xref: /openbmc/linux/net/openvswitch/conntrack.c (revision 4e1a33b1)
1 /*
2  * Copyright (c) 2015 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <net/ip.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_labels.h>
23 #include <net/netfilter/nf_conntrack_seqadj.h>
24 #include <net/netfilter/nf_conntrack_zones.h>
25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26 
27 #ifdef CONFIG_NF_NAT_NEEDED
28 #include <linux/netfilter/nf_nat.h>
29 #include <net/netfilter/nf_nat_core.h>
30 #include <net/netfilter/nf_nat_l3proto.h>
31 #endif
32 
33 #include "datapath.h"
34 #include "conntrack.h"
35 #include "flow.h"
36 #include "flow_netlink.h"
37 
38 struct ovs_ct_len_tbl {
39 	int maxlen;
40 	int minlen;
41 };
42 
43 /* Metadata mark for masked write to conntrack mark */
44 struct md_mark {
45 	u32 value;
46 	u32 mask;
47 };
48 
49 /* Metadata label for masked write to conntrack label. */
50 struct md_labels {
51 	struct ovs_key_ct_labels value;
52 	struct ovs_key_ct_labels mask;
53 };
54 
55 enum ovs_ct_nat {
56 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
57 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59 };
60 
61 /* Conntrack action context for execution. */
62 struct ovs_conntrack_info {
63 	struct nf_conntrack_helper *helper;
64 	struct nf_conntrack_zone zone;
65 	struct nf_conn *ct;
66 	u8 commit : 1;
67 	u8 nat : 3;                 /* enum ovs_ct_nat */
68 	u8 force : 1;
69 	u16 family;
70 	struct md_mark mark;
71 	struct md_labels labels;
72 #ifdef CONFIG_NF_NAT_NEEDED
73 	struct nf_nat_range range;  /* Only present for SRC NAT and DST NAT. */
74 #endif
75 };
76 
77 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
78 
79 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
80 
81 static u16 key_to_nfproto(const struct sw_flow_key *key)
82 {
83 	switch (ntohs(key->eth.type)) {
84 	case ETH_P_IP:
85 		return NFPROTO_IPV4;
86 	case ETH_P_IPV6:
87 		return NFPROTO_IPV6;
88 	default:
89 		return NFPROTO_UNSPEC;
90 	}
91 }
92 
93 /* Map SKB connection state into the values used by flow definition. */
94 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
95 {
96 	u8 ct_state = OVS_CS_F_TRACKED;
97 
98 	switch (ctinfo) {
99 	case IP_CT_ESTABLISHED_REPLY:
100 	case IP_CT_RELATED_REPLY:
101 		ct_state |= OVS_CS_F_REPLY_DIR;
102 		break;
103 	default:
104 		break;
105 	}
106 
107 	switch (ctinfo) {
108 	case IP_CT_ESTABLISHED:
109 	case IP_CT_ESTABLISHED_REPLY:
110 		ct_state |= OVS_CS_F_ESTABLISHED;
111 		break;
112 	case IP_CT_RELATED:
113 	case IP_CT_RELATED_REPLY:
114 		ct_state |= OVS_CS_F_RELATED;
115 		break;
116 	case IP_CT_NEW:
117 		ct_state |= OVS_CS_F_NEW;
118 		break;
119 	default:
120 		break;
121 	}
122 
123 	return ct_state;
124 }
125 
126 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
127 {
128 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
129 	return ct ? ct->mark : 0;
130 #else
131 	return 0;
132 #endif
133 }
134 
135 /* Guard against conntrack labels max size shrinking below 128 bits. */
136 #if NF_CT_LABELS_MAX_SIZE < 16
137 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
138 #endif
139 
140 static void ovs_ct_get_labels(const struct nf_conn *ct,
141 			      struct ovs_key_ct_labels *labels)
142 {
143 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
144 
145 	if (cl)
146 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
147 	else
148 		memset(labels, 0, OVS_CT_LABELS_LEN);
149 }
150 
151 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
152 					const struct nf_conntrack_tuple *orig,
153 					u8 icmp_proto)
154 {
155 	key->ct_orig_proto = orig->dst.protonum;
156 	if (orig->dst.protonum == icmp_proto) {
157 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
158 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
159 	} else {
160 		key->ct.orig_tp.src = orig->src.u.all;
161 		key->ct.orig_tp.dst = orig->dst.u.all;
162 	}
163 }
164 
165 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
166 				const struct nf_conntrack_zone *zone,
167 				const struct nf_conn *ct)
168 {
169 	key->ct_state = state;
170 	key->ct_zone = zone->id;
171 	key->ct.mark = ovs_ct_get_mark(ct);
172 	ovs_ct_get_labels(ct, &key->ct.labels);
173 
174 	if (ct) {
175 		const struct nf_conntrack_tuple *orig;
176 
177 		/* Use the master if we have one. */
178 		if (ct->master)
179 			ct = ct->master;
180 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
181 
182 		/* IP version must match with the master connection. */
183 		if (key->eth.type == htons(ETH_P_IP) &&
184 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
185 			key->ipv4.ct_orig.src = orig->src.u3.ip;
186 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
187 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
188 			return;
189 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
190 			   !sw_flow_key_is_nd(key) &&
191 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
192 			key->ipv6.ct_orig.src = orig->src.u3.in6;
193 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
194 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
195 			return;
196 		}
197 	}
198 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
199 	 * original direction key fields.
200 	 */
201 	key->ct_orig_proto = 0;
202 }
203 
204 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
205  * previously sent the packet to conntrack via the ct action.  If
206  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
207  * initialized from the connection status.
208  */
209 static void ovs_ct_update_key(const struct sk_buff *skb,
210 			      const struct ovs_conntrack_info *info,
211 			      struct sw_flow_key *key, bool post_ct,
212 			      bool keep_nat_flags)
213 {
214 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
215 	enum ip_conntrack_info ctinfo;
216 	struct nf_conn *ct;
217 	u8 state = 0;
218 
219 	ct = nf_ct_get(skb, &ctinfo);
220 	if (ct) {
221 		state = ovs_ct_get_state(ctinfo);
222 		/* All unconfirmed entries are NEW connections. */
223 		if (!nf_ct_is_confirmed(ct))
224 			state |= OVS_CS_F_NEW;
225 		/* OVS persists the related flag for the duration of the
226 		 * connection.
227 		 */
228 		if (ct->master)
229 			state |= OVS_CS_F_RELATED;
230 		if (keep_nat_flags) {
231 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
232 		} else {
233 			if (ct->status & IPS_SRC_NAT)
234 				state |= OVS_CS_F_SRC_NAT;
235 			if (ct->status & IPS_DST_NAT)
236 				state |= OVS_CS_F_DST_NAT;
237 		}
238 		zone = nf_ct_zone(ct);
239 	} else if (post_ct) {
240 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
241 		if (info)
242 			zone = &info->zone;
243 	}
244 	__ovs_ct_update_key(key, state, zone, ct);
245 }
246 
247 /* This is called to initialize CT key fields possibly coming in from the local
248  * stack.
249  */
250 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
251 {
252 	ovs_ct_update_key(skb, NULL, key, false, false);
253 }
254 
255 #define IN6_ADDR_INITIALIZER(ADDR) \
256 	{ (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
257 	  (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
258 
259 int ovs_ct_put_key(const struct sw_flow_key *swkey,
260 		   const struct sw_flow_key *output, struct sk_buff *skb)
261 {
262 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
263 		return -EMSGSIZE;
264 
265 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
266 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
267 		return -EMSGSIZE;
268 
269 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
270 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
271 		return -EMSGSIZE;
272 
273 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
274 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
275 		    &output->ct.labels))
276 		return -EMSGSIZE;
277 
278 	if (swkey->ct_orig_proto) {
279 		if (swkey->eth.type == htons(ETH_P_IP)) {
280 			struct ovs_key_ct_tuple_ipv4 orig = {
281 				output->ipv4.ct_orig.src,
282 				output->ipv4.ct_orig.dst,
283 				output->ct.orig_tp.src,
284 				output->ct.orig_tp.dst,
285 				output->ct_orig_proto,
286 			};
287 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
288 				    sizeof(orig), &orig))
289 				return -EMSGSIZE;
290 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
291 			struct ovs_key_ct_tuple_ipv6 orig = {
292 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
293 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
294 				output->ct.orig_tp.src,
295 				output->ct.orig_tp.dst,
296 				output->ct_orig_proto,
297 			};
298 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
299 				    sizeof(orig), &orig))
300 				return -EMSGSIZE;
301 		}
302 	}
303 
304 	return 0;
305 }
306 
307 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
308 			   u32 ct_mark, u32 mask)
309 {
310 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
311 	u32 new_mark;
312 
313 	new_mark = ct_mark | (ct->mark & ~(mask));
314 	if (ct->mark != new_mark) {
315 		ct->mark = new_mark;
316 		if (nf_ct_is_confirmed(ct))
317 			nf_conntrack_event_cache(IPCT_MARK, ct);
318 		key->ct.mark = new_mark;
319 	}
320 
321 	return 0;
322 #else
323 	return -ENOTSUPP;
324 #endif
325 }
326 
327 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
328 {
329 	struct nf_conn_labels *cl;
330 
331 	cl = nf_ct_labels_find(ct);
332 	if (!cl) {
333 		nf_ct_labels_ext_add(ct);
334 		cl = nf_ct_labels_find(ct);
335 	}
336 
337 	return cl;
338 }
339 
340 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
341  * since the new connection is not yet confirmed, and thus no-one else has
342  * access to it's labels, we simply write them over.
343  */
344 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
345 			      const struct ovs_key_ct_labels *labels,
346 			      const struct ovs_key_ct_labels *mask)
347 {
348 	struct nf_conn_labels *cl, *master_cl;
349 	bool have_mask = labels_nonzero(mask);
350 
351 	/* Inherit master's labels to the related connection? */
352 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
353 
354 	if (!master_cl && !have_mask)
355 		return 0;   /* Nothing to do. */
356 
357 	cl = ovs_ct_get_conn_labels(ct);
358 	if (!cl)
359 		return -ENOSPC;
360 
361 	/* Inherit the master's labels, if any. */
362 	if (master_cl)
363 		*cl = *master_cl;
364 
365 	if (have_mask) {
366 		u32 *dst = (u32 *)cl->bits;
367 		int i;
368 
369 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
370 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
371 				(labels->ct_labels_32[i]
372 				 & mask->ct_labels_32[i]);
373 	}
374 
375 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
376 	 * IPCT_LABEL bit it set in the event cache.
377 	 */
378 	nf_conntrack_event_cache(IPCT_LABEL, ct);
379 
380 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
381 
382 	return 0;
383 }
384 
385 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
386 			     const struct ovs_key_ct_labels *labels,
387 			     const struct ovs_key_ct_labels *mask)
388 {
389 	struct nf_conn_labels *cl;
390 	int err;
391 
392 	cl = ovs_ct_get_conn_labels(ct);
393 	if (!cl)
394 		return -ENOSPC;
395 
396 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
397 				    mask->ct_labels_32,
398 				    OVS_CT_LABELS_LEN_32);
399 	if (err)
400 		return err;
401 
402 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
403 
404 	return 0;
405 }
406 
407 /* 'skb' should already be pulled to nh_ofs. */
408 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
409 {
410 	const struct nf_conntrack_helper *helper;
411 	const struct nf_conn_help *help;
412 	enum ip_conntrack_info ctinfo;
413 	unsigned int protoff;
414 	struct nf_conn *ct;
415 	int err;
416 
417 	ct = nf_ct_get(skb, &ctinfo);
418 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
419 		return NF_ACCEPT;
420 
421 	help = nfct_help(ct);
422 	if (!help)
423 		return NF_ACCEPT;
424 
425 	helper = rcu_dereference(help->helper);
426 	if (!helper)
427 		return NF_ACCEPT;
428 
429 	switch (proto) {
430 	case NFPROTO_IPV4:
431 		protoff = ip_hdrlen(skb);
432 		break;
433 	case NFPROTO_IPV6: {
434 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
435 		__be16 frag_off;
436 		int ofs;
437 
438 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
439 				       &frag_off);
440 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
441 			pr_debug("proto header not found\n");
442 			return NF_ACCEPT;
443 		}
444 		protoff = ofs;
445 		break;
446 	}
447 	default:
448 		WARN_ONCE(1, "helper invoked on non-IP family!");
449 		return NF_DROP;
450 	}
451 
452 	err = helper->help(skb, protoff, ct, ctinfo);
453 	if (err != NF_ACCEPT)
454 		return err;
455 
456 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
457 	 * FTP with NAT) adusting the TCP payload size when mangling IP
458 	 * addresses and/or port numbers in the text-based control connection.
459 	 */
460 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
461 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
462 		return NF_DROP;
463 	return NF_ACCEPT;
464 }
465 
466 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
467  * value if 'skb' is freed.
468  */
469 static int handle_fragments(struct net *net, struct sw_flow_key *key,
470 			    u16 zone, struct sk_buff *skb)
471 {
472 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
473 	int err;
474 
475 	if (key->eth.type == htons(ETH_P_IP)) {
476 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
477 
478 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
479 		err = ip_defrag(net, skb, user);
480 		if (err)
481 			return err;
482 
483 		ovs_cb.mru = IPCB(skb)->frag_max_size;
484 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
485 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
486 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
487 
488 		skb_orphan(skb);
489 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
490 		err = nf_ct_frag6_gather(net, skb, user);
491 		if (err) {
492 			if (err != -EINPROGRESS)
493 				kfree_skb(skb);
494 			return err;
495 		}
496 
497 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
498 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
499 #endif
500 	} else {
501 		kfree_skb(skb);
502 		return -EPFNOSUPPORT;
503 	}
504 
505 	key->ip.frag = OVS_FRAG_TYPE_NONE;
506 	skb_clear_hash(skb);
507 	skb->ignore_df = 1;
508 	*OVS_CB(skb) = ovs_cb;
509 
510 	return 0;
511 }
512 
513 static struct nf_conntrack_expect *
514 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
515 		   u16 proto, const struct sk_buff *skb)
516 {
517 	struct nf_conntrack_tuple tuple;
518 
519 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
520 		return NULL;
521 	return __nf_ct_expect_find(net, zone, &tuple);
522 }
523 
524 /* This replicates logic from nf_conntrack_core.c that is not exported. */
525 static enum ip_conntrack_info
526 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
527 {
528 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
529 
530 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
531 		return IP_CT_ESTABLISHED_REPLY;
532 	/* Once we've had two way comms, always ESTABLISHED. */
533 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
534 		return IP_CT_ESTABLISHED;
535 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
536 		return IP_CT_RELATED;
537 	return IP_CT_NEW;
538 }
539 
540 /* Find an existing connection which this packet belongs to without
541  * re-attributing statistics or modifying the connection state.  This allows an
542  * skb->_nfct lost due to an upcall to be recovered during actions execution.
543  *
544  * Must be called with rcu_read_lock.
545  *
546  * On success, populates skb->_nfct and returns the connection.  Returns NULL
547  * if there is no existing entry.
548  */
549 static struct nf_conn *
550 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
551 		     u8 l3num, struct sk_buff *skb, bool natted)
552 {
553 	struct nf_conntrack_l3proto *l3proto;
554 	struct nf_conntrack_l4proto *l4proto;
555 	struct nf_conntrack_tuple tuple;
556 	struct nf_conntrack_tuple_hash *h;
557 	struct nf_conn *ct;
558 	unsigned int dataoff;
559 	u8 protonum;
560 
561 	l3proto = __nf_ct_l3proto_find(l3num);
562 	if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
563 				 &protonum) <= 0) {
564 		pr_debug("ovs_ct_find_existing: Can't get protonum\n");
565 		return NULL;
566 	}
567 	l4proto = __nf_ct_l4proto_find(l3num, protonum);
568 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
569 			     protonum, net, &tuple, l3proto, l4proto)) {
570 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
571 		return NULL;
572 	}
573 
574 	/* Must invert the tuple if skb has been transformed by NAT. */
575 	if (natted) {
576 		struct nf_conntrack_tuple inverse;
577 
578 		if (!nf_ct_invert_tuple(&inverse, &tuple, l3proto, l4proto)) {
579 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
580 			return NULL;
581 		}
582 		tuple = inverse;
583 	}
584 
585 	/* look for tuple match */
586 	h = nf_conntrack_find_get(net, zone, &tuple);
587 	if (!h)
588 		return NULL;   /* Not found. */
589 
590 	ct = nf_ct_tuplehash_to_ctrack(h);
591 
592 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
593 	 * select the other tuplehash to get the right 'ctinfo' bits for this
594 	 * packet.
595 	 */
596 	if (natted)
597 		h = &ct->tuplehash[!h->tuple.dst.dir];
598 
599 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
600 	return ct;
601 }
602 
603 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
604 static bool skb_nfct_cached(struct net *net,
605 			    const struct sw_flow_key *key,
606 			    const struct ovs_conntrack_info *info,
607 			    struct sk_buff *skb)
608 {
609 	enum ip_conntrack_info ctinfo;
610 	struct nf_conn *ct;
611 
612 	ct = nf_ct_get(skb, &ctinfo);
613 	/* If no ct, check if we have evidence that an existing conntrack entry
614 	 * might be found for this skb.  This happens when we lose a skb->_nfct
615 	 * due to an upcall.  If the connection was not confirmed, it is not
616 	 * cached and needs to be run through conntrack again.
617 	 */
618 	if (!ct && key->ct_state & OVS_CS_F_TRACKED &&
619 	    !(key->ct_state & OVS_CS_F_INVALID) &&
620 	    key->ct_zone == info->zone.id) {
621 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
622 					  !!(key->ct_state
623 					     & OVS_CS_F_NAT_MASK));
624 		if (ct)
625 			nf_ct_get(skb, &ctinfo);
626 	}
627 	if (!ct)
628 		return false;
629 	if (!net_eq(net, read_pnet(&ct->ct_net)))
630 		return false;
631 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
632 		return false;
633 	if (info->helper) {
634 		struct nf_conn_help *help;
635 
636 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
637 		if (help && rcu_access_pointer(help->helper) != info->helper)
638 			return false;
639 	}
640 	/* Force conntrack entry direction to the current packet? */
641 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
642 		/* Delete the conntrack entry if confirmed, else just release
643 		 * the reference.
644 		 */
645 		if (nf_ct_is_confirmed(ct))
646 			nf_ct_delete(ct, 0, 0);
647 		else
648 			nf_conntrack_put(&ct->ct_general);
649 		nf_ct_set(skb, NULL, 0);
650 		return false;
651 	}
652 
653 	return true;
654 }
655 
656 #ifdef CONFIG_NF_NAT_NEEDED
657 /* Modelled after nf_nat_ipv[46]_fn().
658  * range is only used for new, uninitialized NAT state.
659  * Returns either NF_ACCEPT or NF_DROP.
660  */
661 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
662 			      enum ip_conntrack_info ctinfo,
663 			      const struct nf_nat_range *range,
664 			      enum nf_nat_manip_type maniptype)
665 {
666 	int hooknum, nh_off, err = NF_ACCEPT;
667 
668 	nh_off = skb_network_offset(skb);
669 	skb_pull_rcsum(skb, nh_off);
670 
671 	/* See HOOK2MANIP(). */
672 	if (maniptype == NF_NAT_MANIP_SRC)
673 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
674 	else
675 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
676 
677 	switch (ctinfo) {
678 	case IP_CT_RELATED:
679 	case IP_CT_RELATED_REPLY:
680 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
681 		    skb->protocol == htons(ETH_P_IP) &&
682 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
683 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
684 							   hooknum))
685 				err = NF_DROP;
686 			goto push;
687 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
688 			   skb->protocol == htons(ETH_P_IPV6)) {
689 			__be16 frag_off;
690 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
691 			int hdrlen = ipv6_skip_exthdr(skb,
692 						      sizeof(struct ipv6hdr),
693 						      &nexthdr, &frag_off);
694 
695 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
696 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
697 								     ctinfo,
698 								     hooknum,
699 								     hdrlen))
700 					err = NF_DROP;
701 				goto push;
702 			}
703 		}
704 		/* Non-ICMP, fall thru to initialize if needed. */
705 	case IP_CT_NEW:
706 		/* Seen it before?  This can happen for loopback, retrans,
707 		 * or local packets.
708 		 */
709 		if (!nf_nat_initialized(ct, maniptype)) {
710 			/* Initialize according to the NAT action. */
711 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
712 				/* Action is set up to establish a new
713 				 * mapping.
714 				 */
715 				? nf_nat_setup_info(ct, range, maniptype)
716 				: nf_nat_alloc_null_binding(ct, hooknum);
717 			if (err != NF_ACCEPT)
718 				goto push;
719 		}
720 		break;
721 
722 	case IP_CT_ESTABLISHED:
723 	case IP_CT_ESTABLISHED_REPLY:
724 		break;
725 
726 	default:
727 		err = NF_DROP;
728 		goto push;
729 	}
730 
731 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
732 push:
733 	skb_push(skb, nh_off);
734 	skb_postpush_rcsum(skb, skb->data, nh_off);
735 
736 	return err;
737 }
738 
739 static void ovs_nat_update_key(struct sw_flow_key *key,
740 			       const struct sk_buff *skb,
741 			       enum nf_nat_manip_type maniptype)
742 {
743 	if (maniptype == NF_NAT_MANIP_SRC) {
744 		__be16 src;
745 
746 		key->ct_state |= OVS_CS_F_SRC_NAT;
747 		if (key->eth.type == htons(ETH_P_IP))
748 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
749 		else if (key->eth.type == htons(ETH_P_IPV6))
750 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
751 			       sizeof(key->ipv6.addr.src));
752 		else
753 			return;
754 
755 		if (key->ip.proto == IPPROTO_UDP)
756 			src = udp_hdr(skb)->source;
757 		else if (key->ip.proto == IPPROTO_TCP)
758 			src = tcp_hdr(skb)->source;
759 		else if (key->ip.proto == IPPROTO_SCTP)
760 			src = sctp_hdr(skb)->source;
761 		else
762 			return;
763 
764 		key->tp.src = src;
765 	} else {
766 		__be16 dst;
767 
768 		key->ct_state |= OVS_CS_F_DST_NAT;
769 		if (key->eth.type == htons(ETH_P_IP))
770 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
771 		else if (key->eth.type == htons(ETH_P_IPV6))
772 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
773 			       sizeof(key->ipv6.addr.dst));
774 		else
775 			return;
776 
777 		if (key->ip.proto == IPPROTO_UDP)
778 			dst = udp_hdr(skb)->dest;
779 		else if (key->ip.proto == IPPROTO_TCP)
780 			dst = tcp_hdr(skb)->dest;
781 		else if (key->ip.proto == IPPROTO_SCTP)
782 			dst = sctp_hdr(skb)->dest;
783 		else
784 			return;
785 
786 		key->tp.dst = dst;
787 	}
788 }
789 
790 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
791 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
792 		      const struct ovs_conntrack_info *info,
793 		      struct sk_buff *skb, struct nf_conn *ct,
794 		      enum ip_conntrack_info ctinfo)
795 {
796 	enum nf_nat_manip_type maniptype;
797 	int err;
798 
799 	if (nf_ct_is_untracked(ct)) {
800 		/* A NAT action may only be performed on tracked packets. */
801 		return NF_ACCEPT;
802 	}
803 
804 	/* Add NAT extension if not confirmed yet. */
805 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
806 		return NF_ACCEPT;   /* Can't NAT. */
807 
808 	/* Determine NAT type.
809 	 * Check if the NAT type can be deduced from the tracked connection.
810 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
811 	 * when committing.
812 	 */
813 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
814 	    ct->status & IPS_NAT_MASK &&
815 	    (ctinfo != IP_CT_RELATED || info->commit)) {
816 		/* NAT an established or related connection like before. */
817 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
818 			/* This is the REPLY direction for a connection
819 			 * for which NAT was applied in the forward
820 			 * direction.  Do the reverse NAT.
821 			 */
822 			maniptype = ct->status & IPS_SRC_NAT
823 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
824 		else
825 			maniptype = ct->status & IPS_SRC_NAT
826 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
827 	} else if (info->nat & OVS_CT_SRC_NAT) {
828 		maniptype = NF_NAT_MANIP_SRC;
829 	} else if (info->nat & OVS_CT_DST_NAT) {
830 		maniptype = NF_NAT_MANIP_DST;
831 	} else {
832 		return NF_ACCEPT; /* Connection is not NATed. */
833 	}
834 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
835 
836 	/* Mark NAT done if successful and update the flow key. */
837 	if (err == NF_ACCEPT)
838 		ovs_nat_update_key(key, skb, maniptype);
839 
840 	return err;
841 }
842 #else /* !CONFIG_NF_NAT_NEEDED */
843 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
844 		      const struct ovs_conntrack_info *info,
845 		      struct sk_buff *skb, struct nf_conn *ct,
846 		      enum ip_conntrack_info ctinfo)
847 {
848 	return NF_ACCEPT;
849 }
850 #endif
851 
852 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
853  * not done already.  Update key with new CT state after passing the packet
854  * through conntrack.
855  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
856  * set to NULL and 0 will be returned.
857  */
858 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
859 			   const struct ovs_conntrack_info *info,
860 			   struct sk_buff *skb)
861 {
862 	/* If we are recirculating packets to match on conntrack fields and
863 	 * committing with a separate conntrack action,  then we don't need to
864 	 * actually run the packet through conntrack twice unless it's for a
865 	 * different zone.
866 	 */
867 	bool cached = skb_nfct_cached(net, key, info, skb);
868 	enum ip_conntrack_info ctinfo;
869 	struct nf_conn *ct;
870 
871 	if (!cached) {
872 		struct nf_conn *tmpl = info->ct;
873 		int err;
874 
875 		/* Associate skb with specified zone. */
876 		if (tmpl) {
877 			if (skb_nfct(skb))
878 				nf_conntrack_put(skb_nfct(skb));
879 			nf_conntrack_get(&tmpl->ct_general);
880 			nf_ct_set(skb, tmpl, IP_CT_NEW);
881 		}
882 
883 		err = nf_conntrack_in(net, info->family,
884 				      NF_INET_PRE_ROUTING, skb);
885 		if (err != NF_ACCEPT)
886 			return -ENOENT;
887 
888 		/* Clear CT state NAT flags to mark that we have not yet done
889 		 * NAT after the nf_conntrack_in() call.  We can actually clear
890 		 * the whole state, as it will be re-initialized below.
891 		 */
892 		key->ct_state = 0;
893 
894 		/* Update the key, but keep the NAT flags. */
895 		ovs_ct_update_key(skb, info, key, true, true);
896 	}
897 
898 	ct = nf_ct_get(skb, &ctinfo);
899 	if (ct) {
900 		/* Packets starting a new connection must be NATted before the
901 		 * helper, so that the helper knows about the NAT.  We enforce
902 		 * this by delaying both NAT and helper calls for unconfirmed
903 		 * connections until the committing CT action.  For later
904 		 * packets NAT and Helper may be called in either order.
905 		 *
906 		 * NAT will be done only if the CT action has NAT, and only
907 		 * once per packet (per zone), as guarded by the NAT bits in
908 		 * the key->ct_state.
909 		 */
910 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
911 		    (nf_ct_is_confirmed(ct) || info->commit) &&
912 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
913 			return -EINVAL;
914 		}
915 
916 		/* Userspace may decide to perform a ct lookup without a helper
917 		 * specified followed by a (recirculate and) commit with one.
918 		 * Therefore, for unconfirmed connections which we will commit,
919 		 * we need to attach the helper here.
920 		 */
921 		if (!nf_ct_is_confirmed(ct) && info->commit &&
922 		    info->helper && !nfct_help(ct)) {
923 			int err = __nf_ct_try_assign_helper(ct, info->ct,
924 							    GFP_ATOMIC);
925 			if (err)
926 				return err;
927 		}
928 
929 		/* Call the helper only if:
930 		 * - nf_conntrack_in() was executed above ("!cached") for a
931 		 *   confirmed connection, or
932 		 * - When committing an unconfirmed connection.
933 		 */
934 		if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
935 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
936 			return -EINVAL;
937 		}
938 	}
939 
940 	return 0;
941 }
942 
943 /* Lookup connection and read fields into key. */
944 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
945 			 const struct ovs_conntrack_info *info,
946 			 struct sk_buff *skb)
947 {
948 	struct nf_conntrack_expect *exp;
949 
950 	/* If we pass an expected packet through nf_conntrack_in() the
951 	 * expectation is typically removed, but the packet could still be
952 	 * lost in upcall processing.  To prevent this from happening we
953 	 * perform an explicit expectation lookup.  Expected connections are
954 	 * always new, and will be passed through conntrack only when they are
955 	 * committed, as it is OK to remove the expectation at that time.
956 	 */
957 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
958 	if (exp) {
959 		u8 state;
960 
961 		/* NOTE: New connections are NATted and Helped only when
962 		 * committed, so we are not calling into NAT here.
963 		 */
964 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
965 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
966 	} else {
967 		struct nf_conn *ct;
968 		int err;
969 
970 		err = __ovs_ct_lookup(net, key, info, skb);
971 		if (err)
972 			return err;
973 
974 		ct = (struct nf_conn *)skb_nfct(skb);
975 		if (ct)
976 			nf_ct_deliver_cached_events(ct);
977 	}
978 
979 	return 0;
980 }
981 
982 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
983 {
984 	size_t i;
985 
986 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
987 		if (labels->ct_labels_32[i])
988 			return true;
989 
990 	return false;
991 }
992 
993 /* Lookup connection and confirm if unconfirmed. */
994 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
995 			 const struct ovs_conntrack_info *info,
996 			 struct sk_buff *skb)
997 {
998 	enum ip_conntrack_info ctinfo;
999 	struct nf_conn *ct;
1000 	int err;
1001 
1002 	err = __ovs_ct_lookup(net, key, info, skb);
1003 	if (err)
1004 		return err;
1005 
1006 	/* The connection could be invalid, in which case this is a no-op.*/
1007 	ct = nf_ct_get(skb, &ctinfo);
1008 	if (!ct)
1009 		return 0;
1010 
1011 	/* Apply changes before confirming the connection so that the initial
1012 	 * conntrack NEW netlink event carries the values given in the CT
1013 	 * action.
1014 	 */
1015 	if (info->mark.mask) {
1016 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1017 				      info->mark.mask);
1018 		if (err)
1019 			return err;
1020 	}
1021 	if (!nf_ct_is_confirmed(ct)) {
1022 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1023 					 &info->labels.mask);
1024 		if (err)
1025 			return err;
1026 	} else if (labels_nonzero(&info->labels.mask)) {
1027 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1028 					&info->labels.mask);
1029 		if (err)
1030 			return err;
1031 	}
1032 	/* This will take care of sending queued events even if the connection
1033 	 * is already confirmed.
1034 	 */
1035 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1036 		return -EINVAL;
1037 
1038 	return 0;
1039 }
1040 
1041 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1042  * value if 'skb' is freed.
1043  */
1044 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1045 		   struct sw_flow_key *key,
1046 		   const struct ovs_conntrack_info *info)
1047 {
1048 	int nh_ofs;
1049 	int err;
1050 
1051 	/* The conntrack module expects to be working at L3. */
1052 	nh_ofs = skb_network_offset(skb);
1053 	skb_pull_rcsum(skb, nh_ofs);
1054 
1055 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1056 		err = handle_fragments(net, key, info->zone.id, skb);
1057 		if (err)
1058 			return err;
1059 	}
1060 
1061 	if (info->commit)
1062 		err = ovs_ct_commit(net, key, info, skb);
1063 	else
1064 		err = ovs_ct_lookup(net, key, info, skb);
1065 
1066 	skb_push(skb, nh_ofs);
1067 	skb_postpush_rcsum(skb, skb->data, nh_ofs);
1068 	if (err)
1069 		kfree_skb(skb);
1070 	return err;
1071 }
1072 
1073 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1074 			     const struct sw_flow_key *key, bool log)
1075 {
1076 	struct nf_conntrack_helper *helper;
1077 	struct nf_conn_help *help;
1078 
1079 	helper = nf_conntrack_helper_try_module_get(name, info->family,
1080 						    key->ip.proto);
1081 	if (!helper) {
1082 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1083 		return -EINVAL;
1084 	}
1085 
1086 	help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
1087 	if (!help) {
1088 		module_put(helper->me);
1089 		return -ENOMEM;
1090 	}
1091 
1092 	rcu_assign_pointer(help->helper, helper);
1093 	info->helper = helper;
1094 	return 0;
1095 }
1096 
1097 #ifdef CONFIG_NF_NAT_NEEDED
1098 static int parse_nat(const struct nlattr *attr,
1099 		     struct ovs_conntrack_info *info, bool log)
1100 {
1101 	struct nlattr *a;
1102 	int rem;
1103 	bool have_ip_max = false;
1104 	bool have_proto_max = false;
1105 	bool ip_vers = (info->family == NFPROTO_IPV6);
1106 
1107 	nla_for_each_nested(a, attr, rem) {
1108 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1109 			[OVS_NAT_ATTR_SRC] = {0, 0},
1110 			[OVS_NAT_ATTR_DST] = {0, 0},
1111 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1112 						 sizeof(struct in6_addr)},
1113 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1114 						 sizeof(struct in6_addr)},
1115 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1116 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1117 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1118 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1119 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1120 		};
1121 		int type = nla_type(a);
1122 
1123 		if (type > OVS_NAT_ATTR_MAX) {
1124 			OVS_NLERR(log,
1125 				  "Unknown NAT attribute (type=%d, max=%d).\n",
1126 				  type, OVS_NAT_ATTR_MAX);
1127 			return -EINVAL;
1128 		}
1129 
1130 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1131 			OVS_NLERR(log,
1132 				  "NAT attribute type %d has unexpected length (%d != %d).\n",
1133 				  type, nla_len(a),
1134 				  ovs_nat_attr_lens[type][ip_vers]);
1135 			return -EINVAL;
1136 		}
1137 
1138 		switch (type) {
1139 		case OVS_NAT_ATTR_SRC:
1140 		case OVS_NAT_ATTR_DST:
1141 			if (info->nat) {
1142 				OVS_NLERR(log,
1143 					  "Only one type of NAT may be specified.\n"
1144 					  );
1145 				return -ERANGE;
1146 			}
1147 			info->nat |= OVS_CT_NAT;
1148 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1149 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1150 			break;
1151 
1152 		case OVS_NAT_ATTR_IP_MIN:
1153 			nla_memcpy(&info->range.min_addr, a,
1154 				   sizeof(info->range.min_addr));
1155 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1156 			break;
1157 
1158 		case OVS_NAT_ATTR_IP_MAX:
1159 			have_ip_max = true;
1160 			nla_memcpy(&info->range.max_addr, a,
1161 				   sizeof(info->range.max_addr));
1162 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1163 			break;
1164 
1165 		case OVS_NAT_ATTR_PROTO_MIN:
1166 			info->range.min_proto.all = htons(nla_get_u16(a));
1167 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1168 			break;
1169 
1170 		case OVS_NAT_ATTR_PROTO_MAX:
1171 			have_proto_max = true;
1172 			info->range.max_proto.all = htons(nla_get_u16(a));
1173 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1174 			break;
1175 
1176 		case OVS_NAT_ATTR_PERSISTENT:
1177 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1178 			break;
1179 
1180 		case OVS_NAT_ATTR_PROTO_HASH:
1181 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1182 			break;
1183 
1184 		case OVS_NAT_ATTR_PROTO_RANDOM:
1185 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1186 			break;
1187 
1188 		default:
1189 			OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1190 			return -EINVAL;
1191 		}
1192 	}
1193 
1194 	if (rem > 0) {
1195 		OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1196 		return -EINVAL;
1197 	}
1198 	if (!info->nat) {
1199 		/* Do not allow flags if no type is given. */
1200 		if (info->range.flags) {
1201 			OVS_NLERR(log,
1202 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1203 				  );
1204 			return -EINVAL;
1205 		}
1206 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1207 	} else if (!info->commit) {
1208 		OVS_NLERR(log,
1209 			  "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1210 			  );
1211 		return -EINVAL;
1212 	}
1213 	/* Allow missing IP_MAX. */
1214 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1215 		memcpy(&info->range.max_addr, &info->range.min_addr,
1216 		       sizeof(info->range.max_addr));
1217 	}
1218 	/* Allow missing PROTO_MAX. */
1219 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1220 	    !have_proto_max) {
1221 		info->range.max_proto.all = info->range.min_proto.all;
1222 	}
1223 	return 0;
1224 }
1225 #endif
1226 
1227 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1228 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1229 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1230 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1231 				    .maxlen = sizeof(u16) },
1232 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1233 				    .maxlen = sizeof(struct md_mark) },
1234 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1235 				    .maxlen = sizeof(struct md_labels) },
1236 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1237 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1238 #ifdef CONFIG_NF_NAT_NEEDED
1239 	/* NAT length is checked when parsing the nested attributes. */
1240 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1241 #endif
1242 };
1243 
1244 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1245 		    const char **helper, bool log)
1246 {
1247 	struct nlattr *a;
1248 	int rem;
1249 
1250 	nla_for_each_nested(a, attr, rem) {
1251 		int type = nla_type(a);
1252 		int maxlen = ovs_ct_attr_lens[type].maxlen;
1253 		int minlen = ovs_ct_attr_lens[type].minlen;
1254 
1255 		if (type > OVS_CT_ATTR_MAX) {
1256 			OVS_NLERR(log,
1257 				  "Unknown conntrack attr (type=%d, max=%d)",
1258 				  type, OVS_CT_ATTR_MAX);
1259 			return -EINVAL;
1260 		}
1261 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1262 			OVS_NLERR(log,
1263 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1264 				  type, nla_len(a), maxlen);
1265 			return -EINVAL;
1266 		}
1267 
1268 		switch (type) {
1269 		case OVS_CT_ATTR_FORCE_COMMIT:
1270 			info->force = true;
1271 			/* fall through. */
1272 		case OVS_CT_ATTR_COMMIT:
1273 			info->commit = true;
1274 			break;
1275 #ifdef CONFIG_NF_CONNTRACK_ZONES
1276 		case OVS_CT_ATTR_ZONE:
1277 			info->zone.id = nla_get_u16(a);
1278 			break;
1279 #endif
1280 #ifdef CONFIG_NF_CONNTRACK_MARK
1281 		case OVS_CT_ATTR_MARK: {
1282 			struct md_mark *mark = nla_data(a);
1283 
1284 			if (!mark->mask) {
1285 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1286 				return -EINVAL;
1287 			}
1288 			info->mark = *mark;
1289 			break;
1290 		}
1291 #endif
1292 #ifdef CONFIG_NF_CONNTRACK_LABELS
1293 		case OVS_CT_ATTR_LABELS: {
1294 			struct md_labels *labels = nla_data(a);
1295 
1296 			if (!labels_nonzero(&labels->mask)) {
1297 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1298 				return -EINVAL;
1299 			}
1300 			info->labels = *labels;
1301 			break;
1302 		}
1303 #endif
1304 		case OVS_CT_ATTR_HELPER:
1305 			*helper = nla_data(a);
1306 			if (!memchr(*helper, '\0', nla_len(a))) {
1307 				OVS_NLERR(log, "Invalid conntrack helper");
1308 				return -EINVAL;
1309 			}
1310 			break;
1311 #ifdef CONFIG_NF_NAT_NEEDED
1312 		case OVS_CT_ATTR_NAT: {
1313 			int err = parse_nat(a, info, log);
1314 
1315 			if (err)
1316 				return err;
1317 			break;
1318 		}
1319 #endif
1320 		default:
1321 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1322 				  type);
1323 			return -EINVAL;
1324 		}
1325 	}
1326 
1327 #ifdef CONFIG_NF_CONNTRACK_MARK
1328 	if (!info->commit && info->mark.mask) {
1329 		OVS_NLERR(log,
1330 			  "Setting conntrack mark requires 'commit' flag.");
1331 		return -EINVAL;
1332 	}
1333 #endif
1334 #ifdef CONFIG_NF_CONNTRACK_LABELS
1335 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1336 		OVS_NLERR(log,
1337 			  "Setting conntrack labels requires 'commit' flag.");
1338 		return -EINVAL;
1339 	}
1340 #endif
1341 	if (rem > 0) {
1342 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1343 		return -EINVAL;
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1350 {
1351 	if (attr == OVS_KEY_ATTR_CT_STATE)
1352 		return true;
1353 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1354 	    attr == OVS_KEY_ATTR_CT_ZONE)
1355 		return true;
1356 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1357 	    attr == OVS_KEY_ATTR_CT_MARK)
1358 		return true;
1359 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1360 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1361 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1362 
1363 		return ovs_net->xt_label;
1364 	}
1365 
1366 	return false;
1367 }
1368 
1369 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1370 		       const struct sw_flow_key *key,
1371 		       struct sw_flow_actions **sfa,  bool log)
1372 {
1373 	struct ovs_conntrack_info ct_info;
1374 	const char *helper = NULL;
1375 	u16 family;
1376 	int err;
1377 
1378 	family = key_to_nfproto(key);
1379 	if (family == NFPROTO_UNSPEC) {
1380 		OVS_NLERR(log, "ct family unspecified");
1381 		return -EINVAL;
1382 	}
1383 
1384 	memset(&ct_info, 0, sizeof(ct_info));
1385 	ct_info.family = family;
1386 
1387 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1388 			NF_CT_DEFAULT_ZONE_DIR, 0);
1389 
1390 	err = parse_ct(attr, &ct_info, &helper, log);
1391 	if (err)
1392 		return err;
1393 
1394 	/* Set up template for tracking connections in specific zones. */
1395 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1396 	if (!ct_info.ct) {
1397 		OVS_NLERR(log, "Failed to allocate conntrack template");
1398 		return -ENOMEM;
1399 	}
1400 
1401 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1402 	nf_conntrack_get(&ct_info.ct->ct_general);
1403 
1404 	if (helper) {
1405 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1406 		if (err)
1407 			goto err_free_ct;
1408 	}
1409 
1410 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1411 				 sizeof(ct_info), log);
1412 	if (err)
1413 		goto err_free_ct;
1414 
1415 	return 0;
1416 err_free_ct:
1417 	__ovs_ct_free_action(&ct_info);
1418 	return err;
1419 }
1420 
1421 #ifdef CONFIG_NF_NAT_NEEDED
1422 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1423 			       struct sk_buff *skb)
1424 {
1425 	struct nlattr *start;
1426 
1427 	start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1428 	if (!start)
1429 		return false;
1430 
1431 	if (info->nat & OVS_CT_SRC_NAT) {
1432 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1433 			return false;
1434 	} else if (info->nat & OVS_CT_DST_NAT) {
1435 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1436 			return false;
1437 	} else {
1438 		goto out;
1439 	}
1440 
1441 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1442 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1443 		    info->family == NFPROTO_IPV4) {
1444 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1445 					    info->range.min_addr.ip) ||
1446 			    (info->range.max_addr.ip
1447 			     != info->range.min_addr.ip &&
1448 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1449 					      info->range.max_addr.ip))))
1450 				return false;
1451 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1452 			   info->family == NFPROTO_IPV6) {
1453 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1454 					     &info->range.min_addr.in6) ||
1455 			    (memcmp(&info->range.max_addr.in6,
1456 				    &info->range.min_addr.in6,
1457 				    sizeof(info->range.max_addr.in6)) &&
1458 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1459 					       &info->range.max_addr.in6))))
1460 				return false;
1461 		} else {
1462 			return false;
1463 		}
1464 	}
1465 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1466 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1467 			 ntohs(info->range.min_proto.all)) ||
1468 	     (info->range.max_proto.all != info->range.min_proto.all &&
1469 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1470 			  ntohs(info->range.max_proto.all)))))
1471 		return false;
1472 
1473 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1474 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1475 		return false;
1476 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1477 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1478 		return false;
1479 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1480 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1481 		return false;
1482 out:
1483 	nla_nest_end(skb, start);
1484 
1485 	return true;
1486 }
1487 #endif
1488 
1489 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1490 			  struct sk_buff *skb)
1491 {
1492 	struct nlattr *start;
1493 
1494 	start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1495 	if (!start)
1496 		return -EMSGSIZE;
1497 
1498 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1499 					    ? OVS_CT_ATTR_FORCE_COMMIT
1500 					    : OVS_CT_ATTR_COMMIT))
1501 		return -EMSGSIZE;
1502 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1503 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1504 		return -EMSGSIZE;
1505 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1506 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1507 		    &ct_info->mark))
1508 		return -EMSGSIZE;
1509 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1510 	    labels_nonzero(&ct_info->labels.mask) &&
1511 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1512 		    &ct_info->labels))
1513 		return -EMSGSIZE;
1514 	if (ct_info->helper) {
1515 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1516 				   ct_info->helper->name))
1517 			return -EMSGSIZE;
1518 	}
1519 #ifdef CONFIG_NF_NAT_NEEDED
1520 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1521 		return -EMSGSIZE;
1522 #endif
1523 	nla_nest_end(skb, start);
1524 
1525 	return 0;
1526 }
1527 
1528 void ovs_ct_free_action(const struct nlattr *a)
1529 {
1530 	struct ovs_conntrack_info *ct_info = nla_data(a);
1531 
1532 	__ovs_ct_free_action(ct_info);
1533 }
1534 
1535 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1536 {
1537 	if (ct_info->helper)
1538 		module_put(ct_info->helper->me);
1539 	if (ct_info->ct)
1540 		nf_ct_tmpl_free(ct_info->ct);
1541 }
1542 
1543 void ovs_ct_init(struct net *net)
1544 {
1545 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1546 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1547 
1548 	if (nf_connlabels_get(net, n_bits - 1)) {
1549 		ovs_net->xt_label = false;
1550 		OVS_NLERR(true, "Failed to set connlabel length");
1551 	} else {
1552 		ovs_net->xt_label = true;
1553 	}
1554 }
1555 
1556 void ovs_ct_exit(struct net *net)
1557 {
1558 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1559 
1560 	if (ovs_net->xt_label)
1561 		nf_connlabels_put(net);
1562 }
1563