xref: /openbmc/linux/net/openvswitch/conntrack.c (revision 323dd2c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 Nicira, Inc.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/openvswitch.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/sctp.h>
11 #include <linux/static_key.h>
12 #include <net/ip.h>
13 #include <net/genetlink.h>
14 #include <net/netfilter/nf_conntrack_core.h>
15 #include <net/netfilter/nf_conntrack_count.h>
16 #include <net/netfilter/nf_conntrack_helper.h>
17 #include <net/netfilter/nf_conntrack_labels.h>
18 #include <net/netfilter/nf_conntrack_seqadj.h>
19 #include <net/netfilter/nf_conntrack_timeout.h>
20 #include <net/netfilter/nf_conntrack_zones.h>
21 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
22 #include <net/ipv6_frag.h>
23 
24 #if IS_ENABLED(CONFIG_NF_NAT)
25 #include <net/netfilter/nf_nat.h>
26 #endif
27 
28 #include "datapath.h"
29 #include "conntrack.h"
30 #include "flow.h"
31 #include "flow_netlink.h"
32 
33 struct ovs_ct_len_tbl {
34 	int maxlen;
35 	int minlen;
36 };
37 
38 /* Metadata mark for masked write to conntrack mark */
39 struct md_mark {
40 	u32 value;
41 	u32 mask;
42 };
43 
44 /* Metadata label for masked write to conntrack label. */
45 struct md_labels {
46 	struct ovs_key_ct_labels value;
47 	struct ovs_key_ct_labels mask;
48 };
49 
50 enum ovs_ct_nat {
51 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
52 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
53 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
54 };
55 
56 /* Conntrack action context for execution. */
57 struct ovs_conntrack_info {
58 	struct nf_conntrack_helper *helper;
59 	struct nf_conntrack_zone zone;
60 	struct nf_conn *ct;
61 	u8 commit : 1;
62 	u8 nat : 3;                 /* enum ovs_ct_nat */
63 	u8 force : 1;
64 	u8 have_eventmask : 1;
65 	u16 family;
66 	u32 eventmask;              /* Mask of 1 << IPCT_*. */
67 	struct md_mark mark;
68 	struct md_labels labels;
69 	char timeout[CTNL_TIMEOUT_NAME_MAX];
70 	struct nf_ct_timeout *nf_ct_timeout;
71 #if IS_ENABLED(CONFIG_NF_NAT)
72 	struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
73 #endif
74 };
75 
76 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
77 #define OVS_CT_LIMIT_UNLIMITED	0
78 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
79 #define CT_LIMIT_HASH_BUCKETS 512
80 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
81 
82 struct ovs_ct_limit {
83 	/* Elements in ovs_ct_limit_info->limits hash table */
84 	struct hlist_node hlist_node;
85 	struct rcu_head rcu;
86 	u16 zone;
87 	u32 limit;
88 };
89 
90 struct ovs_ct_limit_info {
91 	u32 default_limit;
92 	struct hlist_head *limits;
93 	struct nf_conncount_data *data;
94 };
95 
96 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
97 	[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
98 };
99 #endif
100 
101 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
102 
103 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
104 
105 static u16 key_to_nfproto(const struct sw_flow_key *key)
106 {
107 	switch (ntohs(key->eth.type)) {
108 	case ETH_P_IP:
109 		return NFPROTO_IPV4;
110 	case ETH_P_IPV6:
111 		return NFPROTO_IPV6;
112 	default:
113 		return NFPROTO_UNSPEC;
114 	}
115 }
116 
117 /* Map SKB connection state into the values used by flow definition. */
118 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
119 {
120 	u8 ct_state = OVS_CS_F_TRACKED;
121 
122 	switch (ctinfo) {
123 	case IP_CT_ESTABLISHED_REPLY:
124 	case IP_CT_RELATED_REPLY:
125 		ct_state |= OVS_CS_F_REPLY_DIR;
126 		break;
127 	default:
128 		break;
129 	}
130 
131 	switch (ctinfo) {
132 	case IP_CT_ESTABLISHED:
133 	case IP_CT_ESTABLISHED_REPLY:
134 		ct_state |= OVS_CS_F_ESTABLISHED;
135 		break;
136 	case IP_CT_RELATED:
137 	case IP_CT_RELATED_REPLY:
138 		ct_state |= OVS_CS_F_RELATED;
139 		break;
140 	case IP_CT_NEW:
141 		ct_state |= OVS_CS_F_NEW;
142 		break;
143 	default:
144 		break;
145 	}
146 
147 	return ct_state;
148 }
149 
150 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
151 {
152 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
153 	return ct ? ct->mark : 0;
154 #else
155 	return 0;
156 #endif
157 }
158 
159 /* Guard against conntrack labels max size shrinking below 128 bits. */
160 #if NF_CT_LABELS_MAX_SIZE < 16
161 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
162 #endif
163 
164 static void ovs_ct_get_labels(const struct nf_conn *ct,
165 			      struct ovs_key_ct_labels *labels)
166 {
167 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
168 
169 	if (cl)
170 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
171 	else
172 		memset(labels, 0, OVS_CT_LABELS_LEN);
173 }
174 
175 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
176 					const struct nf_conntrack_tuple *orig,
177 					u8 icmp_proto)
178 {
179 	key->ct_orig_proto = orig->dst.protonum;
180 	if (orig->dst.protonum == icmp_proto) {
181 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
182 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
183 	} else {
184 		key->ct.orig_tp.src = orig->src.u.all;
185 		key->ct.orig_tp.dst = orig->dst.u.all;
186 	}
187 }
188 
189 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
190 				const struct nf_conntrack_zone *zone,
191 				const struct nf_conn *ct)
192 {
193 	key->ct_state = state;
194 	key->ct_zone = zone->id;
195 	key->ct.mark = ovs_ct_get_mark(ct);
196 	ovs_ct_get_labels(ct, &key->ct.labels);
197 
198 	if (ct) {
199 		const struct nf_conntrack_tuple *orig;
200 
201 		/* Use the master if we have one. */
202 		if (ct->master)
203 			ct = ct->master;
204 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
205 
206 		/* IP version must match with the master connection. */
207 		if (key->eth.type == htons(ETH_P_IP) &&
208 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
209 			key->ipv4.ct_orig.src = orig->src.u3.ip;
210 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
211 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
212 			return;
213 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
214 			   !sw_flow_key_is_nd(key) &&
215 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
216 			key->ipv6.ct_orig.src = orig->src.u3.in6;
217 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
218 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
219 			return;
220 		}
221 	}
222 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
223 	 * original direction key fields.
224 	 */
225 	key->ct_orig_proto = 0;
226 }
227 
228 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
229  * previously sent the packet to conntrack via the ct action.  If
230  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
231  * initialized from the connection status.
232  */
233 static void ovs_ct_update_key(const struct sk_buff *skb,
234 			      const struct ovs_conntrack_info *info,
235 			      struct sw_flow_key *key, bool post_ct,
236 			      bool keep_nat_flags)
237 {
238 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
239 	enum ip_conntrack_info ctinfo;
240 	struct nf_conn *ct;
241 	u8 state = 0;
242 
243 	ct = nf_ct_get(skb, &ctinfo);
244 	if (ct) {
245 		state = ovs_ct_get_state(ctinfo);
246 		/* All unconfirmed entries are NEW connections. */
247 		if (!nf_ct_is_confirmed(ct))
248 			state |= OVS_CS_F_NEW;
249 		/* OVS persists the related flag for the duration of the
250 		 * connection.
251 		 */
252 		if (ct->master)
253 			state |= OVS_CS_F_RELATED;
254 		if (keep_nat_flags) {
255 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
256 		} else {
257 			if (ct->status & IPS_SRC_NAT)
258 				state |= OVS_CS_F_SRC_NAT;
259 			if (ct->status & IPS_DST_NAT)
260 				state |= OVS_CS_F_DST_NAT;
261 		}
262 		zone = nf_ct_zone(ct);
263 	} else if (post_ct) {
264 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
265 		if (info)
266 			zone = &info->zone;
267 	}
268 	__ovs_ct_update_key(key, state, zone, ct);
269 }
270 
271 /* This is called to initialize CT key fields possibly coming in from the local
272  * stack.
273  */
274 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
275 {
276 	ovs_ct_update_key(skb, NULL, key, false, false);
277 }
278 
279 #define IN6_ADDR_INITIALIZER(ADDR) \
280 	{ (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
281 	  (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
282 
283 int ovs_ct_put_key(const struct sw_flow_key *swkey,
284 		   const struct sw_flow_key *output, struct sk_buff *skb)
285 {
286 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
287 		return -EMSGSIZE;
288 
289 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
290 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
291 		return -EMSGSIZE;
292 
293 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
294 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
295 		return -EMSGSIZE;
296 
297 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
298 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
299 		    &output->ct.labels))
300 		return -EMSGSIZE;
301 
302 	if (swkey->ct_orig_proto) {
303 		if (swkey->eth.type == htons(ETH_P_IP)) {
304 			struct ovs_key_ct_tuple_ipv4 orig = {
305 				output->ipv4.ct_orig.src,
306 				output->ipv4.ct_orig.dst,
307 				output->ct.orig_tp.src,
308 				output->ct.orig_tp.dst,
309 				output->ct_orig_proto,
310 			};
311 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
312 				    sizeof(orig), &orig))
313 				return -EMSGSIZE;
314 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
315 			struct ovs_key_ct_tuple_ipv6 orig = {
316 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
317 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
318 				output->ct.orig_tp.src,
319 				output->ct.orig_tp.dst,
320 				output->ct_orig_proto,
321 			};
322 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
323 				    sizeof(orig), &orig))
324 				return -EMSGSIZE;
325 		}
326 	}
327 
328 	return 0;
329 }
330 
331 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
332 			   u32 ct_mark, u32 mask)
333 {
334 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
335 	u32 new_mark;
336 
337 	new_mark = ct_mark | (ct->mark & ~(mask));
338 	if (ct->mark != new_mark) {
339 		ct->mark = new_mark;
340 		if (nf_ct_is_confirmed(ct))
341 			nf_conntrack_event_cache(IPCT_MARK, ct);
342 		key->ct.mark = new_mark;
343 	}
344 
345 	return 0;
346 #else
347 	return -ENOTSUPP;
348 #endif
349 }
350 
351 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
352 {
353 	struct nf_conn_labels *cl;
354 
355 	cl = nf_ct_labels_find(ct);
356 	if (!cl) {
357 		nf_ct_labels_ext_add(ct);
358 		cl = nf_ct_labels_find(ct);
359 	}
360 
361 	return cl;
362 }
363 
364 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
365  * since the new connection is not yet confirmed, and thus no-one else has
366  * access to it's labels, we simply write them over.
367  */
368 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
369 			      const struct ovs_key_ct_labels *labels,
370 			      const struct ovs_key_ct_labels *mask)
371 {
372 	struct nf_conn_labels *cl, *master_cl;
373 	bool have_mask = labels_nonzero(mask);
374 
375 	/* Inherit master's labels to the related connection? */
376 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
377 
378 	if (!master_cl && !have_mask)
379 		return 0;   /* Nothing to do. */
380 
381 	cl = ovs_ct_get_conn_labels(ct);
382 	if (!cl)
383 		return -ENOSPC;
384 
385 	/* Inherit the master's labels, if any. */
386 	if (master_cl)
387 		*cl = *master_cl;
388 
389 	if (have_mask) {
390 		u32 *dst = (u32 *)cl->bits;
391 		int i;
392 
393 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
394 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
395 				(labels->ct_labels_32[i]
396 				 & mask->ct_labels_32[i]);
397 	}
398 
399 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
400 	 * IPCT_LABEL bit is set in the event cache.
401 	 */
402 	nf_conntrack_event_cache(IPCT_LABEL, ct);
403 
404 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
405 
406 	return 0;
407 }
408 
409 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
410 			     const struct ovs_key_ct_labels *labels,
411 			     const struct ovs_key_ct_labels *mask)
412 {
413 	struct nf_conn_labels *cl;
414 	int err;
415 
416 	cl = ovs_ct_get_conn_labels(ct);
417 	if (!cl)
418 		return -ENOSPC;
419 
420 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
421 				    mask->ct_labels_32,
422 				    OVS_CT_LABELS_LEN_32);
423 	if (err)
424 		return err;
425 
426 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
427 
428 	return 0;
429 }
430 
431 /* 'skb' should already be pulled to nh_ofs. */
432 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
433 {
434 	const struct nf_conntrack_helper *helper;
435 	const struct nf_conn_help *help;
436 	enum ip_conntrack_info ctinfo;
437 	unsigned int protoff;
438 	struct nf_conn *ct;
439 	int err;
440 
441 	ct = nf_ct_get(skb, &ctinfo);
442 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
443 		return NF_ACCEPT;
444 
445 	help = nfct_help(ct);
446 	if (!help)
447 		return NF_ACCEPT;
448 
449 	helper = rcu_dereference(help->helper);
450 	if (!helper)
451 		return NF_ACCEPT;
452 
453 	switch (proto) {
454 	case NFPROTO_IPV4:
455 		protoff = ip_hdrlen(skb);
456 		break;
457 	case NFPROTO_IPV6: {
458 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
459 		__be16 frag_off;
460 		int ofs;
461 
462 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
463 				       &frag_off);
464 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
465 			pr_debug("proto header not found\n");
466 			return NF_ACCEPT;
467 		}
468 		protoff = ofs;
469 		break;
470 	}
471 	default:
472 		WARN_ONCE(1, "helper invoked on non-IP family!");
473 		return NF_DROP;
474 	}
475 
476 	err = helper->help(skb, protoff, ct, ctinfo);
477 	if (err != NF_ACCEPT)
478 		return err;
479 
480 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
481 	 * FTP with NAT) adusting the TCP payload size when mangling IP
482 	 * addresses and/or port numbers in the text-based control connection.
483 	 */
484 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
485 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
486 		return NF_DROP;
487 	return NF_ACCEPT;
488 }
489 
490 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
491  * value if 'skb' is freed.
492  */
493 static int handle_fragments(struct net *net, struct sw_flow_key *key,
494 			    u16 zone, struct sk_buff *skb)
495 {
496 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
497 	int err;
498 
499 	if (key->eth.type == htons(ETH_P_IP)) {
500 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
501 
502 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
503 		err = ip_defrag(net, skb, user);
504 		if (err)
505 			return err;
506 
507 		ovs_cb.mru = IPCB(skb)->frag_max_size;
508 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
509 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
510 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
511 
512 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
513 		err = nf_ct_frag6_gather(net, skb, user);
514 		if (err) {
515 			if (err != -EINPROGRESS)
516 				kfree_skb(skb);
517 			return err;
518 		}
519 
520 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
521 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
522 #endif
523 	} else {
524 		kfree_skb(skb);
525 		return -EPFNOSUPPORT;
526 	}
527 
528 	/* The key extracted from the fragment that completed this datagram
529 	 * likely didn't have an L4 header, so regenerate it.
530 	 */
531 	ovs_flow_key_update_l3l4(skb, key);
532 
533 	key->ip.frag = OVS_FRAG_TYPE_NONE;
534 	skb_clear_hash(skb);
535 	skb->ignore_df = 1;
536 	*OVS_CB(skb) = ovs_cb;
537 
538 	return 0;
539 }
540 
541 static struct nf_conntrack_expect *
542 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
543 		   u16 proto, const struct sk_buff *skb)
544 {
545 	struct nf_conntrack_tuple tuple;
546 	struct nf_conntrack_expect *exp;
547 
548 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
549 		return NULL;
550 
551 	exp = __nf_ct_expect_find(net, zone, &tuple);
552 	if (exp) {
553 		struct nf_conntrack_tuple_hash *h;
554 
555 		/* Delete existing conntrack entry, if it clashes with the
556 		 * expectation.  This can happen since conntrack ALGs do not
557 		 * check for clashes between (new) expectations and existing
558 		 * conntrack entries.  nf_conntrack_in() will check the
559 		 * expectations only if a conntrack entry can not be found,
560 		 * which can lead to OVS finding the expectation (here) in the
561 		 * init direction, but which will not be removed by the
562 		 * nf_conntrack_in() call, if a matching conntrack entry is
563 		 * found instead.  In this case all init direction packets
564 		 * would be reported as new related packets, while reply
565 		 * direction packets would be reported as un-related
566 		 * established packets.
567 		 */
568 		h = nf_conntrack_find_get(net, zone, &tuple);
569 		if (h) {
570 			struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
571 
572 			nf_ct_delete(ct, 0, 0);
573 			nf_conntrack_put(&ct->ct_general);
574 		}
575 	}
576 
577 	return exp;
578 }
579 
580 /* This replicates logic from nf_conntrack_core.c that is not exported. */
581 static enum ip_conntrack_info
582 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
583 {
584 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
585 
586 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
587 		return IP_CT_ESTABLISHED_REPLY;
588 	/* Once we've had two way comms, always ESTABLISHED. */
589 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
590 		return IP_CT_ESTABLISHED;
591 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
592 		return IP_CT_RELATED;
593 	return IP_CT_NEW;
594 }
595 
596 /* Find an existing connection which this packet belongs to without
597  * re-attributing statistics or modifying the connection state.  This allows an
598  * skb->_nfct lost due to an upcall to be recovered during actions execution.
599  *
600  * Must be called with rcu_read_lock.
601  *
602  * On success, populates skb->_nfct and returns the connection.  Returns NULL
603  * if there is no existing entry.
604  */
605 static struct nf_conn *
606 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
607 		     u8 l3num, struct sk_buff *skb, bool natted)
608 {
609 	struct nf_conntrack_tuple tuple;
610 	struct nf_conntrack_tuple_hash *h;
611 	struct nf_conn *ct;
612 
613 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
614 			       net, &tuple)) {
615 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
616 		return NULL;
617 	}
618 
619 	/* Must invert the tuple if skb has been transformed by NAT. */
620 	if (natted) {
621 		struct nf_conntrack_tuple inverse;
622 
623 		if (!nf_ct_invert_tuple(&inverse, &tuple)) {
624 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
625 			return NULL;
626 		}
627 		tuple = inverse;
628 	}
629 
630 	/* look for tuple match */
631 	h = nf_conntrack_find_get(net, zone, &tuple);
632 	if (!h)
633 		return NULL;   /* Not found. */
634 
635 	ct = nf_ct_tuplehash_to_ctrack(h);
636 
637 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
638 	 * select the other tuplehash to get the right 'ctinfo' bits for this
639 	 * packet.
640 	 */
641 	if (natted)
642 		h = &ct->tuplehash[!h->tuple.dst.dir];
643 
644 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
645 	return ct;
646 }
647 
648 static
649 struct nf_conn *ovs_ct_executed(struct net *net,
650 				const struct sw_flow_key *key,
651 				const struct ovs_conntrack_info *info,
652 				struct sk_buff *skb,
653 				bool *ct_executed)
654 {
655 	struct nf_conn *ct = NULL;
656 
657 	/* If no ct, check if we have evidence that an existing conntrack entry
658 	 * might be found for this skb.  This happens when we lose a skb->_nfct
659 	 * due to an upcall, or if the direction is being forced.  If the
660 	 * connection was not confirmed, it is not cached and needs to be run
661 	 * through conntrack again.
662 	 */
663 	*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
664 		       !(key->ct_state & OVS_CS_F_INVALID) &&
665 		       (key->ct_zone == info->zone.id);
666 
667 	if (*ct_executed || (!key->ct_state && info->force)) {
668 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
669 					  !!(key->ct_state &
670 					  OVS_CS_F_NAT_MASK));
671 	}
672 
673 	return ct;
674 }
675 
676 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
677 static bool skb_nfct_cached(struct net *net,
678 			    const struct sw_flow_key *key,
679 			    const struct ovs_conntrack_info *info,
680 			    struct sk_buff *skb)
681 {
682 	enum ip_conntrack_info ctinfo;
683 	struct nf_conn *ct;
684 	bool ct_executed = true;
685 
686 	ct = nf_ct_get(skb, &ctinfo);
687 	if (!ct)
688 		ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
689 
690 	if (ct)
691 		nf_ct_get(skb, &ctinfo);
692 	else
693 		return false;
694 
695 	if (!net_eq(net, read_pnet(&ct->ct_net)))
696 		return false;
697 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
698 		return false;
699 	if (info->helper) {
700 		struct nf_conn_help *help;
701 
702 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
703 		if (help && rcu_access_pointer(help->helper) != info->helper)
704 			return false;
705 	}
706 	if (info->nf_ct_timeout) {
707 		struct nf_conn_timeout *timeout_ext;
708 
709 		timeout_ext = nf_ct_timeout_find(ct);
710 		if (!timeout_ext || info->nf_ct_timeout !=
711 		    rcu_dereference(timeout_ext->timeout))
712 			return false;
713 	}
714 	/* Force conntrack entry direction to the current packet? */
715 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
716 		/* Delete the conntrack entry if confirmed, else just release
717 		 * the reference.
718 		 */
719 		if (nf_ct_is_confirmed(ct))
720 			nf_ct_delete(ct, 0, 0);
721 
722 		nf_conntrack_put(&ct->ct_general);
723 		nf_ct_set(skb, NULL, 0);
724 		return false;
725 	}
726 
727 	return ct_executed;
728 }
729 
730 #if IS_ENABLED(CONFIG_NF_NAT)
731 /* Modelled after nf_nat_ipv[46]_fn().
732  * range is only used for new, uninitialized NAT state.
733  * Returns either NF_ACCEPT or NF_DROP.
734  */
735 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
736 			      enum ip_conntrack_info ctinfo,
737 			      const struct nf_nat_range2 *range,
738 			      enum nf_nat_manip_type maniptype)
739 {
740 	int hooknum, nh_off, err = NF_ACCEPT;
741 
742 	nh_off = skb_network_offset(skb);
743 	skb_pull_rcsum(skb, nh_off);
744 
745 	/* See HOOK2MANIP(). */
746 	if (maniptype == NF_NAT_MANIP_SRC)
747 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
748 	else
749 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
750 
751 	switch (ctinfo) {
752 	case IP_CT_RELATED:
753 	case IP_CT_RELATED_REPLY:
754 		if (IS_ENABLED(CONFIG_NF_NAT) &&
755 		    skb->protocol == htons(ETH_P_IP) &&
756 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
757 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
758 							   hooknum))
759 				err = NF_DROP;
760 			goto push;
761 		} else if (IS_ENABLED(CONFIG_IPV6) &&
762 			   skb->protocol == htons(ETH_P_IPV6)) {
763 			__be16 frag_off;
764 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
765 			int hdrlen = ipv6_skip_exthdr(skb,
766 						      sizeof(struct ipv6hdr),
767 						      &nexthdr, &frag_off);
768 
769 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
770 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
771 								     ctinfo,
772 								     hooknum,
773 								     hdrlen))
774 					err = NF_DROP;
775 				goto push;
776 			}
777 		}
778 		/* Non-ICMP, fall thru to initialize if needed. */
779 		/* fall through */
780 	case IP_CT_NEW:
781 		/* Seen it before?  This can happen for loopback, retrans,
782 		 * or local packets.
783 		 */
784 		if (!nf_nat_initialized(ct, maniptype)) {
785 			/* Initialize according to the NAT action. */
786 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
787 				/* Action is set up to establish a new
788 				 * mapping.
789 				 */
790 				? nf_nat_setup_info(ct, range, maniptype)
791 				: nf_nat_alloc_null_binding(ct, hooknum);
792 			if (err != NF_ACCEPT)
793 				goto push;
794 		}
795 		break;
796 
797 	case IP_CT_ESTABLISHED:
798 	case IP_CT_ESTABLISHED_REPLY:
799 		break;
800 
801 	default:
802 		err = NF_DROP;
803 		goto push;
804 	}
805 
806 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
807 push:
808 	skb_push(skb, nh_off);
809 	skb_postpush_rcsum(skb, skb->data, nh_off);
810 
811 	return err;
812 }
813 
814 static void ovs_nat_update_key(struct sw_flow_key *key,
815 			       const struct sk_buff *skb,
816 			       enum nf_nat_manip_type maniptype)
817 {
818 	if (maniptype == NF_NAT_MANIP_SRC) {
819 		__be16 src;
820 
821 		key->ct_state |= OVS_CS_F_SRC_NAT;
822 		if (key->eth.type == htons(ETH_P_IP))
823 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
824 		else if (key->eth.type == htons(ETH_P_IPV6))
825 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
826 			       sizeof(key->ipv6.addr.src));
827 		else
828 			return;
829 
830 		if (key->ip.proto == IPPROTO_UDP)
831 			src = udp_hdr(skb)->source;
832 		else if (key->ip.proto == IPPROTO_TCP)
833 			src = tcp_hdr(skb)->source;
834 		else if (key->ip.proto == IPPROTO_SCTP)
835 			src = sctp_hdr(skb)->source;
836 		else
837 			return;
838 
839 		key->tp.src = src;
840 	} else {
841 		__be16 dst;
842 
843 		key->ct_state |= OVS_CS_F_DST_NAT;
844 		if (key->eth.type == htons(ETH_P_IP))
845 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
846 		else if (key->eth.type == htons(ETH_P_IPV6))
847 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
848 			       sizeof(key->ipv6.addr.dst));
849 		else
850 			return;
851 
852 		if (key->ip.proto == IPPROTO_UDP)
853 			dst = udp_hdr(skb)->dest;
854 		else if (key->ip.proto == IPPROTO_TCP)
855 			dst = tcp_hdr(skb)->dest;
856 		else if (key->ip.proto == IPPROTO_SCTP)
857 			dst = sctp_hdr(skb)->dest;
858 		else
859 			return;
860 
861 		key->tp.dst = dst;
862 	}
863 }
864 
865 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
866 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
867 		      const struct ovs_conntrack_info *info,
868 		      struct sk_buff *skb, struct nf_conn *ct,
869 		      enum ip_conntrack_info ctinfo)
870 {
871 	enum nf_nat_manip_type maniptype;
872 	int err;
873 
874 	/* Add NAT extension if not confirmed yet. */
875 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
876 		return NF_ACCEPT;   /* Can't NAT. */
877 
878 	/* Determine NAT type.
879 	 * Check if the NAT type can be deduced from the tracked connection.
880 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
881 	 * when committing.
882 	 */
883 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
884 	    ct->status & IPS_NAT_MASK &&
885 	    (ctinfo != IP_CT_RELATED || info->commit)) {
886 		/* NAT an established or related connection like before. */
887 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
888 			/* This is the REPLY direction for a connection
889 			 * for which NAT was applied in the forward
890 			 * direction.  Do the reverse NAT.
891 			 */
892 			maniptype = ct->status & IPS_SRC_NAT
893 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
894 		else
895 			maniptype = ct->status & IPS_SRC_NAT
896 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
897 	} else if (info->nat & OVS_CT_SRC_NAT) {
898 		maniptype = NF_NAT_MANIP_SRC;
899 	} else if (info->nat & OVS_CT_DST_NAT) {
900 		maniptype = NF_NAT_MANIP_DST;
901 	} else {
902 		return NF_ACCEPT; /* Connection is not NATed. */
903 	}
904 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
905 
906 	/* Mark NAT done if successful and update the flow key. */
907 	if (err == NF_ACCEPT)
908 		ovs_nat_update_key(key, skb, maniptype);
909 
910 	return err;
911 }
912 #else /* !CONFIG_NF_NAT */
913 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
914 		      const struct ovs_conntrack_info *info,
915 		      struct sk_buff *skb, struct nf_conn *ct,
916 		      enum ip_conntrack_info ctinfo)
917 {
918 	return NF_ACCEPT;
919 }
920 #endif
921 
922 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
923  * not done already.  Update key with new CT state after passing the packet
924  * through conntrack.
925  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
926  * set to NULL and 0 will be returned.
927  */
928 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
929 			   const struct ovs_conntrack_info *info,
930 			   struct sk_buff *skb)
931 {
932 	/* If we are recirculating packets to match on conntrack fields and
933 	 * committing with a separate conntrack action,  then we don't need to
934 	 * actually run the packet through conntrack twice unless it's for a
935 	 * different zone.
936 	 */
937 	bool cached = skb_nfct_cached(net, key, info, skb);
938 	enum ip_conntrack_info ctinfo;
939 	struct nf_conn *ct;
940 
941 	if (!cached) {
942 		struct nf_hook_state state = {
943 			.hook = NF_INET_PRE_ROUTING,
944 			.pf = info->family,
945 			.net = net,
946 		};
947 		struct nf_conn *tmpl = info->ct;
948 		int err;
949 
950 		/* Associate skb with specified zone. */
951 		if (tmpl) {
952 			if (skb_nfct(skb))
953 				nf_conntrack_put(skb_nfct(skb));
954 			nf_conntrack_get(&tmpl->ct_general);
955 			nf_ct_set(skb, tmpl, IP_CT_NEW);
956 		}
957 
958 		err = nf_conntrack_in(skb, &state);
959 		if (err != NF_ACCEPT)
960 			return -ENOENT;
961 
962 		/* Clear CT state NAT flags to mark that we have not yet done
963 		 * NAT after the nf_conntrack_in() call.  We can actually clear
964 		 * the whole state, as it will be re-initialized below.
965 		 */
966 		key->ct_state = 0;
967 
968 		/* Update the key, but keep the NAT flags. */
969 		ovs_ct_update_key(skb, info, key, true, true);
970 	}
971 
972 	ct = nf_ct_get(skb, &ctinfo);
973 	if (ct) {
974 		bool add_helper = false;
975 
976 		/* Packets starting a new connection must be NATted before the
977 		 * helper, so that the helper knows about the NAT.  We enforce
978 		 * this by delaying both NAT and helper calls for unconfirmed
979 		 * connections until the committing CT action.  For later
980 		 * packets NAT and Helper may be called in either order.
981 		 *
982 		 * NAT will be done only if the CT action has NAT, and only
983 		 * once per packet (per zone), as guarded by the NAT bits in
984 		 * the key->ct_state.
985 		 */
986 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
987 		    (nf_ct_is_confirmed(ct) || info->commit) &&
988 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
989 			return -EINVAL;
990 		}
991 
992 		/* Userspace may decide to perform a ct lookup without a helper
993 		 * specified followed by a (recirculate and) commit with one,
994 		 * or attach a helper in a later commit.  Therefore, for
995 		 * connections which we will commit, we may need to attach
996 		 * the helper here.
997 		 */
998 		if (info->commit && info->helper && !nfct_help(ct)) {
999 			int err = __nf_ct_try_assign_helper(ct, info->ct,
1000 							    GFP_ATOMIC);
1001 			if (err)
1002 				return err;
1003 			add_helper = true;
1004 
1005 			/* helper installed, add seqadj if NAT is required */
1006 			if (info->nat && !nfct_seqadj(ct)) {
1007 				if (!nfct_seqadj_ext_add(ct))
1008 					return -EINVAL;
1009 			}
1010 		}
1011 
1012 		/* Call the helper only if:
1013 		 * - nf_conntrack_in() was executed above ("!cached") or a
1014 		 *   helper was just attached ("add_helper") for a confirmed
1015 		 *   connection, or
1016 		 * - When committing an unconfirmed connection.
1017 		 */
1018 		if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
1019 					      info->commit) &&
1020 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1021 			return -EINVAL;
1022 		}
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 /* Lookup connection and read fields into key. */
1029 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1030 			 const struct ovs_conntrack_info *info,
1031 			 struct sk_buff *skb)
1032 {
1033 	struct nf_conntrack_expect *exp;
1034 
1035 	/* If we pass an expected packet through nf_conntrack_in() the
1036 	 * expectation is typically removed, but the packet could still be
1037 	 * lost in upcall processing.  To prevent this from happening we
1038 	 * perform an explicit expectation lookup.  Expected connections are
1039 	 * always new, and will be passed through conntrack only when they are
1040 	 * committed, as it is OK to remove the expectation at that time.
1041 	 */
1042 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1043 	if (exp) {
1044 		u8 state;
1045 
1046 		/* NOTE: New connections are NATted and Helped only when
1047 		 * committed, so we are not calling into NAT here.
1048 		 */
1049 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1050 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
1051 	} else {
1052 		struct nf_conn *ct;
1053 		int err;
1054 
1055 		err = __ovs_ct_lookup(net, key, info, skb);
1056 		if (err)
1057 			return err;
1058 
1059 		ct = (struct nf_conn *)skb_nfct(skb);
1060 		if (ct)
1061 			nf_ct_deliver_cached_events(ct);
1062 	}
1063 
1064 	return 0;
1065 }
1066 
1067 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1068 {
1069 	size_t i;
1070 
1071 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1072 		if (labels->ct_labels_32[i])
1073 			return true;
1074 
1075 	return false;
1076 }
1077 
1078 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1079 static struct hlist_head *ct_limit_hash_bucket(
1080 	const struct ovs_ct_limit_info *info, u16 zone)
1081 {
1082 	return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1083 }
1084 
1085 /* Call with ovs_mutex */
1086 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1087 			 struct ovs_ct_limit *new_ct_limit)
1088 {
1089 	struct ovs_ct_limit *ct_limit;
1090 	struct hlist_head *head;
1091 
1092 	head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1093 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1094 		if (ct_limit->zone == new_ct_limit->zone) {
1095 			hlist_replace_rcu(&ct_limit->hlist_node,
1096 					  &new_ct_limit->hlist_node);
1097 			kfree_rcu(ct_limit, rcu);
1098 			return;
1099 		}
1100 	}
1101 
1102 	hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1103 }
1104 
1105 /* Call with ovs_mutex */
1106 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1107 {
1108 	struct ovs_ct_limit *ct_limit;
1109 	struct hlist_head *head;
1110 	struct hlist_node *n;
1111 
1112 	head = ct_limit_hash_bucket(info, zone);
1113 	hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1114 		if (ct_limit->zone == zone) {
1115 			hlist_del_rcu(&ct_limit->hlist_node);
1116 			kfree_rcu(ct_limit, rcu);
1117 			return;
1118 		}
1119 	}
1120 }
1121 
1122 /* Call with RCU read lock */
1123 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1124 {
1125 	struct ovs_ct_limit *ct_limit;
1126 	struct hlist_head *head;
1127 
1128 	head = ct_limit_hash_bucket(info, zone);
1129 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1130 		if (ct_limit->zone == zone)
1131 			return ct_limit->limit;
1132 	}
1133 
1134 	return info->default_limit;
1135 }
1136 
1137 static int ovs_ct_check_limit(struct net *net,
1138 			      const struct ovs_conntrack_info *info,
1139 			      const struct nf_conntrack_tuple *tuple)
1140 {
1141 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1142 	const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1143 	u32 per_zone_limit, connections;
1144 	u32 conncount_key;
1145 
1146 	conncount_key = info->zone.id;
1147 
1148 	per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1149 	if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1150 		return 0;
1151 
1152 	connections = nf_conncount_count(net, ct_limit_info->data,
1153 					 &conncount_key, tuple, &info->zone);
1154 	if (connections > per_zone_limit)
1155 		return -ENOMEM;
1156 
1157 	return 0;
1158 }
1159 #endif
1160 
1161 /* Lookup connection and confirm if unconfirmed. */
1162 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1163 			 const struct ovs_conntrack_info *info,
1164 			 struct sk_buff *skb)
1165 {
1166 	enum ip_conntrack_info ctinfo;
1167 	struct nf_conn *ct;
1168 	int err;
1169 
1170 	err = __ovs_ct_lookup(net, key, info, skb);
1171 	if (err)
1172 		return err;
1173 
1174 	/* The connection could be invalid, in which case this is a no-op.*/
1175 	ct = nf_ct_get(skb, &ctinfo);
1176 	if (!ct)
1177 		return 0;
1178 
1179 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1180 	if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1181 		if (!nf_ct_is_confirmed(ct)) {
1182 			err = ovs_ct_check_limit(net, info,
1183 				&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1184 			if (err) {
1185 				net_warn_ratelimited("openvswitch: zone: %u "
1186 					"exceeds conntrack limit\n",
1187 					info->zone.id);
1188 				return err;
1189 			}
1190 		}
1191 	}
1192 #endif
1193 
1194 	/* Set the conntrack event mask if given.  NEW and DELETE events have
1195 	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1196 	 * typically would receive many kinds of updates.  Setting the event
1197 	 * mask allows those events to be filtered.  The set event mask will
1198 	 * remain in effect for the lifetime of the connection unless changed
1199 	 * by a further CT action with both the commit flag and the eventmask
1200 	 * option. */
1201 	if (info->have_eventmask) {
1202 		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1203 
1204 		if (cache)
1205 			cache->ctmask = info->eventmask;
1206 	}
1207 
1208 	/* Apply changes before confirming the connection so that the initial
1209 	 * conntrack NEW netlink event carries the values given in the CT
1210 	 * action.
1211 	 */
1212 	if (info->mark.mask) {
1213 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1214 				      info->mark.mask);
1215 		if (err)
1216 			return err;
1217 	}
1218 	if (!nf_ct_is_confirmed(ct)) {
1219 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1220 					 &info->labels.mask);
1221 		if (err)
1222 			return err;
1223 	} else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1224 		   labels_nonzero(&info->labels.mask)) {
1225 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1226 					&info->labels.mask);
1227 		if (err)
1228 			return err;
1229 	}
1230 	/* This will take care of sending queued events even if the connection
1231 	 * is already confirmed.
1232 	 */
1233 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1234 		return -EINVAL;
1235 
1236 	return 0;
1237 }
1238 
1239 /* Trim the skb to the length specified by the IP/IPv6 header,
1240  * removing any trailing lower-layer padding. This prepares the skb
1241  * for higher-layer processing that assumes skb->len excludes padding
1242  * (such as nf_ip_checksum). The caller needs to pull the skb to the
1243  * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1244  */
1245 static int ovs_skb_network_trim(struct sk_buff *skb)
1246 {
1247 	unsigned int len;
1248 	int err;
1249 
1250 	switch (skb->protocol) {
1251 	case htons(ETH_P_IP):
1252 		len = ntohs(ip_hdr(skb)->tot_len);
1253 		break;
1254 	case htons(ETH_P_IPV6):
1255 		len = sizeof(struct ipv6hdr)
1256 			+ ntohs(ipv6_hdr(skb)->payload_len);
1257 		break;
1258 	default:
1259 		len = skb->len;
1260 	}
1261 
1262 	err = pskb_trim_rcsum(skb, len);
1263 	if (err)
1264 		kfree_skb(skb);
1265 
1266 	return err;
1267 }
1268 
1269 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1270  * value if 'skb' is freed.
1271  */
1272 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1273 		   struct sw_flow_key *key,
1274 		   const struct ovs_conntrack_info *info)
1275 {
1276 	int nh_ofs;
1277 	int err;
1278 
1279 	/* The conntrack module expects to be working at L3. */
1280 	nh_ofs = skb_network_offset(skb);
1281 	skb_pull_rcsum(skb, nh_ofs);
1282 
1283 	err = ovs_skb_network_trim(skb);
1284 	if (err)
1285 		return err;
1286 
1287 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1288 		err = handle_fragments(net, key, info->zone.id, skb);
1289 		if (err)
1290 			return err;
1291 	}
1292 
1293 	if (info->commit)
1294 		err = ovs_ct_commit(net, key, info, skb);
1295 	else
1296 		err = ovs_ct_lookup(net, key, info, skb);
1297 
1298 	skb_push(skb, nh_ofs);
1299 	skb_postpush_rcsum(skb, skb->data, nh_ofs);
1300 	if (err)
1301 		kfree_skb(skb);
1302 	return err;
1303 }
1304 
1305 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1306 {
1307 	if (skb_nfct(skb)) {
1308 		nf_conntrack_put(skb_nfct(skb));
1309 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1310 		ovs_ct_fill_key(skb, key);
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1317 			     const struct sw_flow_key *key, bool log)
1318 {
1319 	struct nf_conntrack_helper *helper;
1320 	struct nf_conn_help *help;
1321 	int ret = 0;
1322 
1323 	helper = nf_conntrack_helper_try_module_get(name, info->family,
1324 						    key->ip.proto);
1325 	if (!helper) {
1326 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1327 		return -EINVAL;
1328 	}
1329 
1330 	help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1331 	if (!help) {
1332 		nf_conntrack_helper_put(helper);
1333 		return -ENOMEM;
1334 	}
1335 
1336 #if IS_ENABLED(CONFIG_NF_NAT)
1337 	if (info->nat) {
1338 		ret = nf_nat_helper_try_module_get(name, info->family,
1339 						   key->ip.proto);
1340 		if (ret) {
1341 			nf_conntrack_helper_put(helper);
1342 			OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d",
1343 				  name, ret);
1344 			return ret;
1345 		}
1346 	}
1347 #endif
1348 	rcu_assign_pointer(help->helper, helper);
1349 	info->helper = helper;
1350 	return ret;
1351 }
1352 
1353 #if IS_ENABLED(CONFIG_NF_NAT)
1354 static int parse_nat(const struct nlattr *attr,
1355 		     struct ovs_conntrack_info *info, bool log)
1356 {
1357 	struct nlattr *a;
1358 	int rem;
1359 	bool have_ip_max = false;
1360 	bool have_proto_max = false;
1361 	bool ip_vers = (info->family == NFPROTO_IPV6);
1362 
1363 	nla_for_each_nested(a, attr, rem) {
1364 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1365 			[OVS_NAT_ATTR_SRC] = {0, 0},
1366 			[OVS_NAT_ATTR_DST] = {0, 0},
1367 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1368 						 sizeof(struct in6_addr)},
1369 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1370 						 sizeof(struct in6_addr)},
1371 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1372 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1373 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1374 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1375 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1376 		};
1377 		int type = nla_type(a);
1378 
1379 		if (type > OVS_NAT_ATTR_MAX) {
1380 			OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1381 				  type, OVS_NAT_ATTR_MAX);
1382 			return -EINVAL;
1383 		}
1384 
1385 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1386 			OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1387 				  type, nla_len(a),
1388 				  ovs_nat_attr_lens[type][ip_vers]);
1389 			return -EINVAL;
1390 		}
1391 
1392 		switch (type) {
1393 		case OVS_NAT_ATTR_SRC:
1394 		case OVS_NAT_ATTR_DST:
1395 			if (info->nat) {
1396 				OVS_NLERR(log, "Only one type of NAT may be specified");
1397 				return -ERANGE;
1398 			}
1399 			info->nat |= OVS_CT_NAT;
1400 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1401 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1402 			break;
1403 
1404 		case OVS_NAT_ATTR_IP_MIN:
1405 			nla_memcpy(&info->range.min_addr, a,
1406 				   sizeof(info->range.min_addr));
1407 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1408 			break;
1409 
1410 		case OVS_NAT_ATTR_IP_MAX:
1411 			have_ip_max = true;
1412 			nla_memcpy(&info->range.max_addr, a,
1413 				   sizeof(info->range.max_addr));
1414 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1415 			break;
1416 
1417 		case OVS_NAT_ATTR_PROTO_MIN:
1418 			info->range.min_proto.all = htons(nla_get_u16(a));
1419 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1420 			break;
1421 
1422 		case OVS_NAT_ATTR_PROTO_MAX:
1423 			have_proto_max = true;
1424 			info->range.max_proto.all = htons(nla_get_u16(a));
1425 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1426 			break;
1427 
1428 		case OVS_NAT_ATTR_PERSISTENT:
1429 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1430 			break;
1431 
1432 		case OVS_NAT_ATTR_PROTO_HASH:
1433 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1434 			break;
1435 
1436 		case OVS_NAT_ATTR_PROTO_RANDOM:
1437 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1438 			break;
1439 
1440 		default:
1441 			OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1442 			return -EINVAL;
1443 		}
1444 	}
1445 
1446 	if (rem > 0) {
1447 		OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1448 		return -EINVAL;
1449 	}
1450 	if (!info->nat) {
1451 		/* Do not allow flags if no type is given. */
1452 		if (info->range.flags) {
1453 			OVS_NLERR(log,
1454 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1455 				  );
1456 			return -EINVAL;
1457 		}
1458 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1459 	} else if (!info->commit) {
1460 		OVS_NLERR(log,
1461 			  "NAT attributes may be specified only when CT COMMIT flag is also specified."
1462 			  );
1463 		return -EINVAL;
1464 	}
1465 	/* Allow missing IP_MAX. */
1466 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1467 		memcpy(&info->range.max_addr, &info->range.min_addr,
1468 		       sizeof(info->range.max_addr));
1469 	}
1470 	/* Allow missing PROTO_MAX. */
1471 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1472 	    !have_proto_max) {
1473 		info->range.max_proto.all = info->range.min_proto.all;
1474 	}
1475 	return 0;
1476 }
1477 #endif
1478 
1479 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1480 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1481 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1482 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1483 				    .maxlen = sizeof(u16) },
1484 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1485 				    .maxlen = sizeof(struct md_mark) },
1486 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1487 				    .maxlen = sizeof(struct md_labels) },
1488 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1489 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1490 #if IS_ENABLED(CONFIG_NF_NAT)
1491 	/* NAT length is checked when parsing the nested attributes. */
1492 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1493 #endif
1494 	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1495 				    .maxlen = sizeof(u32) },
1496 	[OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1497 				  .maxlen = CTNL_TIMEOUT_NAME_MAX },
1498 };
1499 
1500 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1501 		    const char **helper, bool log)
1502 {
1503 	struct nlattr *a;
1504 	int rem;
1505 
1506 	nla_for_each_nested(a, attr, rem) {
1507 		int type = nla_type(a);
1508 		int maxlen;
1509 		int minlen;
1510 
1511 		if (type > OVS_CT_ATTR_MAX) {
1512 			OVS_NLERR(log,
1513 				  "Unknown conntrack attr (type=%d, max=%d)",
1514 				  type, OVS_CT_ATTR_MAX);
1515 			return -EINVAL;
1516 		}
1517 
1518 		maxlen = ovs_ct_attr_lens[type].maxlen;
1519 		minlen = ovs_ct_attr_lens[type].minlen;
1520 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1521 			OVS_NLERR(log,
1522 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1523 				  type, nla_len(a), maxlen);
1524 			return -EINVAL;
1525 		}
1526 
1527 		switch (type) {
1528 		case OVS_CT_ATTR_FORCE_COMMIT:
1529 			info->force = true;
1530 			/* fall through. */
1531 		case OVS_CT_ATTR_COMMIT:
1532 			info->commit = true;
1533 			break;
1534 #ifdef CONFIG_NF_CONNTRACK_ZONES
1535 		case OVS_CT_ATTR_ZONE:
1536 			info->zone.id = nla_get_u16(a);
1537 			break;
1538 #endif
1539 #ifdef CONFIG_NF_CONNTRACK_MARK
1540 		case OVS_CT_ATTR_MARK: {
1541 			struct md_mark *mark = nla_data(a);
1542 
1543 			if (!mark->mask) {
1544 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1545 				return -EINVAL;
1546 			}
1547 			info->mark = *mark;
1548 			break;
1549 		}
1550 #endif
1551 #ifdef CONFIG_NF_CONNTRACK_LABELS
1552 		case OVS_CT_ATTR_LABELS: {
1553 			struct md_labels *labels = nla_data(a);
1554 
1555 			if (!labels_nonzero(&labels->mask)) {
1556 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1557 				return -EINVAL;
1558 			}
1559 			info->labels = *labels;
1560 			break;
1561 		}
1562 #endif
1563 		case OVS_CT_ATTR_HELPER:
1564 			*helper = nla_data(a);
1565 			if (!memchr(*helper, '\0', nla_len(a))) {
1566 				OVS_NLERR(log, "Invalid conntrack helper");
1567 				return -EINVAL;
1568 			}
1569 			break;
1570 #if IS_ENABLED(CONFIG_NF_NAT)
1571 		case OVS_CT_ATTR_NAT: {
1572 			int err = parse_nat(a, info, log);
1573 
1574 			if (err)
1575 				return err;
1576 			break;
1577 		}
1578 #endif
1579 		case OVS_CT_ATTR_EVENTMASK:
1580 			info->have_eventmask = true;
1581 			info->eventmask = nla_get_u32(a);
1582 			break;
1583 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1584 		case OVS_CT_ATTR_TIMEOUT:
1585 			memcpy(info->timeout, nla_data(a), nla_len(a));
1586 			if (!memchr(info->timeout, '\0', nla_len(a))) {
1587 				OVS_NLERR(log, "Invalid conntrack timeout");
1588 				return -EINVAL;
1589 			}
1590 			break;
1591 #endif
1592 
1593 		default:
1594 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1595 				  type);
1596 			return -EINVAL;
1597 		}
1598 	}
1599 
1600 #ifdef CONFIG_NF_CONNTRACK_MARK
1601 	if (!info->commit && info->mark.mask) {
1602 		OVS_NLERR(log,
1603 			  "Setting conntrack mark requires 'commit' flag.");
1604 		return -EINVAL;
1605 	}
1606 #endif
1607 #ifdef CONFIG_NF_CONNTRACK_LABELS
1608 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1609 		OVS_NLERR(log,
1610 			  "Setting conntrack labels requires 'commit' flag.");
1611 		return -EINVAL;
1612 	}
1613 #endif
1614 	if (rem > 0) {
1615 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1616 		return -EINVAL;
1617 	}
1618 
1619 	return 0;
1620 }
1621 
1622 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1623 {
1624 	if (attr == OVS_KEY_ATTR_CT_STATE)
1625 		return true;
1626 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1627 	    attr == OVS_KEY_ATTR_CT_ZONE)
1628 		return true;
1629 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1630 	    attr == OVS_KEY_ATTR_CT_MARK)
1631 		return true;
1632 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1633 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1634 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1635 
1636 		return ovs_net->xt_label;
1637 	}
1638 
1639 	return false;
1640 }
1641 
1642 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1643 		       const struct sw_flow_key *key,
1644 		       struct sw_flow_actions **sfa,  bool log)
1645 {
1646 	struct ovs_conntrack_info ct_info;
1647 	const char *helper = NULL;
1648 	u16 family;
1649 	int err;
1650 
1651 	family = key_to_nfproto(key);
1652 	if (family == NFPROTO_UNSPEC) {
1653 		OVS_NLERR(log, "ct family unspecified");
1654 		return -EINVAL;
1655 	}
1656 
1657 	memset(&ct_info, 0, sizeof(ct_info));
1658 	ct_info.family = family;
1659 
1660 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1661 			NF_CT_DEFAULT_ZONE_DIR, 0);
1662 
1663 	err = parse_ct(attr, &ct_info, &helper, log);
1664 	if (err)
1665 		return err;
1666 
1667 	/* Set up template for tracking connections in specific zones. */
1668 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1669 	if (!ct_info.ct) {
1670 		OVS_NLERR(log, "Failed to allocate conntrack template");
1671 		return -ENOMEM;
1672 	}
1673 
1674 	if (ct_info.timeout[0]) {
1675 		if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1676 				      ct_info.timeout))
1677 			pr_info_ratelimited("Failed to associated timeout "
1678 					    "policy `%s'\n", ct_info.timeout);
1679 		else
1680 			ct_info.nf_ct_timeout = rcu_dereference(
1681 				nf_ct_timeout_find(ct_info.ct)->timeout);
1682 
1683 	}
1684 
1685 	if (helper) {
1686 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1687 		if (err)
1688 			goto err_free_ct;
1689 	}
1690 
1691 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1692 				 sizeof(ct_info), log);
1693 	if (err)
1694 		goto err_free_ct;
1695 
1696 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1697 	nf_conntrack_get(&ct_info.ct->ct_general);
1698 	return 0;
1699 err_free_ct:
1700 	__ovs_ct_free_action(&ct_info);
1701 	return err;
1702 }
1703 
1704 #if IS_ENABLED(CONFIG_NF_NAT)
1705 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1706 			       struct sk_buff *skb)
1707 {
1708 	struct nlattr *start;
1709 
1710 	start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1711 	if (!start)
1712 		return false;
1713 
1714 	if (info->nat & OVS_CT_SRC_NAT) {
1715 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1716 			return false;
1717 	} else if (info->nat & OVS_CT_DST_NAT) {
1718 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1719 			return false;
1720 	} else {
1721 		goto out;
1722 	}
1723 
1724 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1725 		if (IS_ENABLED(CONFIG_NF_NAT) &&
1726 		    info->family == NFPROTO_IPV4) {
1727 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1728 					    info->range.min_addr.ip) ||
1729 			    (info->range.max_addr.ip
1730 			     != info->range.min_addr.ip &&
1731 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1732 					      info->range.max_addr.ip))))
1733 				return false;
1734 		} else if (IS_ENABLED(CONFIG_IPV6) &&
1735 			   info->family == NFPROTO_IPV6) {
1736 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1737 					     &info->range.min_addr.in6) ||
1738 			    (memcmp(&info->range.max_addr.in6,
1739 				    &info->range.min_addr.in6,
1740 				    sizeof(info->range.max_addr.in6)) &&
1741 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1742 					       &info->range.max_addr.in6))))
1743 				return false;
1744 		} else {
1745 			return false;
1746 		}
1747 	}
1748 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1749 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1750 			 ntohs(info->range.min_proto.all)) ||
1751 	     (info->range.max_proto.all != info->range.min_proto.all &&
1752 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1753 			  ntohs(info->range.max_proto.all)))))
1754 		return false;
1755 
1756 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1757 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1758 		return false;
1759 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1760 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1761 		return false;
1762 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1763 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1764 		return false;
1765 out:
1766 	nla_nest_end(skb, start);
1767 
1768 	return true;
1769 }
1770 #endif
1771 
1772 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1773 			  struct sk_buff *skb)
1774 {
1775 	struct nlattr *start;
1776 
1777 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1778 	if (!start)
1779 		return -EMSGSIZE;
1780 
1781 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1782 					    ? OVS_CT_ATTR_FORCE_COMMIT
1783 					    : OVS_CT_ATTR_COMMIT))
1784 		return -EMSGSIZE;
1785 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1786 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1787 		return -EMSGSIZE;
1788 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1789 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1790 		    &ct_info->mark))
1791 		return -EMSGSIZE;
1792 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1793 	    labels_nonzero(&ct_info->labels.mask) &&
1794 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1795 		    &ct_info->labels))
1796 		return -EMSGSIZE;
1797 	if (ct_info->helper) {
1798 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1799 				   ct_info->helper->name))
1800 			return -EMSGSIZE;
1801 	}
1802 	if (ct_info->have_eventmask &&
1803 	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1804 		return -EMSGSIZE;
1805 	if (ct_info->timeout[0]) {
1806 		if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1807 			return -EMSGSIZE;
1808 	}
1809 
1810 #if IS_ENABLED(CONFIG_NF_NAT)
1811 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1812 		return -EMSGSIZE;
1813 #endif
1814 	nla_nest_end(skb, start);
1815 
1816 	return 0;
1817 }
1818 
1819 void ovs_ct_free_action(const struct nlattr *a)
1820 {
1821 	struct ovs_conntrack_info *ct_info = nla_data(a);
1822 
1823 	__ovs_ct_free_action(ct_info);
1824 }
1825 
1826 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1827 {
1828 	if (ct_info->helper) {
1829 #if IS_ENABLED(CONFIG_NF_NAT)
1830 		if (ct_info->nat)
1831 			nf_nat_helper_put(ct_info->helper);
1832 #endif
1833 		nf_conntrack_helper_put(ct_info->helper);
1834 	}
1835 	if (ct_info->ct) {
1836 		if (ct_info->timeout[0])
1837 			nf_ct_destroy_timeout(ct_info->ct);
1838 		nf_ct_tmpl_free(ct_info->ct);
1839 	}
1840 }
1841 
1842 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1843 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1844 {
1845 	int i, err;
1846 
1847 	ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1848 					 GFP_KERNEL);
1849 	if (!ovs_net->ct_limit_info)
1850 		return -ENOMEM;
1851 
1852 	ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1853 	ovs_net->ct_limit_info->limits =
1854 		kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1855 			      GFP_KERNEL);
1856 	if (!ovs_net->ct_limit_info->limits) {
1857 		kfree(ovs_net->ct_limit_info);
1858 		return -ENOMEM;
1859 	}
1860 
1861 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1862 		INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1863 
1864 	ovs_net->ct_limit_info->data =
1865 		nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1866 
1867 	if (IS_ERR(ovs_net->ct_limit_info->data)) {
1868 		err = PTR_ERR(ovs_net->ct_limit_info->data);
1869 		kfree(ovs_net->ct_limit_info->limits);
1870 		kfree(ovs_net->ct_limit_info);
1871 		pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1872 		return err;
1873 	}
1874 	return 0;
1875 }
1876 
1877 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1878 {
1879 	const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1880 	int i;
1881 
1882 	nf_conncount_destroy(net, NFPROTO_INET, info->data);
1883 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1884 		struct hlist_head *head = &info->limits[i];
1885 		struct ovs_ct_limit *ct_limit;
1886 
1887 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node)
1888 			kfree_rcu(ct_limit, rcu);
1889 	}
1890 	kfree(ovs_net->ct_limit_info->limits);
1891 	kfree(ovs_net->ct_limit_info);
1892 }
1893 
1894 static struct sk_buff *
1895 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1896 			     struct ovs_header **ovs_reply_header)
1897 {
1898 	struct ovs_header *ovs_header = info->userhdr;
1899 	struct sk_buff *skb;
1900 
1901 	skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1902 	if (!skb)
1903 		return ERR_PTR(-ENOMEM);
1904 
1905 	*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1906 					info->snd_seq,
1907 					&dp_ct_limit_genl_family, 0, cmd);
1908 
1909 	if (!*ovs_reply_header) {
1910 		nlmsg_free(skb);
1911 		return ERR_PTR(-EMSGSIZE);
1912 	}
1913 	(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1914 
1915 	return skb;
1916 }
1917 
1918 static bool check_zone_id(int zone_id, u16 *pzone)
1919 {
1920 	if (zone_id >= 0 && zone_id <= 65535) {
1921 		*pzone = (u16)zone_id;
1922 		return true;
1923 	}
1924 	return false;
1925 }
1926 
1927 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1928 				       struct ovs_ct_limit_info *info)
1929 {
1930 	struct ovs_zone_limit *zone_limit;
1931 	int rem;
1932 	u16 zone;
1933 
1934 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1935 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1936 
1937 	while (rem >= sizeof(*zone_limit)) {
1938 		if (unlikely(zone_limit->zone_id ==
1939 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1940 			ovs_lock();
1941 			info->default_limit = zone_limit->limit;
1942 			ovs_unlock();
1943 		} else if (unlikely(!check_zone_id(
1944 				zone_limit->zone_id, &zone))) {
1945 			OVS_NLERR(true, "zone id is out of range");
1946 		} else {
1947 			struct ovs_ct_limit *ct_limit;
1948 
1949 			ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1950 			if (!ct_limit)
1951 				return -ENOMEM;
1952 
1953 			ct_limit->zone = zone;
1954 			ct_limit->limit = zone_limit->limit;
1955 
1956 			ovs_lock();
1957 			ct_limit_set(info, ct_limit);
1958 			ovs_unlock();
1959 		}
1960 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1961 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1962 				NLA_ALIGN(sizeof(*zone_limit)));
1963 	}
1964 
1965 	if (rem)
1966 		OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1967 
1968 	return 0;
1969 }
1970 
1971 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1972 				       struct ovs_ct_limit_info *info)
1973 {
1974 	struct ovs_zone_limit *zone_limit;
1975 	int rem;
1976 	u16 zone;
1977 
1978 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1979 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1980 
1981 	while (rem >= sizeof(*zone_limit)) {
1982 		if (unlikely(zone_limit->zone_id ==
1983 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1984 			ovs_lock();
1985 			info->default_limit = OVS_CT_LIMIT_DEFAULT;
1986 			ovs_unlock();
1987 		} else if (unlikely(!check_zone_id(
1988 				zone_limit->zone_id, &zone))) {
1989 			OVS_NLERR(true, "zone id is out of range");
1990 		} else {
1991 			ovs_lock();
1992 			ct_limit_del(info, zone);
1993 			ovs_unlock();
1994 		}
1995 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1996 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1997 				NLA_ALIGN(sizeof(*zone_limit)));
1998 	}
1999 
2000 	if (rem)
2001 		OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
2002 
2003 	return 0;
2004 }
2005 
2006 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
2007 					  struct sk_buff *reply)
2008 {
2009 	struct ovs_zone_limit zone_limit;
2010 	int err;
2011 
2012 	zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
2013 	zone_limit.limit = info->default_limit;
2014 	err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2015 	if (err)
2016 		return err;
2017 
2018 	return 0;
2019 }
2020 
2021 static int __ovs_ct_limit_get_zone_limit(struct net *net,
2022 					 struct nf_conncount_data *data,
2023 					 u16 zone_id, u32 limit,
2024 					 struct sk_buff *reply)
2025 {
2026 	struct nf_conntrack_zone ct_zone;
2027 	struct ovs_zone_limit zone_limit;
2028 	u32 conncount_key = zone_id;
2029 
2030 	zone_limit.zone_id = zone_id;
2031 	zone_limit.limit = limit;
2032 	nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
2033 
2034 	zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
2035 					      &ct_zone);
2036 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2037 }
2038 
2039 static int ovs_ct_limit_get_zone_limit(struct net *net,
2040 				       struct nlattr *nla_zone_limit,
2041 				       struct ovs_ct_limit_info *info,
2042 				       struct sk_buff *reply)
2043 {
2044 	struct ovs_zone_limit *zone_limit;
2045 	int rem, err;
2046 	u32 limit;
2047 	u16 zone;
2048 
2049 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
2050 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2051 
2052 	while (rem >= sizeof(*zone_limit)) {
2053 		if (unlikely(zone_limit->zone_id ==
2054 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2055 			err = ovs_ct_limit_get_default_limit(info, reply);
2056 			if (err)
2057 				return err;
2058 		} else if (unlikely(!check_zone_id(zone_limit->zone_id,
2059 							&zone))) {
2060 			OVS_NLERR(true, "zone id is out of range");
2061 		} else {
2062 			rcu_read_lock();
2063 			limit = ct_limit_get(info, zone);
2064 			rcu_read_unlock();
2065 
2066 			err = __ovs_ct_limit_get_zone_limit(
2067 				net, info->data, zone, limit, reply);
2068 			if (err)
2069 				return err;
2070 		}
2071 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2072 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2073 				NLA_ALIGN(sizeof(*zone_limit)));
2074 	}
2075 
2076 	if (rem)
2077 		OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2078 
2079 	return 0;
2080 }
2081 
2082 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2083 					   struct ovs_ct_limit_info *info,
2084 					   struct sk_buff *reply)
2085 {
2086 	struct ovs_ct_limit *ct_limit;
2087 	struct hlist_head *head;
2088 	int i, err = 0;
2089 
2090 	err = ovs_ct_limit_get_default_limit(info, reply);
2091 	if (err)
2092 		return err;
2093 
2094 	rcu_read_lock();
2095 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2096 		head = &info->limits[i];
2097 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2098 			err = __ovs_ct_limit_get_zone_limit(net, info->data,
2099 				ct_limit->zone, ct_limit->limit, reply);
2100 			if (err)
2101 				goto exit_err;
2102 		}
2103 	}
2104 
2105 exit_err:
2106 	rcu_read_unlock();
2107 	return err;
2108 }
2109 
2110 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2111 {
2112 	struct nlattr **a = info->attrs;
2113 	struct sk_buff *reply;
2114 	struct ovs_header *ovs_reply_header;
2115 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2116 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2117 	int err;
2118 
2119 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2120 					     &ovs_reply_header);
2121 	if (IS_ERR(reply))
2122 		return PTR_ERR(reply);
2123 
2124 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2125 		err = -EINVAL;
2126 		goto exit_err;
2127 	}
2128 
2129 	err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2130 					  ct_limit_info);
2131 	if (err)
2132 		goto exit_err;
2133 
2134 	static_branch_enable(&ovs_ct_limit_enabled);
2135 
2136 	genlmsg_end(reply, ovs_reply_header);
2137 	return genlmsg_reply(reply, info);
2138 
2139 exit_err:
2140 	nlmsg_free(reply);
2141 	return err;
2142 }
2143 
2144 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2145 {
2146 	struct nlattr **a = info->attrs;
2147 	struct sk_buff *reply;
2148 	struct ovs_header *ovs_reply_header;
2149 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2150 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2151 	int err;
2152 
2153 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2154 					     &ovs_reply_header);
2155 	if (IS_ERR(reply))
2156 		return PTR_ERR(reply);
2157 
2158 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2159 		err = -EINVAL;
2160 		goto exit_err;
2161 	}
2162 
2163 	err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2164 					  ct_limit_info);
2165 	if (err)
2166 		goto exit_err;
2167 
2168 	genlmsg_end(reply, ovs_reply_header);
2169 	return genlmsg_reply(reply, info);
2170 
2171 exit_err:
2172 	nlmsg_free(reply);
2173 	return err;
2174 }
2175 
2176 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2177 {
2178 	struct nlattr **a = info->attrs;
2179 	struct nlattr *nla_reply;
2180 	struct sk_buff *reply;
2181 	struct ovs_header *ovs_reply_header;
2182 	struct net *net = sock_net(skb->sk);
2183 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2184 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2185 	int err;
2186 
2187 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2188 					     &ovs_reply_header);
2189 	if (IS_ERR(reply))
2190 		return PTR_ERR(reply);
2191 
2192 	nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2193 	if (!nla_reply) {
2194 		err = -EMSGSIZE;
2195 		goto exit_err;
2196 	}
2197 
2198 	if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2199 		err = ovs_ct_limit_get_zone_limit(
2200 			net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2201 			reply);
2202 		if (err)
2203 			goto exit_err;
2204 	} else {
2205 		err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2206 						      reply);
2207 		if (err)
2208 			goto exit_err;
2209 	}
2210 
2211 	nla_nest_end(reply, nla_reply);
2212 	genlmsg_end(reply, ovs_reply_header);
2213 	return genlmsg_reply(reply, info);
2214 
2215 exit_err:
2216 	nlmsg_free(reply);
2217 	return err;
2218 }
2219 
2220 static struct genl_ops ct_limit_genl_ops[] = {
2221 	{ .cmd = OVS_CT_LIMIT_CMD_SET,
2222 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2223 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2224 					   * privilege. */
2225 		.doit = ovs_ct_limit_cmd_set,
2226 	},
2227 	{ .cmd = OVS_CT_LIMIT_CMD_DEL,
2228 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2229 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2230 					   * privilege. */
2231 		.doit = ovs_ct_limit_cmd_del,
2232 	},
2233 	{ .cmd = OVS_CT_LIMIT_CMD_GET,
2234 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2235 		.flags = 0,		  /* OK for unprivileged users. */
2236 		.doit = ovs_ct_limit_cmd_get,
2237 	},
2238 };
2239 
2240 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2241 	.name = OVS_CT_LIMIT_MCGROUP,
2242 };
2243 
2244 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2245 	.hdrsize = sizeof(struct ovs_header),
2246 	.name = OVS_CT_LIMIT_FAMILY,
2247 	.version = OVS_CT_LIMIT_VERSION,
2248 	.maxattr = OVS_CT_LIMIT_ATTR_MAX,
2249 	.policy = ct_limit_policy,
2250 	.netnsok = true,
2251 	.parallel_ops = true,
2252 	.ops = ct_limit_genl_ops,
2253 	.n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2254 	.mcgrps = &ovs_ct_limit_multicast_group,
2255 	.n_mcgrps = 1,
2256 	.module = THIS_MODULE,
2257 };
2258 #endif
2259 
2260 int ovs_ct_init(struct net *net)
2261 {
2262 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2263 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2264 
2265 	if (nf_connlabels_get(net, n_bits - 1)) {
2266 		ovs_net->xt_label = false;
2267 		OVS_NLERR(true, "Failed to set connlabel length");
2268 	} else {
2269 		ovs_net->xt_label = true;
2270 	}
2271 
2272 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2273 	return ovs_ct_limit_init(net, ovs_net);
2274 #else
2275 	return 0;
2276 #endif
2277 }
2278 
2279 void ovs_ct_exit(struct net *net)
2280 {
2281 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2282 
2283 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2284 	ovs_ct_limit_exit(net, ovs_net);
2285 #endif
2286 
2287 	if (ovs_net->xt_label)
2288 		nf_connlabels_put(net);
2289 }
2290