xref: /openbmc/linux/net/openvswitch/conntrack.c (revision 83f865d7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 Nicira, Inc.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/openvswitch.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/sctp.h>
11 #include <linux/static_key.h>
12 #include <net/ip.h>
13 #include <net/genetlink.h>
14 #include <net/netfilter/nf_conntrack_core.h>
15 #include <net/netfilter/nf_conntrack_count.h>
16 #include <net/netfilter/nf_conntrack_helper.h>
17 #include <net/netfilter/nf_conntrack_labels.h>
18 #include <net/netfilter/nf_conntrack_seqadj.h>
19 #include <net/netfilter/nf_conntrack_timeout.h>
20 #include <net/netfilter/nf_conntrack_zones.h>
21 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
22 #include <net/ipv6_frag.h>
23 
24 #if IS_ENABLED(CONFIG_NF_NAT)
25 #include <net/netfilter/nf_nat.h>
26 #endif
27 
28 #include "datapath.h"
29 #include "conntrack.h"
30 #include "flow.h"
31 #include "flow_netlink.h"
32 
33 struct ovs_ct_len_tbl {
34 	int maxlen;
35 	int minlen;
36 };
37 
38 /* Metadata mark for masked write to conntrack mark */
39 struct md_mark {
40 	u32 value;
41 	u32 mask;
42 };
43 
44 /* Metadata label for masked write to conntrack label. */
45 struct md_labels {
46 	struct ovs_key_ct_labels value;
47 	struct ovs_key_ct_labels mask;
48 };
49 
50 enum ovs_ct_nat {
51 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
52 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
53 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
54 };
55 
56 /* Conntrack action context for execution. */
57 struct ovs_conntrack_info {
58 	struct nf_conntrack_helper *helper;
59 	struct nf_conntrack_zone zone;
60 	struct nf_conn *ct;
61 	u8 commit : 1;
62 	u8 nat : 3;                 /* enum ovs_ct_nat */
63 	u8 force : 1;
64 	u8 have_eventmask : 1;
65 	u16 family;
66 	u32 eventmask;              /* Mask of 1 << IPCT_*. */
67 	struct md_mark mark;
68 	struct md_labels labels;
69 	char timeout[CTNL_TIMEOUT_NAME_MAX];
70 	struct nf_ct_timeout *nf_ct_timeout;
71 #if IS_ENABLED(CONFIG_NF_NAT)
72 	struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
73 #endif
74 };
75 
76 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
77 #define OVS_CT_LIMIT_UNLIMITED	0
78 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
79 #define CT_LIMIT_HASH_BUCKETS 512
80 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
81 
82 struct ovs_ct_limit {
83 	/* Elements in ovs_ct_limit_info->limits hash table */
84 	struct hlist_node hlist_node;
85 	struct rcu_head rcu;
86 	u16 zone;
87 	u32 limit;
88 };
89 
90 struct ovs_ct_limit_info {
91 	u32 default_limit;
92 	struct hlist_head *limits;
93 	struct nf_conncount_data *data;
94 };
95 
96 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
97 	[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
98 };
99 #endif
100 
101 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
102 
103 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
104 
105 static u16 key_to_nfproto(const struct sw_flow_key *key)
106 {
107 	switch (ntohs(key->eth.type)) {
108 	case ETH_P_IP:
109 		return NFPROTO_IPV4;
110 	case ETH_P_IPV6:
111 		return NFPROTO_IPV6;
112 	default:
113 		return NFPROTO_UNSPEC;
114 	}
115 }
116 
117 /* Map SKB connection state into the values used by flow definition. */
118 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
119 {
120 	u8 ct_state = OVS_CS_F_TRACKED;
121 
122 	switch (ctinfo) {
123 	case IP_CT_ESTABLISHED_REPLY:
124 	case IP_CT_RELATED_REPLY:
125 		ct_state |= OVS_CS_F_REPLY_DIR;
126 		break;
127 	default:
128 		break;
129 	}
130 
131 	switch (ctinfo) {
132 	case IP_CT_ESTABLISHED:
133 	case IP_CT_ESTABLISHED_REPLY:
134 		ct_state |= OVS_CS_F_ESTABLISHED;
135 		break;
136 	case IP_CT_RELATED:
137 	case IP_CT_RELATED_REPLY:
138 		ct_state |= OVS_CS_F_RELATED;
139 		break;
140 	case IP_CT_NEW:
141 		ct_state |= OVS_CS_F_NEW;
142 		break;
143 	default:
144 		break;
145 	}
146 
147 	return ct_state;
148 }
149 
150 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
151 {
152 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
153 	return ct ? ct->mark : 0;
154 #else
155 	return 0;
156 #endif
157 }
158 
159 /* Guard against conntrack labels max size shrinking below 128 bits. */
160 #if NF_CT_LABELS_MAX_SIZE < 16
161 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
162 #endif
163 
164 static void ovs_ct_get_labels(const struct nf_conn *ct,
165 			      struct ovs_key_ct_labels *labels)
166 {
167 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
168 
169 	if (cl)
170 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
171 	else
172 		memset(labels, 0, OVS_CT_LABELS_LEN);
173 }
174 
175 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
176 					const struct nf_conntrack_tuple *orig,
177 					u8 icmp_proto)
178 {
179 	key->ct_orig_proto = orig->dst.protonum;
180 	if (orig->dst.protonum == icmp_proto) {
181 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
182 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
183 	} else {
184 		key->ct.orig_tp.src = orig->src.u.all;
185 		key->ct.orig_tp.dst = orig->dst.u.all;
186 	}
187 }
188 
189 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
190 				const struct nf_conntrack_zone *zone,
191 				const struct nf_conn *ct)
192 {
193 	key->ct_state = state;
194 	key->ct_zone = zone->id;
195 	key->ct.mark = ovs_ct_get_mark(ct);
196 	ovs_ct_get_labels(ct, &key->ct.labels);
197 
198 	if (ct) {
199 		const struct nf_conntrack_tuple *orig;
200 
201 		/* Use the master if we have one. */
202 		if (ct->master)
203 			ct = ct->master;
204 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
205 
206 		/* IP version must match with the master connection. */
207 		if (key->eth.type == htons(ETH_P_IP) &&
208 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
209 			key->ipv4.ct_orig.src = orig->src.u3.ip;
210 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
211 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
212 			return;
213 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
214 			   !sw_flow_key_is_nd(key) &&
215 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
216 			key->ipv6.ct_orig.src = orig->src.u3.in6;
217 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
218 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
219 			return;
220 		}
221 	}
222 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
223 	 * original direction key fields.
224 	 */
225 	key->ct_orig_proto = 0;
226 }
227 
228 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
229  * previously sent the packet to conntrack via the ct action.  If
230  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
231  * initialized from the connection status.
232  */
233 static void ovs_ct_update_key(const struct sk_buff *skb,
234 			      const struct ovs_conntrack_info *info,
235 			      struct sw_flow_key *key, bool post_ct,
236 			      bool keep_nat_flags)
237 {
238 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
239 	enum ip_conntrack_info ctinfo;
240 	struct nf_conn *ct;
241 	u8 state = 0;
242 
243 	ct = nf_ct_get(skb, &ctinfo);
244 	if (ct) {
245 		state = ovs_ct_get_state(ctinfo);
246 		/* All unconfirmed entries are NEW connections. */
247 		if (!nf_ct_is_confirmed(ct))
248 			state |= OVS_CS_F_NEW;
249 		/* OVS persists the related flag for the duration of the
250 		 * connection.
251 		 */
252 		if (ct->master)
253 			state |= OVS_CS_F_RELATED;
254 		if (keep_nat_flags) {
255 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
256 		} else {
257 			if (ct->status & IPS_SRC_NAT)
258 				state |= OVS_CS_F_SRC_NAT;
259 			if (ct->status & IPS_DST_NAT)
260 				state |= OVS_CS_F_DST_NAT;
261 		}
262 		zone = nf_ct_zone(ct);
263 	} else if (post_ct) {
264 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
265 		if (info)
266 			zone = &info->zone;
267 	}
268 	__ovs_ct_update_key(key, state, zone, ct);
269 }
270 
271 /* This is called to initialize CT key fields possibly coming in from the local
272  * stack.
273  */
274 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
275 {
276 	ovs_ct_update_key(skb, NULL, key, false, false);
277 }
278 
279 int ovs_ct_put_key(const struct sw_flow_key *swkey,
280 		   const struct sw_flow_key *output, struct sk_buff *skb)
281 {
282 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
283 		return -EMSGSIZE;
284 
285 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
286 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
287 		return -EMSGSIZE;
288 
289 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
290 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
291 		return -EMSGSIZE;
292 
293 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
294 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
295 		    &output->ct.labels))
296 		return -EMSGSIZE;
297 
298 	if (swkey->ct_orig_proto) {
299 		if (swkey->eth.type == htons(ETH_P_IP)) {
300 			struct ovs_key_ct_tuple_ipv4 orig;
301 
302 			memset(&orig, 0, sizeof(orig));
303 			orig.ipv4_src = output->ipv4.ct_orig.src;
304 			orig.ipv4_dst = output->ipv4.ct_orig.dst;
305 			orig.src_port = output->ct.orig_tp.src;
306 			orig.dst_port = output->ct.orig_tp.dst;
307 			orig.ipv4_proto = output->ct_orig_proto;
308 
309 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
310 				    sizeof(orig), &orig))
311 				return -EMSGSIZE;
312 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
313 			struct ovs_key_ct_tuple_ipv6 orig;
314 
315 			memset(&orig, 0, sizeof(orig));
316 			memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
317 			       sizeof(orig.ipv6_src));
318 			memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
319 			       sizeof(orig.ipv6_dst));
320 			orig.src_port = output->ct.orig_tp.src;
321 			orig.dst_port = output->ct.orig_tp.dst;
322 			orig.ipv6_proto = output->ct_orig_proto;
323 
324 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
325 				    sizeof(orig), &orig))
326 				return -EMSGSIZE;
327 		}
328 	}
329 
330 	return 0;
331 }
332 
333 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
334 			   u32 ct_mark, u32 mask)
335 {
336 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
337 	u32 new_mark;
338 
339 	new_mark = ct_mark | (ct->mark & ~(mask));
340 	if (ct->mark != new_mark) {
341 		ct->mark = new_mark;
342 		if (nf_ct_is_confirmed(ct))
343 			nf_conntrack_event_cache(IPCT_MARK, ct);
344 		key->ct.mark = new_mark;
345 	}
346 
347 	return 0;
348 #else
349 	return -ENOTSUPP;
350 #endif
351 }
352 
353 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
354 {
355 	struct nf_conn_labels *cl;
356 
357 	cl = nf_ct_labels_find(ct);
358 	if (!cl) {
359 		nf_ct_labels_ext_add(ct);
360 		cl = nf_ct_labels_find(ct);
361 	}
362 
363 	return cl;
364 }
365 
366 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
367  * since the new connection is not yet confirmed, and thus no-one else has
368  * access to it's labels, we simply write them over.
369  */
370 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
371 			      const struct ovs_key_ct_labels *labels,
372 			      const struct ovs_key_ct_labels *mask)
373 {
374 	struct nf_conn_labels *cl, *master_cl;
375 	bool have_mask = labels_nonzero(mask);
376 
377 	/* Inherit master's labels to the related connection? */
378 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
379 
380 	if (!master_cl && !have_mask)
381 		return 0;   /* Nothing to do. */
382 
383 	cl = ovs_ct_get_conn_labels(ct);
384 	if (!cl)
385 		return -ENOSPC;
386 
387 	/* Inherit the master's labels, if any. */
388 	if (master_cl)
389 		*cl = *master_cl;
390 
391 	if (have_mask) {
392 		u32 *dst = (u32 *)cl->bits;
393 		int i;
394 
395 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
396 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
397 				(labels->ct_labels_32[i]
398 				 & mask->ct_labels_32[i]);
399 	}
400 
401 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
402 	 * IPCT_LABEL bit is set in the event cache.
403 	 */
404 	nf_conntrack_event_cache(IPCT_LABEL, ct);
405 
406 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
407 
408 	return 0;
409 }
410 
411 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
412 			     const struct ovs_key_ct_labels *labels,
413 			     const struct ovs_key_ct_labels *mask)
414 {
415 	struct nf_conn_labels *cl;
416 	int err;
417 
418 	cl = ovs_ct_get_conn_labels(ct);
419 	if (!cl)
420 		return -ENOSPC;
421 
422 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
423 				    mask->ct_labels_32,
424 				    OVS_CT_LABELS_LEN_32);
425 	if (err)
426 		return err;
427 
428 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
429 
430 	return 0;
431 }
432 
433 /* 'skb' should already be pulled to nh_ofs. */
434 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
435 {
436 	const struct nf_conntrack_helper *helper;
437 	const struct nf_conn_help *help;
438 	enum ip_conntrack_info ctinfo;
439 	unsigned int protoff;
440 	struct nf_conn *ct;
441 	int err;
442 
443 	ct = nf_ct_get(skb, &ctinfo);
444 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
445 		return NF_ACCEPT;
446 
447 	help = nfct_help(ct);
448 	if (!help)
449 		return NF_ACCEPT;
450 
451 	helper = rcu_dereference(help->helper);
452 	if (!helper)
453 		return NF_ACCEPT;
454 
455 	switch (proto) {
456 	case NFPROTO_IPV4:
457 		protoff = ip_hdrlen(skb);
458 		break;
459 	case NFPROTO_IPV6: {
460 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
461 		__be16 frag_off;
462 		int ofs;
463 
464 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
465 				       &frag_off);
466 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
467 			pr_debug("proto header not found\n");
468 			return NF_ACCEPT;
469 		}
470 		protoff = ofs;
471 		break;
472 	}
473 	default:
474 		WARN_ONCE(1, "helper invoked on non-IP family!");
475 		return NF_DROP;
476 	}
477 
478 	err = helper->help(skb, protoff, ct, ctinfo);
479 	if (err != NF_ACCEPT)
480 		return err;
481 
482 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
483 	 * FTP with NAT) adusting the TCP payload size when mangling IP
484 	 * addresses and/or port numbers in the text-based control connection.
485 	 */
486 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
487 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
488 		return NF_DROP;
489 	return NF_ACCEPT;
490 }
491 
492 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
493  * value if 'skb' is freed.
494  */
495 static int handle_fragments(struct net *net, struct sw_flow_key *key,
496 			    u16 zone, struct sk_buff *skb)
497 {
498 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
499 	int err;
500 
501 	if (key->eth.type == htons(ETH_P_IP)) {
502 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
503 
504 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
505 		err = ip_defrag(net, skb, user);
506 		if (err)
507 			return err;
508 
509 		ovs_cb.mru = IPCB(skb)->frag_max_size;
510 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
511 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
512 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
513 
514 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
515 		err = nf_ct_frag6_gather(net, skb, user);
516 		if (err) {
517 			if (err != -EINPROGRESS)
518 				kfree_skb(skb);
519 			return err;
520 		}
521 
522 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
523 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
524 #endif
525 	} else {
526 		kfree_skb(skb);
527 		return -EPFNOSUPPORT;
528 	}
529 
530 	/* The key extracted from the fragment that completed this datagram
531 	 * likely didn't have an L4 header, so regenerate it.
532 	 */
533 	ovs_flow_key_update_l3l4(skb, key);
534 
535 	key->ip.frag = OVS_FRAG_TYPE_NONE;
536 	skb_clear_hash(skb);
537 	skb->ignore_df = 1;
538 	*OVS_CB(skb) = ovs_cb;
539 
540 	return 0;
541 }
542 
543 static struct nf_conntrack_expect *
544 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
545 		   u16 proto, const struct sk_buff *skb)
546 {
547 	struct nf_conntrack_tuple tuple;
548 	struct nf_conntrack_expect *exp;
549 
550 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
551 		return NULL;
552 
553 	exp = __nf_ct_expect_find(net, zone, &tuple);
554 	if (exp) {
555 		struct nf_conntrack_tuple_hash *h;
556 
557 		/* Delete existing conntrack entry, if it clashes with the
558 		 * expectation.  This can happen since conntrack ALGs do not
559 		 * check for clashes between (new) expectations and existing
560 		 * conntrack entries.  nf_conntrack_in() will check the
561 		 * expectations only if a conntrack entry can not be found,
562 		 * which can lead to OVS finding the expectation (here) in the
563 		 * init direction, but which will not be removed by the
564 		 * nf_conntrack_in() call, if a matching conntrack entry is
565 		 * found instead.  In this case all init direction packets
566 		 * would be reported as new related packets, while reply
567 		 * direction packets would be reported as un-related
568 		 * established packets.
569 		 */
570 		h = nf_conntrack_find_get(net, zone, &tuple);
571 		if (h) {
572 			struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
573 
574 			nf_ct_delete(ct, 0, 0);
575 			nf_conntrack_put(&ct->ct_general);
576 		}
577 	}
578 
579 	return exp;
580 }
581 
582 /* This replicates logic from nf_conntrack_core.c that is not exported. */
583 static enum ip_conntrack_info
584 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
585 {
586 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
587 
588 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
589 		return IP_CT_ESTABLISHED_REPLY;
590 	/* Once we've had two way comms, always ESTABLISHED. */
591 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
592 		return IP_CT_ESTABLISHED;
593 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
594 		return IP_CT_RELATED;
595 	return IP_CT_NEW;
596 }
597 
598 /* Find an existing connection which this packet belongs to without
599  * re-attributing statistics or modifying the connection state.  This allows an
600  * skb->_nfct lost due to an upcall to be recovered during actions execution.
601  *
602  * Must be called with rcu_read_lock.
603  *
604  * On success, populates skb->_nfct and returns the connection.  Returns NULL
605  * if there is no existing entry.
606  */
607 static struct nf_conn *
608 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
609 		     u8 l3num, struct sk_buff *skb, bool natted)
610 {
611 	struct nf_conntrack_tuple tuple;
612 	struct nf_conntrack_tuple_hash *h;
613 	struct nf_conn *ct;
614 
615 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
616 			       net, &tuple)) {
617 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
618 		return NULL;
619 	}
620 
621 	/* Must invert the tuple if skb has been transformed by NAT. */
622 	if (natted) {
623 		struct nf_conntrack_tuple inverse;
624 
625 		if (!nf_ct_invert_tuple(&inverse, &tuple)) {
626 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
627 			return NULL;
628 		}
629 		tuple = inverse;
630 	}
631 
632 	/* look for tuple match */
633 	h = nf_conntrack_find_get(net, zone, &tuple);
634 	if (!h)
635 		return NULL;   /* Not found. */
636 
637 	ct = nf_ct_tuplehash_to_ctrack(h);
638 
639 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
640 	 * select the other tuplehash to get the right 'ctinfo' bits for this
641 	 * packet.
642 	 */
643 	if (natted)
644 		h = &ct->tuplehash[!h->tuple.dst.dir];
645 
646 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
647 	return ct;
648 }
649 
650 static
651 struct nf_conn *ovs_ct_executed(struct net *net,
652 				const struct sw_flow_key *key,
653 				const struct ovs_conntrack_info *info,
654 				struct sk_buff *skb,
655 				bool *ct_executed)
656 {
657 	struct nf_conn *ct = NULL;
658 
659 	/* If no ct, check if we have evidence that an existing conntrack entry
660 	 * might be found for this skb.  This happens when we lose a skb->_nfct
661 	 * due to an upcall, or if the direction is being forced.  If the
662 	 * connection was not confirmed, it is not cached and needs to be run
663 	 * through conntrack again.
664 	 */
665 	*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
666 		       !(key->ct_state & OVS_CS_F_INVALID) &&
667 		       (key->ct_zone == info->zone.id);
668 
669 	if (*ct_executed || (!key->ct_state && info->force)) {
670 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
671 					  !!(key->ct_state &
672 					  OVS_CS_F_NAT_MASK));
673 	}
674 
675 	return ct;
676 }
677 
678 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
679 static bool skb_nfct_cached(struct net *net,
680 			    const struct sw_flow_key *key,
681 			    const struct ovs_conntrack_info *info,
682 			    struct sk_buff *skb)
683 {
684 	enum ip_conntrack_info ctinfo;
685 	struct nf_conn *ct;
686 	bool ct_executed = true;
687 
688 	ct = nf_ct_get(skb, &ctinfo);
689 	if (!ct)
690 		ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
691 
692 	if (ct)
693 		nf_ct_get(skb, &ctinfo);
694 	else
695 		return false;
696 
697 	if (!net_eq(net, read_pnet(&ct->ct_net)))
698 		return false;
699 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
700 		return false;
701 	if (info->helper) {
702 		struct nf_conn_help *help;
703 
704 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
705 		if (help && rcu_access_pointer(help->helper) != info->helper)
706 			return false;
707 	}
708 	if (info->nf_ct_timeout) {
709 		struct nf_conn_timeout *timeout_ext;
710 
711 		timeout_ext = nf_ct_timeout_find(ct);
712 		if (!timeout_ext || info->nf_ct_timeout !=
713 		    rcu_dereference(timeout_ext->timeout))
714 			return false;
715 	}
716 	/* Force conntrack entry direction to the current packet? */
717 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
718 		/* Delete the conntrack entry if confirmed, else just release
719 		 * the reference.
720 		 */
721 		if (nf_ct_is_confirmed(ct))
722 			nf_ct_delete(ct, 0, 0);
723 
724 		nf_conntrack_put(&ct->ct_general);
725 		nf_ct_set(skb, NULL, 0);
726 		return false;
727 	}
728 
729 	return ct_executed;
730 }
731 
732 #if IS_ENABLED(CONFIG_NF_NAT)
733 /* Modelled after nf_nat_ipv[46]_fn().
734  * range is only used for new, uninitialized NAT state.
735  * Returns either NF_ACCEPT or NF_DROP.
736  */
737 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
738 			      enum ip_conntrack_info ctinfo,
739 			      const struct nf_nat_range2 *range,
740 			      enum nf_nat_manip_type maniptype)
741 {
742 	int hooknum, nh_off, err = NF_ACCEPT;
743 
744 	nh_off = skb_network_offset(skb);
745 	skb_pull_rcsum(skb, nh_off);
746 
747 	/* See HOOK2MANIP(). */
748 	if (maniptype == NF_NAT_MANIP_SRC)
749 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
750 	else
751 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
752 
753 	switch (ctinfo) {
754 	case IP_CT_RELATED:
755 	case IP_CT_RELATED_REPLY:
756 		if (IS_ENABLED(CONFIG_NF_NAT) &&
757 		    skb->protocol == htons(ETH_P_IP) &&
758 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
759 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
760 							   hooknum))
761 				err = NF_DROP;
762 			goto push;
763 		} else if (IS_ENABLED(CONFIG_IPV6) &&
764 			   skb->protocol == htons(ETH_P_IPV6)) {
765 			__be16 frag_off;
766 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
767 			int hdrlen = ipv6_skip_exthdr(skb,
768 						      sizeof(struct ipv6hdr),
769 						      &nexthdr, &frag_off);
770 
771 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
772 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
773 								     ctinfo,
774 								     hooknum,
775 								     hdrlen))
776 					err = NF_DROP;
777 				goto push;
778 			}
779 		}
780 		/* Non-ICMP, fall thru to initialize if needed. */
781 		fallthrough;
782 	case IP_CT_NEW:
783 		/* Seen it before?  This can happen for loopback, retrans,
784 		 * or local packets.
785 		 */
786 		if (!nf_nat_initialized(ct, maniptype)) {
787 			/* Initialize according to the NAT action. */
788 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
789 				/* Action is set up to establish a new
790 				 * mapping.
791 				 */
792 				? nf_nat_setup_info(ct, range, maniptype)
793 				: nf_nat_alloc_null_binding(ct, hooknum);
794 			if (err != NF_ACCEPT)
795 				goto push;
796 		}
797 		break;
798 
799 	case IP_CT_ESTABLISHED:
800 	case IP_CT_ESTABLISHED_REPLY:
801 		break;
802 
803 	default:
804 		err = NF_DROP;
805 		goto push;
806 	}
807 
808 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
809 push:
810 	skb_push(skb, nh_off);
811 	skb_postpush_rcsum(skb, skb->data, nh_off);
812 
813 	return err;
814 }
815 
816 static void ovs_nat_update_key(struct sw_flow_key *key,
817 			       const struct sk_buff *skb,
818 			       enum nf_nat_manip_type maniptype)
819 {
820 	if (maniptype == NF_NAT_MANIP_SRC) {
821 		__be16 src;
822 
823 		key->ct_state |= OVS_CS_F_SRC_NAT;
824 		if (key->eth.type == htons(ETH_P_IP))
825 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
826 		else if (key->eth.type == htons(ETH_P_IPV6))
827 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
828 			       sizeof(key->ipv6.addr.src));
829 		else
830 			return;
831 
832 		if (key->ip.proto == IPPROTO_UDP)
833 			src = udp_hdr(skb)->source;
834 		else if (key->ip.proto == IPPROTO_TCP)
835 			src = tcp_hdr(skb)->source;
836 		else if (key->ip.proto == IPPROTO_SCTP)
837 			src = sctp_hdr(skb)->source;
838 		else
839 			return;
840 
841 		key->tp.src = src;
842 	} else {
843 		__be16 dst;
844 
845 		key->ct_state |= OVS_CS_F_DST_NAT;
846 		if (key->eth.type == htons(ETH_P_IP))
847 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
848 		else if (key->eth.type == htons(ETH_P_IPV6))
849 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
850 			       sizeof(key->ipv6.addr.dst));
851 		else
852 			return;
853 
854 		if (key->ip.proto == IPPROTO_UDP)
855 			dst = udp_hdr(skb)->dest;
856 		else if (key->ip.proto == IPPROTO_TCP)
857 			dst = tcp_hdr(skb)->dest;
858 		else if (key->ip.proto == IPPROTO_SCTP)
859 			dst = sctp_hdr(skb)->dest;
860 		else
861 			return;
862 
863 		key->tp.dst = dst;
864 	}
865 }
866 
867 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
868 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
869 		      const struct ovs_conntrack_info *info,
870 		      struct sk_buff *skb, struct nf_conn *ct,
871 		      enum ip_conntrack_info ctinfo)
872 {
873 	enum nf_nat_manip_type maniptype;
874 	int err;
875 
876 	/* Add NAT extension if not confirmed yet. */
877 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
878 		return NF_ACCEPT;   /* Can't NAT. */
879 
880 	/* Determine NAT type.
881 	 * Check if the NAT type can be deduced from the tracked connection.
882 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
883 	 * when committing.
884 	 */
885 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
886 	    ct->status & IPS_NAT_MASK &&
887 	    (ctinfo != IP_CT_RELATED || info->commit)) {
888 		/* NAT an established or related connection like before. */
889 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
890 			/* This is the REPLY direction for a connection
891 			 * for which NAT was applied in the forward
892 			 * direction.  Do the reverse NAT.
893 			 */
894 			maniptype = ct->status & IPS_SRC_NAT
895 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
896 		else
897 			maniptype = ct->status & IPS_SRC_NAT
898 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
899 	} else if (info->nat & OVS_CT_SRC_NAT) {
900 		maniptype = NF_NAT_MANIP_SRC;
901 	} else if (info->nat & OVS_CT_DST_NAT) {
902 		maniptype = NF_NAT_MANIP_DST;
903 	} else {
904 		return NF_ACCEPT; /* Connection is not NATed. */
905 	}
906 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
907 
908 	if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) {
909 		if (ct->status & IPS_SRC_NAT) {
910 			if (maniptype == NF_NAT_MANIP_SRC)
911 				maniptype = NF_NAT_MANIP_DST;
912 			else
913 				maniptype = NF_NAT_MANIP_SRC;
914 
915 			err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range,
916 						 maniptype);
917 		} else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) {
918 			err = ovs_ct_nat_execute(skb, ct, ctinfo, NULL,
919 						 NF_NAT_MANIP_SRC);
920 		}
921 	}
922 
923 	/* Mark NAT done if successful and update the flow key. */
924 	if (err == NF_ACCEPT)
925 		ovs_nat_update_key(key, skb, maniptype);
926 
927 	return err;
928 }
929 #else /* !CONFIG_NF_NAT */
930 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
931 		      const struct ovs_conntrack_info *info,
932 		      struct sk_buff *skb, struct nf_conn *ct,
933 		      enum ip_conntrack_info ctinfo)
934 {
935 	return NF_ACCEPT;
936 }
937 #endif
938 
939 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
940  * not done already.  Update key with new CT state after passing the packet
941  * through conntrack.
942  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
943  * set to NULL and 0 will be returned.
944  */
945 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
946 			   const struct ovs_conntrack_info *info,
947 			   struct sk_buff *skb)
948 {
949 	/* If we are recirculating packets to match on conntrack fields and
950 	 * committing with a separate conntrack action,  then we don't need to
951 	 * actually run the packet through conntrack twice unless it's for a
952 	 * different zone.
953 	 */
954 	bool cached = skb_nfct_cached(net, key, info, skb);
955 	enum ip_conntrack_info ctinfo;
956 	struct nf_conn *ct;
957 
958 	if (!cached) {
959 		struct nf_hook_state state = {
960 			.hook = NF_INET_PRE_ROUTING,
961 			.pf = info->family,
962 			.net = net,
963 		};
964 		struct nf_conn *tmpl = info->ct;
965 		int err;
966 
967 		/* Associate skb with specified zone. */
968 		if (tmpl) {
969 			if (skb_nfct(skb))
970 				nf_conntrack_put(skb_nfct(skb));
971 			nf_conntrack_get(&tmpl->ct_general);
972 			nf_ct_set(skb, tmpl, IP_CT_NEW);
973 		}
974 
975 		err = nf_conntrack_in(skb, &state);
976 		if (err != NF_ACCEPT)
977 			return -ENOENT;
978 
979 		/* Clear CT state NAT flags to mark that we have not yet done
980 		 * NAT after the nf_conntrack_in() call.  We can actually clear
981 		 * the whole state, as it will be re-initialized below.
982 		 */
983 		key->ct_state = 0;
984 
985 		/* Update the key, but keep the NAT flags. */
986 		ovs_ct_update_key(skb, info, key, true, true);
987 	}
988 
989 	ct = nf_ct_get(skb, &ctinfo);
990 	if (ct) {
991 		bool add_helper = false;
992 
993 		/* Packets starting a new connection must be NATted before the
994 		 * helper, so that the helper knows about the NAT.  We enforce
995 		 * this by delaying both NAT and helper calls for unconfirmed
996 		 * connections until the committing CT action.  For later
997 		 * packets NAT and Helper may be called in either order.
998 		 *
999 		 * NAT will be done only if the CT action has NAT, and only
1000 		 * once per packet (per zone), as guarded by the NAT bits in
1001 		 * the key->ct_state.
1002 		 */
1003 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
1004 		    (nf_ct_is_confirmed(ct) || info->commit) &&
1005 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
1006 			return -EINVAL;
1007 		}
1008 
1009 		/* Userspace may decide to perform a ct lookup without a helper
1010 		 * specified followed by a (recirculate and) commit with one,
1011 		 * or attach a helper in a later commit.  Therefore, for
1012 		 * connections which we will commit, we may need to attach
1013 		 * the helper here.
1014 		 */
1015 		if (info->commit && info->helper && !nfct_help(ct)) {
1016 			int err = __nf_ct_try_assign_helper(ct, info->ct,
1017 							    GFP_ATOMIC);
1018 			if (err)
1019 				return err;
1020 			add_helper = true;
1021 
1022 			/* helper installed, add seqadj if NAT is required */
1023 			if (info->nat && !nfct_seqadj(ct)) {
1024 				if (!nfct_seqadj_ext_add(ct))
1025 					return -EINVAL;
1026 			}
1027 		}
1028 
1029 		/* Call the helper only if:
1030 		 * - nf_conntrack_in() was executed above ("!cached") or a
1031 		 *   helper was just attached ("add_helper") for a confirmed
1032 		 *   connection, or
1033 		 * - When committing an unconfirmed connection.
1034 		 */
1035 		if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
1036 					      info->commit) &&
1037 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1038 			return -EINVAL;
1039 		}
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 /* Lookup connection and read fields into key. */
1046 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1047 			 const struct ovs_conntrack_info *info,
1048 			 struct sk_buff *skb)
1049 {
1050 	struct nf_conntrack_expect *exp;
1051 
1052 	/* If we pass an expected packet through nf_conntrack_in() the
1053 	 * expectation is typically removed, but the packet could still be
1054 	 * lost in upcall processing.  To prevent this from happening we
1055 	 * perform an explicit expectation lookup.  Expected connections are
1056 	 * always new, and will be passed through conntrack only when they are
1057 	 * committed, as it is OK to remove the expectation at that time.
1058 	 */
1059 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1060 	if (exp) {
1061 		u8 state;
1062 
1063 		/* NOTE: New connections are NATted and Helped only when
1064 		 * committed, so we are not calling into NAT here.
1065 		 */
1066 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1067 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
1068 	} else {
1069 		struct nf_conn *ct;
1070 		int err;
1071 
1072 		err = __ovs_ct_lookup(net, key, info, skb);
1073 		if (err)
1074 			return err;
1075 
1076 		ct = (struct nf_conn *)skb_nfct(skb);
1077 		if (ct)
1078 			nf_ct_deliver_cached_events(ct);
1079 	}
1080 
1081 	return 0;
1082 }
1083 
1084 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1085 {
1086 	size_t i;
1087 
1088 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1089 		if (labels->ct_labels_32[i])
1090 			return true;
1091 
1092 	return false;
1093 }
1094 
1095 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1096 static struct hlist_head *ct_limit_hash_bucket(
1097 	const struct ovs_ct_limit_info *info, u16 zone)
1098 {
1099 	return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1100 }
1101 
1102 /* Call with ovs_mutex */
1103 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1104 			 struct ovs_ct_limit *new_ct_limit)
1105 {
1106 	struct ovs_ct_limit *ct_limit;
1107 	struct hlist_head *head;
1108 
1109 	head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1110 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1111 		if (ct_limit->zone == new_ct_limit->zone) {
1112 			hlist_replace_rcu(&ct_limit->hlist_node,
1113 					  &new_ct_limit->hlist_node);
1114 			kfree_rcu(ct_limit, rcu);
1115 			return;
1116 		}
1117 	}
1118 
1119 	hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1120 }
1121 
1122 /* Call with ovs_mutex */
1123 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1124 {
1125 	struct ovs_ct_limit *ct_limit;
1126 	struct hlist_head *head;
1127 	struct hlist_node *n;
1128 
1129 	head = ct_limit_hash_bucket(info, zone);
1130 	hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1131 		if (ct_limit->zone == zone) {
1132 			hlist_del_rcu(&ct_limit->hlist_node);
1133 			kfree_rcu(ct_limit, rcu);
1134 			return;
1135 		}
1136 	}
1137 }
1138 
1139 /* Call with RCU read lock */
1140 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1141 {
1142 	struct ovs_ct_limit *ct_limit;
1143 	struct hlist_head *head;
1144 
1145 	head = ct_limit_hash_bucket(info, zone);
1146 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1147 		if (ct_limit->zone == zone)
1148 			return ct_limit->limit;
1149 	}
1150 
1151 	return info->default_limit;
1152 }
1153 
1154 static int ovs_ct_check_limit(struct net *net,
1155 			      const struct ovs_conntrack_info *info,
1156 			      const struct nf_conntrack_tuple *tuple)
1157 {
1158 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1159 	const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1160 	u32 per_zone_limit, connections;
1161 	u32 conncount_key;
1162 
1163 	conncount_key = info->zone.id;
1164 
1165 	per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1166 	if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1167 		return 0;
1168 
1169 	connections = nf_conncount_count(net, ct_limit_info->data,
1170 					 &conncount_key, tuple, &info->zone);
1171 	if (connections > per_zone_limit)
1172 		return -ENOMEM;
1173 
1174 	return 0;
1175 }
1176 #endif
1177 
1178 /* Lookup connection and confirm if unconfirmed. */
1179 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1180 			 const struct ovs_conntrack_info *info,
1181 			 struct sk_buff *skb)
1182 {
1183 	enum ip_conntrack_info ctinfo;
1184 	struct nf_conn *ct;
1185 	int err;
1186 
1187 	err = __ovs_ct_lookup(net, key, info, skb);
1188 	if (err)
1189 		return err;
1190 
1191 	/* The connection could be invalid, in which case this is a no-op.*/
1192 	ct = nf_ct_get(skb, &ctinfo);
1193 	if (!ct)
1194 		return 0;
1195 
1196 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1197 	if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1198 		if (!nf_ct_is_confirmed(ct)) {
1199 			err = ovs_ct_check_limit(net, info,
1200 				&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1201 			if (err) {
1202 				net_warn_ratelimited("openvswitch: zone: %u "
1203 					"exceeds conntrack limit\n",
1204 					info->zone.id);
1205 				return err;
1206 			}
1207 		}
1208 	}
1209 #endif
1210 
1211 	/* Set the conntrack event mask if given.  NEW and DELETE events have
1212 	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1213 	 * typically would receive many kinds of updates.  Setting the event
1214 	 * mask allows those events to be filtered.  The set event mask will
1215 	 * remain in effect for the lifetime of the connection unless changed
1216 	 * by a further CT action with both the commit flag and the eventmask
1217 	 * option. */
1218 	if (info->have_eventmask) {
1219 		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1220 
1221 		if (cache)
1222 			cache->ctmask = info->eventmask;
1223 	}
1224 
1225 	/* Apply changes before confirming the connection so that the initial
1226 	 * conntrack NEW netlink event carries the values given in the CT
1227 	 * action.
1228 	 */
1229 	if (info->mark.mask) {
1230 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1231 				      info->mark.mask);
1232 		if (err)
1233 			return err;
1234 	}
1235 	if (!nf_ct_is_confirmed(ct)) {
1236 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1237 					 &info->labels.mask);
1238 		if (err)
1239 			return err;
1240 	} else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1241 		   labels_nonzero(&info->labels.mask)) {
1242 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1243 					&info->labels.mask);
1244 		if (err)
1245 			return err;
1246 	}
1247 	/* This will take care of sending queued events even if the connection
1248 	 * is already confirmed.
1249 	 */
1250 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1251 		return -EINVAL;
1252 
1253 	return 0;
1254 }
1255 
1256 /* Trim the skb to the length specified by the IP/IPv6 header,
1257  * removing any trailing lower-layer padding. This prepares the skb
1258  * for higher-layer processing that assumes skb->len excludes padding
1259  * (such as nf_ip_checksum). The caller needs to pull the skb to the
1260  * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1261  */
1262 static int ovs_skb_network_trim(struct sk_buff *skb)
1263 {
1264 	unsigned int len;
1265 	int err;
1266 
1267 	switch (skb->protocol) {
1268 	case htons(ETH_P_IP):
1269 		len = ntohs(ip_hdr(skb)->tot_len);
1270 		break;
1271 	case htons(ETH_P_IPV6):
1272 		len = sizeof(struct ipv6hdr)
1273 			+ ntohs(ipv6_hdr(skb)->payload_len);
1274 		break;
1275 	default:
1276 		len = skb->len;
1277 	}
1278 
1279 	err = pskb_trim_rcsum(skb, len);
1280 	if (err)
1281 		kfree_skb(skb);
1282 
1283 	return err;
1284 }
1285 
1286 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1287  * value if 'skb' is freed.
1288  */
1289 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1290 		   struct sw_flow_key *key,
1291 		   const struct ovs_conntrack_info *info)
1292 {
1293 	int nh_ofs;
1294 	int err;
1295 
1296 	/* The conntrack module expects to be working at L3. */
1297 	nh_ofs = skb_network_offset(skb);
1298 	skb_pull_rcsum(skb, nh_ofs);
1299 
1300 	err = ovs_skb_network_trim(skb);
1301 	if (err)
1302 		return err;
1303 
1304 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1305 		err = handle_fragments(net, key, info->zone.id, skb);
1306 		if (err)
1307 			return err;
1308 	}
1309 
1310 	if (info->commit)
1311 		err = ovs_ct_commit(net, key, info, skb);
1312 	else
1313 		err = ovs_ct_lookup(net, key, info, skb);
1314 
1315 	skb_push(skb, nh_ofs);
1316 	skb_postpush_rcsum(skb, skb->data, nh_ofs);
1317 	if (err)
1318 		kfree_skb(skb);
1319 	return err;
1320 }
1321 
1322 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1323 {
1324 	if (skb_nfct(skb)) {
1325 		nf_conntrack_put(skb_nfct(skb));
1326 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1327 		ovs_ct_fill_key(skb, key);
1328 	}
1329 
1330 	return 0;
1331 }
1332 
1333 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1334 			     const struct sw_flow_key *key, bool log)
1335 {
1336 	struct nf_conntrack_helper *helper;
1337 	struct nf_conn_help *help;
1338 	int ret = 0;
1339 
1340 	helper = nf_conntrack_helper_try_module_get(name, info->family,
1341 						    key->ip.proto);
1342 	if (!helper) {
1343 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1344 		return -EINVAL;
1345 	}
1346 
1347 	help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1348 	if (!help) {
1349 		nf_conntrack_helper_put(helper);
1350 		return -ENOMEM;
1351 	}
1352 
1353 #if IS_ENABLED(CONFIG_NF_NAT)
1354 	if (info->nat) {
1355 		ret = nf_nat_helper_try_module_get(name, info->family,
1356 						   key->ip.proto);
1357 		if (ret) {
1358 			nf_conntrack_helper_put(helper);
1359 			OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d",
1360 				  name, ret);
1361 			return ret;
1362 		}
1363 	}
1364 #endif
1365 	rcu_assign_pointer(help->helper, helper);
1366 	info->helper = helper;
1367 	return ret;
1368 }
1369 
1370 #if IS_ENABLED(CONFIG_NF_NAT)
1371 static int parse_nat(const struct nlattr *attr,
1372 		     struct ovs_conntrack_info *info, bool log)
1373 {
1374 	struct nlattr *a;
1375 	int rem;
1376 	bool have_ip_max = false;
1377 	bool have_proto_max = false;
1378 	bool ip_vers = (info->family == NFPROTO_IPV6);
1379 
1380 	nla_for_each_nested(a, attr, rem) {
1381 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1382 			[OVS_NAT_ATTR_SRC] = {0, 0},
1383 			[OVS_NAT_ATTR_DST] = {0, 0},
1384 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1385 						 sizeof(struct in6_addr)},
1386 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1387 						 sizeof(struct in6_addr)},
1388 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1389 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1390 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1391 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1392 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1393 		};
1394 		int type = nla_type(a);
1395 
1396 		if (type > OVS_NAT_ATTR_MAX) {
1397 			OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1398 				  type, OVS_NAT_ATTR_MAX);
1399 			return -EINVAL;
1400 		}
1401 
1402 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1403 			OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1404 				  type, nla_len(a),
1405 				  ovs_nat_attr_lens[type][ip_vers]);
1406 			return -EINVAL;
1407 		}
1408 
1409 		switch (type) {
1410 		case OVS_NAT_ATTR_SRC:
1411 		case OVS_NAT_ATTR_DST:
1412 			if (info->nat) {
1413 				OVS_NLERR(log, "Only one type of NAT may be specified");
1414 				return -ERANGE;
1415 			}
1416 			info->nat |= OVS_CT_NAT;
1417 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1418 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1419 			break;
1420 
1421 		case OVS_NAT_ATTR_IP_MIN:
1422 			nla_memcpy(&info->range.min_addr, a,
1423 				   sizeof(info->range.min_addr));
1424 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1425 			break;
1426 
1427 		case OVS_NAT_ATTR_IP_MAX:
1428 			have_ip_max = true;
1429 			nla_memcpy(&info->range.max_addr, a,
1430 				   sizeof(info->range.max_addr));
1431 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1432 			break;
1433 
1434 		case OVS_NAT_ATTR_PROTO_MIN:
1435 			info->range.min_proto.all = htons(nla_get_u16(a));
1436 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1437 			break;
1438 
1439 		case OVS_NAT_ATTR_PROTO_MAX:
1440 			have_proto_max = true;
1441 			info->range.max_proto.all = htons(nla_get_u16(a));
1442 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1443 			break;
1444 
1445 		case OVS_NAT_ATTR_PERSISTENT:
1446 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1447 			break;
1448 
1449 		case OVS_NAT_ATTR_PROTO_HASH:
1450 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1451 			break;
1452 
1453 		case OVS_NAT_ATTR_PROTO_RANDOM:
1454 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1455 			break;
1456 
1457 		default:
1458 			OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1459 			return -EINVAL;
1460 		}
1461 	}
1462 
1463 	if (rem > 0) {
1464 		OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1465 		return -EINVAL;
1466 	}
1467 	if (!info->nat) {
1468 		/* Do not allow flags if no type is given. */
1469 		if (info->range.flags) {
1470 			OVS_NLERR(log,
1471 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1472 				  );
1473 			return -EINVAL;
1474 		}
1475 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1476 	} else if (!info->commit) {
1477 		OVS_NLERR(log,
1478 			  "NAT attributes may be specified only when CT COMMIT flag is also specified."
1479 			  );
1480 		return -EINVAL;
1481 	}
1482 	/* Allow missing IP_MAX. */
1483 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1484 		memcpy(&info->range.max_addr, &info->range.min_addr,
1485 		       sizeof(info->range.max_addr));
1486 	}
1487 	/* Allow missing PROTO_MAX. */
1488 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1489 	    !have_proto_max) {
1490 		info->range.max_proto.all = info->range.min_proto.all;
1491 	}
1492 	return 0;
1493 }
1494 #endif
1495 
1496 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1497 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1498 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1499 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1500 				    .maxlen = sizeof(u16) },
1501 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1502 				    .maxlen = sizeof(struct md_mark) },
1503 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1504 				    .maxlen = sizeof(struct md_labels) },
1505 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1506 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1507 #if IS_ENABLED(CONFIG_NF_NAT)
1508 	/* NAT length is checked when parsing the nested attributes. */
1509 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1510 #endif
1511 	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1512 				    .maxlen = sizeof(u32) },
1513 	[OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1514 				  .maxlen = CTNL_TIMEOUT_NAME_MAX },
1515 };
1516 
1517 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1518 		    const char **helper, bool log)
1519 {
1520 	struct nlattr *a;
1521 	int rem;
1522 
1523 	nla_for_each_nested(a, attr, rem) {
1524 		int type = nla_type(a);
1525 		int maxlen;
1526 		int minlen;
1527 
1528 		if (type > OVS_CT_ATTR_MAX) {
1529 			OVS_NLERR(log,
1530 				  "Unknown conntrack attr (type=%d, max=%d)",
1531 				  type, OVS_CT_ATTR_MAX);
1532 			return -EINVAL;
1533 		}
1534 
1535 		maxlen = ovs_ct_attr_lens[type].maxlen;
1536 		minlen = ovs_ct_attr_lens[type].minlen;
1537 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1538 			OVS_NLERR(log,
1539 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1540 				  type, nla_len(a), maxlen);
1541 			return -EINVAL;
1542 		}
1543 
1544 		switch (type) {
1545 		case OVS_CT_ATTR_FORCE_COMMIT:
1546 			info->force = true;
1547 			fallthrough;
1548 		case OVS_CT_ATTR_COMMIT:
1549 			info->commit = true;
1550 			break;
1551 #ifdef CONFIG_NF_CONNTRACK_ZONES
1552 		case OVS_CT_ATTR_ZONE:
1553 			info->zone.id = nla_get_u16(a);
1554 			break;
1555 #endif
1556 #ifdef CONFIG_NF_CONNTRACK_MARK
1557 		case OVS_CT_ATTR_MARK: {
1558 			struct md_mark *mark = nla_data(a);
1559 
1560 			if (!mark->mask) {
1561 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1562 				return -EINVAL;
1563 			}
1564 			info->mark = *mark;
1565 			break;
1566 		}
1567 #endif
1568 #ifdef CONFIG_NF_CONNTRACK_LABELS
1569 		case OVS_CT_ATTR_LABELS: {
1570 			struct md_labels *labels = nla_data(a);
1571 
1572 			if (!labels_nonzero(&labels->mask)) {
1573 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1574 				return -EINVAL;
1575 			}
1576 			info->labels = *labels;
1577 			break;
1578 		}
1579 #endif
1580 		case OVS_CT_ATTR_HELPER:
1581 			*helper = nla_data(a);
1582 			if (!memchr(*helper, '\0', nla_len(a))) {
1583 				OVS_NLERR(log, "Invalid conntrack helper");
1584 				return -EINVAL;
1585 			}
1586 			break;
1587 #if IS_ENABLED(CONFIG_NF_NAT)
1588 		case OVS_CT_ATTR_NAT: {
1589 			int err = parse_nat(a, info, log);
1590 
1591 			if (err)
1592 				return err;
1593 			break;
1594 		}
1595 #endif
1596 		case OVS_CT_ATTR_EVENTMASK:
1597 			info->have_eventmask = true;
1598 			info->eventmask = nla_get_u32(a);
1599 			break;
1600 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1601 		case OVS_CT_ATTR_TIMEOUT:
1602 			memcpy(info->timeout, nla_data(a), nla_len(a));
1603 			if (!memchr(info->timeout, '\0', nla_len(a))) {
1604 				OVS_NLERR(log, "Invalid conntrack timeout");
1605 				return -EINVAL;
1606 			}
1607 			break;
1608 #endif
1609 
1610 		default:
1611 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1612 				  type);
1613 			return -EINVAL;
1614 		}
1615 	}
1616 
1617 #ifdef CONFIG_NF_CONNTRACK_MARK
1618 	if (!info->commit && info->mark.mask) {
1619 		OVS_NLERR(log,
1620 			  "Setting conntrack mark requires 'commit' flag.");
1621 		return -EINVAL;
1622 	}
1623 #endif
1624 #ifdef CONFIG_NF_CONNTRACK_LABELS
1625 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1626 		OVS_NLERR(log,
1627 			  "Setting conntrack labels requires 'commit' flag.");
1628 		return -EINVAL;
1629 	}
1630 #endif
1631 	if (rem > 0) {
1632 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1633 		return -EINVAL;
1634 	}
1635 
1636 	return 0;
1637 }
1638 
1639 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1640 {
1641 	if (attr == OVS_KEY_ATTR_CT_STATE)
1642 		return true;
1643 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1644 	    attr == OVS_KEY_ATTR_CT_ZONE)
1645 		return true;
1646 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1647 	    attr == OVS_KEY_ATTR_CT_MARK)
1648 		return true;
1649 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1650 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1651 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1652 
1653 		return ovs_net->xt_label;
1654 	}
1655 
1656 	return false;
1657 }
1658 
1659 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1660 		       const struct sw_flow_key *key,
1661 		       struct sw_flow_actions **sfa,  bool log)
1662 {
1663 	struct ovs_conntrack_info ct_info;
1664 	const char *helper = NULL;
1665 	u16 family;
1666 	int err;
1667 
1668 	family = key_to_nfproto(key);
1669 	if (family == NFPROTO_UNSPEC) {
1670 		OVS_NLERR(log, "ct family unspecified");
1671 		return -EINVAL;
1672 	}
1673 
1674 	memset(&ct_info, 0, sizeof(ct_info));
1675 	ct_info.family = family;
1676 
1677 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1678 			NF_CT_DEFAULT_ZONE_DIR, 0);
1679 
1680 	err = parse_ct(attr, &ct_info, &helper, log);
1681 	if (err)
1682 		return err;
1683 
1684 	/* Set up template for tracking connections in specific zones. */
1685 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1686 	if (!ct_info.ct) {
1687 		OVS_NLERR(log, "Failed to allocate conntrack template");
1688 		return -ENOMEM;
1689 	}
1690 
1691 	if (ct_info.timeout[0]) {
1692 		if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1693 				      ct_info.timeout))
1694 			pr_info_ratelimited("Failed to associated timeout "
1695 					    "policy `%s'\n", ct_info.timeout);
1696 		else
1697 			ct_info.nf_ct_timeout = rcu_dereference(
1698 				nf_ct_timeout_find(ct_info.ct)->timeout);
1699 
1700 	}
1701 
1702 	if (helper) {
1703 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1704 		if (err)
1705 			goto err_free_ct;
1706 	}
1707 
1708 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1709 				 sizeof(ct_info), log);
1710 	if (err)
1711 		goto err_free_ct;
1712 
1713 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1714 	nf_conntrack_get(&ct_info.ct->ct_general);
1715 	return 0;
1716 err_free_ct:
1717 	__ovs_ct_free_action(&ct_info);
1718 	return err;
1719 }
1720 
1721 #if IS_ENABLED(CONFIG_NF_NAT)
1722 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1723 			       struct sk_buff *skb)
1724 {
1725 	struct nlattr *start;
1726 
1727 	start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1728 	if (!start)
1729 		return false;
1730 
1731 	if (info->nat & OVS_CT_SRC_NAT) {
1732 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1733 			return false;
1734 	} else if (info->nat & OVS_CT_DST_NAT) {
1735 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1736 			return false;
1737 	} else {
1738 		goto out;
1739 	}
1740 
1741 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1742 		if (IS_ENABLED(CONFIG_NF_NAT) &&
1743 		    info->family == NFPROTO_IPV4) {
1744 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1745 					    info->range.min_addr.ip) ||
1746 			    (info->range.max_addr.ip
1747 			     != info->range.min_addr.ip &&
1748 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1749 					      info->range.max_addr.ip))))
1750 				return false;
1751 		} else if (IS_ENABLED(CONFIG_IPV6) &&
1752 			   info->family == NFPROTO_IPV6) {
1753 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1754 					     &info->range.min_addr.in6) ||
1755 			    (memcmp(&info->range.max_addr.in6,
1756 				    &info->range.min_addr.in6,
1757 				    sizeof(info->range.max_addr.in6)) &&
1758 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1759 					       &info->range.max_addr.in6))))
1760 				return false;
1761 		} else {
1762 			return false;
1763 		}
1764 	}
1765 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1766 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1767 			 ntohs(info->range.min_proto.all)) ||
1768 	     (info->range.max_proto.all != info->range.min_proto.all &&
1769 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1770 			  ntohs(info->range.max_proto.all)))))
1771 		return false;
1772 
1773 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1774 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1775 		return false;
1776 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1777 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1778 		return false;
1779 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1780 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1781 		return false;
1782 out:
1783 	nla_nest_end(skb, start);
1784 
1785 	return true;
1786 }
1787 #endif
1788 
1789 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1790 			  struct sk_buff *skb)
1791 {
1792 	struct nlattr *start;
1793 
1794 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1795 	if (!start)
1796 		return -EMSGSIZE;
1797 
1798 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1799 					    ? OVS_CT_ATTR_FORCE_COMMIT
1800 					    : OVS_CT_ATTR_COMMIT))
1801 		return -EMSGSIZE;
1802 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1803 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1804 		return -EMSGSIZE;
1805 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1806 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1807 		    &ct_info->mark))
1808 		return -EMSGSIZE;
1809 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1810 	    labels_nonzero(&ct_info->labels.mask) &&
1811 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1812 		    &ct_info->labels))
1813 		return -EMSGSIZE;
1814 	if (ct_info->helper) {
1815 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1816 				   ct_info->helper->name))
1817 			return -EMSGSIZE;
1818 	}
1819 	if (ct_info->have_eventmask &&
1820 	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1821 		return -EMSGSIZE;
1822 	if (ct_info->timeout[0]) {
1823 		if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1824 			return -EMSGSIZE;
1825 	}
1826 
1827 #if IS_ENABLED(CONFIG_NF_NAT)
1828 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1829 		return -EMSGSIZE;
1830 #endif
1831 	nla_nest_end(skb, start);
1832 
1833 	return 0;
1834 }
1835 
1836 void ovs_ct_free_action(const struct nlattr *a)
1837 {
1838 	struct ovs_conntrack_info *ct_info = nla_data(a);
1839 
1840 	__ovs_ct_free_action(ct_info);
1841 }
1842 
1843 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1844 {
1845 	if (ct_info->helper) {
1846 #if IS_ENABLED(CONFIG_NF_NAT)
1847 		if (ct_info->nat)
1848 			nf_nat_helper_put(ct_info->helper);
1849 #endif
1850 		nf_conntrack_helper_put(ct_info->helper);
1851 	}
1852 	if (ct_info->ct) {
1853 		if (ct_info->timeout[0])
1854 			nf_ct_destroy_timeout(ct_info->ct);
1855 		nf_ct_tmpl_free(ct_info->ct);
1856 	}
1857 }
1858 
1859 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1860 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1861 {
1862 	int i, err;
1863 
1864 	ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1865 					 GFP_KERNEL);
1866 	if (!ovs_net->ct_limit_info)
1867 		return -ENOMEM;
1868 
1869 	ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1870 	ovs_net->ct_limit_info->limits =
1871 		kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1872 			      GFP_KERNEL);
1873 	if (!ovs_net->ct_limit_info->limits) {
1874 		kfree(ovs_net->ct_limit_info);
1875 		return -ENOMEM;
1876 	}
1877 
1878 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1879 		INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1880 
1881 	ovs_net->ct_limit_info->data =
1882 		nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1883 
1884 	if (IS_ERR(ovs_net->ct_limit_info->data)) {
1885 		err = PTR_ERR(ovs_net->ct_limit_info->data);
1886 		kfree(ovs_net->ct_limit_info->limits);
1887 		kfree(ovs_net->ct_limit_info);
1888 		pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1889 		return err;
1890 	}
1891 	return 0;
1892 }
1893 
1894 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1895 {
1896 	const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1897 	int i;
1898 
1899 	nf_conncount_destroy(net, NFPROTO_INET, info->data);
1900 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1901 		struct hlist_head *head = &info->limits[i];
1902 		struct ovs_ct_limit *ct_limit;
1903 
1904 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node,
1905 					 lockdep_ovsl_is_held())
1906 			kfree_rcu(ct_limit, rcu);
1907 	}
1908 	kfree(info->limits);
1909 	kfree(info);
1910 }
1911 
1912 static struct sk_buff *
1913 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1914 			     struct ovs_header **ovs_reply_header)
1915 {
1916 	struct ovs_header *ovs_header = info->userhdr;
1917 	struct sk_buff *skb;
1918 
1919 	skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1920 	if (!skb)
1921 		return ERR_PTR(-ENOMEM);
1922 
1923 	*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1924 					info->snd_seq,
1925 					&dp_ct_limit_genl_family, 0, cmd);
1926 
1927 	if (!*ovs_reply_header) {
1928 		nlmsg_free(skb);
1929 		return ERR_PTR(-EMSGSIZE);
1930 	}
1931 	(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1932 
1933 	return skb;
1934 }
1935 
1936 static bool check_zone_id(int zone_id, u16 *pzone)
1937 {
1938 	if (zone_id >= 0 && zone_id <= 65535) {
1939 		*pzone = (u16)zone_id;
1940 		return true;
1941 	}
1942 	return false;
1943 }
1944 
1945 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1946 				       struct ovs_ct_limit_info *info)
1947 {
1948 	struct ovs_zone_limit *zone_limit;
1949 	int rem;
1950 	u16 zone;
1951 
1952 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1953 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1954 
1955 	while (rem >= sizeof(*zone_limit)) {
1956 		if (unlikely(zone_limit->zone_id ==
1957 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1958 			ovs_lock();
1959 			info->default_limit = zone_limit->limit;
1960 			ovs_unlock();
1961 		} else if (unlikely(!check_zone_id(
1962 				zone_limit->zone_id, &zone))) {
1963 			OVS_NLERR(true, "zone id is out of range");
1964 		} else {
1965 			struct ovs_ct_limit *ct_limit;
1966 
1967 			ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1968 			if (!ct_limit)
1969 				return -ENOMEM;
1970 
1971 			ct_limit->zone = zone;
1972 			ct_limit->limit = zone_limit->limit;
1973 
1974 			ovs_lock();
1975 			ct_limit_set(info, ct_limit);
1976 			ovs_unlock();
1977 		}
1978 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1979 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1980 				NLA_ALIGN(sizeof(*zone_limit)));
1981 	}
1982 
1983 	if (rem)
1984 		OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1985 
1986 	return 0;
1987 }
1988 
1989 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1990 				       struct ovs_ct_limit_info *info)
1991 {
1992 	struct ovs_zone_limit *zone_limit;
1993 	int rem;
1994 	u16 zone;
1995 
1996 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1997 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1998 
1999 	while (rem >= sizeof(*zone_limit)) {
2000 		if (unlikely(zone_limit->zone_id ==
2001 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2002 			ovs_lock();
2003 			info->default_limit = OVS_CT_LIMIT_DEFAULT;
2004 			ovs_unlock();
2005 		} else if (unlikely(!check_zone_id(
2006 				zone_limit->zone_id, &zone))) {
2007 			OVS_NLERR(true, "zone id is out of range");
2008 		} else {
2009 			ovs_lock();
2010 			ct_limit_del(info, zone);
2011 			ovs_unlock();
2012 		}
2013 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2014 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2015 				NLA_ALIGN(sizeof(*zone_limit)));
2016 	}
2017 
2018 	if (rem)
2019 		OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
2020 
2021 	return 0;
2022 }
2023 
2024 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
2025 					  struct sk_buff *reply)
2026 {
2027 	struct ovs_zone_limit zone_limit;
2028 	int err;
2029 
2030 	zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
2031 	zone_limit.limit = info->default_limit;
2032 	err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2033 	if (err)
2034 		return err;
2035 
2036 	return 0;
2037 }
2038 
2039 static int __ovs_ct_limit_get_zone_limit(struct net *net,
2040 					 struct nf_conncount_data *data,
2041 					 u16 zone_id, u32 limit,
2042 					 struct sk_buff *reply)
2043 {
2044 	struct nf_conntrack_zone ct_zone;
2045 	struct ovs_zone_limit zone_limit;
2046 	u32 conncount_key = zone_id;
2047 
2048 	zone_limit.zone_id = zone_id;
2049 	zone_limit.limit = limit;
2050 	nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
2051 
2052 	zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
2053 					      &ct_zone);
2054 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2055 }
2056 
2057 static int ovs_ct_limit_get_zone_limit(struct net *net,
2058 				       struct nlattr *nla_zone_limit,
2059 				       struct ovs_ct_limit_info *info,
2060 				       struct sk_buff *reply)
2061 {
2062 	struct ovs_zone_limit *zone_limit;
2063 	int rem, err;
2064 	u32 limit;
2065 	u16 zone;
2066 
2067 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
2068 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2069 
2070 	while (rem >= sizeof(*zone_limit)) {
2071 		if (unlikely(zone_limit->zone_id ==
2072 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2073 			err = ovs_ct_limit_get_default_limit(info, reply);
2074 			if (err)
2075 				return err;
2076 		} else if (unlikely(!check_zone_id(zone_limit->zone_id,
2077 							&zone))) {
2078 			OVS_NLERR(true, "zone id is out of range");
2079 		} else {
2080 			rcu_read_lock();
2081 			limit = ct_limit_get(info, zone);
2082 			rcu_read_unlock();
2083 
2084 			err = __ovs_ct_limit_get_zone_limit(
2085 				net, info->data, zone, limit, reply);
2086 			if (err)
2087 				return err;
2088 		}
2089 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2090 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2091 				NLA_ALIGN(sizeof(*zone_limit)));
2092 	}
2093 
2094 	if (rem)
2095 		OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2096 
2097 	return 0;
2098 }
2099 
2100 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2101 					   struct ovs_ct_limit_info *info,
2102 					   struct sk_buff *reply)
2103 {
2104 	struct ovs_ct_limit *ct_limit;
2105 	struct hlist_head *head;
2106 	int i, err = 0;
2107 
2108 	err = ovs_ct_limit_get_default_limit(info, reply);
2109 	if (err)
2110 		return err;
2111 
2112 	rcu_read_lock();
2113 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2114 		head = &info->limits[i];
2115 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2116 			err = __ovs_ct_limit_get_zone_limit(net, info->data,
2117 				ct_limit->zone, ct_limit->limit, reply);
2118 			if (err)
2119 				goto exit_err;
2120 		}
2121 	}
2122 
2123 exit_err:
2124 	rcu_read_unlock();
2125 	return err;
2126 }
2127 
2128 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2129 {
2130 	struct nlattr **a = info->attrs;
2131 	struct sk_buff *reply;
2132 	struct ovs_header *ovs_reply_header;
2133 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2134 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2135 	int err;
2136 
2137 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2138 					     &ovs_reply_header);
2139 	if (IS_ERR(reply))
2140 		return PTR_ERR(reply);
2141 
2142 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2143 		err = -EINVAL;
2144 		goto exit_err;
2145 	}
2146 
2147 	err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2148 					  ct_limit_info);
2149 	if (err)
2150 		goto exit_err;
2151 
2152 	static_branch_enable(&ovs_ct_limit_enabled);
2153 
2154 	genlmsg_end(reply, ovs_reply_header);
2155 	return genlmsg_reply(reply, info);
2156 
2157 exit_err:
2158 	nlmsg_free(reply);
2159 	return err;
2160 }
2161 
2162 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2163 {
2164 	struct nlattr **a = info->attrs;
2165 	struct sk_buff *reply;
2166 	struct ovs_header *ovs_reply_header;
2167 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2168 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2169 	int err;
2170 
2171 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2172 					     &ovs_reply_header);
2173 	if (IS_ERR(reply))
2174 		return PTR_ERR(reply);
2175 
2176 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2177 		err = -EINVAL;
2178 		goto exit_err;
2179 	}
2180 
2181 	err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2182 					  ct_limit_info);
2183 	if (err)
2184 		goto exit_err;
2185 
2186 	genlmsg_end(reply, ovs_reply_header);
2187 	return genlmsg_reply(reply, info);
2188 
2189 exit_err:
2190 	nlmsg_free(reply);
2191 	return err;
2192 }
2193 
2194 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2195 {
2196 	struct nlattr **a = info->attrs;
2197 	struct nlattr *nla_reply;
2198 	struct sk_buff *reply;
2199 	struct ovs_header *ovs_reply_header;
2200 	struct net *net = sock_net(skb->sk);
2201 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2202 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2203 	int err;
2204 
2205 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2206 					     &ovs_reply_header);
2207 	if (IS_ERR(reply))
2208 		return PTR_ERR(reply);
2209 
2210 	nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2211 	if (!nla_reply) {
2212 		err = -EMSGSIZE;
2213 		goto exit_err;
2214 	}
2215 
2216 	if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2217 		err = ovs_ct_limit_get_zone_limit(
2218 			net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2219 			reply);
2220 		if (err)
2221 			goto exit_err;
2222 	} else {
2223 		err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2224 						      reply);
2225 		if (err)
2226 			goto exit_err;
2227 	}
2228 
2229 	nla_nest_end(reply, nla_reply);
2230 	genlmsg_end(reply, ovs_reply_header);
2231 	return genlmsg_reply(reply, info);
2232 
2233 exit_err:
2234 	nlmsg_free(reply);
2235 	return err;
2236 }
2237 
2238 static const struct genl_small_ops ct_limit_genl_ops[] = {
2239 	{ .cmd = OVS_CT_LIMIT_CMD_SET,
2240 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2241 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2242 					   * privilege. */
2243 		.doit = ovs_ct_limit_cmd_set,
2244 	},
2245 	{ .cmd = OVS_CT_LIMIT_CMD_DEL,
2246 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2247 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2248 					   * privilege. */
2249 		.doit = ovs_ct_limit_cmd_del,
2250 	},
2251 	{ .cmd = OVS_CT_LIMIT_CMD_GET,
2252 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2253 		.flags = 0,		  /* OK for unprivileged users. */
2254 		.doit = ovs_ct_limit_cmd_get,
2255 	},
2256 };
2257 
2258 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2259 	.name = OVS_CT_LIMIT_MCGROUP,
2260 };
2261 
2262 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2263 	.hdrsize = sizeof(struct ovs_header),
2264 	.name = OVS_CT_LIMIT_FAMILY,
2265 	.version = OVS_CT_LIMIT_VERSION,
2266 	.maxattr = OVS_CT_LIMIT_ATTR_MAX,
2267 	.policy = ct_limit_policy,
2268 	.netnsok = true,
2269 	.parallel_ops = true,
2270 	.small_ops = ct_limit_genl_ops,
2271 	.n_small_ops = ARRAY_SIZE(ct_limit_genl_ops),
2272 	.mcgrps = &ovs_ct_limit_multicast_group,
2273 	.n_mcgrps = 1,
2274 	.module = THIS_MODULE,
2275 };
2276 #endif
2277 
2278 int ovs_ct_init(struct net *net)
2279 {
2280 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2281 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2282 
2283 	if (nf_connlabels_get(net, n_bits - 1)) {
2284 		ovs_net->xt_label = false;
2285 		OVS_NLERR(true, "Failed to set connlabel length");
2286 	} else {
2287 		ovs_net->xt_label = true;
2288 	}
2289 
2290 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2291 	return ovs_ct_limit_init(net, ovs_net);
2292 #else
2293 	return 0;
2294 #endif
2295 }
2296 
2297 void ovs_ct_exit(struct net *net)
2298 {
2299 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2300 
2301 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2302 	ovs_ct_limit_exit(net, ovs_net);
2303 #endif
2304 
2305 	if (ovs_net->xt_label)
2306 		nf_connlabels_put(net);
2307 }
2308