1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015 Nicira, Inc. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/openvswitch.h> 8 #include <linux/tcp.h> 9 #include <linux/udp.h> 10 #include <linux/sctp.h> 11 #include <linux/static_key.h> 12 #include <net/ip.h> 13 #include <net/genetlink.h> 14 #include <net/netfilter/nf_conntrack_core.h> 15 #include <net/netfilter/nf_conntrack_count.h> 16 #include <net/netfilter/nf_conntrack_helper.h> 17 #include <net/netfilter/nf_conntrack_labels.h> 18 #include <net/netfilter/nf_conntrack_seqadj.h> 19 #include <net/netfilter/nf_conntrack_timeout.h> 20 #include <net/netfilter/nf_conntrack_zones.h> 21 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 22 #include <net/ipv6_frag.h> 23 24 #if IS_ENABLED(CONFIG_NF_NAT) 25 #include <net/netfilter/nf_nat.h> 26 #endif 27 28 #include <net/netfilter/nf_conntrack_act_ct.h> 29 30 #include "datapath.h" 31 #include "conntrack.h" 32 #include "flow.h" 33 #include "flow_netlink.h" 34 35 struct ovs_ct_len_tbl { 36 int maxlen; 37 int minlen; 38 }; 39 40 /* Metadata mark for masked write to conntrack mark */ 41 struct md_mark { 42 u32 value; 43 u32 mask; 44 }; 45 46 /* Metadata label for masked write to conntrack label. */ 47 struct md_labels { 48 struct ovs_key_ct_labels value; 49 struct ovs_key_ct_labels mask; 50 }; 51 52 enum ovs_ct_nat { 53 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 54 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 55 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 56 }; 57 58 /* Conntrack action context for execution. */ 59 struct ovs_conntrack_info { 60 struct nf_conntrack_helper *helper; 61 struct nf_conntrack_zone zone; 62 struct nf_conn *ct; 63 u8 commit : 1; 64 u8 nat : 3; /* enum ovs_ct_nat */ 65 u8 force : 1; 66 u8 have_eventmask : 1; 67 u16 family; 68 u32 eventmask; /* Mask of 1 << IPCT_*. */ 69 struct md_mark mark; 70 struct md_labels labels; 71 char timeout[CTNL_TIMEOUT_NAME_MAX]; 72 struct nf_ct_timeout *nf_ct_timeout; 73 #if IS_ENABLED(CONFIG_NF_NAT) 74 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */ 75 #endif 76 }; 77 78 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 79 #define OVS_CT_LIMIT_UNLIMITED 0 80 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED 81 #define CT_LIMIT_HASH_BUCKETS 512 82 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled); 83 84 struct ovs_ct_limit { 85 /* Elements in ovs_ct_limit_info->limits hash table */ 86 struct hlist_node hlist_node; 87 struct rcu_head rcu; 88 u16 zone; 89 u32 limit; 90 }; 91 92 struct ovs_ct_limit_info { 93 u32 default_limit; 94 struct hlist_head *limits; 95 struct nf_conncount_data *data; 96 }; 97 98 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = { 99 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, }, 100 }; 101 #endif 102 103 static bool labels_nonzero(const struct ovs_key_ct_labels *labels); 104 105 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 106 107 static u16 key_to_nfproto(const struct sw_flow_key *key) 108 { 109 switch (ntohs(key->eth.type)) { 110 case ETH_P_IP: 111 return NFPROTO_IPV4; 112 case ETH_P_IPV6: 113 return NFPROTO_IPV6; 114 default: 115 return NFPROTO_UNSPEC; 116 } 117 } 118 119 /* Map SKB connection state into the values used by flow definition. */ 120 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 121 { 122 u8 ct_state = OVS_CS_F_TRACKED; 123 124 switch (ctinfo) { 125 case IP_CT_ESTABLISHED_REPLY: 126 case IP_CT_RELATED_REPLY: 127 ct_state |= OVS_CS_F_REPLY_DIR; 128 break; 129 default: 130 break; 131 } 132 133 switch (ctinfo) { 134 case IP_CT_ESTABLISHED: 135 case IP_CT_ESTABLISHED_REPLY: 136 ct_state |= OVS_CS_F_ESTABLISHED; 137 break; 138 case IP_CT_RELATED: 139 case IP_CT_RELATED_REPLY: 140 ct_state |= OVS_CS_F_RELATED; 141 break; 142 case IP_CT_NEW: 143 ct_state |= OVS_CS_F_NEW; 144 break; 145 default: 146 break; 147 } 148 149 return ct_state; 150 } 151 152 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 153 { 154 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 155 return ct ? READ_ONCE(ct->mark) : 0; 156 #else 157 return 0; 158 #endif 159 } 160 161 /* Guard against conntrack labels max size shrinking below 128 bits. */ 162 #if NF_CT_LABELS_MAX_SIZE < 16 163 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes 164 #endif 165 166 static void ovs_ct_get_labels(const struct nf_conn *ct, 167 struct ovs_key_ct_labels *labels) 168 { 169 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 170 171 if (cl) 172 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN); 173 else 174 memset(labels, 0, OVS_CT_LABELS_LEN); 175 } 176 177 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key, 178 const struct nf_conntrack_tuple *orig, 179 u8 icmp_proto) 180 { 181 key->ct_orig_proto = orig->dst.protonum; 182 if (orig->dst.protonum == icmp_proto) { 183 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type); 184 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code); 185 } else { 186 key->ct.orig_tp.src = orig->src.u.all; 187 key->ct.orig_tp.dst = orig->dst.u.all; 188 } 189 } 190 191 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 192 const struct nf_conntrack_zone *zone, 193 const struct nf_conn *ct) 194 { 195 key->ct_state = state; 196 key->ct_zone = zone->id; 197 key->ct.mark = ovs_ct_get_mark(ct); 198 ovs_ct_get_labels(ct, &key->ct.labels); 199 200 if (ct) { 201 const struct nf_conntrack_tuple *orig; 202 203 /* Use the master if we have one. */ 204 if (ct->master) 205 ct = ct->master; 206 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 207 208 /* IP version must match with the master connection. */ 209 if (key->eth.type == htons(ETH_P_IP) && 210 nf_ct_l3num(ct) == NFPROTO_IPV4) { 211 key->ipv4.ct_orig.src = orig->src.u3.ip; 212 key->ipv4.ct_orig.dst = orig->dst.u3.ip; 213 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP); 214 return; 215 } else if (key->eth.type == htons(ETH_P_IPV6) && 216 !sw_flow_key_is_nd(key) && 217 nf_ct_l3num(ct) == NFPROTO_IPV6) { 218 key->ipv6.ct_orig.src = orig->src.u3.in6; 219 key->ipv6.ct_orig.dst = orig->dst.u3.in6; 220 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP); 221 return; 222 } 223 } 224 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack 225 * original direction key fields. 226 */ 227 key->ct_orig_proto = 0; 228 } 229 230 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has 231 * previously sent the packet to conntrack via the ct action. If 232 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 233 * initialized from the connection status. 234 */ 235 static void ovs_ct_update_key(const struct sk_buff *skb, 236 const struct ovs_conntrack_info *info, 237 struct sw_flow_key *key, bool post_ct, 238 bool keep_nat_flags) 239 { 240 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 241 enum ip_conntrack_info ctinfo; 242 struct nf_conn *ct; 243 u8 state = 0; 244 245 ct = nf_ct_get(skb, &ctinfo); 246 if (ct) { 247 state = ovs_ct_get_state(ctinfo); 248 /* All unconfirmed entries are NEW connections. */ 249 if (!nf_ct_is_confirmed(ct)) 250 state |= OVS_CS_F_NEW; 251 /* OVS persists the related flag for the duration of the 252 * connection. 253 */ 254 if (ct->master) 255 state |= OVS_CS_F_RELATED; 256 if (keep_nat_flags) { 257 state |= key->ct_state & OVS_CS_F_NAT_MASK; 258 } else { 259 if (ct->status & IPS_SRC_NAT) 260 state |= OVS_CS_F_SRC_NAT; 261 if (ct->status & IPS_DST_NAT) 262 state |= OVS_CS_F_DST_NAT; 263 } 264 zone = nf_ct_zone(ct); 265 } else if (post_ct) { 266 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 267 if (info) 268 zone = &info->zone; 269 } 270 __ovs_ct_update_key(key, state, zone, ct); 271 } 272 273 /* This is called to initialize CT key fields possibly coming in from the local 274 * stack. 275 */ 276 void ovs_ct_fill_key(const struct sk_buff *skb, 277 struct sw_flow_key *key, 278 bool post_ct) 279 { 280 ovs_ct_update_key(skb, NULL, key, post_ct, false); 281 } 282 283 int ovs_ct_put_key(const struct sw_flow_key *swkey, 284 const struct sw_flow_key *output, struct sk_buff *skb) 285 { 286 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state)) 287 return -EMSGSIZE; 288 289 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 290 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone)) 291 return -EMSGSIZE; 292 293 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 294 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark)) 295 return -EMSGSIZE; 296 297 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 298 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels), 299 &output->ct.labels)) 300 return -EMSGSIZE; 301 302 if (swkey->ct_orig_proto) { 303 if (swkey->eth.type == htons(ETH_P_IP)) { 304 struct ovs_key_ct_tuple_ipv4 orig; 305 306 memset(&orig, 0, sizeof(orig)); 307 orig.ipv4_src = output->ipv4.ct_orig.src; 308 orig.ipv4_dst = output->ipv4.ct_orig.dst; 309 orig.src_port = output->ct.orig_tp.src; 310 orig.dst_port = output->ct.orig_tp.dst; 311 orig.ipv4_proto = output->ct_orig_proto; 312 313 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4, 314 sizeof(orig), &orig)) 315 return -EMSGSIZE; 316 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 317 struct ovs_key_ct_tuple_ipv6 orig; 318 319 memset(&orig, 0, sizeof(orig)); 320 memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32, 321 sizeof(orig.ipv6_src)); 322 memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32, 323 sizeof(orig.ipv6_dst)); 324 orig.src_port = output->ct.orig_tp.src; 325 orig.dst_port = output->ct.orig_tp.dst; 326 orig.ipv6_proto = output->ct_orig_proto; 327 328 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6, 329 sizeof(orig), &orig)) 330 return -EMSGSIZE; 331 } 332 } 333 334 return 0; 335 } 336 337 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key, 338 u32 ct_mark, u32 mask) 339 { 340 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 341 u32 new_mark; 342 343 new_mark = ct_mark | (READ_ONCE(ct->mark) & ~(mask)); 344 if (READ_ONCE(ct->mark) != new_mark) { 345 WRITE_ONCE(ct->mark, new_mark); 346 if (nf_ct_is_confirmed(ct)) 347 nf_conntrack_event_cache(IPCT_MARK, ct); 348 key->ct.mark = new_mark; 349 } 350 351 return 0; 352 #else 353 return -ENOTSUPP; 354 #endif 355 } 356 357 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct) 358 { 359 struct nf_conn_labels *cl; 360 361 cl = nf_ct_labels_find(ct); 362 if (!cl) { 363 nf_ct_labels_ext_add(ct); 364 cl = nf_ct_labels_find(ct); 365 } 366 367 return cl; 368 } 369 370 /* Initialize labels for a new, yet to be committed conntrack entry. Note that 371 * since the new connection is not yet confirmed, and thus no-one else has 372 * access to it's labels, we simply write them over. 373 */ 374 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key, 375 const struct ovs_key_ct_labels *labels, 376 const struct ovs_key_ct_labels *mask) 377 { 378 struct nf_conn_labels *cl, *master_cl; 379 bool have_mask = labels_nonzero(mask); 380 381 /* Inherit master's labels to the related connection? */ 382 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL; 383 384 if (!master_cl && !have_mask) 385 return 0; /* Nothing to do. */ 386 387 cl = ovs_ct_get_conn_labels(ct); 388 if (!cl) 389 return -ENOSPC; 390 391 /* Inherit the master's labels, if any. */ 392 if (master_cl) 393 *cl = *master_cl; 394 395 if (have_mask) { 396 u32 *dst = (u32 *)cl->bits; 397 int i; 398 399 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 400 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) | 401 (labels->ct_labels_32[i] 402 & mask->ct_labels_32[i]); 403 } 404 405 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the 406 * IPCT_LABEL bit is set in the event cache. 407 */ 408 nf_conntrack_event_cache(IPCT_LABEL, ct); 409 410 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 411 412 return 0; 413 } 414 415 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key, 416 const struct ovs_key_ct_labels *labels, 417 const struct ovs_key_ct_labels *mask) 418 { 419 struct nf_conn_labels *cl; 420 int err; 421 422 cl = ovs_ct_get_conn_labels(ct); 423 if (!cl) 424 return -ENOSPC; 425 426 err = nf_connlabels_replace(ct, labels->ct_labels_32, 427 mask->ct_labels_32, 428 OVS_CT_LABELS_LEN_32); 429 if (err) 430 return err; 431 432 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 433 434 return 0; 435 } 436 437 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 438 * value if 'skb' is freed. 439 */ 440 static int handle_fragments(struct net *net, struct sw_flow_key *key, 441 u16 zone, struct sk_buff *skb) 442 { 443 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 444 int err; 445 446 if (key->eth.type == htons(ETH_P_IP)) { 447 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 448 449 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 450 err = ip_defrag(net, skb, user); 451 if (err) 452 return err; 453 454 ovs_cb.mru = IPCB(skb)->frag_max_size; 455 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 456 } else if (key->eth.type == htons(ETH_P_IPV6)) { 457 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 458 459 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 460 err = nf_ct_frag6_gather(net, skb, user); 461 if (err) { 462 if (err != -EINPROGRESS) 463 kfree_skb(skb); 464 return err; 465 } 466 467 key->ip.proto = ipv6_hdr(skb)->nexthdr; 468 ovs_cb.mru = IP6CB(skb)->frag_max_size; 469 #endif 470 } else { 471 kfree_skb(skb); 472 return -EPFNOSUPPORT; 473 } 474 475 /* The key extracted from the fragment that completed this datagram 476 * likely didn't have an L4 header, so regenerate it. 477 */ 478 ovs_flow_key_update_l3l4(skb, key); 479 480 key->ip.frag = OVS_FRAG_TYPE_NONE; 481 skb_clear_hash(skb); 482 skb->ignore_df = 1; 483 *OVS_CB(skb) = ovs_cb; 484 485 return 0; 486 } 487 488 static struct nf_conntrack_expect * 489 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 490 u16 proto, const struct sk_buff *skb) 491 { 492 struct nf_conntrack_tuple tuple; 493 struct nf_conntrack_expect *exp; 494 495 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 496 return NULL; 497 498 exp = __nf_ct_expect_find(net, zone, &tuple); 499 if (exp) { 500 struct nf_conntrack_tuple_hash *h; 501 502 /* Delete existing conntrack entry, if it clashes with the 503 * expectation. This can happen since conntrack ALGs do not 504 * check for clashes between (new) expectations and existing 505 * conntrack entries. nf_conntrack_in() will check the 506 * expectations only if a conntrack entry can not be found, 507 * which can lead to OVS finding the expectation (here) in the 508 * init direction, but which will not be removed by the 509 * nf_conntrack_in() call, if a matching conntrack entry is 510 * found instead. In this case all init direction packets 511 * would be reported as new related packets, while reply 512 * direction packets would be reported as un-related 513 * established packets. 514 */ 515 h = nf_conntrack_find_get(net, zone, &tuple); 516 if (h) { 517 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 518 519 nf_ct_delete(ct, 0, 0); 520 nf_ct_put(ct); 521 } 522 } 523 524 return exp; 525 } 526 527 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 528 static enum ip_conntrack_info 529 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 530 { 531 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 532 533 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 534 return IP_CT_ESTABLISHED_REPLY; 535 /* Once we've had two way comms, always ESTABLISHED. */ 536 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 537 return IP_CT_ESTABLISHED; 538 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 539 return IP_CT_RELATED; 540 return IP_CT_NEW; 541 } 542 543 /* Find an existing connection which this packet belongs to without 544 * re-attributing statistics or modifying the connection state. This allows an 545 * skb->_nfct lost due to an upcall to be recovered during actions execution. 546 * 547 * Must be called with rcu_read_lock. 548 * 549 * On success, populates skb->_nfct and returns the connection. Returns NULL 550 * if there is no existing entry. 551 */ 552 static struct nf_conn * 553 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 554 u8 l3num, struct sk_buff *skb, bool natted) 555 { 556 struct nf_conntrack_tuple tuple; 557 struct nf_conntrack_tuple_hash *h; 558 struct nf_conn *ct; 559 560 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num, 561 net, &tuple)) { 562 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 563 return NULL; 564 } 565 566 /* Must invert the tuple if skb has been transformed by NAT. */ 567 if (natted) { 568 struct nf_conntrack_tuple inverse; 569 570 if (!nf_ct_invert_tuple(&inverse, &tuple)) { 571 pr_debug("ovs_ct_find_existing: Inversion failed!\n"); 572 return NULL; 573 } 574 tuple = inverse; 575 } 576 577 /* look for tuple match */ 578 h = nf_conntrack_find_get(net, zone, &tuple); 579 if (!h) 580 return NULL; /* Not found. */ 581 582 ct = nf_ct_tuplehash_to_ctrack(h); 583 584 /* Inverted packet tuple matches the reverse direction conntrack tuple, 585 * select the other tuplehash to get the right 'ctinfo' bits for this 586 * packet. 587 */ 588 if (natted) 589 h = &ct->tuplehash[!h->tuple.dst.dir]; 590 591 nf_ct_set(skb, ct, ovs_ct_get_info(h)); 592 return ct; 593 } 594 595 static 596 struct nf_conn *ovs_ct_executed(struct net *net, 597 const struct sw_flow_key *key, 598 const struct ovs_conntrack_info *info, 599 struct sk_buff *skb, 600 bool *ct_executed) 601 { 602 struct nf_conn *ct = NULL; 603 604 /* If no ct, check if we have evidence that an existing conntrack entry 605 * might be found for this skb. This happens when we lose a skb->_nfct 606 * due to an upcall, or if the direction is being forced. If the 607 * connection was not confirmed, it is not cached and needs to be run 608 * through conntrack again. 609 */ 610 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) && 611 !(key->ct_state & OVS_CS_F_INVALID) && 612 (key->ct_zone == info->zone.id); 613 614 if (*ct_executed || (!key->ct_state && info->force)) { 615 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb, 616 !!(key->ct_state & 617 OVS_CS_F_NAT_MASK)); 618 } 619 620 return ct; 621 } 622 623 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 624 static bool skb_nfct_cached(struct net *net, 625 const struct sw_flow_key *key, 626 const struct ovs_conntrack_info *info, 627 struct sk_buff *skb) 628 { 629 enum ip_conntrack_info ctinfo; 630 struct nf_conn *ct; 631 bool ct_executed = true; 632 633 ct = nf_ct_get(skb, &ctinfo); 634 if (!ct) 635 ct = ovs_ct_executed(net, key, info, skb, &ct_executed); 636 637 if (ct) 638 nf_ct_get(skb, &ctinfo); 639 else 640 return false; 641 642 if (!net_eq(net, read_pnet(&ct->ct_net))) 643 return false; 644 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 645 return false; 646 if (info->helper) { 647 struct nf_conn_help *help; 648 649 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 650 if (help && rcu_access_pointer(help->helper) != info->helper) 651 return false; 652 } 653 if (info->nf_ct_timeout) { 654 struct nf_conn_timeout *timeout_ext; 655 656 timeout_ext = nf_ct_timeout_find(ct); 657 if (!timeout_ext || info->nf_ct_timeout != 658 rcu_dereference(timeout_ext->timeout)) 659 return false; 660 } 661 /* Force conntrack entry direction to the current packet? */ 662 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 663 /* Delete the conntrack entry if confirmed, else just release 664 * the reference. 665 */ 666 if (nf_ct_is_confirmed(ct)) 667 nf_ct_delete(ct, 0, 0); 668 669 nf_ct_put(ct); 670 nf_ct_set(skb, NULL, 0); 671 return false; 672 } 673 674 return ct_executed; 675 } 676 677 #if IS_ENABLED(CONFIG_NF_NAT) 678 static void ovs_nat_update_key(struct sw_flow_key *key, 679 const struct sk_buff *skb, 680 enum nf_nat_manip_type maniptype) 681 { 682 if (maniptype == NF_NAT_MANIP_SRC) { 683 __be16 src; 684 685 key->ct_state |= OVS_CS_F_SRC_NAT; 686 if (key->eth.type == htons(ETH_P_IP)) 687 key->ipv4.addr.src = ip_hdr(skb)->saddr; 688 else if (key->eth.type == htons(ETH_P_IPV6)) 689 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 690 sizeof(key->ipv6.addr.src)); 691 else 692 return; 693 694 if (key->ip.proto == IPPROTO_UDP) 695 src = udp_hdr(skb)->source; 696 else if (key->ip.proto == IPPROTO_TCP) 697 src = tcp_hdr(skb)->source; 698 else if (key->ip.proto == IPPROTO_SCTP) 699 src = sctp_hdr(skb)->source; 700 else 701 return; 702 703 key->tp.src = src; 704 } else { 705 __be16 dst; 706 707 key->ct_state |= OVS_CS_F_DST_NAT; 708 if (key->eth.type == htons(ETH_P_IP)) 709 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 710 else if (key->eth.type == htons(ETH_P_IPV6)) 711 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 712 sizeof(key->ipv6.addr.dst)); 713 else 714 return; 715 716 if (key->ip.proto == IPPROTO_UDP) 717 dst = udp_hdr(skb)->dest; 718 else if (key->ip.proto == IPPROTO_TCP) 719 dst = tcp_hdr(skb)->dest; 720 else if (key->ip.proto == IPPROTO_SCTP) 721 dst = sctp_hdr(skb)->dest; 722 else 723 return; 724 725 key->tp.dst = dst; 726 } 727 } 728 729 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 730 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 731 const struct ovs_conntrack_info *info, 732 struct sk_buff *skb, struct nf_conn *ct, 733 enum ip_conntrack_info ctinfo) 734 { 735 int err, action = 0; 736 737 if (!(info->nat & OVS_CT_NAT)) 738 return NF_ACCEPT; 739 if (info->nat & OVS_CT_SRC_NAT) 740 action |= BIT(NF_NAT_MANIP_SRC); 741 if (info->nat & OVS_CT_DST_NAT) 742 action |= BIT(NF_NAT_MANIP_DST); 743 744 err = nf_ct_nat(skb, ct, ctinfo, &action, &info->range, info->commit); 745 746 if (action & BIT(NF_NAT_MANIP_SRC)) 747 ovs_nat_update_key(key, skb, NF_NAT_MANIP_SRC); 748 if (action & BIT(NF_NAT_MANIP_DST)) 749 ovs_nat_update_key(key, skb, NF_NAT_MANIP_DST); 750 751 return err; 752 } 753 #else /* !CONFIG_NF_NAT */ 754 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 755 const struct ovs_conntrack_info *info, 756 struct sk_buff *skb, struct nf_conn *ct, 757 enum ip_conntrack_info ctinfo) 758 { 759 return NF_ACCEPT; 760 } 761 #endif 762 763 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 764 * not done already. Update key with new CT state after passing the packet 765 * through conntrack. 766 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be 767 * set to NULL and 0 will be returned. 768 */ 769 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 770 const struct ovs_conntrack_info *info, 771 struct sk_buff *skb) 772 { 773 /* If we are recirculating packets to match on conntrack fields and 774 * committing with a separate conntrack action, then we don't need to 775 * actually run the packet through conntrack twice unless it's for a 776 * different zone. 777 */ 778 bool cached = skb_nfct_cached(net, key, info, skb); 779 enum ip_conntrack_info ctinfo; 780 struct nf_conn *ct; 781 782 if (!cached) { 783 struct nf_hook_state state = { 784 .hook = NF_INET_PRE_ROUTING, 785 .pf = info->family, 786 .net = net, 787 }; 788 struct nf_conn *tmpl = info->ct; 789 int err; 790 791 /* Associate skb with specified zone. */ 792 if (tmpl) { 793 ct = nf_ct_get(skb, &ctinfo); 794 nf_ct_put(ct); 795 nf_conntrack_get(&tmpl->ct_general); 796 nf_ct_set(skb, tmpl, IP_CT_NEW); 797 } 798 799 err = nf_conntrack_in(skb, &state); 800 if (err != NF_ACCEPT) 801 return -ENOENT; 802 803 /* Clear CT state NAT flags to mark that we have not yet done 804 * NAT after the nf_conntrack_in() call. We can actually clear 805 * the whole state, as it will be re-initialized below. 806 */ 807 key->ct_state = 0; 808 809 /* Update the key, but keep the NAT flags. */ 810 ovs_ct_update_key(skb, info, key, true, true); 811 } 812 813 ct = nf_ct_get(skb, &ctinfo); 814 if (ct) { 815 bool add_helper = false; 816 817 /* Packets starting a new connection must be NATted before the 818 * helper, so that the helper knows about the NAT. We enforce 819 * this by delaying both NAT and helper calls for unconfirmed 820 * connections until the committing CT action. For later 821 * packets NAT and Helper may be called in either order. 822 * 823 * NAT will be done only if the CT action has NAT, and only 824 * once per packet (per zone), as guarded by the NAT bits in 825 * the key->ct_state. 826 */ 827 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) && 828 (nf_ct_is_confirmed(ct) || info->commit) && 829 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 830 return -EINVAL; 831 } 832 833 /* Userspace may decide to perform a ct lookup without a helper 834 * specified followed by a (recirculate and) commit with one, 835 * or attach a helper in a later commit. Therefore, for 836 * connections which we will commit, we may need to attach 837 * the helper here. 838 */ 839 if (!nf_ct_is_confirmed(ct) && info->commit && 840 info->helper && !nfct_help(ct)) { 841 int err = __nf_ct_try_assign_helper(ct, info->ct, 842 GFP_ATOMIC); 843 if (err) 844 return err; 845 add_helper = true; 846 847 /* helper installed, add seqadj if NAT is required */ 848 if (info->nat && !nfct_seqadj(ct)) { 849 if (!nfct_seqadj_ext_add(ct)) 850 return -EINVAL; 851 } 852 } 853 854 /* Call the helper only if: 855 * - nf_conntrack_in() was executed above ("!cached") or a 856 * helper was just attached ("add_helper") for a confirmed 857 * connection, or 858 * - When committing an unconfirmed connection. 859 */ 860 if ((nf_ct_is_confirmed(ct) ? !cached || add_helper : 861 info->commit) && 862 nf_ct_helper(skb, ct, ctinfo, info->family) != NF_ACCEPT) { 863 return -EINVAL; 864 } 865 866 if (nf_ct_protonum(ct) == IPPROTO_TCP && 867 nf_ct_is_confirmed(ct) && nf_conntrack_tcp_established(ct)) { 868 /* Be liberal for tcp packets so that out-of-window 869 * packets are not marked invalid. 870 */ 871 nf_ct_set_tcp_be_liberal(ct); 872 } 873 874 nf_conn_act_ct_ext_fill(skb, ct, ctinfo); 875 } 876 877 return 0; 878 } 879 880 /* Lookup connection and read fields into key. */ 881 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 882 const struct ovs_conntrack_info *info, 883 struct sk_buff *skb) 884 { 885 struct nf_conntrack_expect *exp; 886 887 /* If we pass an expected packet through nf_conntrack_in() the 888 * expectation is typically removed, but the packet could still be 889 * lost in upcall processing. To prevent this from happening we 890 * perform an explicit expectation lookup. Expected connections are 891 * always new, and will be passed through conntrack only when they are 892 * committed, as it is OK to remove the expectation at that time. 893 */ 894 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 895 if (exp) { 896 u8 state; 897 898 /* NOTE: New connections are NATted and Helped only when 899 * committed, so we are not calling into NAT here. 900 */ 901 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 902 __ovs_ct_update_key(key, state, &info->zone, exp->master); 903 } else { 904 struct nf_conn *ct; 905 int err; 906 907 err = __ovs_ct_lookup(net, key, info, skb); 908 if (err) 909 return err; 910 911 ct = (struct nf_conn *)skb_nfct(skb); 912 if (ct) 913 nf_ct_deliver_cached_events(ct); 914 } 915 916 return 0; 917 } 918 919 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 920 { 921 size_t i; 922 923 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 924 if (labels->ct_labels_32[i]) 925 return true; 926 927 return false; 928 } 929 930 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 931 static struct hlist_head *ct_limit_hash_bucket( 932 const struct ovs_ct_limit_info *info, u16 zone) 933 { 934 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)]; 935 } 936 937 /* Call with ovs_mutex */ 938 static void ct_limit_set(const struct ovs_ct_limit_info *info, 939 struct ovs_ct_limit *new_ct_limit) 940 { 941 struct ovs_ct_limit *ct_limit; 942 struct hlist_head *head; 943 944 head = ct_limit_hash_bucket(info, new_ct_limit->zone); 945 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 946 if (ct_limit->zone == new_ct_limit->zone) { 947 hlist_replace_rcu(&ct_limit->hlist_node, 948 &new_ct_limit->hlist_node); 949 kfree_rcu(ct_limit, rcu); 950 return; 951 } 952 } 953 954 hlist_add_head_rcu(&new_ct_limit->hlist_node, head); 955 } 956 957 /* Call with ovs_mutex */ 958 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone) 959 { 960 struct ovs_ct_limit *ct_limit; 961 struct hlist_head *head; 962 struct hlist_node *n; 963 964 head = ct_limit_hash_bucket(info, zone); 965 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) { 966 if (ct_limit->zone == zone) { 967 hlist_del_rcu(&ct_limit->hlist_node); 968 kfree_rcu(ct_limit, rcu); 969 return; 970 } 971 } 972 } 973 974 /* Call with RCU read lock */ 975 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone) 976 { 977 struct ovs_ct_limit *ct_limit; 978 struct hlist_head *head; 979 980 head = ct_limit_hash_bucket(info, zone); 981 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 982 if (ct_limit->zone == zone) 983 return ct_limit->limit; 984 } 985 986 return info->default_limit; 987 } 988 989 static int ovs_ct_check_limit(struct net *net, 990 const struct ovs_conntrack_info *info, 991 const struct nf_conntrack_tuple *tuple) 992 { 993 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 994 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 995 u32 per_zone_limit, connections; 996 u32 conncount_key; 997 998 conncount_key = info->zone.id; 999 1000 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id); 1001 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED) 1002 return 0; 1003 1004 connections = nf_conncount_count(net, ct_limit_info->data, 1005 &conncount_key, tuple, &info->zone); 1006 if (connections > per_zone_limit) 1007 return -ENOMEM; 1008 1009 return 0; 1010 } 1011 #endif 1012 1013 /* Lookup connection and confirm if unconfirmed. */ 1014 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 1015 const struct ovs_conntrack_info *info, 1016 struct sk_buff *skb) 1017 { 1018 enum ip_conntrack_info ctinfo; 1019 struct nf_conn *ct; 1020 int err; 1021 1022 err = __ovs_ct_lookup(net, key, info, skb); 1023 if (err) 1024 return err; 1025 1026 /* The connection could be invalid, in which case this is a no-op.*/ 1027 ct = nf_ct_get(skb, &ctinfo); 1028 if (!ct) 1029 return 0; 1030 1031 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 1032 if (static_branch_unlikely(&ovs_ct_limit_enabled)) { 1033 if (!nf_ct_is_confirmed(ct)) { 1034 err = ovs_ct_check_limit(net, info, 1035 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); 1036 if (err) { 1037 net_warn_ratelimited("openvswitch: zone: %u " 1038 "exceeds conntrack limit\n", 1039 info->zone.id); 1040 return err; 1041 } 1042 } 1043 } 1044 #endif 1045 1046 /* Set the conntrack event mask if given. NEW and DELETE events have 1047 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener 1048 * typically would receive many kinds of updates. Setting the event 1049 * mask allows those events to be filtered. The set event mask will 1050 * remain in effect for the lifetime of the connection unless changed 1051 * by a further CT action with both the commit flag and the eventmask 1052 * option. */ 1053 if (info->have_eventmask) { 1054 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct); 1055 1056 if (cache) 1057 cache->ctmask = info->eventmask; 1058 } 1059 1060 /* Apply changes before confirming the connection so that the initial 1061 * conntrack NEW netlink event carries the values given in the CT 1062 * action. 1063 */ 1064 if (info->mark.mask) { 1065 err = ovs_ct_set_mark(ct, key, info->mark.value, 1066 info->mark.mask); 1067 if (err) 1068 return err; 1069 } 1070 if (!nf_ct_is_confirmed(ct)) { 1071 err = ovs_ct_init_labels(ct, key, &info->labels.value, 1072 &info->labels.mask); 1073 if (err) 1074 return err; 1075 1076 nf_conn_act_ct_ext_add(ct); 1077 } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1078 labels_nonzero(&info->labels.mask)) { 1079 err = ovs_ct_set_labels(ct, key, &info->labels.value, 1080 &info->labels.mask); 1081 if (err) 1082 return err; 1083 } 1084 /* This will take care of sending queued events even if the connection 1085 * is already confirmed. 1086 */ 1087 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 1088 return -EINVAL; 1089 1090 return 0; 1091 } 1092 1093 /* Trim the skb to the length specified by the IP/IPv6 header, 1094 * removing any trailing lower-layer padding. This prepares the skb 1095 * for higher-layer processing that assumes skb->len excludes padding 1096 * (such as nf_ip_checksum). The caller needs to pull the skb to the 1097 * network header, and ensure ip_hdr/ipv6_hdr points to valid data. 1098 */ 1099 static int ovs_skb_network_trim(struct sk_buff *skb) 1100 { 1101 unsigned int len; 1102 int err; 1103 1104 switch (skb->protocol) { 1105 case htons(ETH_P_IP): 1106 len = ntohs(ip_hdr(skb)->tot_len); 1107 break; 1108 case htons(ETH_P_IPV6): 1109 len = sizeof(struct ipv6hdr) 1110 + ntohs(ipv6_hdr(skb)->payload_len); 1111 break; 1112 default: 1113 len = skb->len; 1114 } 1115 1116 err = pskb_trim_rcsum(skb, len); 1117 if (err) 1118 kfree_skb(skb); 1119 1120 return err; 1121 } 1122 1123 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 1124 * value if 'skb' is freed. 1125 */ 1126 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 1127 struct sw_flow_key *key, 1128 const struct ovs_conntrack_info *info) 1129 { 1130 int nh_ofs; 1131 int err; 1132 1133 /* The conntrack module expects to be working at L3. */ 1134 nh_ofs = skb_network_offset(skb); 1135 skb_pull_rcsum(skb, nh_ofs); 1136 1137 err = ovs_skb_network_trim(skb); 1138 if (err) 1139 return err; 1140 1141 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 1142 err = handle_fragments(net, key, info->zone.id, skb); 1143 if (err) 1144 return err; 1145 } 1146 1147 if (info->commit) 1148 err = ovs_ct_commit(net, key, info, skb); 1149 else 1150 err = ovs_ct_lookup(net, key, info, skb); 1151 1152 skb_push_rcsum(skb, nh_ofs); 1153 if (err) 1154 kfree_skb(skb); 1155 return err; 1156 } 1157 1158 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key) 1159 { 1160 enum ip_conntrack_info ctinfo; 1161 struct nf_conn *ct; 1162 1163 ct = nf_ct_get(skb, &ctinfo); 1164 1165 nf_ct_put(ct); 1166 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 1167 1168 if (key) 1169 ovs_ct_fill_key(skb, key, false); 1170 1171 return 0; 1172 } 1173 1174 #if IS_ENABLED(CONFIG_NF_NAT) 1175 static int parse_nat(const struct nlattr *attr, 1176 struct ovs_conntrack_info *info, bool log) 1177 { 1178 struct nlattr *a; 1179 int rem; 1180 bool have_ip_max = false; 1181 bool have_proto_max = false; 1182 bool ip_vers = (info->family == NFPROTO_IPV6); 1183 1184 nla_for_each_nested(a, attr, rem) { 1185 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 1186 [OVS_NAT_ATTR_SRC] = {0, 0}, 1187 [OVS_NAT_ATTR_DST] = {0, 0}, 1188 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 1189 sizeof(struct in6_addr)}, 1190 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 1191 sizeof(struct in6_addr)}, 1192 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 1193 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 1194 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 1195 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 1196 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 1197 }; 1198 int type = nla_type(a); 1199 1200 if (type > OVS_NAT_ATTR_MAX) { 1201 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)", 1202 type, OVS_NAT_ATTR_MAX); 1203 return -EINVAL; 1204 } 1205 1206 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 1207 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)", 1208 type, nla_len(a), 1209 ovs_nat_attr_lens[type][ip_vers]); 1210 return -EINVAL; 1211 } 1212 1213 switch (type) { 1214 case OVS_NAT_ATTR_SRC: 1215 case OVS_NAT_ATTR_DST: 1216 if (info->nat) { 1217 OVS_NLERR(log, "Only one type of NAT may be specified"); 1218 return -ERANGE; 1219 } 1220 info->nat |= OVS_CT_NAT; 1221 info->nat |= ((type == OVS_NAT_ATTR_SRC) 1222 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 1223 break; 1224 1225 case OVS_NAT_ATTR_IP_MIN: 1226 nla_memcpy(&info->range.min_addr, a, 1227 sizeof(info->range.min_addr)); 1228 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1229 break; 1230 1231 case OVS_NAT_ATTR_IP_MAX: 1232 have_ip_max = true; 1233 nla_memcpy(&info->range.max_addr, a, 1234 sizeof(info->range.max_addr)); 1235 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1236 break; 1237 1238 case OVS_NAT_ATTR_PROTO_MIN: 1239 info->range.min_proto.all = htons(nla_get_u16(a)); 1240 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1241 break; 1242 1243 case OVS_NAT_ATTR_PROTO_MAX: 1244 have_proto_max = true; 1245 info->range.max_proto.all = htons(nla_get_u16(a)); 1246 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1247 break; 1248 1249 case OVS_NAT_ATTR_PERSISTENT: 1250 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1251 break; 1252 1253 case OVS_NAT_ATTR_PROTO_HASH: 1254 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1255 break; 1256 1257 case OVS_NAT_ATTR_PROTO_RANDOM: 1258 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1259 break; 1260 1261 default: 1262 OVS_NLERR(log, "Unknown nat attribute (%d)", type); 1263 return -EINVAL; 1264 } 1265 } 1266 1267 if (rem > 0) { 1268 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem); 1269 return -EINVAL; 1270 } 1271 if (!info->nat) { 1272 /* Do not allow flags if no type is given. */ 1273 if (info->range.flags) { 1274 OVS_NLERR(log, 1275 "NAT flags may be given only when NAT range (SRC or DST) is also specified." 1276 ); 1277 return -EINVAL; 1278 } 1279 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1280 } else if (!info->commit) { 1281 OVS_NLERR(log, 1282 "NAT attributes may be specified only when CT COMMIT flag is also specified." 1283 ); 1284 return -EINVAL; 1285 } 1286 /* Allow missing IP_MAX. */ 1287 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1288 memcpy(&info->range.max_addr, &info->range.min_addr, 1289 sizeof(info->range.max_addr)); 1290 } 1291 /* Allow missing PROTO_MAX. */ 1292 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1293 !have_proto_max) { 1294 info->range.max_proto.all = info->range.min_proto.all; 1295 } 1296 return 0; 1297 } 1298 #endif 1299 1300 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1301 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1302 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1303 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1304 .maxlen = sizeof(u16) }, 1305 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1306 .maxlen = sizeof(struct md_mark) }, 1307 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1308 .maxlen = sizeof(struct md_labels) }, 1309 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1310 .maxlen = NF_CT_HELPER_NAME_LEN }, 1311 #if IS_ENABLED(CONFIG_NF_NAT) 1312 /* NAT length is checked when parsing the nested attributes. */ 1313 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1314 #endif 1315 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32), 1316 .maxlen = sizeof(u32) }, 1317 [OVS_CT_ATTR_TIMEOUT] = { .minlen = 1, 1318 .maxlen = CTNL_TIMEOUT_NAME_MAX }, 1319 }; 1320 1321 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1322 const char **helper, bool log) 1323 { 1324 struct nlattr *a; 1325 int rem; 1326 1327 nla_for_each_nested(a, attr, rem) { 1328 int type = nla_type(a); 1329 int maxlen; 1330 int minlen; 1331 1332 if (type > OVS_CT_ATTR_MAX) { 1333 OVS_NLERR(log, 1334 "Unknown conntrack attr (type=%d, max=%d)", 1335 type, OVS_CT_ATTR_MAX); 1336 return -EINVAL; 1337 } 1338 1339 maxlen = ovs_ct_attr_lens[type].maxlen; 1340 minlen = ovs_ct_attr_lens[type].minlen; 1341 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1342 OVS_NLERR(log, 1343 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1344 type, nla_len(a), maxlen); 1345 return -EINVAL; 1346 } 1347 1348 switch (type) { 1349 case OVS_CT_ATTR_FORCE_COMMIT: 1350 info->force = true; 1351 fallthrough; 1352 case OVS_CT_ATTR_COMMIT: 1353 info->commit = true; 1354 break; 1355 #ifdef CONFIG_NF_CONNTRACK_ZONES 1356 case OVS_CT_ATTR_ZONE: 1357 info->zone.id = nla_get_u16(a); 1358 break; 1359 #endif 1360 #ifdef CONFIG_NF_CONNTRACK_MARK 1361 case OVS_CT_ATTR_MARK: { 1362 struct md_mark *mark = nla_data(a); 1363 1364 if (!mark->mask) { 1365 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1366 return -EINVAL; 1367 } 1368 info->mark = *mark; 1369 break; 1370 } 1371 #endif 1372 #ifdef CONFIG_NF_CONNTRACK_LABELS 1373 case OVS_CT_ATTR_LABELS: { 1374 struct md_labels *labels = nla_data(a); 1375 1376 if (!labels_nonzero(&labels->mask)) { 1377 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1378 return -EINVAL; 1379 } 1380 info->labels = *labels; 1381 break; 1382 } 1383 #endif 1384 case OVS_CT_ATTR_HELPER: 1385 *helper = nla_data(a); 1386 if (!memchr(*helper, '\0', nla_len(a))) { 1387 OVS_NLERR(log, "Invalid conntrack helper"); 1388 return -EINVAL; 1389 } 1390 break; 1391 #if IS_ENABLED(CONFIG_NF_NAT) 1392 case OVS_CT_ATTR_NAT: { 1393 int err = parse_nat(a, info, log); 1394 1395 if (err) 1396 return err; 1397 break; 1398 } 1399 #endif 1400 case OVS_CT_ATTR_EVENTMASK: 1401 info->have_eventmask = true; 1402 info->eventmask = nla_get_u32(a); 1403 break; 1404 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT 1405 case OVS_CT_ATTR_TIMEOUT: 1406 memcpy(info->timeout, nla_data(a), nla_len(a)); 1407 if (!memchr(info->timeout, '\0', nla_len(a))) { 1408 OVS_NLERR(log, "Invalid conntrack timeout"); 1409 return -EINVAL; 1410 } 1411 break; 1412 #endif 1413 1414 default: 1415 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1416 type); 1417 return -EINVAL; 1418 } 1419 } 1420 1421 #ifdef CONFIG_NF_CONNTRACK_MARK 1422 if (!info->commit && info->mark.mask) { 1423 OVS_NLERR(log, 1424 "Setting conntrack mark requires 'commit' flag."); 1425 return -EINVAL; 1426 } 1427 #endif 1428 #ifdef CONFIG_NF_CONNTRACK_LABELS 1429 if (!info->commit && labels_nonzero(&info->labels.mask)) { 1430 OVS_NLERR(log, 1431 "Setting conntrack labels requires 'commit' flag."); 1432 return -EINVAL; 1433 } 1434 #endif 1435 if (rem > 0) { 1436 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1437 return -EINVAL; 1438 } 1439 1440 return 0; 1441 } 1442 1443 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1444 { 1445 if (attr == OVS_KEY_ATTR_CT_STATE) 1446 return true; 1447 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1448 attr == OVS_KEY_ATTR_CT_ZONE) 1449 return true; 1450 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1451 attr == OVS_KEY_ATTR_CT_MARK) 1452 return true; 1453 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1454 attr == OVS_KEY_ATTR_CT_LABELS) { 1455 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1456 1457 return ovs_net->xt_label; 1458 } 1459 1460 return false; 1461 } 1462 1463 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1464 const struct sw_flow_key *key, 1465 struct sw_flow_actions **sfa, bool log) 1466 { 1467 struct ovs_conntrack_info ct_info; 1468 const char *helper = NULL; 1469 u16 family; 1470 int err; 1471 1472 family = key_to_nfproto(key); 1473 if (family == NFPROTO_UNSPEC) { 1474 OVS_NLERR(log, "ct family unspecified"); 1475 return -EINVAL; 1476 } 1477 1478 memset(&ct_info, 0, sizeof(ct_info)); 1479 ct_info.family = family; 1480 1481 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1482 NF_CT_DEFAULT_ZONE_DIR, 0); 1483 1484 err = parse_ct(attr, &ct_info, &helper, log); 1485 if (err) 1486 return err; 1487 1488 /* Set up template for tracking connections in specific zones. */ 1489 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1490 if (!ct_info.ct) { 1491 OVS_NLERR(log, "Failed to allocate conntrack template"); 1492 return -ENOMEM; 1493 } 1494 1495 if (ct_info.timeout[0]) { 1496 if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto, 1497 ct_info.timeout)) 1498 pr_info_ratelimited("Failed to associated timeout " 1499 "policy `%s'\n", ct_info.timeout); 1500 else 1501 ct_info.nf_ct_timeout = rcu_dereference( 1502 nf_ct_timeout_find(ct_info.ct)->timeout); 1503 1504 } 1505 1506 if (helper) { 1507 err = nf_ct_add_helper(ct_info.ct, helper, ct_info.family, 1508 key->ip.proto, ct_info.nat, &ct_info.helper); 1509 if (err) { 1510 OVS_NLERR(log, "Failed to add %s helper %d", helper, err); 1511 goto err_free_ct; 1512 } 1513 } 1514 1515 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1516 sizeof(ct_info), log); 1517 if (err) 1518 goto err_free_ct; 1519 1520 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1521 return 0; 1522 err_free_ct: 1523 __ovs_ct_free_action(&ct_info); 1524 return err; 1525 } 1526 1527 #if IS_ENABLED(CONFIG_NF_NAT) 1528 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1529 struct sk_buff *skb) 1530 { 1531 struct nlattr *start; 1532 1533 start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT); 1534 if (!start) 1535 return false; 1536 1537 if (info->nat & OVS_CT_SRC_NAT) { 1538 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1539 return false; 1540 } else if (info->nat & OVS_CT_DST_NAT) { 1541 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1542 return false; 1543 } else { 1544 goto out; 1545 } 1546 1547 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1548 if (IS_ENABLED(CONFIG_NF_NAT) && 1549 info->family == NFPROTO_IPV4) { 1550 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1551 info->range.min_addr.ip) || 1552 (info->range.max_addr.ip 1553 != info->range.min_addr.ip && 1554 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1555 info->range.max_addr.ip)))) 1556 return false; 1557 } else if (IS_ENABLED(CONFIG_IPV6) && 1558 info->family == NFPROTO_IPV6) { 1559 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1560 &info->range.min_addr.in6) || 1561 (memcmp(&info->range.max_addr.in6, 1562 &info->range.min_addr.in6, 1563 sizeof(info->range.max_addr.in6)) && 1564 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1565 &info->range.max_addr.in6)))) 1566 return false; 1567 } else { 1568 return false; 1569 } 1570 } 1571 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1572 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1573 ntohs(info->range.min_proto.all)) || 1574 (info->range.max_proto.all != info->range.min_proto.all && 1575 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1576 ntohs(info->range.max_proto.all))))) 1577 return false; 1578 1579 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1580 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1581 return false; 1582 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1583 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1584 return false; 1585 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1586 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1587 return false; 1588 out: 1589 nla_nest_end(skb, start); 1590 1591 return true; 1592 } 1593 #endif 1594 1595 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1596 struct sk_buff *skb) 1597 { 1598 struct nlattr *start; 1599 1600 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT); 1601 if (!start) 1602 return -EMSGSIZE; 1603 1604 if (ct_info->commit && nla_put_flag(skb, ct_info->force 1605 ? OVS_CT_ATTR_FORCE_COMMIT 1606 : OVS_CT_ATTR_COMMIT)) 1607 return -EMSGSIZE; 1608 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1609 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1610 return -EMSGSIZE; 1611 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1612 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1613 &ct_info->mark)) 1614 return -EMSGSIZE; 1615 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1616 labels_nonzero(&ct_info->labels.mask) && 1617 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1618 &ct_info->labels)) 1619 return -EMSGSIZE; 1620 if (ct_info->helper) { 1621 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1622 ct_info->helper->name)) 1623 return -EMSGSIZE; 1624 } 1625 if (ct_info->have_eventmask && 1626 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask)) 1627 return -EMSGSIZE; 1628 if (ct_info->timeout[0]) { 1629 if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout)) 1630 return -EMSGSIZE; 1631 } 1632 1633 #if IS_ENABLED(CONFIG_NF_NAT) 1634 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1635 return -EMSGSIZE; 1636 #endif 1637 nla_nest_end(skb, start); 1638 1639 return 0; 1640 } 1641 1642 void ovs_ct_free_action(const struct nlattr *a) 1643 { 1644 struct ovs_conntrack_info *ct_info = nla_data(a); 1645 1646 __ovs_ct_free_action(ct_info); 1647 } 1648 1649 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1650 { 1651 if (ct_info->helper) { 1652 #if IS_ENABLED(CONFIG_NF_NAT) 1653 if (ct_info->nat) 1654 nf_nat_helper_put(ct_info->helper); 1655 #endif 1656 nf_conntrack_helper_put(ct_info->helper); 1657 } 1658 if (ct_info->ct) { 1659 if (ct_info->timeout[0]) 1660 nf_ct_destroy_timeout(ct_info->ct); 1661 nf_ct_tmpl_free(ct_info->ct); 1662 } 1663 } 1664 1665 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 1666 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net) 1667 { 1668 int i, err; 1669 1670 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info), 1671 GFP_KERNEL); 1672 if (!ovs_net->ct_limit_info) 1673 return -ENOMEM; 1674 1675 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT; 1676 ovs_net->ct_limit_info->limits = 1677 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head), 1678 GFP_KERNEL); 1679 if (!ovs_net->ct_limit_info->limits) { 1680 kfree(ovs_net->ct_limit_info); 1681 return -ENOMEM; 1682 } 1683 1684 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++) 1685 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]); 1686 1687 ovs_net->ct_limit_info->data = 1688 nf_conncount_init(net, NFPROTO_INET, sizeof(u32)); 1689 1690 if (IS_ERR(ovs_net->ct_limit_info->data)) { 1691 err = PTR_ERR(ovs_net->ct_limit_info->data); 1692 kfree(ovs_net->ct_limit_info->limits); 1693 kfree(ovs_net->ct_limit_info); 1694 pr_err("openvswitch: failed to init nf_conncount %d\n", err); 1695 return err; 1696 } 1697 return 0; 1698 } 1699 1700 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net) 1701 { 1702 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info; 1703 int i; 1704 1705 nf_conncount_destroy(net, NFPROTO_INET, info->data); 1706 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { 1707 struct hlist_head *head = &info->limits[i]; 1708 struct ovs_ct_limit *ct_limit; 1709 1710 hlist_for_each_entry_rcu(ct_limit, head, hlist_node, 1711 lockdep_ovsl_is_held()) 1712 kfree_rcu(ct_limit, rcu); 1713 } 1714 kfree(info->limits); 1715 kfree(info); 1716 } 1717 1718 static struct sk_buff * 1719 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd, 1720 struct ovs_header **ovs_reply_header) 1721 { 1722 struct ovs_header *ovs_header = info->userhdr; 1723 struct sk_buff *skb; 1724 1725 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); 1726 if (!skb) 1727 return ERR_PTR(-ENOMEM); 1728 1729 *ovs_reply_header = genlmsg_put(skb, info->snd_portid, 1730 info->snd_seq, 1731 &dp_ct_limit_genl_family, 0, cmd); 1732 1733 if (!*ovs_reply_header) { 1734 nlmsg_free(skb); 1735 return ERR_PTR(-EMSGSIZE); 1736 } 1737 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex; 1738 1739 return skb; 1740 } 1741 1742 static bool check_zone_id(int zone_id, u16 *pzone) 1743 { 1744 if (zone_id >= 0 && zone_id <= 65535) { 1745 *pzone = (u16)zone_id; 1746 return true; 1747 } 1748 return false; 1749 } 1750 1751 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit, 1752 struct ovs_ct_limit_info *info) 1753 { 1754 struct ovs_zone_limit *zone_limit; 1755 int rem; 1756 u16 zone; 1757 1758 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1759 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1760 1761 while (rem >= sizeof(*zone_limit)) { 1762 if (unlikely(zone_limit->zone_id == 1763 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1764 ovs_lock(); 1765 info->default_limit = zone_limit->limit; 1766 ovs_unlock(); 1767 } else if (unlikely(!check_zone_id( 1768 zone_limit->zone_id, &zone))) { 1769 OVS_NLERR(true, "zone id is out of range"); 1770 } else { 1771 struct ovs_ct_limit *ct_limit; 1772 1773 ct_limit = kmalloc(sizeof(*ct_limit), 1774 GFP_KERNEL_ACCOUNT); 1775 if (!ct_limit) 1776 return -ENOMEM; 1777 1778 ct_limit->zone = zone; 1779 ct_limit->limit = zone_limit->limit; 1780 1781 ovs_lock(); 1782 ct_limit_set(info, ct_limit); 1783 ovs_unlock(); 1784 } 1785 rem -= NLA_ALIGN(sizeof(*zone_limit)); 1786 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 1787 NLA_ALIGN(sizeof(*zone_limit))); 1788 } 1789 1790 if (rem) 1791 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem); 1792 1793 return 0; 1794 } 1795 1796 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit, 1797 struct ovs_ct_limit_info *info) 1798 { 1799 struct ovs_zone_limit *zone_limit; 1800 int rem; 1801 u16 zone; 1802 1803 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1804 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1805 1806 while (rem >= sizeof(*zone_limit)) { 1807 if (unlikely(zone_limit->zone_id == 1808 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1809 ovs_lock(); 1810 info->default_limit = OVS_CT_LIMIT_DEFAULT; 1811 ovs_unlock(); 1812 } else if (unlikely(!check_zone_id( 1813 zone_limit->zone_id, &zone))) { 1814 OVS_NLERR(true, "zone id is out of range"); 1815 } else { 1816 ovs_lock(); 1817 ct_limit_del(info, zone); 1818 ovs_unlock(); 1819 } 1820 rem -= NLA_ALIGN(sizeof(*zone_limit)); 1821 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 1822 NLA_ALIGN(sizeof(*zone_limit))); 1823 } 1824 1825 if (rem) 1826 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem); 1827 1828 return 0; 1829 } 1830 1831 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info, 1832 struct sk_buff *reply) 1833 { 1834 struct ovs_zone_limit zone_limit = { 1835 .zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE, 1836 .limit = info->default_limit, 1837 }; 1838 1839 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit); 1840 } 1841 1842 static int __ovs_ct_limit_get_zone_limit(struct net *net, 1843 struct nf_conncount_data *data, 1844 u16 zone_id, u32 limit, 1845 struct sk_buff *reply) 1846 { 1847 struct nf_conntrack_zone ct_zone; 1848 struct ovs_zone_limit zone_limit; 1849 u32 conncount_key = zone_id; 1850 1851 zone_limit.zone_id = zone_id; 1852 zone_limit.limit = limit; 1853 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0); 1854 1855 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL, 1856 &ct_zone); 1857 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit); 1858 } 1859 1860 static int ovs_ct_limit_get_zone_limit(struct net *net, 1861 struct nlattr *nla_zone_limit, 1862 struct ovs_ct_limit_info *info, 1863 struct sk_buff *reply) 1864 { 1865 struct ovs_zone_limit *zone_limit; 1866 int rem, err; 1867 u32 limit; 1868 u16 zone; 1869 1870 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1871 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1872 1873 while (rem >= sizeof(*zone_limit)) { 1874 if (unlikely(zone_limit->zone_id == 1875 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1876 err = ovs_ct_limit_get_default_limit(info, reply); 1877 if (err) 1878 return err; 1879 } else if (unlikely(!check_zone_id(zone_limit->zone_id, 1880 &zone))) { 1881 OVS_NLERR(true, "zone id is out of range"); 1882 } else { 1883 rcu_read_lock(); 1884 limit = ct_limit_get(info, zone); 1885 rcu_read_unlock(); 1886 1887 err = __ovs_ct_limit_get_zone_limit( 1888 net, info->data, zone, limit, reply); 1889 if (err) 1890 return err; 1891 } 1892 rem -= NLA_ALIGN(sizeof(*zone_limit)); 1893 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 1894 NLA_ALIGN(sizeof(*zone_limit))); 1895 } 1896 1897 if (rem) 1898 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem); 1899 1900 return 0; 1901 } 1902 1903 static int ovs_ct_limit_get_all_zone_limit(struct net *net, 1904 struct ovs_ct_limit_info *info, 1905 struct sk_buff *reply) 1906 { 1907 struct ovs_ct_limit *ct_limit; 1908 struct hlist_head *head; 1909 int i, err = 0; 1910 1911 err = ovs_ct_limit_get_default_limit(info, reply); 1912 if (err) 1913 return err; 1914 1915 rcu_read_lock(); 1916 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { 1917 head = &info->limits[i]; 1918 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 1919 err = __ovs_ct_limit_get_zone_limit(net, info->data, 1920 ct_limit->zone, ct_limit->limit, reply); 1921 if (err) 1922 goto exit_err; 1923 } 1924 } 1925 1926 exit_err: 1927 rcu_read_unlock(); 1928 return err; 1929 } 1930 1931 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info) 1932 { 1933 struct nlattr **a = info->attrs; 1934 struct sk_buff *reply; 1935 struct ovs_header *ovs_reply_header; 1936 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); 1937 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 1938 int err; 1939 1940 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET, 1941 &ovs_reply_header); 1942 if (IS_ERR(reply)) 1943 return PTR_ERR(reply); 1944 1945 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 1946 err = -EINVAL; 1947 goto exit_err; 1948 } 1949 1950 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], 1951 ct_limit_info); 1952 if (err) 1953 goto exit_err; 1954 1955 static_branch_enable(&ovs_ct_limit_enabled); 1956 1957 genlmsg_end(reply, ovs_reply_header); 1958 return genlmsg_reply(reply, info); 1959 1960 exit_err: 1961 nlmsg_free(reply); 1962 return err; 1963 } 1964 1965 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info) 1966 { 1967 struct nlattr **a = info->attrs; 1968 struct sk_buff *reply; 1969 struct ovs_header *ovs_reply_header; 1970 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); 1971 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 1972 int err; 1973 1974 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL, 1975 &ovs_reply_header); 1976 if (IS_ERR(reply)) 1977 return PTR_ERR(reply); 1978 1979 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 1980 err = -EINVAL; 1981 goto exit_err; 1982 } 1983 1984 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], 1985 ct_limit_info); 1986 if (err) 1987 goto exit_err; 1988 1989 genlmsg_end(reply, ovs_reply_header); 1990 return genlmsg_reply(reply, info); 1991 1992 exit_err: 1993 nlmsg_free(reply); 1994 return err; 1995 } 1996 1997 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info) 1998 { 1999 struct nlattr **a = info->attrs; 2000 struct nlattr *nla_reply; 2001 struct sk_buff *reply; 2002 struct ovs_header *ovs_reply_header; 2003 struct net *net = sock_net(skb->sk); 2004 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 2005 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 2006 int err; 2007 2008 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET, 2009 &ovs_reply_header); 2010 if (IS_ERR(reply)) 2011 return PTR_ERR(reply); 2012 2013 nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT); 2014 if (!nla_reply) { 2015 err = -EMSGSIZE; 2016 goto exit_err; 2017 } 2018 2019 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 2020 err = ovs_ct_limit_get_zone_limit( 2021 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info, 2022 reply); 2023 if (err) 2024 goto exit_err; 2025 } else { 2026 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info, 2027 reply); 2028 if (err) 2029 goto exit_err; 2030 } 2031 2032 nla_nest_end(reply, nla_reply); 2033 genlmsg_end(reply, ovs_reply_header); 2034 return genlmsg_reply(reply, info); 2035 2036 exit_err: 2037 nlmsg_free(reply); 2038 return err; 2039 } 2040 2041 static const struct genl_small_ops ct_limit_genl_ops[] = { 2042 { .cmd = OVS_CT_LIMIT_CMD_SET, 2043 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 2044 .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN 2045 * privilege. 2046 */ 2047 .doit = ovs_ct_limit_cmd_set, 2048 }, 2049 { .cmd = OVS_CT_LIMIT_CMD_DEL, 2050 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 2051 .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN 2052 * privilege. 2053 */ 2054 .doit = ovs_ct_limit_cmd_del, 2055 }, 2056 { .cmd = OVS_CT_LIMIT_CMD_GET, 2057 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 2058 .flags = 0, /* OK for unprivileged users. */ 2059 .doit = ovs_ct_limit_cmd_get, 2060 }, 2061 }; 2062 2063 static const struct genl_multicast_group ovs_ct_limit_multicast_group = { 2064 .name = OVS_CT_LIMIT_MCGROUP, 2065 }; 2066 2067 struct genl_family dp_ct_limit_genl_family __ro_after_init = { 2068 .hdrsize = sizeof(struct ovs_header), 2069 .name = OVS_CT_LIMIT_FAMILY, 2070 .version = OVS_CT_LIMIT_VERSION, 2071 .maxattr = OVS_CT_LIMIT_ATTR_MAX, 2072 .policy = ct_limit_policy, 2073 .netnsok = true, 2074 .parallel_ops = true, 2075 .small_ops = ct_limit_genl_ops, 2076 .n_small_ops = ARRAY_SIZE(ct_limit_genl_ops), 2077 .resv_start_op = OVS_CT_LIMIT_CMD_GET + 1, 2078 .mcgrps = &ovs_ct_limit_multicast_group, 2079 .n_mcgrps = 1, 2080 .module = THIS_MODULE, 2081 }; 2082 #endif 2083 2084 int ovs_ct_init(struct net *net) 2085 { 2086 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 2087 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 2088 2089 if (nf_connlabels_get(net, n_bits - 1)) { 2090 ovs_net->xt_label = false; 2091 OVS_NLERR(true, "Failed to set connlabel length"); 2092 } else { 2093 ovs_net->xt_label = true; 2094 } 2095 2096 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 2097 return ovs_ct_limit_init(net, ovs_net); 2098 #else 2099 return 0; 2100 #endif 2101 } 2102 2103 void ovs_ct_exit(struct net *net) 2104 { 2105 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 2106 2107 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 2108 ovs_ct_limit_exit(net, ovs_net); 2109 #endif 2110 2111 if (ovs_net->xt_label) 2112 nf_connlabels_put(net); 2113 } 2114