1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015 Nicira, Inc. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/openvswitch.h> 8 #include <linux/tcp.h> 9 #include <linux/udp.h> 10 #include <linux/sctp.h> 11 #include <linux/static_key.h> 12 #include <net/ip.h> 13 #include <net/genetlink.h> 14 #include <net/netfilter/nf_conntrack_core.h> 15 #include <net/netfilter/nf_conntrack_count.h> 16 #include <net/netfilter/nf_conntrack_helper.h> 17 #include <net/netfilter/nf_conntrack_labels.h> 18 #include <net/netfilter/nf_conntrack_seqadj.h> 19 #include <net/netfilter/nf_conntrack_timeout.h> 20 #include <net/netfilter/nf_conntrack_zones.h> 21 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 22 #include <net/ipv6_frag.h> 23 24 #if IS_ENABLED(CONFIG_NF_NAT) 25 #include <net/netfilter/nf_nat.h> 26 #endif 27 28 #include "datapath.h" 29 #include "conntrack.h" 30 #include "flow.h" 31 #include "flow_netlink.h" 32 33 struct ovs_ct_len_tbl { 34 int maxlen; 35 int minlen; 36 }; 37 38 /* Metadata mark for masked write to conntrack mark */ 39 struct md_mark { 40 u32 value; 41 u32 mask; 42 }; 43 44 /* Metadata label for masked write to conntrack label. */ 45 struct md_labels { 46 struct ovs_key_ct_labels value; 47 struct ovs_key_ct_labels mask; 48 }; 49 50 enum ovs_ct_nat { 51 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 52 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 53 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 54 }; 55 56 /* Conntrack action context for execution. */ 57 struct ovs_conntrack_info { 58 struct nf_conntrack_helper *helper; 59 struct nf_conntrack_zone zone; 60 struct nf_conn *ct; 61 u8 commit : 1; 62 u8 nat : 3; /* enum ovs_ct_nat */ 63 u8 force : 1; 64 u8 have_eventmask : 1; 65 u16 family; 66 u32 eventmask; /* Mask of 1 << IPCT_*. */ 67 struct md_mark mark; 68 struct md_labels labels; 69 char timeout[CTNL_TIMEOUT_NAME_MAX]; 70 struct nf_ct_timeout *nf_ct_timeout; 71 #if IS_ENABLED(CONFIG_NF_NAT) 72 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */ 73 #endif 74 }; 75 76 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 77 #define OVS_CT_LIMIT_UNLIMITED 0 78 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED 79 #define CT_LIMIT_HASH_BUCKETS 512 80 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled); 81 82 struct ovs_ct_limit { 83 /* Elements in ovs_ct_limit_info->limits hash table */ 84 struct hlist_node hlist_node; 85 struct rcu_head rcu; 86 u16 zone; 87 u32 limit; 88 }; 89 90 struct ovs_ct_limit_info { 91 u32 default_limit; 92 struct hlist_head *limits; 93 struct nf_conncount_data *data; 94 }; 95 96 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = { 97 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, }, 98 }; 99 #endif 100 101 static bool labels_nonzero(const struct ovs_key_ct_labels *labels); 102 103 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 104 105 static u16 key_to_nfproto(const struct sw_flow_key *key) 106 { 107 switch (ntohs(key->eth.type)) { 108 case ETH_P_IP: 109 return NFPROTO_IPV4; 110 case ETH_P_IPV6: 111 return NFPROTO_IPV6; 112 default: 113 return NFPROTO_UNSPEC; 114 } 115 } 116 117 /* Map SKB connection state into the values used by flow definition. */ 118 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 119 { 120 u8 ct_state = OVS_CS_F_TRACKED; 121 122 switch (ctinfo) { 123 case IP_CT_ESTABLISHED_REPLY: 124 case IP_CT_RELATED_REPLY: 125 ct_state |= OVS_CS_F_REPLY_DIR; 126 break; 127 default: 128 break; 129 } 130 131 switch (ctinfo) { 132 case IP_CT_ESTABLISHED: 133 case IP_CT_ESTABLISHED_REPLY: 134 ct_state |= OVS_CS_F_ESTABLISHED; 135 break; 136 case IP_CT_RELATED: 137 case IP_CT_RELATED_REPLY: 138 ct_state |= OVS_CS_F_RELATED; 139 break; 140 case IP_CT_NEW: 141 ct_state |= OVS_CS_F_NEW; 142 break; 143 default: 144 break; 145 } 146 147 return ct_state; 148 } 149 150 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 151 { 152 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 153 return ct ? ct->mark : 0; 154 #else 155 return 0; 156 #endif 157 } 158 159 /* Guard against conntrack labels max size shrinking below 128 bits. */ 160 #if NF_CT_LABELS_MAX_SIZE < 16 161 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes 162 #endif 163 164 static void ovs_ct_get_labels(const struct nf_conn *ct, 165 struct ovs_key_ct_labels *labels) 166 { 167 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 168 169 if (cl) 170 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN); 171 else 172 memset(labels, 0, OVS_CT_LABELS_LEN); 173 } 174 175 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key, 176 const struct nf_conntrack_tuple *orig, 177 u8 icmp_proto) 178 { 179 key->ct_orig_proto = orig->dst.protonum; 180 if (orig->dst.protonum == icmp_proto) { 181 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type); 182 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code); 183 } else { 184 key->ct.orig_tp.src = orig->src.u.all; 185 key->ct.orig_tp.dst = orig->dst.u.all; 186 } 187 } 188 189 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 190 const struct nf_conntrack_zone *zone, 191 const struct nf_conn *ct) 192 { 193 key->ct_state = state; 194 key->ct_zone = zone->id; 195 key->ct.mark = ovs_ct_get_mark(ct); 196 ovs_ct_get_labels(ct, &key->ct.labels); 197 198 if (ct) { 199 const struct nf_conntrack_tuple *orig; 200 201 /* Use the master if we have one. */ 202 if (ct->master) 203 ct = ct->master; 204 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 205 206 /* IP version must match with the master connection. */ 207 if (key->eth.type == htons(ETH_P_IP) && 208 nf_ct_l3num(ct) == NFPROTO_IPV4) { 209 key->ipv4.ct_orig.src = orig->src.u3.ip; 210 key->ipv4.ct_orig.dst = orig->dst.u3.ip; 211 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP); 212 return; 213 } else if (key->eth.type == htons(ETH_P_IPV6) && 214 !sw_flow_key_is_nd(key) && 215 nf_ct_l3num(ct) == NFPROTO_IPV6) { 216 key->ipv6.ct_orig.src = orig->src.u3.in6; 217 key->ipv6.ct_orig.dst = orig->dst.u3.in6; 218 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP); 219 return; 220 } 221 } 222 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack 223 * original direction key fields. 224 */ 225 key->ct_orig_proto = 0; 226 } 227 228 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has 229 * previously sent the packet to conntrack via the ct action. If 230 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 231 * initialized from the connection status. 232 */ 233 static void ovs_ct_update_key(const struct sk_buff *skb, 234 const struct ovs_conntrack_info *info, 235 struct sw_flow_key *key, bool post_ct, 236 bool keep_nat_flags) 237 { 238 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 239 enum ip_conntrack_info ctinfo; 240 struct nf_conn *ct; 241 u8 state = 0; 242 243 ct = nf_ct_get(skb, &ctinfo); 244 if (ct) { 245 state = ovs_ct_get_state(ctinfo); 246 /* All unconfirmed entries are NEW connections. */ 247 if (!nf_ct_is_confirmed(ct)) 248 state |= OVS_CS_F_NEW; 249 /* OVS persists the related flag for the duration of the 250 * connection. 251 */ 252 if (ct->master) 253 state |= OVS_CS_F_RELATED; 254 if (keep_nat_flags) { 255 state |= key->ct_state & OVS_CS_F_NAT_MASK; 256 } else { 257 if (ct->status & IPS_SRC_NAT) 258 state |= OVS_CS_F_SRC_NAT; 259 if (ct->status & IPS_DST_NAT) 260 state |= OVS_CS_F_DST_NAT; 261 } 262 zone = nf_ct_zone(ct); 263 } else if (post_ct) { 264 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 265 if (info) 266 zone = &info->zone; 267 } 268 __ovs_ct_update_key(key, state, zone, ct); 269 } 270 271 /* This is called to initialize CT key fields possibly coming in from the local 272 * stack. 273 */ 274 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 275 { 276 ovs_ct_update_key(skb, NULL, key, false, false); 277 } 278 279 int ovs_ct_put_key(const struct sw_flow_key *swkey, 280 const struct sw_flow_key *output, struct sk_buff *skb) 281 { 282 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state)) 283 return -EMSGSIZE; 284 285 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 286 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone)) 287 return -EMSGSIZE; 288 289 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 290 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark)) 291 return -EMSGSIZE; 292 293 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 294 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels), 295 &output->ct.labels)) 296 return -EMSGSIZE; 297 298 if (swkey->ct_orig_proto) { 299 if (swkey->eth.type == htons(ETH_P_IP)) { 300 struct ovs_key_ct_tuple_ipv4 orig; 301 302 memset(&orig, 0, sizeof(orig)); 303 orig.ipv4_src = output->ipv4.ct_orig.src; 304 orig.ipv4_dst = output->ipv4.ct_orig.dst; 305 orig.src_port = output->ct.orig_tp.src; 306 orig.dst_port = output->ct.orig_tp.dst; 307 orig.ipv4_proto = output->ct_orig_proto; 308 309 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4, 310 sizeof(orig), &orig)) 311 return -EMSGSIZE; 312 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 313 struct ovs_key_ct_tuple_ipv6 orig; 314 315 memset(&orig, 0, sizeof(orig)); 316 memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32, 317 sizeof(orig.ipv6_src)); 318 memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32, 319 sizeof(orig.ipv6_dst)); 320 orig.src_port = output->ct.orig_tp.src; 321 orig.dst_port = output->ct.orig_tp.dst; 322 orig.ipv6_proto = output->ct_orig_proto; 323 324 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6, 325 sizeof(orig), &orig)) 326 return -EMSGSIZE; 327 } 328 } 329 330 return 0; 331 } 332 333 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key, 334 u32 ct_mark, u32 mask) 335 { 336 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 337 u32 new_mark; 338 339 new_mark = ct_mark | (ct->mark & ~(mask)); 340 if (ct->mark != new_mark) { 341 ct->mark = new_mark; 342 if (nf_ct_is_confirmed(ct)) 343 nf_conntrack_event_cache(IPCT_MARK, ct); 344 key->ct.mark = new_mark; 345 } 346 347 return 0; 348 #else 349 return -ENOTSUPP; 350 #endif 351 } 352 353 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct) 354 { 355 struct nf_conn_labels *cl; 356 357 cl = nf_ct_labels_find(ct); 358 if (!cl) { 359 nf_ct_labels_ext_add(ct); 360 cl = nf_ct_labels_find(ct); 361 } 362 363 return cl; 364 } 365 366 /* Initialize labels for a new, yet to be committed conntrack entry. Note that 367 * since the new connection is not yet confirmed, and thus no-one else has 368 * access to it's labels, we simply write them over. 369 */ 370 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key, 371 const struct ovs_key_ct_labels *labels, 372 const struct ovs_key_ct_labels *mask) 373 { 374 struct nf_conn_labels *cl, *master_cl; 375 bool have_mask = labels_nonzero(mask); 376 377 /* Inherit master's labels to the related connection? */ 378 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL; 379 380 if (!master_cl && !have_mask) 381 return 0; /* Nothing to do. */ 382 383 cl = ovs_ct_get_conn_labels(ct); 384 if (!cl) 385 return -ENOSPC; 386 387 /* Inherit the master's labels, if any. */ 388 if (master_cl) 389 *cl = *master_cl; 390 391 if (have_mask) { 392 u32 *dst = (u32 *)cl->bits; 393 int i; 394 395 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 396 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) | 397 (labels->ct_labels_32[i] 398 & mask->ct_labels_32[i]); 399 } 400 401 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the 402 * IPCT_LABEL bit is set in the event cache. 403 */ 404 nf_conntrack_event_cache(IPCT_LABEL, ct); 405 406 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 407 408 return 0; 409 } 410 411 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key, 412 const struct ovs_key_ct_labels *labels, 413 const struct ovs_key_ct_labels *mask) 414 { 415 struct nf_conn_labels *cl; 416 int err; 417 418 cl = ovs_ct_get_conn_labels(ct); 419 if (!cl) 420 return -ENOSPC; 421 422 err = nf_connlabels_replace(ct, labels->ct_labels_32, 423 mask->ct_labels_32, 424 OVS_CT_LABELS_LEN_32); 425 if (err) 426 return err; 427 428 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 429 430 return 0; 431 } 432 433 /* 'skb' should already be pulled to nh_ofs. */ 434 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 435 { 436 const struct nf_conntrack_helper *helper; 437 const struct nf_conn_help *help; 438 enum ip_conntrack_info ctinfo; 439 unsigned int protoff; 440 struct nf_conn *ct; 441 int err; 442 443 ct = nf_ct_get(skb, &ctinfo); 444 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 445 return NF_ACCEPT; 446 447 help = nfct_help(ct); 448 if (!help) 449 return NF_ACCEPT; 450 451 helper = rcu_dereference(help->helper); 452 if (!helper) 453 return NF_ACCEPT; 454 455 switch (proto) { 456 case NFPROTO_IPV4: 457 protoff = ip_hdrlen(skb); 458 break; 459 case NFPROTO_IPV6: { 460 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 461 __be16 frag_off; 462 int ofs; 463 464 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 465 &frag_off); 466 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 467 pr_debug("proto header not found\n"); 468 return NF_ACCEPT; 469 } 470 protoff = ofs; 471 break; 472 } 473 default: 474 WARN_ONCE(1, "helper invoked on non-IP family!"); 475 return NF_DROP; 476 } 477 478 err = helper->help(skb, protoff, ct, ctinfo); 479 if (err != NF_ACCEPT) 480 return err; 481 482 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 483 * FTP with NAT) adusting the TCP payload size when mangling IP 484 * addresses and/or port numbers in the text-based control connection. 485 */ 486 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 487 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 488 return NF_DROP; 489 return NF_ACCEPT; 490 } 491 492 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 493 * value if 'skb' is freed. 494 */ 495 static int handle_fragments(struct net *net, struct sw_flow_key *key, 496 u16 zone, struct sk_buff *skb) 497 { 498 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 499 int err; 500 501 if (key->eth.type == htons(ETH_P_IP)) { 502 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 503 504 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 505 err = ip_defrag(net, skb, user); 506 if (err) 507 return err; 508 509 ovs_cb.mru = IPCB(skb)->frag_max_size; 510 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 511 } else if (key->eth.type == htons(ETH_P_IPV6)) { 512 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 513 514 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 515 err = nf_ct_frag6_gather(net, skb, user); 516 if (err) { 517 if (err != -EINPROGRESS) 518 kfree_skb(skb); 519 return err; 520 } 521 522 key->ip.proto = ipv6_hdr(skb)->nexthdr; 523 ovs_cb.mru = IP6CB(skb)->frag_max_size; 524 #endif 525 } else { 526 kfree_skb(skb); 527 return -EPFNOSUPPORT; 528 } 529 530 /* The key extracted from the fragment that completed this datagram 531 * likely didn't have an L4 header, so regenerate it. 532 */ 533 ovs_flow_key_update_l3l4(skb, key); 534 535 key->ip.frag = OVS_FRAG_TYPE_NONE; 536 skb_clear_hash(skb); 537 skb->ignore_df = 1; 538 *OVS_CB(skb) = ovs_cb; 539 540 return 0; 541 } 542 543 static struct nf_conntrack_expect * 544 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 545 u16 proto, const struct sk_buff *skb) 546 { 547 struct nf_conntrack_tuple tuple; 548 struct nf_conntrack_expect *exp; 549 550 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 551 return NULL; 552 553 exp = __nf_ct_expect_find(net, zone, &tuple); 554 if (exp) { 555 struct nf_conntrack_tuple_hash *h; 556 557 /* Delete existing conntrack entry, if it clashes with the 558 * expectation. This can happen since conntrack ALGs do not 559 * check for clashes between (new) expectations and existing 560 * conntrack entries. nf_conntrack_in() will check the 561 * expectations only if a conntrack entry can not be found, 562 * which can lead to OVS finding the expectation (here) in the 563 * init direction, but which will not be removed by the 564 * nf_conntrack_in() call, if a matching conntrack entry is 565 * found instead. In this case all init direction packets 566 * would be reported as new related packets, while reply 567 * direction packets would be reported as un-related 568 * established packets. 569 */ 570 h = nf_conntrack_find_get(net, zone, &tuple); 571 if (h) { 572 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 573 574 nf_ct_delete(ct, 0, 0); 575 nf_conntrack_put(&ct->ct_general); 576 } 577 } 578 579 return exp; 580 } 581 582 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 583 static enum ip_conntrack_info 584 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 585 { 586 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 587 588 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 589 return IP_CT_ESTABLISHED_REPLY; 590 /* Once we've had two way comms, always ESTABLISHED. */ 591 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 592 return IP_CT_ESTABLISHED; 593 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 594 return IP_CT_RELATED; 595 return IP_CT_NEW; 596 } 597 598 /* Find an existing connection which this packet belongs to without 599 * re-attributing statistics or modifying the connection state. This allows an 600 * skb->_nfct lost due to an upcall to be recovered during actions execution. 601 * 602 * Must be called with rcu_read_lock. 603 * 604 * On success, populates skb->_nfct and returns the connection. Returns NULL 605 * if there is no existing entry. 606 */ 607 static struct nf_conn * 608 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 609 u8 l3num, struct sk_buff *skb, bool natted) 610 { 611 struct nf_conntrack_tuple tuple; 612 struct nf_conntrack_tuple_hash *h; 613 struct nf_conn *ct; 614 615 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num, 616 net, &tuple)) { 617 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 618 return NULL; 619 } 620 621 /* Must invert the tuple if skb has been transformed by NAT. */ 622 if (natted) { 623 struct nf_conntrack_tuple inverse; 624 625 if (!nf_ct_invert_tuple(&inverse, &tuple)) { 626 pr_debug("ovs_ct_find_existing: Inversion failed!\n"); 627 return NULL; 628 } 629 tuple = inverse; 630 } 631 632 /* look for tuple match */ 633 h = nf_conntrack_find_get(net, zone, &tuple); 634 if (!h) 635 return NULL; /* Not found. */ 636 637 ct = nf_ct_tuplehash_to_ctrack(h); 638 639 /* Inverted packet tuple matches the reverse direction conntrack tuple, 640 * select the other tuplehash to get the right 'ctinfo' bits for this 641 * packet. 642 */ 643 if (natted) 644 h = &ct->tuplehash[!h->tuple.dst.dir]; 645 646 nf_ct_set(skb, ct, ovs_ct_get_info(h)); 647 return ct; 648 } 649 650 static 651 struct nf_conn *ovs_ct_executed(struct net *net, 652 const struct sw_flow_key *key, 653 const struct ovs_conntrack_info *info, 654 struct sk_buff *skb, 655 bool *ct_executed) 656 { 657 struct nf_conn *ct = NULL; 658 659 /* If no ct, check if we have evidence that an existing conntrack entry 660 * might be found for this skb. This happens when we lose a skb->_nfct 661 * due to an upcall, or if the direction is being forced. If the 662 * connection was not confirmed, it is not cached and needs to be run 663 * through conntrack again. 664 */ 665 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) && 666 !(key->ct_state & OVS_CS_F_INVALID) && 667 (key->ct_zone == info->zone.id); 668 669 if (*ct_executed || (!key->ct_state && info->force)) { 670 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb, 671 !!(key->ct_state & 672 OVS_CS_F_NAT_MASK)); 673 } 674 675 return ct; 676 } 677 678 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 679 static bool skb_nfct_cached(struct net *net, 680 const struct sw_flow_key *key, 681 const struct ovs_conntrack_info *info, 682 struct sk_buff *skb) 683 { 684 enum ip_conntrack_info ctinfo; 685 struct nf_conn *ct; 686 bool ct_executed = true; 687 688 ct = nf_ct_get(skb, &ctinfo); 689 if (!ct) 690 ct = ovs_ct_executed(net, key, info, skb, &ct_executed); 691 692 if (ct) 693 nf_ct_get(skb, &ctinfo); 694 else 695 return false; 696 697 if (!net_eq(net, read_pnet(&ct->ct_net))) 698 return false; 699 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 700 return false; 701 if (info->helper) { 702 struct nf_conn_help *help; 703 704 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 705 if (help && rcu_access_pointer(help->helper) != info->helper) 706 return false; 707 } 708 if (info->nf_ct_timeout) { 709 struct nf_conn_timeout *timeout_ext; 710 711 timeout_ext = nf_ct_timeout_find(ct); 712 if (!timeout_ext || info->nf_ct_timeout != 713 rcu_dereference(timeout_ext->timeout)) 714 return false; 715 } 716 /* Force conntrack entry direction to the current packet? */ 717 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 718 /* Delete the conntrack entry if confirmed, else just release 719 * the reference. 720 */ 721 if (nf_ct_is_confirmed(ct)) 722 nf_ct_delete(ct, 0, 0); 723 724 nf_conntrack_put(&ct->ct_general); 725 nf_ct_set(skb, NULL, 0); 726 return false; 727 } 728 729 return ct_executed; 730 } 731 732 #if IS_ENABLED(CONFIG_NF_NAT) 733 /* Modelled after nf_nat_ipv[46]_fn(). 734 * range is only used for new, uninitialized NAT state. 735 * Returns either NF_ACCEPT or NF_DROP. 736 */ 737 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 738 enum ip_conntrack_info ctinfo, 739 const struct nf_nat_range2 *range, 740 enum nf_nat_manip_type maniptype) 741 { 742 int hooknum, nh_off, err = NF_ACCEPT; 743 744 nh_off = skb_network_offset(skb); 745 skb_pull_rcsum(skb, nh_off); 746 747 /* See HOOK2MANIP(). */ 748 if (maniptype == NF_NAT_MANIP_SRC) 749 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 750 else 751 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 752 753 switch (ctinfo) { 754 case IP_CT_RELATED: 755 case IP_CT_RELATED_REPLY: 756 if (IS_ENABLED(CONFIG_NF_NAT) && 757 skb->protocol == htons(ETH_P_IP) && 758 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 759 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 760 hooknum)) 761 err = NF_DROP; 762 goto push; 763 } else if (IS_ENABLED(CONFIG_IPV6) && 764 skb->protocol == htons(ETH_P_IPV6)) { 765 __be16 frag_off; 766 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 767 int hdrlen = ipv6_skip_exthdr(skb, 768 sizeof(struct ipv6hdr), 769 &nexthdr, &frag_off); 770 771 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 772 if (!nf_nat_icmpv6_reply_translation(skb, ct, 773 ctinfo, 774 hooknum, 775 hdrlen)) 776 err = NF_DROP; 777 goto push; 778 } 779 } 780 /* Non-ICMP, fall thru to initialize if needed. */ 781 /* fall through */ 782 case IP_CT_NEW: 783 /* Seen it before? This can happen for loopback, retrans, 784 * or local packets. 785 */ 786 if (!nf_nat_initialized(ct, maniptype)) { 787 /* Initialize according to the NAT action. */ 788 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 789 /* Action is set up to establish a new 790 * mapping. 791 */ 792 ? nf_nat_setup_info(ct, range, maniptype) 793 : nf_nat_alloc_null_binding(ct, hooknum); 794 if (err != NF_ACCEPT) 795 goto push; 796 } 797 break; 798 799 case IP_CT_ESTABLISHED: 800 case IP_CT_ESTABLISHED_REPLY: 801 break; 802 803 default: 804 err = NF_DROP; 805 goto push; 806 } 807 808 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 809 push: 810 skb_push(skb, nh_off); 811 skb_postpush_rcsum(skb, skb->data, nh_off); 812 813 return err; 814 } 815 816 static void ovs_nat_update_key(struct sw_flow_key *key, 817 const struct sk_buff *skb, 818 enum nf_nat_manip_type maniptype) 819 { 820 if (maniptype == NF_NAT_MANIP_SRC) { 821 __be16 src; 822 823 key->ct_state |= OVS_CS_F_SRC_NAT; 824 if (key->eth.type == htons(ETH_P_IP)) 825 key->ipv4.addr.src = ip_hdr(skb)->saddr; 826 else if (key->eth.type == htons(ETH_P_IPV6)) 827 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 828 sizeof(key->ipv6.addr.src)); 829 else 830 return; 831 832 if (key->ip.proto == IPPROTO_UDP) 833 src = udp_hdr(skb)->source; 834 else if (key->ip.proto == IPPROTO_TCP) 835 src = tcp_hdr(skb)->source; 836 else if (key->ip.proto == IPPROTO_SCTP) 837 src = sctp_hdr(skb)->source; 838 else 839 return; 840 841 key->tp.src = src; 842 } else { 843 __be16 dst; 844 845 key->ct_state |= OVS_CS_F_DST_NAT; 846 if (key->eth.type == htons(ETH_P_IP)) 847 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 848 else if (key->eth.type == htons(ETH_P_IPV6)) 849 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 850 sizeof(key->ipv6.addr.dst)); 851 else 852 return; 853 854 if (key->ip.proto == IPPROTO_UDP) 855 dst = udp_hdr(skb)->dest; 856 else if (key->ip.proto == IPPROTO_TCP) 857 dst = tcp_hdr(skb)->dest; 858 else if (key->ip.proto == IPPROTO_SCTP) 859 dst = sctp_hdr(skb)->dest; 860 else 861 return; 862 863 key->tp.dst = dst; 864 } 865 } 866 867 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 868 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 869 const struct ovs_conntrack_info *info, 870 struct sk_buff *skb, struct nf_conn *ct, 871 enum ip_conntrack_info ctinfo) 872 { 873 enum nf_nat_manip_type maniptype; 874 int err; 875 876 /* Add NAT extension if not confirmed yet. */ 877 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 878 return NF_ACCEPT; /* Can't NAT. */ 879 880 /* Determine NAT type. 881 * Check if the NAT type can be deduced from the tracked connection. 882 * Make sure new expected connections (IP_CT_RELATED) are NATted only 883 * when committing. 884 */ 885 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 886 ct->status & IPS_NAT_MASK && 887 (ctinfo != IP_CT_RELATED || info->commit)) { 888 /* NAT an established or related connection like before. */ 889 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 890 /* This is the REPLY direction for a connection 891 * for which NAT was applied in the forward 892 * direction. Do the reverse NAT. 893 */ 894 maniptype = ct->status & IPS_SRC_NAT 895 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 896 else 897 maniptype = ct->status & IPS_SRC_NAT 898 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 899 } else if (info->nat & OVS_CT_SRC_NAT) { 900 maniptype = NF_NAT_MANIP_SRC; 901 } else if (info->nat & OVS_CT_DST_NAT) { 902 maniptype = NF_NAT_MANIP_DST; 903 } else { 904 return NF_ACCEPT; /* Connection is not NATed. */ 905 } 906 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 907 908 if (err == NF_ACCEPT && 909 ct->status & IPS_SRC_NAT && ct->status & IPS_DST_NAT) { 910 if (maniptype == NF_NAT_MANIP_SRC) 911 maniptype = NF_NAT_MANIP_DST; 912 else 913 maniptype = NF_NAT_MANIP_SRC; 914 915 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, 916 maniptype); 917 } 918 919 /* Mark NAT done if successful and update the flow key. */ 920 if (err == NF_ACCEPT) 921 ovs_nat_update_key(key, skb, maniptype); 922 923 return err; 924 } 925 #else /* !CONFIG_NF_NAT */ 926 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 927 const struct ovs_conntrack_info *info, 928 struct sk_buff *skb, struct nf_conn *ct, 929 enum ip_conntrack_info ctinfo) 930 { 931 return NF_ACCEPT; 932 } 933 #endif 934 935 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 936 * not done already. Update key with new CT state after passing the packet 937 * through conntrack. 938 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be 939 * set to NULL and 0 will be returned. 940 */ 941 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 942 const struct ovs_conntrack_info *info, 943 struct sk_buff *skb) 944 { 945 /* If we are recirculating packets to match on conntrack fields and 946 * committing with a separate conntrack action, then we don't need to 947 * actually run the packet through conntrack twice unless it's for a 948 * different zone. 949 */ 950 bool cached = skb_nfct_cached(net, key, info, skb); 951 enum ip_conntrack_info ctinfo; 952 struct nf_conn *ct; 953 954 if (!cached) { 955 struct nf_hook_state state = { 956 .hook = NF_INET_PRE_ROUTING, 957 .pf = info->family, 958 .net = net, 959 }; 960 struct nf_conn *tmpl = info->ct; 961 int err; 962 963 /* Associate skb with specified zone. */ 964 if (tmpl) { 965 if (skb_nfct(skb)) 966 nf_conntrack_put(skb_nfct(skb)); 967 nf_conntrack_get(&tmpl->ct_general); 968 nf_ct_set(skb, tmpl, IP_CT_NEW); 969 } 970 971 err = nf_conntrack_in(skb, &state); 972 if (err != NF_ACCEPT) 973 return -ENOENT; 974 975 /* Clear CT state NAT flags to mark that we have not yet done 976 * NAT after the nf_conntrack_in() call. We can actually clear 977 * the whole state, as it will be re-initialized below. 978 */ 979 key->ct_state = 0; 980 981 /* Update the key, but keep the NAT flags. */ 982 ovs_ct_update_key(skb, info, key, true, true); 983 } 984 985 ct = nf_ct_get(skb, &ctinfo); 986 if (ct) { 987 bool add_helper = false; 988 989 /* Packets starting a new connection must be NATted before the 990 * helper, so that the helper knows about the NAT. We enforce 991 * this by delaying both NAT and helper calls for unconfirmed 992 * connections until the committing CT action. For later 993 * packets NAT and Helper may be called in either order. 994 * 995 * NAT will be done only if the CT action has NAT, and only 996 * once per packet (per zone), as guarded by the NAT bits in 997 * the key->ct_state. 998 */ 999 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) && 1000 (nf_ct_is_confirmed(ct) || info->commit) && 1001 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 1002 return -EINVAL; 1003 } 1004 1005 /* Userspace may decide to perform a ct lookup without a helper 1006 * specified followed by a (recirculate and) commit with one, 1007 * or attach a helper in a later commit. Therefore, for 1008 * connections which we will commit, we may need to attach 1009 * the helper here. 1010 */ 1011 if (info->commit && info->helper && !nfct_help(ct)) { 1012 int err = __nf_ct_try_assign_helper(ct, info->ct, 1013 GFP_ATOMIC); 1014 if (err) 1015 return err; 1016 add_helper = true; 1017 1018 /* helper installed, add seqadj if NAT is required */ 1019 if (info->nat && !nfct_seqadj(ct)) { 1020 if (!nfct_seqadj_ext_add(ct)) 1021 return -EINVAL; 1022 } 1023 } 1024 1025 /* Call the helper only if: 1026 * - nf_conntrack_in() was executed above ("!cached") or a 1027 * helper was just attached ("add_helper") for a confirmed 1028 * connection, or 1029 * - When committing an unconfirmed connection. 1030 */ 1031 if ((nf_ct_is_confirmed(ct) ? !cached || add_helper : 1032 info->commit) && 1033 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 1034 return -EINVAL; 1035 } 1036 } 1037 1038 return 0; 1039 } 1040 1041 /* Lookup connection and read fields into key. */ 1042 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 1043 const struct ovs_conntrack_info *info, 1044 struct sk_buff *skb) 1045 { 1046 struct nf_conntrack_expect *exp; 1047 1048 /* If we pass an expected packet through nf_conntrack_in() the 1049 * expectation is typically removed, but the packet could still be 1050 * lost in upcall processing. To prevent this from happening we 1051 * perform an explicit expectation lookup. Expected connections are 1052 * always new, and will be passed through conntrack only when they are 1053 * committed, as it is OK to remove the expectation at that time. 1054 */ 1055 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 1056 if (exp) { 1057 u8 state; 1058 1059 /* NOTE: New connections are NATted and Helped only when 1060 * committed, so we are not calling into NAT here. 1061 */ 1062 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 1063 __ovs_ct_update_key(key, state, &info->zone, exp->master); 1064 } else { 1065 struct nf_conn *ct; 1066 int err; 1067 1068 err = __ovs_ct_lookup(net, key, info, skb); 1069 if (err) 1070 return err; 1071 1072 ct = (struct nf_conn *)skb_nfct(skb); 1073 if (ct) 1074 nf_ct_deliver_cached_events(ct); 1075 } 1076 1077 return 0; 1078 } 1079 1080 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 1081 { 1082 size_t i; 1083 1084 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 1085 if (labels->ct_labels_32[i]) 1086 return true; 1087 1088 return false; 1089 } 1090 1091 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 1092 static struct hlist_head *ct_limit_hash_bucket( 1093 const struct ovs_ct_limit_info *info, u16 zone) 1094 { 1095 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)]; 1096 } 1097 1098 /* Call with ovs_mutex */ 1099 static void ct_limit_set(const struct ovs_ct_limit_info *info, 1100 struct ovs_ct_limit *new_ct_limit) 1101 { 1102 struct ovs_ct_limit *ct_limit; 1103 struct hlist_head *head; 1104 1105 head = ct_limit_hash_bucket(info, new_ct_limit->zone); 1106 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 1107 if (ct_limit->zone == new_ct_limit->zone) { 1108 hlist_replace_rcu(&ct_limit->hlist_node, 1109 &new_ct_limit->hlist_node); 1110 kfree_rcu(ct_limit, rcu); 1111 return; 1112 } 1113 } 1114 1115 hlist_add_head_rcu(&new_ct_limit->hlist_node, head); 1116 } 1117 1118 /* Call with ovs_mutex */ 1119 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone) 1120 { 1121 struct ovs_ct_limit *ct_limit; 1122 struct hlist_head *head; 1123 struct hlist_node *n; 1124 1125 head = ct_limit_hash_bucket(info, zone); 1126 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) { 1127 if (ct_limit->zone == zone) { 1128 hlist_del_rcu(&ct_limit->hlist_node); 1129 kfree_rcu(ct_limit, rcu); 1130 return; 1131 } 1132 } 1133 } 1134 1135 /* Call with RCU read lock */ 1136 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone) 1137 { 1138 struct ovs_ct_limit *ct_limit; 1139 struct hlist_head *head; 1140 1141 head = ct_limit_hash_bucket(info, zone); 1142 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 1143 if (ct_limit->zone == zone) 1144 return ct_limit->limit; 1145 } 1146 1147 return info->default_limit; 1148 } 1149 1150 static int ovs_ct_check_limit(struct net *net, 1151 const struct ovs_conntrack_info *info, 1152 const struct nf_conntrack_tuple *tuple) 1153 { 1154 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1155 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 1156 u32 per_zone_limit, connections; 1157 u32 conncount_key; 1158 1159 conncount_key = info->zone.id; 1160 1161 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id); 1162 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED) 1163 return 0; 1164 1165 connections = nf_conncount_count(net, ct_limit_info->data, 1166 &conncount_key, tuple, &info->zone); 1167 if (connections > per_zone_limit) 1168 return -ENOMEM; 1169 1170 return 0; 1171 } 1172 #endif 1173 1174 /* Lookup connection and confirm if unconfirmed. */ 1175 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 1176 const struct ovs_conntrack_info *info, 1177 struct sk_buff *skb) 1178 { 1179 enum ip_conntrack_info ctinfo; 1180 struct nf_conn *ct; 1181 int err; 1182 1183 err = __ovs_ct_lookup(net, key, info, skb); 1184 if (err) 1185 return err; 1186 1187 /* The connection could be invalid, in which case this is a no-op.*/ 1188 ct = nf_ct_get(skb, &ctinfo); 1189 if (!ct) 1190 return 0; 1191 1192 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 1193 if (static_branch_unlikely(&ovs_ct_limit_enabled)) { 1194 if (!nf_ct_is_confirmed(ct)) { 1195 err = ovs_ct_check_limit(net, info, 1196 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); 1197 if (err) { 1198 net_warn_ratelimited("openvswitch: zone: %u " 1199 "exceeds conntrack limit\n", 1200 info->zone.id); 1201 return err; 1202 } 1203 } 1204 } 1205 #endif 1206 1207 /* Set the conntrack event mask if given. NEW and DELETE events have 1208 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener 1209 * typically would receive many kinds of updates. Setting the event 1210 * mask allows those events to be filtered. The set event mask will 1211 * remain in effect for the lifetime of the connection unless changed 1212 * by a further CT action with both the commit flag and the eventmask 1213 * option. */ 1214 if (info->have_eventmask) { 1215 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct); 1216 1217 if (cache) 1218 cache->ctmask = info->eventmask; 1219 } 1220 1221 /* Apply changes before confirming the connection so that the initial 1222 * conntrack NEW netlink event carries the values given in the CT 1223 * action. 1224 */ 1225 if (info->mark.mask) { 1226 err = ovs_ct_set_mark(ct, key, info->mark.value, 1227 info->mark.mask); 1228 if (err) 1229 return err; 1230 } 1231 if (!nf_ct_is_confirmed(ct)) { 1232 err = ovs_ct_init_labels(ct, key, &info->labels.value, 1233 &info->labels.mask); 1234 if (err) 1235 return err; 1236 } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1237 labels_nonzero(&info->labels.mask)) { 1238 err = ovs_ct_set_labels(ct, key, &info->labels.value, 1239 &info->labels.mask); 1240 if (err) 1241 return err; 1242 } 1243 /* This will take care of sending queued events even if the connection 1244 * is already confirmed. 1245 */ 1246 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 1247 return -EINVAL; 1248 1249 return 0; 1250 } 1251 1252 /* Trim the skb to the length specified by the IP/IPv6 header, 1253 * removing any trailing lower-layer padding. This prepares the skb 1254 * for higher-layer processing that assumes skb->len excludes padding 1255 * (such as nf_ip_checksum). The caller needs to pull the skb to the 1256 * network header, and ensure ip_hdr/ipv6_hdr points to valid data. 1257 */ 1258 static int ovs_skb_network_trim(struct sk_buff *skb) 1259 { 1260 unsigned int len; 1261 int err; 1262 1263 switch (skb->protocol) { 1264 case htons(ETH_P_IP): 1265 len = ntohs(ip_hdr(skb)->tot_len); 1266 break; 1267 case htons(ETH_P_IPV6): 1268 len = sizeof(struct ipv6hdr) 1269 + ntohs(ipv6_hdr(skb)->payload_len); 1270 break; 1271 default: 1272 len = skb->len; 1273 } 1274 1275 err = pskb_trim_rcsum(skb, len); 1276 if (err) 1277 kfree_skb(skb); 1278 1279 return err; 1280 } 1281 1282 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 1283 * value if 'skb' is freed. 1284 */ 1285 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 1286 struct sw_flow_key *key, 1287 const struct ovs_conntrack_info *info) 1288 { 1289 int nh_ofs; 1290 int err; 1291 1292 /* The conntrack module expects to be working at L3. */ 1293 nh_ofs = skb_network_offset(skb); 1294 skb_pull_rcsum(skb, nh_ofs); 1295 1296 err = ovs_skb_network_trim(skb); 1297 if (err) 1298 return err; 1299 1300 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 1301 err = handle_fragments(net, key, info->zone.id, skb); 1302 if (err) 1303 return err; 1304 } 1305 1306 if (info->commit) 1307 err = ovs_ct_commit(net, key, info, skb); 1308 else 1309 err = ovs_ct_lookup(net, key, info, skb); 1310 1311 skb_push(skb, nh_ofs); 1312 skb_postpush_rcsum(skb, skb->data, nh_ofs); 1313 if (err) 1314 kfree_skb(skb); 1315 return err; 1316 } 1317 1318 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key) 1319 { 1320 if (skb_nfct(skb)) { 1321 nf_conntrack_put(skb_nfct(skb)); 1322 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 1323 ovs_ct_fill_key(skb, key); 1324 } 1325 1326 return 0; 1327 } 1328 1329 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 1330 const struct sw_flow_key *key, bool log) 1331 { 1332 struct nf_conntrack_helper *helper; 1333 struct nf_conn_help *help; 1334 int ret = 0; 1335 1336 helper = nf_conntrack_helper_try_module_get(name, info->family, 1337 key->ip.proto); 1338 if (!helper) { 1339 OVS_NLERR(log, "Unknown helper \"%s\"", name); 1340 return -EINVAL; 1341 } 1342 1343 help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL); 1344 if (!help) { 1345 nf_conntrack_helper_put(helper); 1346 return -ENOMEM; 1347 } 1348 1349 #if IS_ENABLED(CONFIG_NF_NAT) 1350 if (info->nat) { 1351 ret = nf_nat_helper_try_module_get(name, info->family, 1352 key->ip.proto); 1353 if (ret) { 1354 nf_conntrack_helper_put(helper); 1355 OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d", 1356 name, ret); 1357 return ret; 1358 } 1359 } 1360 #endif 1361 rcu_assign_pointer(help->helper, helper); 1362 info->helper = helper; 1363 return ret; 1364 } 1365 1366 #if IS_ENABLED(CONFIG_NF_NAT) 1367 static int parse_nat(const struct nlattr *attr, 1368 struct ovs_conntrack_info *info, bool log) 1369 { 1370 struct nlattr *a; 1371 int rem; 1372 bool have_ip_max = false; 1373 bool have_proto_max = false; 1374 bool ip_vers = (info->family == NFPROTO_IPV6); 1375 1376 nla_for_each_nested(a, attr, rem) { 1377 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 1378 [OVS_NAT_ATTR_SRC] = {0, 0}, 1379 [OVS_NAT_ATTR_DST] = {0, 0}, 1380 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 1381 sizeof(struct in6_addr)}, 1382 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 1383 sizeof(struct in6_addr)}, 1384 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 1385 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 1386 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 1387 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 1388 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 1389 }; 1390 int type = nla_type(a); 1391 1392 if (type > OVS_NAT_ATTR_MAX) { 1393 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)", 1394 type, OVS_NAT_ATTR_MAX); 1395 return -EINVAL; 1396 } 1397 1398 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 1399 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)", 1400 type, nla_len(a), 1401 ovs_nat_attr_lens[type][ip_vers]); 1402 return -EINVAL; 1403 } 1404 1405 switch (type) { 1406 case OVS_NAT_ATTR_SRC: 1407 case OVS_NAT_ATTR_DST: 1408 if (info->nat) { 1409 OVS_NLERR(log, "Only one type of NAT may be specified"); 1410 return -ERANGE; 1411 } 1412 info->nat |= OVS_CT_NAT; 1413 info->nat |= ((type == OVS_NAT_ATTR_SRC) 1414 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 1415 break; 1416 1417 case OVS_NAT_ATTR_IP_MIN: 1418 nla_memcpy(&info->range.min_addr, a, 1419 sizeof(info->range.min_addr)); 1420 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1421 break; 1422 1423 case OVS_NAT_ATTR_IP_MAX: 1424 have_ip_max = true; 1425 nla_memcpy(&info->range.max_addr, a, 1426 sizeof(info->range.max_addr)); 1427 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1428 break; 1429 1430 case OVS_NAT_ATTR_PROTO_MIN: 1431 info->range.min_proto.all = htons(nla_get_u16(a)); 1432 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1433 break; 1434 1435 case OVS_NAT_ATTR_PROTO_MAX: 1436 have_proto_max = true; 1437 info->range.max_proto.all = htons(nla_get_u16(a)); 1438 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1439 break; 1440 1441 case OVS_NAT_ATTR_PERSISTENT: 1442 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1443 break; 1444 1445 case OVS_NAT_ATTR_PROTO_HASH: 1446 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1447 break; 1448 1449 case OVS_NAT_ATTR_PROTO_RANDOM: 1450 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1451 break; 1452 1453 default: 1454 OVS_NLERR(log, "Unknown nat attribute (%d)", type); 1455 return -EINVAL; 1456 } 1457 } 1458 1459 if (rem > 0) { 1460 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem); 1461 return -EINVAL; 1462 } 1463 if (!info->nat) { 1464 /* Do not allow flags if no type is given. */ 1465 if (info->range.flags) { 1466 OVS_NLERR(log, 1467 "NAT flags may be given only when NAT range (SRC or DST) is also specified." 1468 ); 1469 return -EINVAL; 1470 } 1471 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1472 } else if (!info->commit) { 1473 OVS_NLERR(log, 1474 "NAT attributes may be specified only when CT COMMIT flag is also specified." 1475 ); 1476 return -EINVAL; 1477 } 1478 /* Allow missing IP_MAX. */ 1479 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1480 memcpy(&info->range.max_addr, &info->range.min_addr, 1481 sizeof(info->range.max_addr)); 1482 } 1483 /* Allow missing PROTO_MAX. */ 1484 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1485 !have_proto_max) { 1486 info->range.max_proto.all = info->range.min_proto.all; 1487 } 1488 return 0; 1489 } 1490 #endif 1491 1492 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1493 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1494 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1495 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1496 .maxlen = sizeof(u16) }, 1497 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1498 .maxlen = sizeof(struct md_mark) }, 1499 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1500 .maxlen = sizeof(struct md_labels) }, 1501 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1502 .maxlen = NF_CT_HELPER_NAME_LEN }, 1503 #if IS_ENABLED(CONFIG_NF_NAT) 1504 /* NAT length is checked when parsing the nested attributes. */ 1505 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1506 #endif 1507 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32), 1508 .maxlen = sizeof(u32) }, 1509 [OVS_CT_ATTR_TIMEOUT] = { .minlen = 1, 1510 .maxlen = CTNL_TIMEOUT_NAME_MAX }, 1511 }; 1512 1513 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1514 const char **helper, bool log) 1515 { 1516 struct nlattr *a; 1517 int rem; 1518 1519 nla_for_each_nested(a, attr, rem) { 1520 int type = nla_type(a); 1521 int maxlen; 1522 int minlen; 1523 1524 if (type > OVS_CT_ATTR_MAX) { 1525 OVS_NLERR(log, 1526 "Unknown conntrack attr (type=%d, max=%d)", 1527 type, OVS_CT_ATTR_MAX); 1528 return -EINVAL; 1529 } 1530 1531 maxlen = ovs_ct_attr_lens[type].maxlen; 1532 minlen = ovs_ct_attr_lens[type].minlen; 1533 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1534 OVS_NLERR(log, 1535 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1536 type, nla_len(a), maxlen); 1537 return -EINVAL; 1538 } 1539 1540 switch (type) { 1541 case OVS_CT_ATTR_FORCE_COMMIT: 1542 info->force = true; 1543 /* fall through. */ 1544 case OVS_CT_ATTR_COMMIT: 1545 info->commit = true; 1546 break; 1547 #ifdef CONFIG_NF_CONNTRACK_ZONES 1548 case OVS_CT_ATTR_ZONE: 1549 info->zone.id = nla_get_u16(a); 1550 break; 1551 #endif 1552 #ifdef CONFIG_NF_CONNTRACK_MARK 1553 case OVS_CT_ATTR_MARK: { 1554 struct md_mark *mark = nla_data(a); 1555 1556 if (!mark->mask) { 1557 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1558 return -EINVAL; 1559 } 1560 info->mark = *mark; 1561 break; 1562 } 1563 #endif 1564 #ifdef CONFIG_NF_CONNTRACK_LABELS 1565 case OVS_CT_ATTR_LABELS: { 1566 struct md_labels *labels = nla_data(a); 1567 1568 if (!labels_nonzero(&labels->mask)) { 1569 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1570 return -EINVAL; 1571 } 1572 info->labels = *labels; 1573 break; 1574 } 1575 #endif 1576 case OVS_CT_ATTR_HELPER: 1577 *helper = nla_data(a); 1578 if (!memchr(*helper, '\0', nla_len(a))) { 1579 OVS_NLERR(log, "Invalid conntrack helper"); 1580 return -EINVAL; 1581 } 1582 break; 1583 #if IS_ENABLED(CONFIG_NF_NAT) 1584 case OVS_CT_ATTR_NAT: { 1585 int err = parse_nat(a, info, log); 1586 1587 if (err) 1588 return err; 1589 break; 1590 } 1591 #endif 1592 case OVS_CT_ATTR_EVENTMASK: 1593 info->have_eventmask = true; 1594 info->eventmask = nla_get_u32(a); 1595 break; 1596 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT 1597 case OVS_CT_ATTR_TIMEOUT: 1598 memcpy(info->timeout, nla_data(a), nla_len(a)); 1599 if (!memchr(info->timeout, '\0', nla_len(a))) { 1600 OVS_NLERR(log, "Invalid conntrack timeout"); 1601 return -EINVAL; 1602 } 1603 break; 1604 #endif 1605 1606 default: 1607 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1608 type); 1609 return -EINVAL; 1610 } 1611 } 1612 1613 #ifdef CONFIG_NF_CONNTRACK_MARK 1614 if (!info->commit && info->mark.mask) { 1615 OVS_NLERR(log, 1616 "Setting conntrack mark requires 'commit' flag."); 1617 return -EINVAL; 1618 } 1619 #endif 1620 #ifdef CONFIG_NF_CONNTRACK_LABELS 1621 if (!info->commit && labels_nonzero(&info->labels.mask)) { 1622 OVS_NLERR(log, 1623 "Setting conntrack labels requires 'commit' flag."); 1624 return -EINVAL; 1625 } 1626 #endif 1627 if (rem > 0) { 1628 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1629 return -EINVAL; 1630 } 1631 1632 return 0; 1633 } 1634 1635 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1636 { 1637 if (attr == OVS_KEY_ATTR_CT_STATE) 1638 return true; 1639 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1640 attr == OVS_KEY_ATTR_CT_ZONE) 1641 return true; 1642 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1643 attr == OVS_KEY_ATTR_CT_MARK) 1644 return true; 1645 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1646 attr == OVS_KEY_ATTR_CT_LABELS) { 1647 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1648 1649 return ovs_net->xt_label; 1650 } 1651 1652 return false; 1653 } 1654 1655 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1656 const struct sw_flow_key *key, 1657 struct sw_flow_actions **sfa, bool log) 1658 { 1659 struct ovs_conntrack_info ct_info; 1660 const char *helper = NULL; 1661 u16 family; 1662 int err; 1663 1664 family = key_to_nfproto(key); 1665 if (family == NFPROTO_UNSPEC) { 1666 OVS_NLERR(log, "ct family unspecified"); 1667 return -EINVAL; 1668 } 1669 1670 memset(&ct_info, 0, sizeof(ct_info)); 1671 ct_info.family = family; 1672 1673 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1674 NF_CT_DEFAULT_ZONE_DIR, 0); 1675 1676 err = parse_ct(attr, &ct_info, &helper, log); 1677 if (err) 1678 return err; 1679 1680 /* Set up template for tracking connections in specific zones. */ 1681 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1682 if (!ct_info.ct) { 1683 OVS_NLERR(log, "Failed to allocate conntrack template"); 1684 return -ENOMEM; 1685 } 1686 1687 if (ct_info.timeout[0]) { 1688 if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto, 1689 ct_info.timeout)) 1690 pr_info_ratelimited("Failed to associated timeout " 1691 "policy `%s'\n", ct_info.timeout); 1692 else 1693 ct_info.nf_ct_timeout = rcu_dereference( 1694 nf_ct_timeout_find(ct_info.ct)->timeout); 1695 1696 } 1697 1698 if (helper) { 1699 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1700 if (err) 1701 goto err_free_ct; 1702 } 1703 1704 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1705 sizeof(ct_info), log); 1706 if (err) 1707 goto err_free_ct; 1708 1709 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1710 nf_conntrack_get(&ct_info.ct->ct_general); 1711 return 0; 1712 err_free_ct: 1713 __ovs_ct_free_action(&ct_info); 1714 return err; 1715 } 1716 1717 #if IS_ENABLED(CONFIG_NF_NAT) 1718 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1719 struct sk_buff *skb) 1720 { 1721 struct nlattr *start; 1722 1723 start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT); 1724 if (!start) 1725 return false; 1726 1727 if (info->nat & OVS_CT_SRC_NAT) { 1728 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1729 return false; 1730 } else if (info->nat & OVS_CT_DST_NAT) { 1731 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1732 return false; 1733 } else { 1734 goto out; 1735 } 1736 1737 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1738 if (IS_ENABLED(CONFIG_NF_NAT) && 1739 info->family == NFPROTO_IPV4) { 1740 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1741 info->range.min_addr.ip) || 1742 (info->range.max_addr.ip 1743 != info->range.min_addr.ip && 1744 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1745 info->range.max_addr.ip)))) 1746 return false; 1747 } else if (IS_ENABLED(CONFIG_IPV6) && 1748 info->family == NFPROTO_IPV6) { 1749 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1750 &info->range.min_addr.in6) || 1751 (memcmp(&info->range.max_addr.in6, 1752 &info->range.min_addr.in6, 1753 sizeof(info->range.max_addr.in6)) && 1754 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1755 &info->range.max_addr.in6)))) 1756 return false; 1757 } else { 1758 return false; 1759 } 1760 } 1761 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1762 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1763 ntohs(info->range.min_proto.all)) || 1764 (info->range.max_proto.all != info->range.min_proto.all && 1765 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1766 ntohs(info->range.max_proto.all))))) 1767 return false; 1768 1769 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1770 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1771 return false; 1772 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1773 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1774 return false; 1775 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1776 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1777 return false; 1778 out: 1779 nla_nest_end(skb, start); 1780 1781 return true; 1782 } 1783 #endif 1784 1785 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1786 struct sk_buff *skb) 1787 { 1788 struct nlattr *start; 1789 1790 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT); 1791 if (!start) 1792 return -EMSGSIZE; 1793 1794 if (ct_info->commit && nla_put_flag(skb, ct_info->force 1795 ? OVS_CT_ATTR_FORCE_COMMIT 1796 : OVS_CT_ATTR_COMMIT)) 1797 return -EMSGSIZE; 1798 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1799 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1800 return -EMSGSIZE; 1801 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1802 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1803 &ct_info->mark)) 1804 return -EMSGSIZE; 1805 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1806 labels_nonzero(&ct_info->labels.mask) && 1807 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1808 &ct_info->labels)) 1809 return -EMSGSIZE; 1810 if (ct_info->helper) { 1811 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1812 ct_info->helper->name)) 1813 return -EMSGSIZE; 1814 } 1815 if (ct_info->have_eventmask && 1816 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask)) 1817 return -EMSGSIZE; 1818 if (ct_info->timeout[0]) { 1819 if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout)) 1820 return -EMSGSIZE; 1821 } 1822 1823 #if IS_ENABLED(CONFIG_NF_NAT) 1824 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1825 return -EMSGSIZE; 1826 #endif 1827 nla_nest_end(skb, start); 1828 1829 return 0; 1830 } 1831 1832 void ovs_ct_free_action(const struct nlattr *a) 1833 { 1834 struct ovs_conntrack_info *ct_info = nla_data(a); 1835 1836 __ovs_ct_free_action(ct_info); 1837 } 1838 1839 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1840 { 1841 if (ct_info->helper) { 1842 #if IS_ENABLED(CONFIG_NF_NAT) 1843 if (ct_info->nat) 1844 nf_nat_helper_put(ct_info->helper); 1845 #endif 1846 nf_conntrack_helper_put(ct_info->helper); 1847 } 1848 if (ct_info->ct) { 1849 if (ct_info->timeout[0]) 1850 nf_ct_destroy_timeout(ct_info->ct); 1851 nf_ct_tmpl_free(ct_info->ct); 1852 } 1853 } 1854 1855 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 1856 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net) 1857 { 1858 int i, err; 1859 1860 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info), 1861 GFP_KERNEL); 1862 if (!ovs_net->ct_limit_info) 1863 return -ENOMEM; 1864 1865 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT; 1866 ovs_net->ct_limit_info->limits = 1867 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head), 1868 GFP_KERNEL); 1869 if (!ovs_net->ct_limit_info->limits) { 1870 kfree(ovs_net->ct_limit_info); 1871 return -ENOMEM; 1872 } 1873 1874 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++) 1875 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]); 1876 1877 ovs_net->ct_limit_info->data = 1878 nf_conncount_init(net, NFPROTO_INET, sizeof(u32)); 1879 1880 if (IS_ERR(ovs_net->ct_limit_info->data)) { 1881 err = PTR_ERR(ovs_net->ct_limit_info->data); 1882 kfree(ovs_net->ct_limit_info->limits); 1883 kfree(ovs_net->ct_limit_info); 1884 pr_err("openvswitch: failed to init nf_conncount %d\n", err); 1885 return err; 1886 } 1887 return 0; 1888 } 1889 1890 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net) 1891 { 1892 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info; 1893 int i; 1894 1895 nf_conncount_destroy(net, NFPROTO_INET, info->data); 1896 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { 1897 struct hlist_head *head = &info->limits[i]; 1898 struct ovs_ct_limit *ct_limit; 1899 1900 hlist_for_each_entry_rcu(ct_limit, head, hlist_node, 1901 lockdep_ovsl_is_held()) 1902 kfree_rcu(ct_limit, rcu); 1903 } 1904 kfree(ovs_net->ct_limit_info->limits); 1905 kfree(ovs_net->ct_limit_info); 1906 } 1907 1908 static struct sk_buff * 1909 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd, 1910 struct ovs_header **ovs_reply_header) 1911 { 1912 struct ovs_header *ovs_header = info->userhdr; 1913 struct sk_buff *skb; 1914 1915 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); 1916 if (!skb) 1917 return ERR_PTR(-ENOMEM); 1918 1919 *ovs_reply_header = genlmsg_put(skb, info->snd_portid, 1920 info->snd_seq, 1921 &dp_ct_limit_genl_family, 0, cmd); 1922 1923 if (!*ovs_reply_header) { 1924 nlmsg_free(skb); 1925 return ERR_PTR(-EMSGSIZE); 1926 } 1927 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex; 1928 1929 return skb; 1930 } 1931 1932 static bool check_zone_id(int zone_id, u16 *pzone) 1933 { 1934 if (zone_id >= 0 && zone_id <= 65535) { 1935 *pzone = (u16)zone_id; 1936 return true; 1937 } 1938 return false; 1939 } 1940 1941 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit, 1942 struct ovs_ct_limit_info *info) 1943 { 1944 struct ovs_zone_limit *zone_limit; 1945 int rem; 1946 u16 zone; 1947 1948 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1949 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1950 1951 while (rem >= sizeof(*zone_limit)) { 1952 if (unlikely(zone_limit->zone_id == 1953 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1954 ovs_lock(); 1955 info->default_limit = zone_limit->limit; 1956 ovs_unlock(); 1957 } else if (unlikely(!check_zone_id( 1958 zone_limit->zone_id, &zone))) { 1959 OVS_NLERR(true, "zone id is out of range"); 1960 } else { 1961 struct ovs_ct_limit *ct_limit; 1962 1963 ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL); 1964 if (!ct_limit) 1965 return -ENOMEM; 1966 1967 ct_limit->zone = zone; 1968 ct_limit->limit = zone_limit->limit; 1969 1970 ovs_lock(); 1971 ct_limit_set(info, ct_limit); 1972 ovs_unlock(); 1973 } 1974 rem -= NLA_ALIGN(sizeof(*zone_limit)); 1975 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 1976 NLA_ALIGN(sizeof(*zone_limit))); 1977 } 1978 1979 if (rem) 1980 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem); 1981 1982 return 0; 1983 } 1984 1985 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit, 1986 struct ovs_ct_limit_info *info) 1987 { 1988 struct ovs_zone_limit *zone_limit; 1989 int rem; 1990 u16 zone; 1991 1992 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1993 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1994 1995 while (rem >= sizeof(*zone_limit)) { 1996 if (unlikely(zone_limit->zone_id == 1997 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1998 ovs_lock(); 1999 info->default_limit = OVS_CT_LIMIT_DEFAULT; 2000 ovs_unlock(); 2001 } else if (unlikely(!check_zone_id( 2002 zone_limit->zone_id, &zone))) { 2003 OVS_NLERR(true, "zone id is out of range"); 2004 } else { 2005 ovs_lock(); 2006 ct_limit_del(info, zone); 2007 ovs_unlock(); 2008 } 2009 rem -= NLA_ALIGN(sizeof(*zone_limit)); 2010 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 2011 NLA_ALIGN(sizeof(*zone_limit))); 2012 } 2013 2014 if (rem) 2015 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem); 2016 2017 return 0; 2018 } 2019 2020 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info, 2021 struct sk_buff *reply) 2022 { 2023 struct ovs_zone_limit zone_limit; 2024 int err; 2025 2026 zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE; 2027 zone_limit.limit = info->default_limit; 2028 err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit); 2029 if (err) 2030 return err; 2031 2032 return 0; 2033 } 2034 2035 static int __ovs_ct_limit_get_zone_limit(struct net *net, 2036 struct nf_conncount_data *data, 2037 u16 zone_id, u32 limit, 2038 struct sk_buff *reply) 2039 { 2040 struct nf_conntrack_zone ct_zone; 2041 struct ovs_zone_limit zone_limit; 2042 u32 conncount_key = zone_id; 2043 2044 zone_limit.zone_id = zone_id; 2045 zone_limit.limit = limit; 2046 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0); 2047 2048 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL, 2049 &ct_zone); 2050 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit); 2051 } 2052 2053 static int ovs_ct_limit_get_zone_limit(struct net *net, 2054 struct nlattr *nla_zone_limit, 2055 struct ovs_ct_limit_info *info, 2056 struct sk_buff *reply) 2057 { 2058 struct ovs_zone_limit *zone_limit; 2059 int rem, err; 2060 u32 limit; 2061 u16 zone; 2062 2063 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 2064 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 2065 2066 while (rem >= sizeof(*zone_limit)) { 2067 if (unlikely(zone_limit->zone_id == 2068 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 2069 err = ovs_ct_limit_get_default_limit(info, reply); 2070 if (err) 2071 return err; 2072 } else if (unlikely(!check_zone_id(zone_limit->zone_id, 2073 &zone))) { 2074 OVS_NLERR(true, "zone id is out of range"); 2075 } else { 2076 rcu_read_lock(); 2077 limit = ct_limit_get(info, zone); 2078 rcu_read_unlock(); 2079 2080 err = __ovs_ct_limit_get_zone_limit( 2081 net, info->data, zone, limit, reply); 2082 if (err) 2083 return err; 2084 } 2085 rem -= NLA_ALIGN(sizeof(*zone_limit)); 2086 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 2087 NLA_ALIGN(sizeof(*zone_limit))); 2088 } 2089 2090 if (rem) 2091 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem); 2092 2093 return 0; 2094 } 2095 2096 static int ovs_ct_limit_get_all_zone_limit(struct net *net, 2097 struct ovs_ct_limit_info *info, 2098 struct sk_buff *reply) 2099 { 2100 struct ovs_ct_limit *ct_limit; 2101 struct hlist_head *head; 2102 int i, err = 0; 2103 2104 err = ovs_ct_limit_get_default_limit(info, reply); 2105 if (err) 2106 return err; 2107 2108 rcu_read_lock(); 2109 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { 2110 head = &info->limits[i]; 2111 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 2112 err = __ovs_ct_limit_get_zone_limit(net, info->data, 2113 ct_limit->zone, ct_limit->limit, reply); 2114 if (err) 2115 goto exit_err; 2116 } 2117 } 2118 2119 exit_err: 2120 rcu_read_unlock(); 2121 return err; 2122 } 2123 2124 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info) 2125 { 2126 struct nlattr **a = info->attrs; 2127 struct sk_buff *reply; 2128 struct ovs_header *ovs_reply_header; 2129 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); 2130 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 2131 int err; 2132 2133 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET, 2134 &ovs_reply_header); 2135 if (IS_ERR(reply)) 2136 return PTR_ERR(reply); 2137 2138 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 2139 err = -EINVAL; 2140 goto exit_err; 2141 } 2142 2143 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], 2144 ct_limit_info); 2145 if (err) 2146 goto exit_err; 2147 2148 static_branch_enable(&ovs_ct_limit_enabled); 2149 2150 genlmsg_end(reply, ovs_reply_header); 2151 return genlmsg_reply(reply, info); 2152 2153 exit_err: 2154 nlmsg_free(reply); 2155 return err; 2156 } 2157 2158 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info) 2159 { 2160 struct nlattr **a = info->attrs; 2161 struct sk_buff *reply; 2162 struct ovs_header *ovs_reply_header; 2163 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); 2164 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 2165 int err; 2166 2167 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL, 2168 &ovs_reply_header); 2169 if (IS_ERR(reply)) 2170 return PTR_ERR(reply); 2171 2172 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 2173 err = -EINVAL; 2174 goto exit_err; 2175 } 2176 2177 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], 2178 ct_limit_info); 2179 if (err) 2180 goto exit_err; 2181 2182 genlmsg_end(reply, ovs_reply_header); 2183 return genlmsg_reply(reply, info); 2184 2185 exit_err: 2186 nlmsg_free(reply); 2187 return err; 2188 } 2189 2190 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info) 2191 { 2192 struct nlattr **a = info->attrs; 2193 struct nlattr *nla_reply; 2194 struct sk_buff *reply; 2195 struct ovs_header *ovs_reply_header; 2196 struct net *net = sock_net(skb->sk); 2197 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 2198 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 2199 int err; 2200 2201 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET, 2202 &ovs_reply_header); 2203 if (IS_ERR(reply)) 2204 return PTR_ERR(reply); 2205 2206 nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT); 2207 if (!nla_reply) { 2208 err = -EMSGSIZE; 2209 goto exit_err; 2210 } 2211 2212 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 2213 err = ovs_ct_limit_get_zone_limit( 2214 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info, 2215 reply); 2216 if (err) 2217 goto exit_err; 2218 } else { 2219 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info, 2220 reply); 2221 if (err) 2222 goto exit_err; 2223 } 2224 2225 nla_nest_end(reply, nla_reply); 2226 genlmsg_end(reply, ovs_reply_header); 2227 return genlmsg_reply(reply, info); 2228 2229 exit_err: 2230 nlmsg_free(reply); 2231 return err; 2232 } 2233 2234 static struct genl_ops ct_limit_genl_ops[] = { 2235 { .cmd = OVS_CT_LIMIT_CMD_SET, 2236 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 2237 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN 2238 * privilege. */ 2239 .doit = ovs_ct_limit_cmd_set, 2240 }, 2241 { .cmd = OVS_CT_LIMIT_CMD_DEL, 2242 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 2243 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN 2244 * privilege. */ 2245 .doit = ovs_ct_limit_cmd_del, 2246 }, 2247 { .cmd = OVS_CT_LIMIT_CMD_GET, 2248 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 2249 .flags = 0, /* OK for unprivileged users. */ 2250 .doit = ovs_ct_limit_cmd_get, 2251 }, 2252 }; 2253 2254 static const struct genl_multicast_group ovs_ct_limit_multicast_group = { 2255 .name = OVS_CT_LIMIT_MCGROUP, 2256 }; 2257 2258 struct genl_family dp_ct_limit_genl_family __ro_after_init = { 2259 .hdrsize = sizeof(struct ovs_header), 2260 .name = OVS_CT_LIMIT_FAMILY, 2261 .version = OVS_CT_LIMIT_VERSION, 2262 .maxattr = OVS_CT_LIMIT_ATTR_MAX, 2263 .policy = ct_limit_policy, 2264 .netnsok = true, 2265 .parallel_ops = true, 2266 .ops = ct_limit_genl_ops, 2267 .n_ops = ARRAY_SIZE(ct_limit_genl_ops), 2268 .mcgrps = &ovs_ct_limit_multicast_group, 2269 .n_mcgrps = 1, 2270 .module = THIS_MODULE, 2271 }; 2272 #endif 2273 2274 int ovs_ct_init(struct net *net) 2275 { 2276 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 2277 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 2278 2279 if (nf_connlabels_get(net, n_bits - 1)) { 2280 ovs_net->xt_label = false; 2281 OVS_NLERR(true, "Failed to set connlabel length"); 2282 } else { 2283 ovs_net->xt_label = true; 2284 } 2285 2286 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 2287 return ovs_ct_limit_init(net, ovs_net); 2288 #else 2289 return 0; 2290 #endif 2291 } 2292 2293 void ovs_ct_exit(struct net *net) 2294 { 2295 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 2296 2297 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 2298 ovs_ct_limit_exit(net, ovs_net); 2299 #endif 2300 2301 if (ovs_net->xt_label) 2302 nf_connlabels_put(net); 2303 } 2304