xref: /openbmc/linux/net/openvswitch/conntrack.c (revision 4da722ca)
1 /*
2  * Copyright (c) 2015 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <net/ip.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_labels.h>
23 #include <net/netfilter/nf_conntrack_seqadj.h>
24 #include <net/netfilter/nf_conntrack_zones.h>
25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26 
27 #ifdef CONFIG_NF_NAT_NEEDED
28 #include <linux/netfilter/nf_nat.h>
29 #include <net/netfilter/nf_nat_core.h>
30 #include <net/netfilter/nf_nat_l3proto.h>
31 #endif
32 
33 #include "datapath.h"
34 #include "conntrack.h"
35 #include "flow.h"
36 #include "flow_netlink.h"
37 
38 struct ovs_ct_len_tbl {
39 	int maxlen;
40 	int minlen;
41 };
42 
43 /* Metadata mark for masked write to conntrack mark */
44 struct md_mark {
45 	u32 value;
46 	u32 mask;
47 };
48 
49 /* Metadata label for masked write to conntrack label. */
50 struct md_labels {
51 	struct ovs_key_ct_labels value;
52 	struct ovs_key_ct_labels mask;
53 };
54 
55 enum ovs_ct_nat {
56 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
57 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59 };
60 
61 /* Conntrack action context for execution. */
62 struct ovs_conntrack_info {
63 	struct nf_conntrack_helper *helper;
64 	struct nf_conntrack_zone zone;
65 	struct nf_conn *ct;
66 	u8 commit : 1;
67 	u8 nat : 3;                 /* enum ovs_ct_nat */
68 	u8 force : 1;
69 	u8 have_eventmask : 1;
70 	u16 family;
71 	u32 eventmask;              /* Mask of 1 << IPCT_*. */
72 	struct md_mark mark;
73 	struct md_labels labels;
74 #ifdef CONFIG_NF_NAT_NEEDED
75 	struct nf_nat_range range;  /* Only present for SRC NAT and DST NAT. */
76 #endif
77 };
78 
79 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
80 
81 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
82 
83 static u16 key_to_nfproto(const struct sw_flow_key *key)
84 {
85 	switch (ntohs(key->eth.type)) {
86 	case ETH_P_IP:
87 		return NFPROTO_IPV4;
88 	case ETH_P_IPV6:
89 		return NFPROTO_IPV6;
90 	default:
91 		return NFPROTO_UNSPEC;
92 	}
93 }
94 
95 /* Map SKB connection state into the values used by flow definition. */
96 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
97 {
98 	u8 ct_state = OVS_CS_F_TRACKED;
99 
100 	switch (ctinfo) {
101 	case IP_CT_ESTABLISHED_REPLY:
102 	case IP_CT_RELATED_REPLY:
103 		ct_state |= OVS_CS_F_REPLY_DIR;
104 		break;
105 	default:
106 		break;
107 	}
108 
109 	switch (ctinfo) {
110 	case IP_CT_ESTABLISHED:
111 	case IP_CT_ESTABLISHED_REPLY:
112 		ct_state |= OVS_CS_F_ESTABLISHED;
113 		break;
114 	case IP_CT_RELATED:
115 	case IP_CT_RELATED_REPLY:
116 		ct_state |= OVS_CS_F_RELATED;
117 		break;
118 	case IP_CT_NEW:
119 		ct_state |= OVS_CS_F_NEW;
120 		break;
121 	default:
122 		break;
123 	}
124 
125 	return ct_state;
126 }
127 
128 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
129 {
130 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
131 	return ct ? ct->mark : 0;
132 #else
133 	return 0;
134 #endif
135 }
136 
137 /* Guard against conntrack labels max size shrinking below 128 bits. */
138 #if NF_CT_LABELS_MAX_SIZE < 16
139 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
140 #endif
141 
142 static void ovs_ct_get_labels(const struct nf_conn *ct,
143 			      struct ovs_key_ct_labels *labels)
144 {
145 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
146 
147 	if (cl)
148 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
149 	else
150 		memset(labels, 0, OVS_CT_LABELS_LEN);
151 }
152 
153 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
154 					const struct nf_conntrack_tuple *orig,
155 					u8 icmp_proto)
156 {
157 	key->ct_orig_proto = orig->dst.protonum;
158 	if (orig->dst.protonum == icmp_proto) {
159 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
160 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
161 	} else {
162 		key->ct.orig_tp.src = orig->src.u.all;
163 		key->ct.orig_tp.dst = orig->dst.u.all;
164 	}
165 }
166 
167 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
168 				const struct nf_conntrack_zone *zone,
169 				const struct nf_conn *ct)
170 {
171 	key->ct_state = state;
172 	key->ct_zone = zone->id;
173 	key->ct.mark = ovs_ct_get_mark(ct);
174 	ovs_ct_get_labels(ct, &key->ct.labels);
175 
176 	if (ct) {
177 		const struct nf_conntrack_tuple *orig;
178 
179 		/* Use the master if we have one. */
180 		if (ct->master)
181 			ct = ct->master;
182 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
183 
184 		/* IP version must match with the master connection. */
185 		if (key->eth.type == htons(ETH_P_IP) &&
186 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
187 			key->ipv4.ct_orig.src = orig->src.u3.ip;
188 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
189 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
190 			return;
191 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
192 			   !sw_flow_key_is_nd(key) &&
193 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
194 			key->ipv6.ct_orig.src = orig->src.u3.in6;
195 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
196 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
197 			return;
198 		}
199 	}
200 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
201 	 * original direction key fields.
202 	 */
203 	key->ct_orig_proto = 0;
204 }
205 
206 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
207  * previously sent the packet to conntrack via the ct action.  If
208  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
209  * initialized from the connection status.
210  */
211 static void ovs_ct_update_key(const struct sk_buff *skb,
212 			      const struct ovs_conntrack_info *info,
213 			      struct sw_flow_key *key, bool post_ct,
214 			      bool keep_nat_flags)
215 {
216 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
217 	enum ip_conntrack_info ctinfo;
218 	struct nf_conn *ct;
219 	u8 state = 0;
220 
221 	ct = nf_ct_get(skb, &ctinfo);
222 	if (ct) {
223 		state = ovs_ct_get_state(ctinfo);
224 		/* All unconfirmed entries are NEW connections. */
225 		if (!nf_ct_is_confirmed(ct))
226 			state |= OVS_CS_F_NEW;
227 		/* OVS persists the related flag for the duration of the
228 		 * connection.
229 		 */
230 		if (ct->master)
231 			state |= OVS_CS_F_RELATED;
232 		if (keep_nat_flags) {
233 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
234 		} else {
235 			if (ct->status & IPS_SRC_NAT)
236 				state |= OVS_CS_F_SRC_NAT;
237 			if (ct->status & IPS_DST_NAT)
238 				state |= OVS_CS_F_DST_NAT;
239 		}
240 		zone = nf_ct_zone(ct);
241 	} else if (post_ct) {
242 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
243 		if (info)
244 			zone = &info->zone;
245 	}
246 	__ovs_ct_update_key(key, state, zone, ct);
247 }
248 
249 /* This is called to initialize CT key fields possibly coming in from the local
250  * stack.
251  */
252 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
253 {
254 	ovs_ct_update_key(skb, NULL, key, false, false);
255 }
256 
257 #define IN6_ADDR_INITIALIZER(ADDR) \
258 	{ (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
259 	  (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
260 
261 int ovs_ct_put_key(const struct sw_flow_key *swkey,
262 		   const struct sw_flow_key *output, struct sk_buff *skb)
263 {
264 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
265 		return -EMSGSIZE;
266 
267 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
268 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
269 		return -EMSGSIZE;
270 
271 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
272 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
273 		return -EMSGSIZE;
274 
275 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
276 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
277 		    &output->ct.labels))
278 		return -EMSGSIZE;
279 
280 	if (swkey->ct_orig_proto) {
281 		if (swkey->eth.type == htons(ETH_P_IP)) {
282 			struct ovs_key_ct_tuple_ipv4 orig = {
283 				output->ipv4.ct_orig.src,
284 				output->ipv4.ct_orig.dst,
285 				output->ct.orig_tp.src,
286 				output->ct.orig_tp.dst,
287 				output->ct_orig_proto,
288 			};
289 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
290 				    sizeof(orig), &orig))
291 				return -EMSGSIZE;
292 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
293 			struct ovs_key_ct_tuple_ipv6 orig = {
294 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
295 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
296 				output->ct.orig_tp.src,
297 				output->ct.orig_tp.dst,
298 				output->ct_orig_proto,
299 			};
300 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
301 				    sizeof(orig), &orig))
302 				return -EMSGSIZE;
303 		}
304 	}
305 
306 	return 0;
307 }
308 
309 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
310 			   u32 ct_mark, u32 mask)
311 {
312 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
313 	u32 new_mark;
314 
315 	new_mark = ct_mark | (ct->mark & ~(mask));
316 	if (ct->mark != new_mark) {
317 		ct->mark = new_mark;
318 		if (nf_ct_is_confirmed(ct))
319 			nf_conntrack_event_cache(IPCT_MARK, ct);
320 		key->ct.mark = new_mark;
321 	}
322 
323 	return 0;
324 #else
325 	return -ENOTSUPP;
326 #endif
327 }
328 
329 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
330 {
331 	struct nf_conn_labels *cl;
332 
333 	cl = nf_ct_labels_find(ct);
334 	if (!cl) {
335 		nf_ct_labels_ext_add(ct);
336 		cl = nf_ct_labels_find(ct);
337 	}
338 
339 	return cl;
340 }
341 
342 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
343  * since the new connection is not yet confirmed, and thus no-one else has
344  * access to it's labels, we simply write them over.
345  */
346 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
347 			      const struct ovs_key_ct_labels *labels,
348 			      const struct ovs_key_ct_labels *mask)
349 {
350 	struct nf_conn_labels *cl, *master_cl;
351 	bool have_mask = labels_nonzero(mask);
352 
353 	/* Inherit master's labels to the related connection? */
354 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
355 
356 	if (!master_cl && !have_mask)
357 		return 0;   /* Nothing to do. */
358 
359 	cl = ovs_ct_get_conn_labels(ct);
360 	if (!cl)
361 		return -ENOSPC;
362 
363 	/* Inherit the master's labels, if any. */
364 	if (master_cl)
365 		*cl = *master_cl;
366 
367 	if (have_mask) {
368 		u32 *dst = (u32 *)cl->bits;
369 		int i;
370 
371 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
372 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
373 				(labels->ct_labels_32[i]
374 				 & mask->ct_labels_32[i]);
375 	}
376 
377 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
378 	 * IPCT_LABEL bit is set in the event cache.
379 	 */
380 	nf_conntrack_event_cache(IPCT_LABEL, ct);
381 
382 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
383 
384 	return 0;
385 }
386 
387 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
388 			     const struct ovs_key_ct_labels *labels,
389 			     const struct ovs_key_ct_labels *mask)
390 {
391 	struct nf_conn_labels *cl;
392 	int err;
393 
394 	cl = ovs_ct_get_conn_labels(ct);
395 	if (!cl)
396 		return -ENOSPC;
397 
398 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
399 				    mask->ct_labels_32,
400 				    OVS_CT_LABELS_LEN_32);
401 	if (err)
402 		return err;
403 
404 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
405 
406 	return 0;
407 }
408 
409 /* 'skb' should already be pulled to nh_ofs. */
410 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
411 {
412 	const struct nf_conntrack_helper *helper;
413 	const struct nf_conn_help *help;
414 	enum ip_conntrack_info ctinfo;
415 	unsigned int protoff;
416 	struct nf_conn *ct;
417 	int err;
418 
419 	ct = nf_ct_get(skb, &ctinfo);
420 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
421 		return NF_ACCEPT;
422 
423 	help = nfct_help(ct);
424 	if (!help)
425 		return NF_ACCEPT;
426 
427 	helper = rcu_dereference(help->helper);
428 	if (!helper)
429 		return NF_ACCEPT;
430 
431 	switch (proto) {
432 	case NFPROTO_IPV4:
433 		protoff = ip_hdrlen(skb);
434 		break;
435 	case NFPROTO_IPV6: {
436 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
437 		__be16 frag_off;
438 		int ofs;
439 
440 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
441 				       &frag_off);
442 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
443 			pr_debug("proto header not found\n");
444 			return NF_ACCEPT;
445 		}
446 		protoff = ofs;
447 		break;
448 	}
449 	default:
450 		WARN_ONCE(1, "helper invoked on non-IP family!");
451 		return NF_DROP;
452 	}
453 
454 	err = helper->help(skb, protoff, ct, ctinfo);
455 	if (err != NF_ACCEPT)
456 		return err;
457 
458 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
459 	 * FTP with NAT) adusting the TCP payload size when mangling IP
460 	 * addresses and/or port numbers in the text-based control connection.
461 	 */
462 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
463 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
464 		return NF_DROP;
465 	return NF_ACCEPT;
466 }
467 
468 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
469  * value if 'skb' is freed.
470  */
471 static int handle_fragments(struct net *net, struct sw_flow_key *key,
472 			    u16 zone, struct sk_buff *skb)
473 {
474 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
475 	int err;
476 
477 	if (key->eth.type == htons(ETH_P_IP)) {
478 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
479 
480 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
481 		err = ip_defrag(net, skb, user);
482 		if (err)
483 			return err;
484 
485 		ovs_cb.mru = IPCB(skb)->frag_max_size;
486 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
487 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
488 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
489 
490 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
491 		err = nf_ct_frag6_gather(net, skb, user);
492 		if (err) {
493 			if (err != -EINPROGRESS)
494 				kfree_skb(skb);
495 			return err;
496 		}
497 
498 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
499 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
500 #endif
501 	} else {
502 		kfree_skb(skb);
503 		return -EPFNOSUPPORT;
504 	}
505 
506 	key->ip.frag = OVS_FRAG_TYPE_NONE;
507 	skb_clear_hash(skb);
508 	skb->ignore_df = 1;
509 	*OVS_CB(skb) = ovs_cb;
510 
511 	return 0;
512 }
513 
514 static struct nf_conntrack_expect *
515 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
516 		   u16 proto, const struct sk_buff *skb)
517 {
518 	struct nf_conntrack_tuple tuple;
519 	struct nf_conntrack_expect *exp;
520 
521 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
522 		return NULL;
523 
524 	exp = __nf_ct_expect_find(net, zone, &tuple);
525 	if (exp) {
526 		struct nf_conntrack_tuple_hash *h;
527 
528 		/* Delete existing conntrack entry, if it clashes with the
529 		 * expectation.  This can happen since conntrack ALGs do not
530 		 * check for clashes between (new) expectations and existing
531 		 * conntrack entries.  nf_conntrack_in() will check the
532 		 * expectations only if a conntrack entry can not be found,
533 		 * which can lead to OVS finding the expectation (here) in the
534 		 * init direction, but which will not be removed by the
535 		 * nf_conntrack_in() call, if a matching conntrack entry is
536 		 * found instead.  In this case all init direction packets
537 		 * would be reported as new related packets, while reply
538 		 * direction packets would be reported as un-related
539 		 * established packets.
540 		 */
541 		h = nf_conntrack_find_get(net, zone, &tuple);
542 		if (h) {
543 			struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
544 
545 			nf_ct_delete(ct, 0, 0);
546 			nf_conntrack_put(&ct->ct_general);
547 		}
548 	}
549 
550 	return exp;
551 }
552 
553 /* This replicates logic from nf_conntrack_core.c that is not exported. */
554 static enum ip_conntrack_info
555 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
556 {
557 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
558 
559 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
560 		return IP_CT_ESTABLISHED_REPLY;
561 	/* Once we've had two way comms, always ESTABLISHED. */
562 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
563 		return IP_CT_ESTABLISHED;
564 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
565 		return IP_CT_RELATED;
566 	return IP_CT_NEW;
567 }
568 
569 /* Find an existing connection which this packet belongs to without
570  * re-attributing statistics or modifying the connection state.  This allows an
571  * skb->_nfct lost due to an upcall to be recovered during actions execution.
572  *
573  * Must be called with rcu_read_lock.
574  *
575  * On success, populates skb->_nfct and returns the connection.  Returns NULL
576  * if there is no existing entry.
577  */
578 static struct nf_conn *
579 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
580 		     u8 l3num, struct sk_buff *skb, bool natted)
581 {
582 	struct nf_conntrack_l3proto *l3proto;
583 	struct nf_conntrack_l4proto *l4proto;
584 	struct nf_conntrack_tuple tuple;
585 	struct nf_conntrack_tuple_hash *h;
586 	struct nf_conn *ct;
587 	unsigned int dataoff;
588 	u8 protonum;
589 
590 	l3proto = __nf_ct_l3proto_find(l3num);
591 	if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
592 				 &protonum) <= 0) {
593 		pr_debug("ovs_ct_find_existing: Can't get protonum\n");
594 		return NULL;
595 	}
596 	l4proto = __nf_ct_l4proto_find(l3num, protonum);
597 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
598 			     protonum, net, &tuple, l3proto, l4proto)) {
599 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
600 		return NULL;
601 	}
602 
603 	/* Must invert the tuple if skb has been transformed by NAT. */
604 	if (natted) {
605 		struct nf_conntrack_tuple inverse;
606 
607 		if (!nf_ct_invert_tuple(&inverse, &tuple, l3proto, l4proto)) {
608 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
609 			return NULL;
610 		}
611 		tuple = inverse;
612 	}
613 
614 	/* look for tuple match */
615 	h = nf_conntrack_find_get(net, zone, &tuple);
616 	if (!h)
617 		return NULL;   /* Not found. */
618 
619 	ct = nf_ct_tuplehash_to_ctrack(h);
620 
621 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
622 	 * select the other tuplehash to get the right 'ctinfo' bits for this
623 	 * packet.
624 	 */
625 	if (natted)
626 		h = &ct->tuplehash[!h->tuple.dst.dir];
627 
628 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
629 	return ct;
630 }
631 
632 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
633 static bool skb_nfct_cached(struct net *net,
634 			    const struct sw_flow_key *key,
635 			    const struct ovs_conntrack_info *info,
636 			    struct sk_buff *skb)
637 {
638 	enum ip_conntrack_info ctinfo;
639 	struct nf_conn *ct;
640 
641 	ct = nf_ct_get(skb, &ctinfo);
642 	/* If no ct, check if we have evidence that an existing conntrack entry
643 	 * might be found for this skb.  This happens when we lose a skb->_nfct
644 	 * due to an upcall.  If the connection was not confirmed, it is not
645 	 * cached and needs to be run through conntrack again.
646 	 */
647 	if (!ct && key->ct_state & OVS_CS_F_TRACKED &&
648 	    !(key->ct_state & OVS_CS_F_INVALID) &&
649 	    key->ct_zone == info->zone.id) {
650 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
651 					  !!(key->ct_state
652 					     & OVS_CS_F_NAT_MASK));
653 		if (ct)
654 			nf_ct_get(skb, &ctinfo);
655 	}
656 	if (!ct)
657 		return false;
658 	if (!net_eq(net, read_pnet(&ct->ct_net)))
659 		return false;
660 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
661 		return false;
662 	if (info->helper) {
663 		struct nf_conn_help *help;
664 
665 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
666 		if (help && rcu_access_pointer(help->helper) != info->helper)
667 			return false;
668 	}
669 	/* Force conntrack entry direction to the current packet? */
670 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
671 		/* Delete the conntrack entry if confirmed, else just release
672 		 * the reference.
673 		 */
674 		if (nf_ct_is_confirmed(ct))
675 			nf_ct_delete(ct, 0, 0);
676 
677 		nf_conntrack_put(&ct->ct_general);
678 		nf_ct_set(skb, NULL, 0);
679 		return false;
680 	}
681 
682 	return true;
683 }
684 
685 #ifdef CONFIG_NF_NAT_NEEDED
686 /* Modelled after nf_nat_ipv[46]_fn().
687  * range is only used for new, uninitialized NAT state.
688  * Returns either NF_ACCEPT or NF_DROP.
689  */
690 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
691 			      enum ip_conntrack_info ctinfo,
692 			      const struct nf_nat_range *range,
693 			      enum nf_nat_manip_type maniptype)
694 {
695 	int hooknum, nh_off, err = NF_ACCEPT;
696 
697 	nh_off = skb_network_offset(skb);
698 	skb_pull_rcsum(skb, nh_off);
699 
700 	/* See HOOK2MANIP(). */
701 	if (maniptype == NF_NAT_MANIP_SRC)
702 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
703 	else
704 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
705 
706 	switch (ctinfo) {
707 	case IP_CT_RELATED:
708 	case IP_CT_RELATED_REPLY:
709 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
710 		    skb->protocol == htons(ETH_P_IP) &&
711 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
712 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
713 							   hooknum))
714 				err = NF_DROP;
715 			goto push;
716 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
717 			   skb->protocol == htons(ETH_P_IPV6)) {
718 			__be16 frag_off;
719 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
720 			int hdrlen = ipv6_skip_exthdr(skb,
721 						      sizeof(struct ipv6hdr),
722 						      &nexthdr, &frag_off);
723 
724 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
725 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
726 								     ctinfo,
727 								     hooknum,
728 								     hdrlen))
729 					err = NF_DROP;
730 				goto push;
731 			}
732 		}
733 		/* Non-ICMP, fall thru to initialize if needed. */
734 	case IP_CT_NEW:
735 		/* Seen it before?  This can happen for loopback, retrans,
736 		 * or local packets.
737 		 */
738 		if (!nf_nat_initialized(ct, maniptype)) {
739 			/* Initialize according to the NAT action. */
740 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
741 				/* Action is set up to establish a new
742 				 * mapping.
743 				 */
744 				? nf_nat_setup_info(ct, range, maniptype)
745 				: nf_nat_alloc_null_binding(ct, hooknum);
746 			if (err != NF_ACCEPT)
747 				goto push;
748 		}
749 		break;
750 
751 	case IP_CT_ESTABLISHED:
752 	case IP_CT_ESTABLISHED_REPLY:
753 		break;
754 
755 	default:
756 		err = NF_DROP;
757 		goto push;
758 	}
759 
760 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
761 push:
762 	skb_push(skb, nh_off);
763 	skb_postpush_rcsum(skb, skb->data, nh_off);
764 
765 	return err;
766 }
767 
768 static void ovs_nat_update_key(struct sw_flow_key *key,
769 			       const struct sk_buff *skb,
770 			       enum nf_nat_manip_type maniptype)
771 {
772 	if (maniptype == NF_NAT_MANIP_SRC) {
773 		__be16 src;
774 
775 		key->ct_state |= OVS_CS_F_SRC_NAT;
776 		if (key->eth.type == htons(ETH_P_IP))
777 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
778 		else if (key->eth.type == htons(ETH_P_IPV6))
779 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
780 			       sizeof(key->ipv6.addr.src));
781 		else
782 			return;
783 
784 		if (key->ip.proto == IPPROTO_UDP)
785 			src = udp_hdr(skb)->source;
786 		else if (key->ip.proto == IPPROTO_TCP)
787 			src = tcp_hdr(skb)->source;
788 		else if (key->ip.proto == IPPROTO_SCTP)
789 			src = sctp_hdr(skb)->source;
790 		else
791 			return;
792 
793 		key->tp.src = src;
794 	} else {
795 		__be16 dst;
796 
797 		key->ct_state |= OVS_CS_F_DST_NAT;
798 		if (key->eth.type == htons(ETH_P_IP))
799 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
800 		else if (key->eth.type == htons(ETH_P_IPV6))
801 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
802 			       sizeof(key->ipv6.addr.dst));
803 		else
804 			return;
805 
806 		if (key->ip.proto == IPPROTO_UDP)
807 			dst = udp_hdr(skb)->dest;
808 		else if (key->ip.proto == IPPROTO_TCP)
809 			dst = tcp_hdr(skb)->dest;
810 		else if (key->ip.proto == IPPROTO_SCTP)
811 			dst = sctp_hdr(skb)->dest;
812 		else
813 			return;
814 
815 		key->tp.dst = dst;
816 	}
817 }
818 
819 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
820 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
821 		      const struct ovs_conntrack_info *info,
822 		      struct sk_buff *skb, struct nf_conn *ct,
823 		      enum ip_conntrack_info ctinfo)
824 {
825 	enum nf_nat_manip_type maniptype;
826 	int err;
827 
828 	/* Add NAT extension if not confirmed yet. */
829 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
830 		return NF_ACCEPT;   /* Can't NAT. */
831 
832 	/* Determine NAT type.
833 	 * Check if the NAT type can be deduced from the tracked connection.
834 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
835 	 * when committing.
836 	 */
837 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
838 	    ct->status & IPS_NAT_MASK &&
839 	    (ctinfo != IP_CT_RELATED || info->commit)) {
840 		/* NAT an established or related connection like before. */
841 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
842 			/* This is the REPLY direction for a connection
843 			 * for which NAT was applied in the forward
844 			 * direction.  Do the reverse NAT.
845 			 */
846 			maniptype = ct->status & IPS_SRC_NAT
847 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
848 		else
849 			maniptype = ct->status & IPS_SRC_NAT
850 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
851 	} else if (info->nat & OVS_CT_SRC_NAT) {
852 		maniptype = NF_NAT_MANIP_SRC;
853 	} else if (info->nat & OVS_CT_DST_NAT) {
854 		maniptype = NF_NAT_MANIP_DST;
855 	} else {
856 		return NF_ACCEPT; /* Connection is not NATed. */
857 	}
858 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
859 
860 	/* Mark NAT done if successful and update the flow key. */
861 	if (err == NF_ACCEPT)
862 		ovs_nat_update_key(key, skb, maniptype);
863 
864 	return err;
865 }
866 #else /* !CONFIG_NF_NAT_NEEDED */
867 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
868 		      const struct ovs_conntrack_info *info,
869 		      struct sk_buff *skb, struct nf_conn *ct,
870 		      enum ip_conntrack_info ctinfo)
871 {
872 	return NF_ACCEPT;
873 }
874 #endif
875 
876 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
877  * not done already.  Update key with new CT state after passing the packet
878  * through conntrack.
879  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
880  * set to NULL and 0 will be returned.
881  */
882 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
883 			   const struct ovs_conntrack_info *info,
884 			   struct sk_buff *skb)
885 {
886 	/* If we are recirculating packets to match on conntrack fields and
887 	 * committing with a separate conntrack action,  then we don't need to
888 	 * actually run the packet through conntrack twice unless it's for a
889 	 * different zone.
890 	 */
891 	bool cached = skb_nfct_cached(net, key, info, skb);
892 	enum ip_conntrack_info ctinfo;
893 	struct nf_conn *ct;
894 
895 	if (!cached) {
896 		struct nf_conn *tmpl = info->ct;
897 		int err;
898 
899 		/* Associate skb with specified zone. */
900 		if (tmpl) {
901 			if (skb_nfct(skb))
902 				nf_conntrack_put(skb_nfct(skb));
903 			nf_conntrack_get(&tmpl->ct_general);
904 			nf_ct_set(skb, tmpl, IP_CT_NEW);
905 		}
906 
907 		err = nf_conntrack_in(net, info->family,
908 				      NF_INET_PRE_ROUTING, skb);
909 		if (err != NF_ACCEPT)
910 			return -ENOENT;
911 
912 		/* Clear CT state NAT flags to mark that we have not yet done
913 		 * NAT after the nf_conntrack_in() call.  We can actually clear
914 		 * the whole state, as it will be re-initialized below.
915 		 */
916 		key->ct_state = 0;
917 
918 		/* Update the key, but keep the NAT flags. */
919 		ovs_ct_update_key(skb, info, key, true, true);
920 	}
921 
922 	ct = nf_ct_get(skb, &ctinfo);
923 	if (ct) {
924 		/* Packets starting a new connection must be NATted before the
925 		 * helper, so that the helper knows about the NAT.  We enforce
926 		 * this by delaying both NAT and helper calls for unconfirmed
927 		 * connections until the committing CT action.  For later
928 		 * packets NAT and Helper may be called in either order.
929 		 *
930 		 * NAT will be done only if the CT action has NAT, and only
931 		 * once per packet (per zone), as guarded by the NAT bits in
932 		 * the key->ct_state.
933 		 */
934 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
935 		    (nf_ct_is_confirmed(ct) || info->commit) &&
936 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
937 			return -EINVAL;
938 		}
939 
940 		/* Userspace may decide to perform a ct lookup without a helper
941 		 * specified followed by a (recirculate and) commit with one.
942 		 * Therefore, for unconfirmed connections which we will commit,
943 		 * we need to attach the helper here.
944 		 */
945 		if (!nf_ct_is_confirmed(ct) && info->commit &&
946 		    info->helper && !nfct_help(ct)) {
947 			int err = __nf_ct_try_assign_helper(ct, info->ct,
948 							    GFP_ATOMIC);
949 			if (err)
950 				return err;
951 		}
952 
953 		/* Call the helper only if:
954 		 * - nf_conntrack_in() was executed above ("!cached") for a
955 		 *   confirmed connection, or
956 		 * - When committing an unconfirmed connection.
957 		 */
958 		if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
959 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
960 			return -EINVAL;
961 		}
962 	}
963 
964 	return 0;
965 }
966 
967 /* Lookup connection and read fields into key. */
968 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
969 			 const struct ovs_conntrack_info *info,
970 			 struct sk_buff *skb)
971 {
972 	struct nf_conntrack_expect *exp;
973 
974 	/* If we pass an expected packet through nf_conntrack_in() the
975 	 * expectation is typically removed, but the packet could still be
976 	 * lost in upcall processing.  To prevent this from happening we
977 	 * perform an explicit expectation lookup.  Expected connections are
978 	 * always new, and will be passed through conntrack only when they are
979 	 * committed, as it is OK to remove the expectation at that time.
980 	 */
981 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
982 	if (exp) {
983 		u8 state;
984 
985 		/* NOTE: New connections are NATted and Helped only when
986 		 * committed, so we are not calling into NAT here.
987 		 */
988 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
989 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
990 	} else {
991 		struct nf_conn *ct;
992 		int err;
993 
994 		err = __ovs_ct_lookup(net, key, info, skb);
995 		if (err)
996 			return err;
997 
998 		ct = (struct nf_conn *)skb_nfct(skb);
999 		if (ct)
1000 			nf_ct_deliver_cached_events(ct);
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1007 {
1008 	size_t i;
1009 
1010 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1011 		if (labels->ct_labels_32[i])
1012 			return true;
1013 
1014 	return false;
1015 }
1016 
1017 /* Lookup connection and confirm if unconfirmed. */
1018 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1019 			 const struct ovs_conntrack_info *info,
1020 			 struct sk_buff *skb)
1021 {
1022 	enum ip_conntrack_info ctinfo;
1023 	struct nf_conn *ct;
1024 	int err;
1025 
1026 	err = __ovs_ct_lookup(net, key, info, skb);
1027 	if (err)
1028 		return err;
1029 
1030 	/* The connection could be invalid, in which case this is a no-op.*/
1031 	ct = nf_ct_get(skb, &ctinfo);
1032 	if (!ct)
1033 		return 0;
1034 
1035 	/* Set the conntrack event mask if given.  NEW and DELETE events have
1036 	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1037 	 * typically would receive many kinds of updates.  Setting the event
1038 	 * mask allows those events to be filtered.  The set event mask will
1039 	 * remain in effect for the lifetime of the connection unless changed
1040 	 * by a further CT action with both the commit flag and the eventmask
1041 	 * option. */
1042 	if (info->have_eventmask) {
1043 		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1044 
1045 		if (cache)
1046 			cache->ctmask = info->eventmask;
1047 	}
1048 
1049 	/* Apply changes before confirming the connection so that the initial
1050 	 * conntrack NEW netlink event carries the values given in the CT
1051 	 * action.
1052 	 */
1053 	if (info->mark.mask) {
1054 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1055 				      info->mark.mask);
1056 		if (err)
1057 			return err;
1058 	}
1059 	if (!nf_ct_is_confirmed(ct)) {
1060 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1061 					 &info->labels.mask);
1062 		if (err)
1063 			return err;
1064 	} else if (labels_nonzero(&info->labels.mask)) {
1065 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1066 					&info->labels.mask);
1067 		if (err)
1068 			return err;
1069 	}
1070 	/* This will take care of sending queued events even if the connection
1071 	 * is already confirmed.
1072 	 */
1073 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1074 		return -EINVAL;
1075 
1076 	return 0;
1077 }
1078 
1079 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1080  * value if 'skb' is freed.
1081  */
1082 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1083 		   struct sw_flow_key *key,
1084 		   const struct ovs_conntrack_info *info)
1085 {
1086 	int nh_ofs;
1087 	int err;
1088 
1089 	/* The conntrack module expects to be working at L3. */
1090 	nh_ofs = skb_network_offset(skb);
1091 	skb_pull_rcsum(skb, nh_ofs);
1092 
1093 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1094 		err = handle_fragments(net, key, info->zone.id, skb);
1095 		if (err)
1096 			return err;
1097 	}
1098 
1099 	if (info->commit)
1100 		err = ovs_ct_commit(net, key, info, skb);
1101 	else
1102 		err = ovs_ct_lookup(net, key, info, skb);
1103 
1104 	skb_push(skb, nh_ofs);
1105 	skb_postpush_rcsum(skb, skb->data, nh_ofs);
1106 	if (err)
1107 		kfree_skb(skb);
1108 	return err;
1109 }
1110 
1111 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1112 			     const struct sw_flow_key *key, bool log)
1113 {
1114 	struct nf_conntrack_helper *helper;
1115 	struct nf_conn_help *help;
1116 
1117 	helper = nf_conntrack_helper_try_module_get(name, info->family,
1118 						    key->ip.proto);
1119 	if (!helper) {
1120 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1121 		return -EINVAL;
1122 	}
1123 
1124 	help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
1125 	if (!help) {
1126 		nf_conntrack_helper_put(helper);
1127 		return -ENOMEM;
1128 	}
1129 
1130 	rcu_assign_pointer(help->helper, helper);
1131 	info->helper = helper;
1132 	return 0;
1133 }
1134 
1135 #ifdef CONFIG_NF_NAT_NEEDED
1136 static int parse_nat(const struct nlattr *attr,
1137 		     struct ovs_conntrack_info *info, bool log)
1138 {
1139 	struct nlattr *a;
1140 	int rem;
1141 	bool have_ip_max = false;
1142 	bool have_proto_max = false;
1143 	bool ip_vers = (info->family == NFPROTO_IPV6);
1144 
1145 	nla_for_each_nested(a, attr, rem) {
1146 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1147 			[OVS_NAT_ATTR_SRC] = {0, 0},
1148 			[OVS_NAT_ATTR_DST] = {0, 0},
1149 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1150 						 sizeof(struct in6_addr)},
1151 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1152 						 sizeof(struct in6_addr)},
1153 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1154 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1155 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1156 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1157 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1158 		};
1159 		int type = nla_type(a);
1160 
1161 		if (type > OVS_NAT_ATTR_MAX) {
1162 			OVS_NLERR(log,
1163 				  "Unknown NAT attribute (type=%d, max=%d).\n",
1164 				  type, OVS_NAT_ATTR_MAX);
1165 			return -EINVAL;
1166 		}
1167 
1168 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1169 			OVS_NLERR(log,
1170 				  "NAT attribute type %d has unexpected length (%d != %d).\n",
1171 				  type, nla_len(a),
1172 				  ovs_nat_attr_lens[type][ip_vers]);
1173 			return -EINVAL;
1174 		}
1175 
1176 		switch (type) {
1177 		case OVS_NAT_ATTR_SRC:
1178 		case OVS_NAT_ATTR_DST:
1179 			if (info->nat) {
1180 				OVS_NLERR(log,
1181 					  "Only one type of NAT may be specified.\n"
1182 					  );
1183 				return -ERANGE;
1184 			}
1185 			info->nat |= OVS_CT_NAT;
1186 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1187 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1188 			break;
1189 
1190 		case OVS_NAT_ATTR_IP_MIN:
1191 			nla_memcpy(&info->range.min_addr, a,
1192 				   sizeof(info->range.min_addr));
1193 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1194 			break;
1195 
1196 		case OVS_NAT_ATTR_IP_MAX:
1197 			have_ip_max = true;
1198 			nla_memcpy(&info->range.max_addr, a,
1199 				   sizeof(info->range.max_addr));
1200 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1201 			break;
1202 
1203 		case OVS_NAT_ATTR_PROTO_MIN:
1204 			info->range.min_proto.all = htons(nla_get_u16(a));
1205 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1206 			break;
1207 
1208 		case OVS_NAT_ATTR_PROTO_MAX:
1209 			have_proto_max = true;
1210 			info->range.max_proto.all = htons(nla_get_u16(a));
1211 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1212 			break;
1213 
1214 		case OVS_NAT_ATTR_PERSISTENT:
1215 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1216 			break;
1217 
1218 		case OVS_NAT_ATTR_PROTO_HASH:
1219 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1220 			break;
1221 
1222 		case OVS_NAT_ATTR_PROTO_RANDOM:
1223 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1224 			break;
1225 
1226 		default:
1227 			OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1228 			return -EINVAL;
1229 		}
1230 	}
1231 
1232 	if (rem > 0) {
1233 		OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1234 		return -EINVAL;
1235 	}
1236 	if (!info->nat) {
1237 		/* Do not allow flags if no type is given. */
1238 		if (info->range.flags) {
1239 			OVS_NLERR(log,
1240 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1241 				  );
1242 			return -EINVAL;
1243 		}
1244 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1245 	} else if (!info->commit) {
1246 		OVS_NLERR(log,
1247 			  "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1248 			  );
1249 		return -EINVAL;
1250 	}
1251 	/* Allow missing IP_MAX. */
1252 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1253 		memcpy(&info->range.max_addr, &info->range.min_addr,
1254 		       sizeof(info->range.max_addr));
1255 	}
1256 	/* Allow missing PROTO_MAX. */
1257 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1258 	    !have_proto_max) {
1259 		info->range.max_proto.all = info->range.min_proto.all;
1260 	}
1261 	return 0;
1262 }
1263 #endif
1264 
1265 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1266 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1267 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1268 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1269 				    .maxlen = sizeof(u16) },
1270 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1271 				    .maxlen = sizeof(struct md_mark) },
1272 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1273 				    .maxlen = sizeof(struct md_labels) },
1274 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1275 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1276 #ifdef CONFIG_NF_NAT_NEEDED
1277 	/* NAT length is checked when parsing the nested attributes. */
1278 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1279 #endif
1280 	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1281 				    .maxlen = sizeof(u32) },
1282 };
1283 
1284 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1285 		    const char **helper, bool log)
1286 {
1287 	struct nlattr *a;
1288 	int rem;
1289 
1290 	nla_for_each_nested(a, attr, rem) {
1291 		int type = nla_type(a);
1292 		int maxlen = ovs_ct_attr_lens[type].maxlen;
1293 		int minlen = ovs_ct_attr_lens[type].minlen;
1294 
1295 		if (type > OVS_CT_ATTR_MAX) {
1296 			OVS_NLERR(log,
1297 				  "Unknown conntrack attr (type=%d, max=%d)",
1298 				  type, OVS_CT_ATTR_MAX);
1299 			return -EINVAL;
1300 		}
1301 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1302 			OVS_NLERR(log,
1303 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1304 				  type, nla_len(a), maxlen);
1305 			return -EINVAL;
1306 		}
1307 
1308 		switch (type) {
1309 		case OVS_CT_ATTR_FORCE_COMMIT:
1310 			info->force = true;
1311 			/* fall through. */
1312 		case OVS_CT_ATTR_COMMIT:
1313 			info->commit = true;
1314 			break;
1315 #ifdef CONFIG_NF_CONNTRACK_ZONES
1316 		case OVS_CT_ATTR_ZONE:
1317 			info->zone.id = nla_get_u16(a);
1318 			break;
1319 #endif
1320 #ifdef CONFIG_NF_CONNTRACK_MARK
1321 		case OVS_CT_ATTR_MARK: {
1322 			struct md_mark *mark = nla_data(a);
1323 
1324 			if (!mark->mask) {
1325 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1326 				return -EINVAL;
1327 			}
1328 			info->mark = *mark;
1329 			break;
1330 		}
1331 #endif
1332 #ifdef CONFIG_NF_CONNTRACK_LABELS
1333 		case OVS_CT_ATTR_LABELS: {
1334 			struct md_labels *labels = nla_data(a);
1335 
1336 			if (!labels_nonzero(&labels->mask)) {
1337 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1338 				return -EINVAL;
1339 			}
1340 			info->labels = *labels;
1341 			break;
1342 		}
1343 #endif
1344 		case OVS_CT_ATTR_HELPER:
1345 			*helper = nla_data(a);
1346 			if (!memchr(*helper, '\0', nla_len(a))) {
1347 				OVS_NLERR(log, "Invalid conntrack helper");
1348 				return -EINVAL;
1349 			}
1350 			break;
1351 #ifdef CONFIG_NF_NAT_NEEDED
1352 		case OVS_CT_ATTR_NAT: {
1353 			int err = parse_nat(a, info, log);
1354 
1355 			if (err)
1356 				return err;
1357 			break;
1358 		}
1359 #endif
1360 		case OVS_CT_ATTR_EVENTMASK:
1361 			info->have_eventmask = true;
1362 			info->eventmask = nla_get_u32(a);
1363 			break;
1364 
1365 		default:
1366 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1367 				  type);
1368 			return -EINVAL;
1369 		}
1370 	}
1371 
1372 #ifdef CONFIG_NF_CONNTRACK_MARK
1373 	if (!info->commit && info->mark.mask) {
1374 		OVS_NLERR(log,
1375 			  "Setting conntrack mark requires 'commit' flag.");
1376 		return -EINVAL;
1377 	}
1378 #endif
1379 #ifdef CONFIG_NF_CONNTRACK_LABELS
1380 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1381 		OVS_NLERR(log,
1382 			  "Setting conntrack labels requires 'commit' flag.");
1383 		return -EINVAL;
1384 	}
1385 #endif
1386 	if (rem > 0) {
1387 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1388 		return -EINVAL;
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1395 {
1396 	if (attr == OVS_KEY_ATTR_CT_STATE)
1397 		return true;
1398 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1399 	    attr == OVS_KEY_ATTR_CT_ZONE)
1400 		return true;
1401 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1402 	    attr == OVS_KEY_ATTR_CT_MARK)
1403 		return true;
1404 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1405 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1406 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1407 
1408 		return ovs_net->xt_label;
1409 	}
1410 
1411 	return false;
1412 }
1413 
1414 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1415 		       const struct sw_flow_key *key,
1416 		       struct sw_flow_actions **sfa,  bool log)
1417 {
1418 	struct ovs_conntrack_info ct_info;
1419 	const char *helper = NULL;
1420 	u16 family;
1421 	int err;
1422 
1423 	family = key_to_nfproto(key);
1424 	if (family == NFPROTO_UNSPEC) {
1425 		OVS_NLERR(log, "ct family unspecified");
1426 		return -EINVAL;
1427 	}
1428 
1429 	memset(&ct_info, 0, sizeof(ct_info));
1430 	ct_info.family = family;
1431 
1432 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1433 			NF_CT_DEFAULT_ZONE_DIR, 0);
1434 
1435 	err = parse_ct(attr, &ct_info, &helper, log);
1436 	if (err)
1437 		return err;
1438 
1439 	/* Set up template for tracking connections in specific zones. */
1440 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1441 	if (!ct_info.ct) {
1442 		OVS_NLERR(log, "Failed to allocate conntrack template");
1443 		return -ENOMEM;
1444 	}
1445 
1446 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1447 	nf_conntrack_get(&ct_info.ct->ct_general);
1448 
1449 	if (helper) {
1450 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1451 		if (err)
1452 			goto err_free_ct;
1453 	}
1454 
1455 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1456 				 sizeof(ct_info), log);
1457 	if (err)
1458 		goto err_free_ct;
1459 
1460 	return 0;
1461 err_free_ct:
1462 	__ovs_ct_free_action(&ct_info);
1463 	return err;
1464 }
1465 
1466 #ifdef CONFIG_NF_NAT_NEEDED
1467 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1468 			       struct sk_buff *skb)
1469 {
1470 	struct nlattr *start;
1471 
1472 	start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1473 	if (!start)
1474 		return false;
1475 
1476 	if (info->nat & OVS_CT_SRC_NAT) {
1477 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1478 			return false;
1479 	} else if (info->nat & OVS_CT_DST_NAT) {
1480 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1481 			return false;
1482 	} else {
1483 		goto out;
1484 	}
1485 
1486 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1487 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1488 		    info->family == NFPROTO_IPV4) {
1489 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1490 					    info->range.min_addr.ip) ||
1491 			    (info->range.max_addr.ip
1492 			     != info->range.min_addr.ip &&
1493 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1494 					      info->range.max_addr.ip))))
1495 				return false;
1496 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1497 			   info->family == NFPROTO_IPV6) {
1498 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1499 					     &info->range.min_addr.in6) ||
1500 			    (memcmp(&info->range.max_addr.in6,
1501 				    &info->range.min_addr.in6,
1502 				    sizeof(info->range.max_addr.in6)) &&
1503 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1504 					       &info->range.max_addr.in6))))
1505 				return false;
1506 		} else {
1507 			return false;
1508 		}
1509 	}
1510 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1511 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1512 			 ntohs(info->range.min_proto.all)) ||
1513 	     (info->range.max_proto.all != info->range.min_proto.all &&
1514 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1515 			  ntohs(info->range.max_proto.all)))))
1516 		return false;
1517 
1518 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1519 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1520 		return false;
1521 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1522 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1523 		return false;
1524 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1525 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1526 		return false;
1527 out:
1528 	nla_nest_end(skb, start);
1529 
1530 	return true;
1531 }
1532 #endif
1533 
1534 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1535 			  struct sk_buff *skb)
1536 {
1537 	struct nlattr *start;
1538 
1539 	start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1540 	if (!start)
1541 		return -EMSGSIZE;
1542 
1543 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1544 					    ? OVS_CT_ATTR_FORCE_COMMIT
1545 					    : OVS_CT_ATTR_COMMIT))
1546 		return -EMSGSIZE;
1547 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1548 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1549 		return -EMSGSIZE;
1550 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1551 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1552 		    &ct_info->mark))
1553 		return -EMSGSIZE;
1554 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1555 	    labels_nonzero(&ct_info->labels.mask) &&
1556 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1557 		    &ct_info->labels))
1558 		return -EMSGSIZE;
1559 	if (ct_info->helper) {
1560 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1561 				   ct_info->helper->name))
1562 			return -EMSGSIZE;
1563 	}
1564 	if (ct_info->have_eventmask &&
1565 	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1566 		return -EMSGSIZE;
1567 
1568 #ifdef CONFIG_NF_NAT_NEEDED
1569 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1570 		return -EMSGSIZE;
1571 #endif
1572 	nla_nest_end(skb, start);
1573 
1574 	return 0;
1575 }
1576 
1577 void ovs_ct_free_action(const struct nlattr *a)
1578 {
1579 	struct ovs_conntrack_info *ct_info = nla_data(a);
1580 
1581 	__ovs_ct_free_action(ct_info);
1582 }
1583 
1584 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1585 {
1586 	if (ct_info->helper)
1587 		nf_conntrack_helper_put(ct_info->helper);
1588 	if (ct_info->ct)
1589 		nf_ct_tmpl_free(ct_info->ct);
1590 }
1591 
1592 void ovs_ct_init(struct net *net)
1593 {
1594 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1595 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1596 
1597 	if (nf_connlabels_get(net, n_bits - 1)) {
1598 		ovs_net->xt_label = false;
1599 		OVS_NLERR(true, "Failed to set connlabel length");
1600 	} else {
1601 		ovs_net->xt_label = true;
1602 	}
1603 }
1604 
1605 void ovs_ct_exit(struct net *net)
1606 {
1607 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1608 
1609 	if (ovs_net->xt_label)
1610 		nf_connlabels_put(net);
1611 }
1612