68 	u16 family;
69 	struct md_mark mark;
70 	struct md_labels labels;
71 #ifdef CONFIG_NF_NAT_NEEDED
72 	struct nf_nat_range range;  /* Only present for SRC NAT and DST NAT. */
73 #endif
74 };
75 
76 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
77 
78 static u16 key_to_nfproto(const struct sw_flow_key *key)
79 {
80 	switch (ntohs(key->eth.type)) {
81 	case ETH_P_IP:
82 		return NFPROTO_IPV4;
83 	case ETH_P_IPV6:
84 		return NFPROTO_IPV6;
85 	default:
86 		return NFPROTO_UNSPEC;
87 	}
88 }
89 
90 /* Map SKB connection state into the values used by flow definition. */
91 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
92 {
93 	u8 ct_state = OVS_CS_F_TRACKED;
94 
95 	switch (ctinfo) {
96 	case IP_CT_ESTABLISHED_REPLY:
97 	case IP_CT_RELATED_REPLY:
98 		ct_state |= OVS_CS_F_REPLY_DIR;
99 		break;
100 	default:
101 		break;
102 	}
103 
104 	switch (ctinfo) {
105 	case IP_CT_ESTABLISHED:
106 	case IP_CT_ESTABLISHED_REPLY:
107 		ct_state |= OVS_CS_F_ESTABLISHED;
108 		break;
109 	case IP_CT_RELATED:
110 	case IP_CT_RELATED_REPLY:
111 		ct_state |= OVS_CS_F_RELATED;
112 		break;
113 	case IP_CT_NEW:
114 		ct_state |= OVS_CS_F_NEW;
115 		break;
116 	default:
117 		break;
118 	}
119 
120 	return ct_state;
121 }
122 
123 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
124 {
125 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
126 	return ct ? ct->mark : 0;
127 #else
128 	return 0;
129 #endif
130 }
131 
132 static void ovs_ct_get_labels(const struct nf_conn *ct,
133 			      struct ovs_key_ct_labels *labels)
134 {
135 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
136 
137 	if (cl) {
138 		size_t len = sizeof(cl->bits);
139 
140 		if (len > OVS_CT_LABELS_LEN)
141 			len = OVS_CT_LABELS_LEN;
142 		else if (len < OVS_CT_LABELS_LEN)
143 			memset(labels, 0, OVS_CT_LABELS_LEN);
144 		memcpy(labels, cl->bits, len);
145 	} else {
146 		memset(labels, 0, OVS_CT_LABELS_LEN);
147 	}
148 }
149 
150 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
151 				const struct nf_conntrack_zone *zone,
152 				const struct nf_conn *ct)
153 {
154 	key->ct.state = state;
155 	key->ct.zone = zone->id;
156 	key->ct.mark = ovs_ct_get_mark(ct);
157 	ovs_ct_get_labels(ct, &key->ct.labels);
158 }
159 
160 /* Update 'key' based on skb->nfct.  If 'post_ct' is true, then OVS has
161  * previously sent the packet to conntrack via the ct action.  If
162  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
163  * initialized from the connection status.
164  */
165 static void ovs_ct_update_key(const struct sk_buff *skb,
166 			      const struct ovs_conntrack_info *info,
167 			      struct sw_flow_key *key, bool post_ct,
168 			      bool keep_nat_flags)
169 {
170 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
171 	enum ip_conntrack_info ctinfo;
172 	struct nf_conn *ct;
173 	u8 state = 0;
174 
175 	ct = nf_ct_get(skb, &ctinfo);
176 	if (ct) {
177 		state = ovs_ct_get_state(ctinfo);
178 		/* All unconfirmed entries are NEW connections. */
179 		if (!nf_ct_is_confirmed(ct))
180 			state |= OVS_CS_F_NEW;
181 		/* OVS persists the related flag for the duration of the
182 		 * connection.
183 		 */
184 		if (ct->master)
185 			state |= OVS_CS_F_RELATED;
186 		if (keep_nat_flags) {
187 			state |= key->ct.state & OVS_CS_F_NAT_MASK;
188 		} else {
189 			if (ct->status & IPS_SRC_NAT)
190 				state |= OVS_CS_F_SRC_NAT;
191 			if (ct->status & IPS_DST_NAT)
192 				state |= OVS_CS_F_DST_NAT;
193 		}
194 		zone = nf_ct_zone(ct);
195 	} else if (post_ct) {
196 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
197 		if (info)
198 			zone = &info->zone;
199 	}
200 	__ovs_ct_update_key(key, state, zone, ct);
201 }
202 
203 /* This is called to initialize CT key fields possibly coming in from the local
204  * stack.
205  */
206 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
207 {
208 	ovs_ct_update_key(skb, NULL, key, false, false);
209 }
210 
211 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb)
212 {
213 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state))
214 		return -EMSGSIZE;
215 
216 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
217 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone))
218 		return -EMSGSIZE;
219 
220 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
221 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark))
222 		return -EMSGSIZE;
223 
224 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
225 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels),
226 		    &key->ct.labels))
227 		return -EMSGSIZE;
228 
229 	return 0;
230 }
231 
232 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key,
233 			   u32 ct_mark, u32 mask)
234 {
235 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
236 	enum ip_conntrack_info ctinfo;
237 	struct nf_conn *ct;
238 	u32 new_mark;
239 
240 	/* The connection could be invalid, in which case set_mark is no-op. */
241 	ct = nf_ct_get(skb, &ctinfo);
242 	if (!ct)
243 		return 0;
244 
245 	new_mark = ct_mark | (ct->mark & ~(mask));
246 	if (ct->mark != new_mark) {
247 		ct->mark = new_mark;
248 		nf_conntrack_event_cache(IPCT_MARK, ct);
249 		key->ct.mark = new_mark;
250 	}
251 
252 	return 0;
253 #else
254 	return -ENOTSUPP;
255 #endif
256 }
257 
258 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key,
259 			     const struct ovs_key_ct_labels *labels,
260 			     const struct ovs_key_ct_labels *mask)
261 {
262 	enum ip_conntrack_info ctinfo;
263 	struct nf_conn_labels *cl;
264 	struct nf_conn *ct;
265 	int err;
266 
267 	/* The connection could be invalid, in which case set_label is no-op.*/
268 	ct = nf_ct_get(skb, &ctinfo);
269 	if (!ct)
270 		return 0;
271 
272 	cl = nf_ct_labels_find(ct);
273 	if (!cl) {
274 		nf_ct_labels_ext_add(ct);
275 		cl = nf_ct_labels_find(ct);
276 	}
277 	if (!cl || sizeof(cl->bits) < OVS_CT_LABELS_LEN)
278 		return -ENOSPC;
279 
280 	err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask,
281 				    OVS_CT_LABELS_LEN / sizeof(u32));
282 	if (err)
283 		return err;
284 
285 	ovs_ct_get_labels(ct, &key->ct.labels);
286 	return 0;
287 }
288 
289 /* 'skb' should already be pulled to nh_ofs. */
290 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
291 {
292 	const struct nf_conntrack_helper *helper;
293 	const struct nf_conn_help *help;
294 	enum ip_conntrack_info ctinfo;
295 	unsigned int protoff;
296 	struct nf_conn *ct;
297 	int err;
298 
299 	ct = nf_ct_get(skb, &ctinfo);
300 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
301 		return NF_ACCEPT;
302 
303 	help = nfct_help(ct);
304 	if (!help)
305 		return NF_ACCEPT;
306 
307 	helper = rcu_dereference(help->helper);
308 	if (!helper)
309 		return NF_ACCEPT;
310 
311 	switch (proto) {
312 	case NFPROTO_IPV4:
313 		protoff = ip_hdrlen(skb);
314 		break;
315 	case NFPROTO_IPV6: {
316 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
317 		__be16 frag_off;
318 		int ofs;
319 
320 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
321 				       &frag_off);
322 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
323 			pr_debug("proto header not found\n");
324 			return NF_ACCEPT;
325 		}
326 		protoff = ofs;
327 		break;
328 	}
329 	default:
330 		WARN_ONCE(1, "helper invoked on non-IP family!");
331 		return NF_DROP;
332 	}
333 
334 	err = helper->help(skb, protoff, ct, ctinfo);
335 	if (err != NF_ACCEPT)
336 		return err;
337 
338 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
339 	 * FTP with NAT) adusting the TCP payload size when mangling IP
340 	 * addresses and/or port numbers in the text-based control connection.
341 	 */
342 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
343 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
344 		return NF_DROP;
345 	return NF_ACCEPT;
346 }
347 
348 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
349  * value if 'skb' is freed.
350  */
351 static int handle_fragments(struct net *net, struct sw_flow_key *key,
352 			    u16 zone, struct sk_buff *skb)
353 {
354 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
355 	int err;
356 
357 	if (key->eth.type == htons(ETH_P_IP)) {
358 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
359 
360 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
361 		err = ip_defrag(net, skb, user);
362 		if (err)
363 			return err;
364 
365 		ovs_cb.mru = IPCB(skb)->frag_max_size;
366 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
367 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
368 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
369 
370 		skb_orphan(skb);
371 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
372 		err = nf_ct_frag6_gather(net, skb, user);
373 		if (err) {
374 			if (err != -EINPROGRESS)
375 				kfree_skb(skb);
376 			return err;
377 		}
378 
379 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
380 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
381 #endif
382 	} else {
383 		kfree_skb(skb);
384 		return -EPFNOSUPPORT;
385 	}
386 
387 	key->ip.frag = OVS_FRAG_TYPE_NONE;
388 	skb_clear_hash(skb);
389 	skb->ignore_df = 1;
390 	*OVS_CB(skb) = ovs_cb;
391 
392 	return 0;
393 }
394 
395 static struct nf_conntrack_expect *
396 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
397 		   u16 proto, const struct sk_buff *skb)
398 {
399 	struct nf_conntrack_tuple tuple;
400 
401 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
402 		return NULL;
403 	return __nf_ct_expect_find(net, zone, &tuple);
404 }
405 
406 /* This replicates logic from nf_conntrack_core.c that is not exported. */
407 static enum ip_conntrack_info
408 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
409 {
410 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
411 
412 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
413 		return IP_CT_ESTABLISHED_REPLY;
414 	/* Once we've had two way comms, always ESTABLISHED. */
415 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
416 		return IP_CT_ESTABLISHED;
417 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
418 		return IP_CT_RELATED;
419 	return IP_CT_NEW;
420 }
421 
422 /* Find an existing connection which this packet belongs to without
423  * re-attributing statistics or modifying the connection state.  This allows an
424  * skb->nfct lost due to an upcall to be recovered during actions execution.
425  *
426  * Must be called with rcu_read_lock.
427  *
428  * On success, populates skb->nfct and skb->nfctinfo, and returns the
429  * connection.  Returns NULL if there is no existing entry.
430  */
431 static struct nf_conn *
432 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
433 		     u8 l3num, struct sk_buff *skb)
434 {
435 	struct nf_conntrack_l3proto *l3proto;
436 	struct nf_conntrack_l4proto *l4proto;
437 	struct nf_conntrack_tuple tuple;
438 	struct nf_conntrack_tuple_hash *h;
439 	struct nf_conn *ct;
440 	unsigned int dataoff;
441 	u8 protonum;
442 
443 	l3proto = __nf_ct_l3proto_find(l3num);
444 	if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
445 				 &protonum) <= 0) {
446 		pr_debug("ovs_ct_find_existing: Can't get protonum\n");
447 		return NULL;
448 	}
449 	l4proto = __nf_ct_l4proto_find(l3num, protonum);
450 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
451 			     protonum, net, &tuple, l3proto, l4proto)) {
452 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
453 		return NULL;
454 	}
455 
456 	/* look for tuple match */
457 	h = nf_conntrack_find_get(net, zone, &tuple);
458 	if (!h)
459 		return NULL;   /* Not found. */
460 
461 	ct = nf_ct_tuplehash_to_ctrack(h);
462 
463 	skb->nfct = &ct->ct_general;
464 	skb->nfctinfo = ovs_ct_get_info(h);
465 	return ct;
466 }
467 
468 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */
469 static bool skb_nfct_cached(struct net *net,
470 			    const struct sw_flow_key *key,
471 			    const struct ovs_conntrack_info *info,
472 			    struct sk_buff *skb)
473 {
474 	enum ip_conntrack_info ctinfo;
475 	struct nf_conn *ct;
476 
477 	ct = nf_ct_get(skb, &ctinfo);
478 	/* If no ct, check if we have evidence that an existing conntrack entry
479 	 * might be found for this skb.  This happens when we lose a skb->nfct
480 	 * due to an upcall.  If the connection was not confirmed, it is not
481 	 * cached and needs to be run through conntrack again.
482 	 */
483 	if (!ct && key->ct.state & OVS_CS_F_TRACKED &&
484 	    !(key->ct.state & OVS_CS_F_INVALID) &&
485 	    key->ct.zone == info->zone.id)
486 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb);
487 	if (!ct)
488 		return false;
489 	if (!net_eq(net, read_pnet(&ct->ct_net)))
490 		return false;
491 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
492 		return false;
493 	if (info->helper) {
494 		struct nf_conn_help *help;
495 
496 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
497 		if (help && rcu_access_pointer(help->helper) != info->helper)
498 			return false;
499 	}
500 
501 	return true;
502 }
503 
504 #ifdef CONFIG_NF_NAT_NEEDED
505 /* Modelled after nf_nat_ipv[46]_fn().
506  * range is only used for new, uninitialized NAT state.
507  * Returns either NF_ACCEPT or NF_DROP.
508  */
509 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
510 			      enum ip_conntrack_info ctinfo,
511 			      const struct nf_nat_range *range,
512 			      enum nf_nat_manip_type maniptype)
513 {
514 	int hooknum, nh_off, err = NF_ACCEPT;
515 
516 	nh_off = skb_network_offset(skb);
517 	skb_pull(skb, nh_off);
518 
519 	/* See HOOK2MANIP(). */
520 	if (maniptype == NF_NAT_MANIP_SRC)
521 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
522 	else
523 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
524 
525 	switch (ctinfo) {
526 	case IP_CT_RELATED:
527 	case IP_CT_RELATED_REPLY:
528 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
529 		    skb->protocol == htons(ETH_P_IP) &&
530 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
531 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
532 							   hooknum))
533 				err = NF_DROP;
534 			goto push;
535 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
536 			   skb->protocol == htons(ETH_P_IPV6)) {
537 			__be16 frag_off;
538 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
539 			int hdrlen = ipv6_skip_exthdr(skb,
540 						      sizeof(struct ipv6hdr),
541 						      &nexthdr, &frag_off);
542 
543 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
544 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
545 								     ctinfo,
546 								     hooknum,
547 								     hdrlen))
548 					err = NF_DROP;
549 				goto push;
550 			}
551 		}
552 		/* Non-ICMP, fall thru to initialize if needed. */
553 	case IP_CT_NEW:
554 		/* Seen it before?  This can happen for loopback, retrans,
555 		 * or local packets.
556 		 */
557 		if (!nf_nat_initialized(ct, maniptype)) {
558 			/* Initialize according to the NAT action. */
559 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
560 				/* Action is set up to establish a new
561 				 * mapping.
562 				 */
563 				? nf_nat_setup_info(ct, range, maniptype)
564 				: nf_nat_alloc_null_binding(ct, hooknum);
565 			if (err != NF_ACCEPT)
566 				goto push;
567 		}
568 		break;
569 
570 	case IP_CT_ESTABLISHED:
571 	case IP_CT_ESTABLISHED_REPLY:
572 		break;
573 
574 	default:
575 		err = NF_DROP;
576 		goto push;
577 	}
578 
579 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
580 push:
581 	skb_push(skb, nh_off);
582 
583 	return err;
584 }
585 
586 static void ovs_nat_update_key(struct sw_flow_key *key,
587 			       const struct sk_buff *skb,
588 			       enum nf_nat_manip_type maniptype)
589 {
590 	if (maniptype == NF_NAT_MANIP_SRC) {
591 		__be16 src;
592 
593 		key->ct.state |= OVS_CS_F_SRC_NAT;
594 		if (key->eth.type == htons(ETH_P_IP))
595 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
596 		else if (key->eth.type == htons(ETH_P_IPV6))
597 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
598 			       sizeof(key->ipv6.addr.src));
599 		else
600 			return;
601 
602 		if (key->ip.proto == IPPROTO_UDP)
603 			src = udp_hdr(skb)->source;
604 		else if (key->ip.proto == IPPROTO_TCP)
605 			src = tcp_hdr(skb)->source;
606 		else if (key->ip.proto == IPPROTO_SCTP)
607 			src = sctp_hdr(skb)->source;
608 		else
609 			return;
610 
611 		key->tp.src = src;
612 	} else {
613 		__be16 dst;
614 
615 		key->ct.state |= OVS_CS_F_DST_NAT;
616 		if (key->eth.type == htons(ETH_P_IP))
617 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
618 		else if (key->eth.type == htons(ETH_P_IPV6))
619 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
620 			       sizeof(key->ipv6.addr.dst));
621 		else
622 			return;
623 
624 		if (key->ip.proto == IPPROTO_UDP)
625 			dst = udp_hdr(skb)->dest;
626 		else if (key->ip.proto == IPPROTO_TCP)
627 			dst = tcp_hdr(skb)->dest;
628 		else if (key->ip.proto == IPPROTO_SCTP)
629 			dst = sctp_hdr(skb)->dest;
630 		else
631 			return;
632 
633 		key->tp.dst = dst;
634 	}
635 }
636 
637 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
638 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
639 		      const struct ovs_conntrack_info *info,
640 		      struct sk_buff *skb, struct nf_conn *ct,
641 		      enum ip_conntrack_info ctinfo)
642 {
643 	enum nf_nat_manip_type maniptype;
644 	int err;
645 
646 	if (nf_ct_is_untracked(ct)) {
647 		/* A NAT action may only be performed on tracked packets. */
648 		return NF_ACCEPT;
649 	}
650 
651 	/* Add NAT extension if not confirmed yet. */
652 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
653 		return NF_ACCEPT;   /* Can't NAT. */
654 
655 	/* Determine NAT type.
656 	 * Check if the NAT type can be deduced from the tracked connection.
657 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
658 	 * when committing.
659 	 */
660 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
661 	    ct->status & IPS_NAT_MASK &&
662 	    (ctinfo != IP_CT_RELATED || info->commit)) {
663 		/* NAT an established or related connection like before. */
664 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
665 			/* This is the REPLY direction for a connection
666 			 * for which NAT was applied in the forward
667 			 * direction.  Do the reverse NAT.
668 			 */
669 			maniptype = ct->status & IPS_SRC_NAT
670 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
671 		else
672 			maniptype = ct->status & IPS_SRC_NAT
673 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
674 	} else if (info->nat & OVS_CT_SRC_NAT) {
675 		maniptype = NF_NAT_MANIP_SRC;
676 	} else if (info->nat & OVS_CT_DST_NAT) {
677 		maniptype = NF_NAT_MANIP_DST;
678 	} else {
679 		return NF_ACCEPT; /* Connection is not NATed. */
680 	}
681 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
682 
683 	/* Mark NAT done if successful and update the flow key. */
684 	if (err == NF_ACCEPT)
685 		ovs_nat_update_key(key, skb, maniptype);
686 
687 	return err;
688 }
689 #else /* !CONFIG_NF_NAT_NEEDED */
690 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
691 		      const struct ovs_conntrack_info *info,
692 		      struct sk_buff *skb, struct nf_conn *ct,
693 		      enum ip_conntrack_info ctinfo)
694 {
695 	return NF_ACCEPT;
696 }
697 #endif
698 
699 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
700  * not done already.  Update key with new CT state after passing the packet
701  * through conntrack.
702  * Note that if the packet is deemed invalid by conntrack, skb->nfct will be
703  * set to NULL and 0 will be returned.
704  */
705 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
706 			   const struct ovs_conntrack_info *info,
707 			   struct sk_buff *skb)
708 {
709 	/* If we are recirculating packets to match on conntrack fields and
710 	 * committing with a separate conntrack action,  then we don't need to
711 	 * actually run the packet through conntrack twice unless it's for a
712 	 * different zone.
713 	 */
714 	bool cached = skb_nfct_cached(net, key, info, skb);
715 	enum ip_conntrack_info ctinfo;
716 	struct nf_conn *ct;
717 
718 	if (!cached) {
719 		struct nf_conn *tmpl = info->ct;
720 		int err;
721 
722 		/* Associate skb with specified zone. */
723 		if (tmpl) {
724 			if (skb->nfct)
725 				nf_conntrack_put(skb->nfct);
726 			nf_conntrack_get(&tmpl->ct_general);
727 			skb->nfct = &tmpl->ct_general;
728 			skb->nfctinfo = IP_CT_NEW;
729 		}
730 
731 		err = nf_conntrack_in(net, info->family,
732 				      NF_INET_PRE_ROUTING, skb);
733 		if (err != NF_ACCEPT)
734 			return -ENOENT;
735 
736 		/* Clear CT state NAT flags to mark that we have not yet done
737 		 * NAT after the nf_conntrack_in() call.  We can actually clear
738 		 * the whole state, as it will be re-initialized below.
739 		 */
740 		key->ct.state = 0;
741 
742 		/* Update the key, but keep the NAT flags. */
743 		ovs_ct_update_key(skb, info, key, true, true);
744 	}
745 
746 	ct = nf_ct_get(skb, &ctinfo);
747 	if (ct) {
748 		/* Packets starting a new connection must be NATted before the
749 		 * helper, so that the helper knows about the NAT.  We enforce
750 		 * this by delaying both NAT and helper calls for unconfirmed
751 		 * connections until the committing CT action.  For later
752 		 * packets NAT and Helper may be called in either order.
753 		 *
754 		 * NAT will be done only if the CT action has NAT, and only
755 		 * once per packet (per zone), as guarded by the NAT bits in
756 		 * the key->ct.state.
757 		 */
758 		if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) &&
759 		    (nf_ct_is_confirmed(ct) || info->commit) &&
760 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
761 			return -EINVAL;
762 		}
763 
764 		/* Userspace may decide to perform a ct lookup without a helper
765 		 * specified followed by a (recirculate and) commit with one.
766 		 * Therefore, for unconfirmed connections which we will commit,
767 		 * we need to attach the helper here.
768 		 */
769 		if (!nf_ct_is_confirmed(ct) && info->commit &&
770 		    info->helper && !nfct_help(ct)) {
771 			int err = __nf_ct_try_assign_helper(ct, info->ct,
772 							    GFP_ATOMIC);
773 			if (err)
774 				return err;
775 		}
776 
777 		/* Call the helper only if:
778 		 * - nf_conntrack_in() was executed above ("!cached") for a
779 		 *   confirmed connection, or
780 		 * - When committing an unconfirmed connection.
781 		 */
782 		if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
783 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
784 			return -EINVAL;
785 		}
786 	}
787 
788 	return 0;
789 }
790 
791 /* Lookup connection and read fields into key. */
792 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
793 			 const struct ovs_conntrack_info *info,
794 			 struct sk_buff *skb)
795 {
796 	struct nf_conntrack_expect *exp;
797 
798 	/* If we pass an expected packet through nf_conntrack_in() the
799 	 * expectation is typically removed, but the packet could still be
800 	 * lost in upcall processing.  To prevent this from happening we
801 	 * perform an explicit expectation lookup.  Expected connections are
802 	 * always new, and will be passed through conntrack only when they are
803 	 * committed, as it is OK to remove the expectation at that time.
804 	 */
805 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
806 	if (exp) {
807 		u8 state;
808 
809 		/* NOTE: New connections are NATted and Helped only when
810 		 * committed, so we are not calling into NAT here.
811 		 */
812 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
813 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
814 	} else {
815 		struct nf_conn *ct;
816 		int err;
817 
818 		err = __ovs_ct_lookup(net, key, info, skb);
819 		if (err)
820 			return err;
821 
822 		ct = (struct nf_conn *)skb->nfct;
823 		if (ct)
824 			nf_ct_deliver_cached_events(ct);
825 	}
826 
827 	return 0;
828 }
829 
830 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
831 {
832 	size_t i;
833 
834 	for (i = 0; i < sizeof(*labels); i++)
835 		if (labels->ct_labels[i])
836 			return true;
837 
838 	return false;
839 }
840 
841 /* Lookup connection and confirm if unconfirmed. */
842 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
843 			 const struct ovs_conntrack_info *info,
844 			 struct sk_buff *skb)
845 {
846 	int err;
847 
848 	err = __ovs_ct_lookup(net, key, info, skb);
849 	if (err)
850 		return err;
851 
852 	/* Apply changes before confirming the connection so that the initial
853 	 * conntrack NEW netlink event carries the values given in the CT
854 	 * action.
855 	 */
856 	if (info->mark.mask) {
857 		err = ovs_ct_set_mark(skb, key, info->mark.value,
858 				      info->mark.mask);
859 		if (err)
860 			return err;
861 	}
862 	if (labels_nonzero(&info->labels.mask)) {
863 		err = ovs_ct_set_labels(skb, key, &info->labels.value,
864 					&info->labels.mask);
865 		if (err)
866 			return err;
867 	}
868 	/* This will take care of sending queued events even if the connection
869 	 * is already confirmed.
870 	 */
871 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
872 		return -EINVAL;
873 
874 	return 0;
875 }
876 
877 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
878  * value if 'skb' is freed.
879  */
880 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
881 		   struct sw_flow_key *key,
882 		   const struct ovs_conntrack_info *info)
883 {
884 	int nh_ofs;
885 	int err;
886 
887 	/* The conntrack module expects to be working at L3. */
888 	nh_ofs = skb_network_offset(skb);
889 	skb_pull(skb, nh_ofs);
890 
891 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
892 		err = handle_fragments(net, key, info->zone.id, skb);
893 		if (err)
894 			return err;
895 	}
896 
897 	if (info->commit)
898 		err = ovs_ct_commit(net, key, info, skb);
899 	else
900 		err = ovs_ct_lookup(net, key, info, skb);
901 
902 	skb_push(skb, nh_ofs);
903 	if (err)
904 		kfree_skb(skb);
905 	return err;
906 }
907 
908 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
909 			     const struct sw_flow_key *key, bool log)
910 {
911 	struct nf_conntrack_helper *helper;
912 	struct nf_conn_help *help;
913 
914 	helper = nf_conntrack_helper_try_module_get(name, info->family,
915 						    key->ip.proto);
916 	if (!helper) {
917 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
918 		return -EINVAL;
919 	}
920 
921 	help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
922 	if (!help) {
923 		module_put(helper->me);
924 		return -ENOMEM;
925 	}
926 
927 	rcu_assign_pointer(help->helper, helper);
928 	info->helper = helper;
929 	return 0;
930 }
931 
932 #ifdef CONFIG_NF_NAT_NEEDED
933 static int parse_nat(const struct nlattr *attr,
934 		     struct ovs_conntrack_info *info, bool log)
935 {
936 	struct nlattr *a;
937 	int rem;
938 	bool have_ip_max = false;
939 	bool have_proto_max = false;
940 	bool ip_vers = (info->family == NFPROTO_IPV6);
941 
942 	nla_for_each_nested(a, attr, rem) {
943 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
944 			[OVS_NAT_ATTR_SRC] = {0, 0},
945 			[OVS_NAT_ATTR_DST] = {0, 0},
946 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
947 						 sizeof(struct in6_addr)},
948 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
949 						 sizeof(struct in6_addr)},
950 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
951 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
952 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
953 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
954 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
955 		};
956 		int type = nla_type(a);
957 
958 		if (type > OVS_NAT_ATTR_MAX) {
959 			OVS_NLERR(log,
960 				  "Unknown NAT attribute (type=%d, max=%d).\n",
961 				  type, OVS_NAT_ATTR_MAX);
962 			return -EINVAL;
963 		}
964 
965 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
966 			OVS_NLERR(log,
967 				  "NAT attribute type %d has unexpected length (%d != %d).\n",
968 				  type, nla_len(a),
969 				  ovs_nat_attr_lens[type][ip_vers]);
970 			return -EINVAL;
971 		}
972 
973 		switch (type) {
974 		case OVS_NAT_ATTR_SRC:
975 		case OVS_NAT_ATTR_DST:
976 			if (info->nat) {
977 				OVS_NLERR(log,
978 					  "Only one type of NAT may be specified.\n"
979 					  );
980 				return -ERANGE;
981 			}
982 			info->nat |= OVS_CT_NAT;
983 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
984 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
985 			break;
986 
987 		case OVS_NAT_ATTR_IP_MIN:
988 			nla_memcpy(&info->range.min_addr, a,
989 				   sizeof(info->range.min_addr));
990 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
991 			break;
992 
993 		case OVS_NAT_ATTR_IP_MAX:
994 			have_ip_max = true;
995 			nla_memcpy(&info->range.max_addr, a,
996 				   sizeof(info->range.max_addr));
997 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
998 			break;
999 
1000 		case OVS_NAT_ATTR_PROTO_MIN:
1001 			info->range.min_proto.all = htons(nla_get_u16(a));
1002 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1003 			break;
1004 
1005 		case OVS_NAT_ATTR_PROTO_MAX:
1006 			have_proto_max = true;
1007 			info->range.max_proto.all = htons(nla_get_u16(a));
1008 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1009 			break;
1010 
1011 		case OVS_NAT_ATTR_PERSISTENT:
1012 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1013 			break;
1014 
1015 		case OVS_NAT_ATTR_PROTO_HASH:
1016 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1017 			break;
1018 
1019 		case OVS_NAT_ATTR_PROTO_RANDOM:
1020 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1021 			break;
1022 
1023 		default:
1024 			OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1025 			return -EINVAL;
1026 		}
1027 	}
1028 
1029 	if (rem > 0) {
1030 		OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1031 		return -EINVAL;
1032 	}
1033 	if (!info->nat) {
1034 		/* Do not allow flags if no type is given. */
1035 		if (info->range.flags) {
1036 			OVS_NLERR(log,
1037 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1038 				  );
1039 			return -EINVAL;
1040 		}
1041 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1042 	} else if (!info->commit) {
1043 		OVS_NLERR(log,
1044 			  "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1045 			  );
1046 		return -EINVAL;
1047 	}
1048 	/* Allow missing IP_MAX. */
1049 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1050 		memcpy(&info->range.max_addr, &info->range.min_addr,
1051 		       sizeof(info->range.max_addr));
1052 	}
1053 	/* Allow missing PROTO_MAX. */
1054 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1055 	    !have_proto_max) {
1056 		info->range.max_proto.all = info->range.min_proto.all;
1057 	}
1058 	return 0;
1059 }
1060 #endif
1061 
1062 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1063 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1064 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1065 				    .maxlen = sizeof(u16) },
1066 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1067 				    .maxlen = sizeof(struct md_mark) },
1068 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1069 				    .maxlen = sizeof(struct md_labels) },
1070 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1071 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1072 #ifdef CONFIG_NF_NAT_NEEDED
1073 	/* NAT length is checked when parsing the nested attributes. */
1074 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1075 #endif
1076 };
1077 
1078 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1079 		    const char **helper, bool log)
1080 {
1081 	struct nlattr *a;
1082 	int rem;
1083 
1084 	nla_for_each_nested(a, attr, rem) {
1085 		int type = nla_type(a);
1086 		int maxlen = ovs_ct_attr_lens[type].maxlen;
1087 		int minlen = ovs_ct_attr_lens[type].minlen;
1088 
1089 		if (type > OVS_CT_ATTR_MAX) {
1090 			OVS_NLERR(log,
1091 				  "Unknown conntrack attr (type=%d, max=%d)",
1092 				  type, OVS_CT_ATTR_MAX);
1093 			return -EINVAL;
1094 		}
1095 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1096 			OVS_NLERR(log,
1097 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1098 				  type, nla_len(a), maxlen);
1099 			return -EINVAL;
1100 		}
1101 
1102 		switch (type) {
1103 		case OVS_CT_ATTR_COMMIT:
1104 			info->commit = true;
1105 			break;
1106 #ifdef CONFIG_NF_CONNTRACK_ZONES
1107 		case OVS_CT_ATTR_ZONE:
1108 			info->zone.id = nla_get_u16(a);
1109 			break;
1110 #endif
1111 #ifdef CONFIG_NF_CONNTRACK_MARK
1112 		case OVS_CT_ATTR_MARK: {
1113 			struct md_mark *mark = nla_data(a);
1114 
1115 			if (!mark->mask) {
1116 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1117 				return -EINVAL;
1118 			}
1119 			info->mark = *mark;
1120 			break;
1121 		}
1122 #endif
1123 #ifdef CONFIG_NF_CONNTRACK_LABELS
1124 		case OVS_CT_ATTR_LABELS: {
1125 			struct md_labels *labels = nla_data(a);
1126 
1127 			if (!labels_nonzero(&labels->mask)) {
1128 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1129 				return -EINVAL;
1130 			}
1131 			info->labels = *labels;
1132 			break;
1133 		}
1134 #endif
1135 		case OVS_CT_ATTR_HELPER:
1136 			*helper = nla_data(a);
1137 			if (!memchr(*helper, '\0', nla_len(a))) {
1138 				OVS_NLERR(log, "Invalid conntrack helper");
1139 				return -EINVAL;
1140 			}
1141 			break;
1142 #ifdef CONFIG_NF_NAT_NEEDED
1143 		case OVS_CT_ATTR_NAT: {
1144 			int err = parse_nat(a, info, log);
1145 
1146 			if (err)
1147 				return err;
1148 			break;
1149 		}
1150 #endif
1151 		default:
1152 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1153 				  type);
1154 			return -EINVAL;
1155 		}
1156 	}
1157 
1158 #ifdef CONFIG_NF_CONNTRACK_MARK
1159 	if (!info->commit && info->mark.mask) {
1160 		OVS_NLERR(log,
1161 			  "Setting conntrack mark requires 'commit' flag.");
1162 		return -EINVAL;
1163 	}
1164 #endif
1165 #ifdef CONFIG_NF_CONNTRACK_LABELS
1166 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1167 		OVS_NLERR(log,
1168 			  "Setting conntrack labels requires 'commit' flag.");
1169 		return -EINVAL;
1170 	}
1171 #endif
1172 	if (rem > 0) {
1173 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1174 		return -EINVAL;
1175 	}
1176 
1177 	return 0;
1178 }
1179 
1180 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1181 {
1182 	if (attr == OVS_KEY_ATTR_CT_STATE)
1183 		return true;
1184 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1185 	    attr == OVS_KEY_ATTR_CT_ZONE)
1186 		return true;
1187 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1188 	    attr == OVS_KEY_ATTR_CT_MARK)
1189 		return true;
1190 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1191 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1192 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1193 
1194 		return ovs_net->xt_label;
1195 	}
1196 
1197 	return false;
1198 }
1199 
1200 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1201 		       const struct sw_flow_key *key,
1202 		       struct sw_flow_actions **sfa,  bool log)
1203 {
1204 	struct ovs_conntrack_info ct_info;
1205 	const char *helper = NULL;
1206 	u16 family;
1207 	int err;
1208 
1209 	family = key_to_nfproto(key);
1210 	if (family == NFPROTO_UNSPEC) {
1211 		OVS_NLERR(log, "ct family unspecified");
1212 		return -EINVAL;
1213 	}
1214 
1215 	memset(&ct_info, 0, sizeof(ct_info));
1216 	ct_info.family = family;
1217 
1218 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1219 			NF_CT_DEFAULT_ZONE_DIR, 0);
1220 
1221 	err = parse_ct(attr, &ct_info, &helper, log);
1222 	if (err)
1223 		return err;
1224 
1225 	/* Set up template for tracking connections in specific zones. */
1226 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1227 	if (!ct_info.ct) {
1228 		OVS_NLERR(log, "Failed to allocate conntrack template");
1229 		return -ENOMEM;
1230 	}
1231 
1232 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1233 	nf_conntrack_get(&ct_info.ct->ct_general);
1234 
1235 	if (helper) {
1236 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1237 		if (err)
1238 			goto err_free_ct;
1239 	}
1240 
1241 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1242 				 sizeof(ct_info), log);
1243 	if (err)
1244 		goto err_free_ct;
1245 
1246 	return 0;
1247 err_free_ct:
1248 	__ovs_ct_free_action(&ct_info);
1249 	return err;
1250 }
1251 
1252 #ifdef CONFIG_NF_NAT_NEEDED
1253 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1254 			       struct sk_buff *skb)
1255 {
1256 	struct nlattr *start;
1257 
1258 	start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1259 	if (!start)
1260 		return false;
1261 
1262 	if (info->nat & OVS_CT_SRC_NAT) {
1263 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1264 			return false;
1265 	} else if (info->nat & OVS_CT_DST_NAT) {
1266 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1267 			return false;
1268 	} else {
1269 		goto out;
1270 	}
1271 
1272 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1273 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1274 		    info->family == NFPROTO_IPV4) {
1275 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1276 					    info->range.min_addr.ip) ||
1277 			    (info->range.max_addr.ip
1278 			     != info->range.min_addr.ip &&
1279 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1280 					      info->range.max_addr.ip))))
1281 				return false;
1282 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1283 			   info->family == NFPROTO_IPV6) {
1284 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1285 					     &info->range.min_addr.in6) ||
1286 			    (memcmp(&info->range.max_addr.in6,
1287 				    &info->range.min_addr.in6,
1288 				    sizeof(info->range.max_addr.in6)) &&
1289 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1290 					       &info->range.max_addr.in6))))
1291 				return false;
1292 		} else {
1293 			return false;
1294 		}
1295 	}
1296 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1297 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1298 			 ntohs(info->range.min_proto.all)) ||
1299 	     (info->range.max_proto.all != info->range.min_proto.all &&
1300 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1301 			  ntohs(info->range.max_proto.all)))))
1302 		return false;
1303 
1304 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1305 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1306 		return false;
1307 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1308 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1309 		return false;
1310 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1311 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1312 		return false;
1313 out:
1314 	nla_nest_end(skb, start);
1315 
1316 	return true;
1317 }
1318 #endif
1319 
1320 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1321 			  struct sk_buff *skb)
1322 {
1323 	struct nlattr *start;
1324 
1325 	start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1326 	if (!start)
1327 		return -EMSGSIZE;
1328 
1329 	if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT))
1330 		return -EMSGSIZE;
1331 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1332 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1333 		return -EMSGSIZE;
1334 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1335 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1336 		    &ct_info->mark))
1337 		return -EMSGSIZE;
1338 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1339 	    labels_nonzero(&ct_info->labels.mask) &&
1340 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1341 		    &ct_info->labels))
1342 		return -EMSGSIZE;
1343 	if (ct_info->helper) {
1344 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1345 				   ct_info->helper->name))
1346 			return -EMSGSIZE;
1347 	}
1348 #ifdef CONFIG_NF_NAT_NEEDED
1349 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1350 		return -EMSGSIZE;
1351 #endif
1352 	nla_nest_end(skb, start);
1353 
1354 	return 0;
1355 }
1356 
1357 void ovs_ct_free_action(const struct nlattr *a)
1358 {
1359 	struct ovs_conntrack_info *ct_info = nla_data(a);
1360 
1361 	__ovs_ct_free_action(ct_info);
1362 }
1363 
1364 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1365 {
1366 	if (ct_info->helper)
1367 		module_put(ct_info->helper->me);
1368 	if (ct_info->ct)
1369 		nf_ct_tmpl_free(ct_info->ct);
1370 }
1371 
1372 void ovs_ct_init(struct net *net)
1373 {
1374 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1375 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1376 
1377 	if (nf_connlabels_get(net, n_bits - 1)) {
1378 		ovs_net->xt_label = false;
1379 		OVS_NLERR(true, "Failed to set connlabel length");
1380 	} else {
1381 		ovs_net->xt_label = true;
1382 	}
1383 }
1384 
1385 void ovs_ct_exit(struct net *net)
1386 {
1387 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1388 
1389 	if (ovs_net->xt_label)
1390 		nf_connlabels_put(net);
1391 }
1392