1 /* 2 * Copyright (c) 2015 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/openvswitch.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/sctp.h> 19 #include <net/ip.h> 20 #include <net/netfilter/nf_conntrack_core.h> 21 #include <net/netfilter/nf_conntrack_helper.h> 22 #include <net/netfilter/nf_conntrack_labels.h> 23 #include <net/netfilter/nf_conntrack_seqadj.h> 24 #include <net/netfilter/nf_conntrack_zones.h> 25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 26 27 #ifdef CONFIG_NF_NAT_NEEDED 28 #include <linux/netfilter/nf_nat.h> 29 #include <net/netfilter/nf_nat_core.h> 30 #include <net/netfilter/nf_nat_l3proto.h> 31 #endif 32 33 #include "datapath.h" 34 #include "conntrack.h" 35 #include "flow.h" 36 #include "flow_netlink.h" 37 38 struct ovs_ct_len_tbl { 39 int maxlen; 40 int minlen; 41 }; 42 43 /* Metadata mark for masked write to conntrack mark */ 44 struct md_mark { 45 u32 value; 46 u32 mask; 47 }; 48 49 /* Metadata label for masked write to conntrack label. */ 50 struct md_labels { 51 struct ovs_key_ct_labels value; 52 struct ovs_key_ct_labels mask; 53 }; 54 55 enum ovs_ct_nat { 56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 59 }; 60 61 /* Conntrack action context for execution. */ 62 struct ovs_conntrack_info { 63 struct nf_conntrack_helper *helper; 64 struct nf_conntrack_zone zone; 65 struct nf_conn *ct; 66 u8 commit : 1; 67 u8 nat : 3; /* enum ovs_ct_nat */ 68 u8 force : 1; 69 u8 have_eventmask : 1; 70 u16 family; 71 u32 eventmask; /* Mask of 1 << IPCT_*. */ 72 struct md_mark mark; 73 struct md_labels labels; 74 #ifdef CONFIG_NF_NAT_NEEDED 75 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */ 76 #endif 77 }; 78 79 static bool labels_nonzero(const struct ovs_key_ct_labels *labels); 80 81 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 82 83 static u16 key_to_nfproto(const struct sw_flow_key *key) 84 { 85 switch (ntohs(key->eth.type)) { 86 case ETH_P_IP: 87 return NFPROTO_IPV4; 88 case ETH_P_IPV6: 89 return NFPROTO_IPV6; 90 default: 91 return NFPROTO_UNSPEC; 92 } 93 } 94 95 /* Map SKB connection state into the values used by flow definition. */ 96 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 97 { 98 u8 ct_state = OVS_CS_F_TRACKED; 99 100 switch (ctinfo) { 101 case IP_CT_ESTABLISHED_REPLY: 102 case IP_CT_RELATED_REPLY: 103 ct_state |= OVS_CS_F_REPLY_DIR; 104 break; 105 default: 106 break; 107 } 108 109 switch (ctinfo) { 110 case IP_CT_ESTABLISHED: 111 case IP_CT_ESTABLISHED_REPLY: 112 ct_state |= OVS_CS_F_ESTABLISHED; 113 break; 114 case IP_CT_RELATED: 115 case IP_CT_RELATED_REPLY: 116 ct_state |= OVS_CS_F_RELATED; 117 break; 118 case IP_CT_NEW: 119 ct_state |= OVS_CS_F_NEW; 120 break; 121 default: 122 break; 123 } 124 125 return ct_state; 126 } 127 128 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 129 { 130 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 131 return ct ? ct->mark : 0; 132 #else 133 return 0; 134 #endif 135 } 136 137 /* Guard against conntrack labels max size shrinking below 128 bits. */ 138 #if NF_CT_LABELS_MAX_SIZE < 16 139 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes 140 #endif 141 142 static void ovs_ct_get_labels(const struct nf_conn *ct, 143 struct ovs_key_ct_labels *labels) 144 { 145 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 146 147 if (cl) 148 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN); 149 else 150 memset(labels, 0, OVS_CT_LABELS_LEN); 151 } 152 153 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key, 154 const struct nf_conntrack_tuple *orig, 155 u8 icmp_proto) 156 { 157 key->ct_orig_proto = orig->dst.protonum; 158 if (orig->dst.protonum == icmp_proto) { 159 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type); 160 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code); 161 } else { 162 key->ct.orig_tp.src = orig->src.u.all; 163 key->ct.orig_tp.dst = orig->dst.u.all; 164 } 165 } 166 167 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 168 const struct nf_conntrack_zone *zone, 169 const struct nf_conn *ct) 170 { 171 key->ct_state = state; 172 key->ct_zone = zone->id; 173 key->ct.mark = ovs_ct_get_mark(ct); 174 ovs_ct_get_labels(ct, &key->ct.labels); 175 176 if (ct) { 177 const struct nf_conntrack_tuple *orig; 178 179 /* Use the master if we have one. */ 180 if (ct->master) 181 ct = ct->master; 182 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 183 184 /* IP version must match with the master connection. */ 185 if (key->eth.type == htons(ETH_P_IP) && 186 nf_ct_l3num(ct) == NFPROTO_IPV4) { 187 key->ipv4.ct_orig.src = orig->src.u3.ip; 188 key->ipv4.ct_orig.dst = orig->dst.u3.ip; 189 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP); 190 return; 191 } else if (key->eth.type == htons(ETH_P_IPV6) && 192 !sw_flow_key_is_nd(key) && 193 nf_ct_l3num(ct) == NFPROTO_IPV6) { 194 key->ipv6.ct_orig.src = orig->src.u3.in6; 195 key->ipv6.ct_orig.dst = orig->dst.u3.in6; 196 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP); 197 return; 198 } 199 } 200 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack 201 * original direction key fields. 202 */ 203 key->ct_orig_proto = 0; 204 } 205 206 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has 207 * previously sent the packet to conntrack via the ct action. If 208 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 209 * initialized from the connection status. 210 */ 211 static void ovs_ct_update_key(const struct sk_buff *skb, 212 const struct ovs_conntrack_info *info, 213 struct sw_flow_key *key, bool post_ct, 214 bool keep_nat_flags) 215 { 216 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 217 enum ip_conntrack_info ctinfo; 218 struct nf_conn *ct; 219 u8 state = 0; 220 221 ct = nf_ct_get(skb, &ctinfo); 222 if (ct) { 223 state = ovs_ct_get_state(ctinfo); 224 /* All unconfirmed entries are NEW connections. */ 225 if (!nf_ct_is_confirmed(ct)) 226 state |= OVS_CS_F_NEW; 227 /* OVS persists the related flag for the duration of the 228 * connection. 229 */ 230 if (ct->master) 231 state |= OVS_CS_F_RELATED; 232 if (keep_nat_flags) { 233 state |= key->ct_state & OVS_CS_F_NAT_MASK; 234 } else { 235 if (ct->status & IPS_SRC_NAT) 236 state |= OVS_CS_F_SRC_NAT; 237 if (ct->status & IPS_DST_NAT) 238 state |= OVS_CS_F_DST_NAT; 239 } 240 zone = nf_ct_zone(ct); 241 } else if (post_ct) { 242 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 243 if (info) 244 zone = &info->zone; 245 } 246 __ovs_ct_update_key(key, state, zone, ct); 247 } 248 249 /* This is called to initialize CT key fields possibly coming in from the local 250 * stack. 251 */ 252 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 253 { 254 ovs_ct_update_key(skb, NULL, key, false, false); 255 } 256 257 #define IN6_ADDR_INITIALIZER(ADDR) \ 258 { (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \ 259 (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] } 260 261 int ovs_ct_put_key(const struct sw_flow_key *swkey, 262 const struct sw_flow_key *output, struct sk_buff *skb) 263 { 264 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state)) 265 return -EMSGSIZE; 266 267 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 268 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone)) 269 return -EMSGSIZE; 270 271 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 272 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark)) 273 return -EMSGSIZE; 274 275 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 276 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels), 277 &output->ct.labels)) 278 return -EMSGSIZE; 279 280 if (swkey->ct_orig_proto) { 281 if (swkey->eth.type == htons(ETH_P_IP)) { 282 struct ovs_key_ct_tuple_ipv4 orig = { 283 output->ipv4.ct_orig.src, 284 output->ipv4.ct_orig.dst, 285 output->ct.orig_tp.src, 286 output->ct.orig_tp.dst, 287 output->ct_orig_proto, 288 }; 289 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4, 290 sizeof(orig), &orig)) 291 return -EMSGSIZE; 292 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 293 struct ovs_key_ct_tuple_ipv6 orig = { 294 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src), 295 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst), 296 output->ct.orig_tp.src, 297 output->ct.orig_tp.dst, 298 output->ct_orig_proto, 299 }; 300 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6, 301 sizeof(orig), &orig)) 302 return -EMSGSIZE; 303 } 304 } 305 306 return 0; 307 } 308 309 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key, 310 u32 ct_mark, u32 mask) 311 { 312 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 313 u32 new_mark; 314 315 new_mark = ct_mark | (ct->mark & ~(mask)); 316 if (ct->mark != new_mark) { 317 ct->mark = new_mark; 318 if (nf_ct_is_confirmed(ct)) 319 nf_conntrack_event_cache(IPCT_MARK, ct); 320 key->ct.mark = new_mark; 321 } 322 323 return 0; 324 #else 325 return -ENOTSUPP; 326 #endif 327 } 328 329 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct) 330 { 331 struct nf_conn_labels *cl; 332 333 cl = nf_ct_labels_find(ct); 334 if (!cl) { 335 nf_ct_labels_ext_add(ct); 336 cl = nf_ct_labels_find(ct); 337 } 338 339 return cl; 340 } 341 342 /* Initialize labels for a new, yet to be committed conntrack entry. Note that 343 * since the new connection is not yet confirmed, and thus no-one else has 344 * access to it's labels, we simply write them over. 345 */ 346 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key, 347 const struct ovs_key_ct_labels *labels, 348 const struct ovs_key_ct_labels *mask) 349 { 350 struct nf_conn_labels *cl, *master_cl; 351 bool have_mask = labels_nonzero(mask); 352 353 /* Inherit master's labels to the related connection? */ 354 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL; 355 356 if (!master_cl && !have_mask) 357 return 0; /* Nothing to do. */ 358 359 cl = ovs_ct_get_conn_labels(ct); 360 if (!cl) 361 return -ENOSPC; 362 363 /* Inherit the master's labels, if any. */ 364 if (master_cl) 365 *cl = *master_cl; 366 367 if (have_mask) { 368 u32 *dst = (u32 *)cl->bits; 369 int i; 370 371 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 372 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) | 373 (labels->ct_labels_32[i] 374 & mask->ct_labels_32[i]); 375 } 376 377 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the 378 * IPCT_LABEL bit is set in the event cache. 379 */ 380 nf_conntrack_event_cache(IPCT_LABEL, ct); 381 382 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 383 384 return 0; 385 } 386 387 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key, 388 const struct ovs_key_ct_labels *labels, 389 const struct ovs_key_ct_labels *mask) 390 { 391 struct nf_conn_labels *cl; 392 int err; 393 394 cl = ovs_ct_get_conn_labels(ct); 395 if (!cl) 396 return -ENOSPC; 397 398 err = nf_connlabels_replace(ct, labels->ct_labels_32, 399 mask->ct_labels_32, 400 OVS_CT_LABELS_LEN_32); 401 if (err) 402 return err; 403 404 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 405 406 return 0; 407 } 408 409 /* 'skb' should already be pulled to nh_ofs. */ 410 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 411 { 412 const struct nf_conntrack_helper *helper; 413 const struct nf_conn_help *help; 414 enum ip_conntrack_info ctinfo; 415 unsigned int protoff; 416 struct nf_conn *ct; 417 int err; 418 419 ct = nf_ct_get(skb, &ctinfo); 420 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 421 return NF_ACCEPT; 422 423 help = nfct_help(ct); 424 if (!help) 425 return NF_ACCEPT; 426 427 helper = rcu_dereference(help->helper); 428 if (!helper) 429 return NF_ACCEPT; 430 431 switch (proto) { 432 case NFPROTO_IPV4: 433 protoff = ip_hdrlen(skb); 434 break; 435 case NFPROTO_IPV6: { 436 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 437 __be16 frag_off; 438 int ofs; 439 440 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 441 &frag_off); 442 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 443 pr_debug("proto header not found\n"); 444 return NF_ACCEPT; 445 } 446 protoff = ofs; 447 break; 448 } 449 default: 450 WARN_ONCE(1, "helper invoked on non-IP family!"); 451 return NF_DROP; 452 } 453 454 err = helper->help(skb, protoff, ct, ctinfo); 455 if (err != NF_ACCEPT) 456 return err; 457 458 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 459 * FTP with NAT) adusting the TCP payload size when mangling IP 460 * addresses and/or port numbers in the text-based control connection. 461 */ 462 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 463 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 464 return NF_DROP; 465 return NF_ACCEPT; 466 } 467 468 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 469 * value if 'skb' is freed. 470 */ 471 static int handle_fragments(struct net *net, struct sw_flow_key *key, 472 u16 zone, struct sk_buff *skb) 473 { 474 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 475 int err; 476 477 if (key->eth.type == htons(ETH_P_IP)) { 478 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 479 480 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 481 err = ip_defrag(net, skb, user); 482 if (err) 483 return err; 484 485 ovs_cb.mru = IPCB(skb)->frag_max_size; 486 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 487 } else if (key->eth.type == htons(ETH_P_IPV6)) { 488 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 489 490 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 491 err = nf_ct_frag6_gather(net, skb, user); 492 if (err) { 493 if (err != -EINPROGRESS) 494 kfree_skb(skb); 495 return err; 496 } 497 498 key->ip.proto = ipv6_hdr(skb)->nexthdr; 499 ovs_cb.mru = IP6CB(skb)->frag_max_size; 500 #endif 501 } else { 502 kfree_skb(skb); 503 return -EPFNOSUPPORT; 504 } 505 506 key->ip.frag = OVS_FRAG_TYPE_NONE; 507 skb_clear_hash(skb); 508 skb->ignore_df = 1; 509 *OVS_CB(skb) = ovs_cb; 510 511 return 0; 512 } 513 514 static struct nf_conntrack_expect * 515 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 516 u16 proto, const struct sk_buff *skb) 517 { 518 struct nf_conntrack_tuple tuple; 519 struct nf_conntrack_expect *exp; 520 521 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 522 return NULL; 523 524 exp = __nf_ct_expect_find(net, zone, &tuple); 525 if (exp) { 526 struct nf_conntrack_tuple_hash *h; 527 528 /* Delete existing conntrack entry, if it clashes with the 529 * expectation. This can happen since conntrack ALGs do not 530 * check for clashes between (new) expectations and existing 531 * conntrack entries. nf_conntrack_in() will check the 532 * expectations only if a conntrack entry can not be found, 533 * which can lead to OVS finding the expectation (here) in the 534 * init direction, but which will not be removed by the 535 * nf_conntrack_in() call, if a matching conntrack entry is 536 * found instead. In this case all init direction packets 537 * would be reported as new related packets, while reply 538 * direction packets would be reported as un-related 539 * established packets. 540 */ 541 h = nf_conntrack_find_get(net, zone, &tuple); 542 if (h) { 543 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 544 545 nf_ct_delete(ct, 0, 0); 546 nf_conntrack_put(&ct->ct_general); 547 } 548 } 549 550 return exp; 551 } 552 553 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 554 static enum ip_conntrack_info 555 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 556 { 557 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 558 559 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 560 return IP_CT_ESTABLISHED_REPLY; 561 /* Once we've had two way comms, always ESTABLISHED. */ 562 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 563 return IP_CT_ESTABLISHED; 564 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 565 return IP_CT_RELATED; 566 return IP_CT_NEW; 567 } 568 569 /* Find an existing connection which this packet belongs to without 570 * re-attributing statistics or modifying the connection state. This allows an 571 * skb->_nfct lost due to an upcall to be recovered during actions execution. 572 * 573 * Must be called with rcu_read_lock. 574 * 575 * On success, populates skb->_nfct and returns the connection. Returns NULL 576 * if there is no existing entry. 577 */ 578 static struct nf_conn * 579 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 580 u8 l3num, struct sk_buff *skb, bool natted) 581 { 582 const struct nf_conntrack_l3proto *l3proto; 583 const struct nf_conntrack_l4proto *l4proto; 584 struct nf_conntrack_tuple tuple; 585 struct nf_conntrack_tuple_hash *h; 586 struct nf_conn *ct; 587 unsigned int dataoff; 588 u8 protonum; 589 590 l3proto = __nf_ct_l3proto_find(l3num); 591 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff, 592 &protonum) <= 0) { 593 pr_debug("ovs_ct_find_existing: Can't get protonum\n"); 594 return NULL; 595 } 596 l4proto = __nf_ct_l4proto_find(l3num, protonum); 597 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, 598 protonum, net, &tuple, l3proto, l4proto)) { 599 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 600 return NULL; 601 } 602 603 /* Must invert the tuple if skb has been transformed by NAT. */ 604 if (natted) { 605 struct nf_conntrack_tuple inverse; 606 607 if (!nf_ct_invert_tuple(&inverse, &tuple, l3proto, l4proto)) { 608 pr_debug("ovs_ct_find_existing: Inversion failed!\n"); 609 return NULL; 610 } 611 tuple = inverse; 612 } 613 614 /* look for tuple match */ 615 h = nf_conntrack_find_get(net, zone, &tuple); 616 if (!h) 617 return NULL; /* Not found. */ 618 619 ct = nf_ct_tuplehash_to_ctrack(h); 620 621 /* Inverted packet tuple matches the reverse direction conntrack tuple, 622 * select the other tuplehash to get the right 'ctinfo' bits for this 623 * packet. 624 */ 625 if (natted) 626 h = &ct->tuplehash[!h->tuple.dst.dir]; 627 628 nf_ct_set(skb, ct, ovs_ct_get_info(h)); 629 return ct; 630 } 631 632 static 633 struct nf_conn *ovs_ct_executed(struct net *net, 634 const struct sw_flow_key *key, 635 const struct ovs_conntrack_info *info, 636 struct sk_buff *skb, 637 bool *ct_executed) 638 { 639 struct nf_conn *ct = NULL; 640 641 /* If no ct, check if we have evidence that an existing conntrack entry 642 * might be found for this skb. This happens when we lose a skb->_nfct 643 * due to an upcall, or if the direction is being forced. If the 644 * connection was not confirmed, it is not cached and needs to be run 645 * through conntrack again. 646 */ 647 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) && 648 !(key->ct_state & OVS_CS_F_INVALID) && 649 (key->ct_zone == info->zone.id); 650 651 if (*ct_executed || (!key->ct_state && info->force)) { 652 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb, 653 !!(key->ct_state & 654 OVS_CS_F_NAT_MASK)); 655 } 656 657 return ct; 658 } 659 660 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 661 static bool skb_nfct_cached(struct net *net, 662 const struct sw_flow_key *key, 663 const struct ovs_conntrack_info *info, 664 struct sk_buff *skb) 665 { 666 enum ip_conntrack_info ctinfo; 667 struct nf_conn *ct; 668 bool ct_executed = true; 669 670 ct = nf_ct_get(skb, &ctinfo); 671 if (!ct) 672 ct = ovs_ct_executed(net, key, info, skb, &ct_executed); 673 674 if (ct) 675 nf_ct_get(skb, &ctinfo); 676 else 677 return false; 678 679 if (!net_eq(net, read_pnet(&ct->ct_net))) 680 return false; 681 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 682 return false; 683 if (info->helper) { 684 struct nf_conn_help *help; 685 686 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 687 if (help && rcu_access_pointer(help->helper) != info->helper) 688 return false; 689 } 690 /* Force conntrack entry direction to the current packet? */ 691 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 692 /* Delete the conntrack entry if confirmed, else just release 693 * the reference. 694 */ 695 if (nf_ct_is_confirmed(ct)) 696 nf_ct_delete(ct, 0, 0); 697 698 nf_conntrack_put(&ct->ct_general); 699 nf_ct_set(skb, NULL, 0); 700 return false; 701 } 702 703 return ct_executed; 704 } 705 706 #ifdef CONFIG_NF_NAT_NEEDED 707 /* Modelled after nf_nat_ipv[46]_fn(). 708 * range is only used for new, uninitialized NAT state. 709 * Returns either NF_ACCEPT or NF_DROP. 710 */ 711 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 712 enum ip_conntrack_info ctinfo, 713 const struct nf_nat_range *range, 714 enum nf_nat_manip_type maniptype) 715 { 716 int hooknum, nh_off, err = NF_ACCEPT; 717 718 nh_off = skb_network_offset(skb); 719 skb_pull_rcsum(skb, nh_off); 720 721 /* See HOOK2MANIP(). */ 722 if (maniptype == NF_NAT_MANIP_SRC) 723 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 724 else 725 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 726 727 switch (ctinfo) { 728 case IP_CT_RELATED: 729 case IP_CT_RELATED_REPLY: 730 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 731 skb->protocol == htons(ETH_P_IP) && 732 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 733 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 734 hooknum)) 735 err = NF_DROP; 736 goto push; 737 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 738 skb->protocol == htons(ETH_P_IPV6)) { 739 __be16 frag_off; 740 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 741 int hdrlen = ipv6_skip_exthdr(skb, 742 sizeof(struct ipv6hdr), 743 &nexthdr, &frag_off); 744 745 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 746 if (!nf_nat_icmpv6_reply_translation(skb, ct, 747 ctinfo, 748 hooknum, 749 hdrlen)) 750 err = NF_DROP; 751 goto push; 752 } 753 } 754 /* Non-ICMP, fall thru to initialize if needed. */ 755 /* fall through */ 756 case IP_CT_NEW: 757 /* Seen it before? This can happen for loopback, retrans, 758 * or local packets. 759 */ 760 if (!nf_nat_initialized(ct, maniptype)) { 761 /* Initialize according to the NAT action. */ 762 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 763 /* Action is set up to establish a new 764 * mapping. 765 */ 766 ? nf_nat_setup_info(ct, range, maniptype) 767 : nf_nat_alloc_null_binding(ct, hooknum); 768 if (err != NF_ACCEPT) 769 goto push; 770 } 771 break; 772 773 case IP_CT_ESTABLISHED: 774 case IP_CT_ESTABLISHED_REPLY: 775 break; 776 777 default: 778 err = NF_DROP; 779 goto push; 780 } 781 782 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 783 push: 784 skb_push(skb, nh_off); 785 skb_postpush_rcsum(skb, skb->data, nh_off); 786 787 return err; 788 } 789 790 static void ovs_nat_update_key(struct sw_flow_key *key, 791 const struct sk_buff *skb, 792 enum nf_nat_manip_type maniptype) 793 { 794 if (maniptype == NF_NAT_MANIP_SRC) { 795 __be16 src; 796 797 key->ct_state |= OVS_CS_F_SRC_NAT; 798 if (key->eth.type == htons(ETH_P_IP)) 799 key->ipv4.addr.src = ip_hdr(skb)->saddr; 800 else if (key->eth.type == htons(ETH_P_IPV6)) 801 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 802 sizeof(key->ipv6.addr.src)); 803 else 804 return; 805 806 if (key->ip.proto == IPPROTO_UDP) 807 src = udp_hdr(skb)->source; 808 else if (key->ip.proto == IPPROTO_TCP) 809 src = tcp_hdr(skb)->source; 810 else if (key->ip.proto == IPPROTO_SCTP) 811 src = sctp_hdr(skb)->source; 812 else 813 return; 814 815 key->tp.src = src; 816 } else { 817 __be16 dst; 818 819 key->ct_state |= OVS_CS_F_DST_NAT; 820 if (key->eth.type == htons(ETH_P_IP)) 821 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 822 else if (key->eth.type == htons(ETH_P_IPV6)) 823 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 824 sizeof(key->ipv6.addr.dst)); 825 else 826 return; 827 828 if (key->ip.proto == IPPROTO_UDP) 829 dst = udp_hdr(skb)->dest; 830 else if (key->ip.proto == IPPROTO_TCP) 831 dst = tcp_hdr(skb)->dest; 832 else if (key->ip.proto == IPPROTO_SCTP) 833 dst = sctp_hdr(skb)->dest; 834 else 835 return; 836 837 key->tp.dst = dst; 838 } 839 } 840 841 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 842 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 843 const struct ovs_conntrack_info *info, 844 struct sk_buff *skb, struct nf_conn *ct, 845 enum ip_conntrack_info ctinfo) 846 { 847 enum nf_nat_manip_type maniptype; 848 int err; 849 850 /* Add NAT extension if not confirmed yet. */ 851 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 852 return NF_ACCEPT; /* Can't NAT. */ 853 854 /* Determine NAT type. 855 * Check if the NAT type can be deduced from the tracked connection. 856 * Make sure new expected connections (IP_CT_RELATED) are NATted only 857 * when committing. 858 */ 859 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 860 ct->status & IPS_NAT_MASK && 861 (ctinfo != IP_CT_RELATED || info->commit)) { 862 /* NAT an established or related connection like before. */ 863 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 864 /* This is the REPLY direction for a connection 865 * for which NAT was applied in the forward 866 * direction. Do the reverse NAT. 867 */ 868 maniptype = ct->status & IPS_SRC_NAT 869 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 870 else 871 maniptype = ct->status & IPS_SRC_NAT 872 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 873 } else if (info->nat & OVS_CT_SRC_NAT) { 874 maniptype = NF_NAT_MANIP_SRC; 875 } else if (info->nat & OVS_CT_DST_NAT) { 876 maniptype = NF_NAT_MANIP_DST; 877 } else { 878 return NF_ACCEPT; /* Connection is not NATed. */ 879 } 880 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 881 882 /* Mark NAT done if successful and update the flow key. */ 883 if (err == NF_ACCEPT) 884 ovs_nat_update_key(key, skb, maniptype); 885 886 return err; 887 } 888 #else /* !CONFIG_NF_NAT_NEEDED */ 889 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 890 const struct ovs_conntrack_info *info, 891 struct sk_buff *skb, struct nf_conn *ct, 892 enum ip_conntrack_info ctinfo) 893 { 894 return NF_ACCEPT; 895 } 896 #endif 897 898 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 899 * not done already. Update key with new CT state after passing the packet 900 * through conntrack. 901 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be 902 * set to NULL and 0 will be returned. 903 */ 904 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 905 const struct ovs_conntrack_info *info, 906 struct sk_buff *skb) 907 { 908 /* If we are recirculating packets to match on conntrack fields and 909 * committing with a separate conntrack action, then we don't need to 910 * actually run the packet through conntrack twice unless it's for a 911 * different zone. 912 */ 913 bool cached = skb_nfct_cached(net, key, info, skb); 914 enum ip_conntrack_info ctinfo; 915 struct nf_conn *ct; 916 917 if (!cached) { 918 struct nf_conn *tmpl = info->ct; 919 int err; 920 921 /* Associate skb with specified zone. */ 922 if (tmpl) { 923 if (skb_nfct(skb)) 924 nf_conntrack_put(skb_nfct(skb)); 925 nf_conntrack_get(&tmpl->ct_general); 926 nf_ct_set(skb, tmpl, IP_CT_NEW); 927 } 928 929 err = nf_conntrack_in(net, info->family, 930 NF_INET_PRE_ROUTING, skb); 931 if (err != NF_ACCEPT) 932 return -ENOENT; 933 934 /* Clear CT state NAT flags to mark that we have not yet done 935 * NAT after the nf_conntrack_in() call. We can actually clear 936 * the whole state, as it will be re-initialized below. 937 */ 938 key->ct_state = 0; 939 940 /* Update the key, but keep the NAT flags. */ 941 ovs_ct_update_key(skb, info, key, true, true); 942 } 943 944 ct = nf_ct_get(skb, &ctinfo); 945 if (ct) { 946 /* Packets starting a new connection must be NATted before the 947 * helper, so that the helper knows about the NAT. We enforce 948 * this by delaying both NAT and helper calls for unconfirmed 949 * connections until the committing CT action. For later 950 * packets NAT and Helper may be called in either order. 951 * 952 * NAT will be done only if the CT action has NAT, and only 953 * once per packet (per zone), as guarded by the NAT bits in 954 * the key->ct_state. 955 */ 956 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) && 957 (nf_ct_is_confirmed(ct) || info->commit) && 958 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 959 return -EINVAL; 960 } 961 962 /* Userspace may decide to perform a ct lookup without a helper 963 * specified followed by a (recirculate and) commit with one. 964 * Therefore, for unconfirmed connections which we will commit, 965 * we need to attach the helper here. 966 */ 967 if (!nf_ct_is_confirmed(ct) && info->commit && 968 info->helper && !nfct_help(ct)) { 969 int err = __nf_ct_try_assign_helper(ct, info->ct, 970 GFP_ATOMIC); 971 if (err) 972 return err; 973 } 974 975 /* Call the helper only if: 976 * - nf_conntrack_in() was executed above ("!cached") for a 977 * confirmed connection, or 978 * - When committing an unconfirmed connection. 979 */ 980 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && 981 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 982 return -EINVAL; 983 } 984 } 985 986 return 0; 987 } 988 989 /* Lookup connection and read fields into key. */ 990 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 991 const struct ovs_conntrack_info *info, 992 struct sk_buff *skb) 993 { 994 struct nf_conntrack_expect *exp; 995 996 /* If we pass an expected packet through nf_conntrack_in() the 997 * expectation is typically removed, but the packet could still be 998 * lost in upcall processing. To prevent this from happening we 999 * perform an explicit expectation lookup. Expected connections are 1000 * always new, and will be passed through conntrack only when they are 1001 * committed, as it is OK to remove the expectation at that time. 1002 */ 1003 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 1004 if (exp) { 1005 u8 state; 1006 1007 /* NOTE: New connections are NATted and Helped only when 1008 * committed, so we are not calling into NAT here. 1009 */ 1010 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 1011 __ovs_ct_update_key(key, state, &info->zone, exp->master); 1012 } else { 1013 struct nf_conn *ct; 1014 int err; 1015 1016 err = __ovs_ct_lookup(net, key, info, skb); 1017 if (err) 1018 return err; 1019 1020 ct = (struct nf_conn *)skb_nfct(skb); 1021 if (ct) 1022 nf_ct_deliver_cached_events(ct); 1023 } 1024 1025 return 0; 1026 } 1027 1028 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 1029 { 1030 size_t i; 1031 1032 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 1033 if (labels->ct_labels_32[i]) 1034 return true; 1035 1036 return false; 1037 } 1038 1039 /* Lookup connection and confirm if unconfirmed. */ 1040 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 1041 const struct ovs_conntrack_info *info, 1042 struct sk_buff *skb) 1043 { 1044 enum ip_conntrack_info ctinfo; 1045 struct nf_conn *ct; 1046 int err; 1047 1048 err = __ovs_ct_lookup(net, key, info, skb); 1049 if (err) 1050 return err; 1051 1052 /* The connection could be invalid, in which case this is a no-op.*/ 1053 ct = nf_ct_get(skb, &ctinfo); 1054 if (!ct) 1055 return 0; 1056 1057 /* Set the conntrack event mask if given. NEW and DELETE events have 1058 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener 1059 * typically would receive many kinds of updates. Setting the event 1060 * mask allows those events to be filtered. The set event mask will 1061 * remain in effect for the lifetime of the connection unless changed 1062 * by a further CT action with both the commit flag and the eventmask 1063 * option. */ 1064 if (info->have_eventmask) { 1065 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct); 1066 1067 if (cache) 1068 cache->ctmask = info->eventmask; 1069 } 1070 1071 /* Apply changes before confirming the connection so that the initial 1072 * conntrack NEW netlink event carries the values given in the CT 1073 * action. 1074 */ 1075 if (info->mark.mask) { 1076 err = ovs_ct_set_mark(ct, key, info->mark.value, 1077 info->mark.mask); 1078 if (err) 1079 return err; 1080 } 1081 if (!nf_ct_is_confirmed(ct)) { 1082 err = ovs_ct_init_labels(ct, key, &info->labels.value, 1083 &info->labels.mask); 1084 if (err) 1085 return err; 1086 } else if (labels_nonzero(&info->labels.mask)) { 1087 err = ovs_ct_set_labels(ct, key, &info->labels.value, 1088 &info->labels.mask); 1089 if (err) 1090 return err; 1091 } 1092 /* This will take care of sending queued events even if the connection 1093 * is already confirmed. 1094 */ 1095 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 1096 return -EINVAL; 1097 1098 return 0; 1099 } 1100 1101 /* Trim the skb to the length specified by the IP/IPv6 header, 1102 * removing any trailing lower-layer padding. This prepares the skb 1103 * for higher-layer processing that assumes skb->len excludes padding 1104 * (such as nf_ip_checksum). The caller needs to pull the skb to the 1105 * network header, and ensure ip_hdr/ipv6_hdr points to valid data. 1106 */ 1107 static int ovs_skb_network_trim(struct sk_buff *skb) 1108 { 1109 unsigned int len; 1110 int err; 1111 1112 switch (skb->protocol) { 1113 case htons(ETH_P_IP): 1114 len = ntohs(ip_hdr(skb)->tot_len); 1115 break; 1116 case htons(ETH_P_IPV6): 1117 len = sizeof(struct ipv6hdr) 1118 + ntohs(ipv6_hdr(skb)->payload_len); 1119 break; 1120 default: 1121 len = skb->len; 1122 } 1123 1124 err = pskb_trim_rcsum(skb, len); 1125 if (err) 1126 kfree_skb(skb); 1127 1128 return err; 1129 } 1130 1131 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 1132 * value if 'skb' is freed. 1133 */ 1134 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 1135 struct sw_flow_key *key, 1136 const struct ovs_conntrack_info *info) 1137 { 1138 int nh_ofs; 1139 int err; 1140 1141 /* The conntrack module expects to be working at L3. */ 1142 nh_ofs = skb_network_offset(skb); 1143 skb_pull_rcsum(skb, nh_ofs); 1144 1145 err = ovs_skb_network_trim(skb); 1146 if (err) 1147 return err; 1148 1149 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 1150 err = handle_fragments(net, key, info->zone.id, skb); 1151 if (err) 1152 return err; 1153 } 1154 1155 if (info->commit) 1156 err = ovs_ct_commit(net, key, info, skb); 1157 else 1158 err = ovs_ct_lookup(net, key, info, skb); 1159 1160 skb_push(skb, nh_ofs); 1161 skb_postpush_rcsum(skb, skb->data, nh_ofs); 1162 if (err) 1163 kfree_skb(skb); 1164 return err; 1165 } 1166 1167 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key) 1168 { 1169 if (skb_nfct(skb)) { 1170 nf_conntrack_put(skb_nfct(skb)); 1171 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 1172 ovs_ct_fill_key(skb, key); 1173 } 1174 1175 return 0; 1176 } 1177 1178 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 1179 const struct sw_flow_key *key, bool log) 1180 { 1181 struct nf_conntrack_helper *helper; 1182 struct nf_conn_help *help; 1183 1184 helper = nf_conntrack_helper_try_module_get(name, info->family, 1185 key->ip.proto); 1186 if (!helper) { 1187 OVS_NLERR(log, "Unknown helper \"%s\"", name); 1188 return -EINVAL; 1189 } 1190 1191 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); 1192 if (!help) { 1193 nf_conntrack_helper_put(helper); 1194 return -ENOMEM; 1195 } 1196 1197 rcu_assign_pointer(help->helper, helper); 1198 info->helper = helper; 1199 return 0; 1200 } 1201 1202 #ifdef CONFIG_NF_NAT_NEEDED 1203 static int parse_nat(const struct nlattr *attr, 1204 struct ovs_conntrack_info *info, bool log) 1205 { 1206 struct nlattr *a; 1207 int rem; 1208 bool have_ip_max = false; 1209 bool have_proto_max = false; 1210 bool ip_vers = (info->family == NFPROTO_IPV6); 1211 1212 nla_for_each_nested(a, attr, rem) { 1213 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 1214 [OVS_NAT_ATTR_SRC] = {0, 0}, 1215 [OVS_NAT_ATTR_DST] = {0, 0}, 1216 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 1217 sizeof(struct in6_addr)}, 1218 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 1219 sizeof(struct in6_addr)}, 1220 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 1221 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 1222 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 1223 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 1224 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 1225 }; 1226 int type = nla_type(a); 1227 1228 if (type > OVS_NAT_ATTR_MAX) { 1229 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)", 1230 type, OVS_NAT_ATTR_MAX); 1231 return -EINVAL; 1232 } 1233 1234 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 1235 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)", 1236 type, nla_len(a), 1237 ovs_nat_attr_lens[type][ip_vers]); 1238 return -EINVAL; 1239 } 1240 1241 switch (type) { 1242 case OVS_NAT_ATTR_SRC: 1243 case OVS_NAT_ATTR_DST: 1244 if (info->nat) { 1245 OVS_NLERR(log, "Only one type of NAT may be specified"); 1246 return -ERANGE; 1247 } 1248 info->nat |= OVS_CT_NAT; 1249 info->nat |= ((type == OVS_NAT_ATTR_SRC) 1250 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 1251 break; 1252 1253 case OVS_NAT_ATTR_IP_MIN: 1254 nla_memcpy(&info->range.min_addr, a, 1255 sizeof(info->range.min_addr)); 1256 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1257 break; 1258 1259 case OVS_NAT_ATTR_IP_MAX: 1260 have_ip_max = true; 1261 nla_memcpy(&info->range.max_addr, a, 1262 sizeof(info->range.max_addr)); 1263 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1264 break; 1265 1266 case OVS_NAT_ATTR_PROTO_MIN: 1267 info->range.min_proto.all = htons(nla_get_u16(a)); 1268 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1269 break; 1270 1271 case OVS_NAT_ATTR_PROTO_MAX: 1272 have_proto_max = true; 1273 info->range.max_proto.all = htons(nla_get_u16(a)); 1274 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1275 break; 1276 1277 case OVS_NAT_ATTR_PERSISTENT: 1278 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1279 break; 1280 1281 case OVS_NAT_ATTR_PROTO_HASH: 1282 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1283 break; 1284 1285 case OVS_NAT_ATTR_PROTO_RANDOM: 1286 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1287 break; 1288 1289 default: 1290 OVS_NLERR(log, "Unknown nat attribute (%d)", type); 1291 return -EINVAL; 1292 } 1293 } 1294 1295 if (rem > 0) { 1296 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem); 1297 return -EINVAL; 1298 } 1299 if (!info->nat) { 1300 /* Do not allow flags if no type is given. */ 1301 if (info->range.flags) { 1302 OVS_NLERR(log, 1303 "NAT flags may be given only when NAT range (SRC or DST) is also specified." 1304 ); 1305 return -EINVAL; 1306 } 1307 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1308 } else if (!info->commit) { 1309 OVS_NLERR(log, 1310 "NAT attributes may be specified only when CT COMMIT flag is also specified." 1311 ); 1312 return -EINVAL; 1313 } 1314 /* Allow missing IP_MAX. */ 1315 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1316 memcpy(&info->range.max_addr, &info->range.min_addr, 1317 sizeof(info->range.max_addr)); 1318 } 1319 /* Allow missing PROTO_MAX. */ 1320 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1321 !have_proto_max) { 1322 info->range.max_proto.all = info->range.min_proto.all; 1323 } 1324 return 0; 1325 } 1326 #endif 1327 1328 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1329 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1330 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1331 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1332 .maxlen = sizeof(u16) }, 1333 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1334 .maxlen = sizeof(struct md_mark) }, 1335 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1336 .maxlen = sizeof(struct md_labels) }, 1337 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1338 .maxlen = NF_CT_HELPER_NAME_LEN }, 1339 #ifdef CONFIG_NF_NAT_NEEDED 1340 /* NAT length is checked when parsing the nested attributes. */ 1341 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1342 #endif 1343 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32), 1344 .maxlen = sizeof(u32) }, 1345 }; 1346 1347 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1348 const char **helper, bool log) 1349 { 1350 struct nlattr *a; 1351 int rem; 1352 1353 nla_for_each_nested(a, attr, rem) { 1354 int type = nla_type(a); 1355 int maxlen; 1356 int minlen; 1357 1358 if (type > OVS_CT_ATTR_MAX) { 1359 OVS_NLERR(log, 1360 "Unknown conntrack attr (type=%d, max=%d)", 1361 type, OVS_CT_ATTR_MAX); 1362 return -EINVAL; 1363 } 1364 1365 maxlen = ovs_ct_attr_lens[type].maxlen; 1366 minlen = ovs_ct_attr_lens[type].minlen; 1367 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1368 OVS_NLERR(log, 1369 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1370 type, nla_len(a), maxlen); 1371 return -EINVAL; 1372 } 1373 1374 switch (type) { 1375 case OVS_CT_ATTR_FORCE_COMMIT: 1376 info->force = true; 1377 /* fall through. */ 1378 case OVS_CT_ATTR_COMMIT: 1379 info->commit = true; 1380 break; 1381 #ifdef CONFIG_NF_CONNTRACK_ZONES 1382 case OVS_CT_ATTR_ZONE: 1383 info->zone.id = nla_get_u16(a); 1384 break; 1385 #endif 1386 #ifdef CONFIG_NF_CONNTRACK_MARK 1387 case OVS_CT_ATTR_MARK: { 1388 struct md_mark *mark = nla_data(a); 1389 1390 if (!mark->mask) { 1391 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1392 return -EINVAL; 1393 } 1394 info->mark = *mark; 1395 break; 1396 } 1397 #endif 1398 #ifdef CONFIG_NF_CONNTRACK_LABELS 1399 case OVS_CT_ATTR_LABELS: { 1400 struct md_labels *labels = nla_data(a); 1401 1402 if (!labels_nonzero(&labels->mask)) { 1403 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1404 return -EINVAL; 1405 } 1406 info->labels = *labels; 1407 break; 1408 } 1409 #endif 1410 case OVS_CT_ATTR_HELPER: 1411 *helper = nla_data(a); 1412 if (!memchr(*helper, '\0', nla_len(a))) { 1413 OVS_NLERR(log, "Invalid conntrack helper"); 1414 return -EINVAL; 1415 } 1416 break; 1417 #ifdef CONFIG_NF_NAT_NEEDED 1418 case OVS_CT_ATTR_NAT: { 1419 int err = parse_nat(a, info, log); 1420 1421 if (err) 1422 return err; 1423 break; 1424 } 1425 #endif 1426 case OVS_CT_ATTR_EVENTMASK: 1427 info->have_eventmask = true; 1428 info->eventmask = nla_get_u32(a); 1429 break; 1430 1431 default: 1432 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1433 type); 1434 return -EINVAL; 1435 } 1436 } 1437 1438 #ifdef CONFIG_NF_CONNTRACK_MARK 1439 if (!info->commit && info->mark.mask) { 1440 OVS_NLERR(log, 1441 "Setting conntrack mark requires 'commit' flag."); 1442 return -EINVAL; 1443 } 1444 #endif 1445 #ifdef CONFIG_NF_CONNTRACK_LABELS 1446 if (!info->commit && labels_nonzero(&info->labels.mask)) { 1447 OVS_NLERR(log, 1448 "Setting conntrack labels requires 'commit' flag."); 1449 return -EINVAL; 1450 } 1451 #endif 1452 if (rem > 0) { 1453 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1454 return -EINVAL; 1455 } 1456 1457 return 0; 1458 } 1459 1460 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1461 { 1462 if (attr == OVS_KEY_ATTR_CT_STATE) 1463 return true; 1464 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1465 attr == OVS_KEY_ATTR_CT_ZONE) 1466 return true; 1467 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1468 attr == OVS_KEY_ATTR_CT_MARK) 1469 return true; 1470 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1471 attr == OVS_KEY_ATTR_CT_LABELS) { 1472 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1473 1474 return ovs_net->xt_label; 1475 } 1476 1477 return false; 1478 } 1479 1480 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1481 const struct sw_flow_key *key, 1482 struct sw_flow_actions **sfa, bool log) 1483 { 1484 struct ovs_conntrack_info ct_info; 1485 const char *helper = NULL; 1486 u16 family; 1487 int err; 1488 1489 family = key_to_nfproto(key); 1490 if (family == NFPROTO_UNSPEC) { 1491 OVS_NLERR(log, "ct family unspecified"); 1492 return -EINVAL; 1493 } 1494 1495 memset(&ct_info, 0, sizeof(ct_info)); 1496 ct_info.family = family; 1497 1498 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1499 NF_CT_DEFAULT_ZONE_DIR, 0); 1500 1501 err = parse_ct(attr, &ct_info, &helper, log); 1502 if (err) 1503 return err; 1504 1505 /* Set up template for tracking connections in specific zones. */ 1506 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1507 if (!ct_info.ct) { 1508 OVS_NLERR(log, "Failed to allocate conntrack template"); 1509 return -ENOMEM; 1510 } 1511 1512 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1513 nf_conntrack_get(&ct_info.ct->ct_general); 1514 1515 if (helper) { 1516 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1517 if (err) 1518 goto err_free_ct; 1519 } 1520 1521 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1522 sizeof(ct_info), log); 1523 if (err) 1524 goto err_free_ct; 1525 1526 return 0; 1527 err_free_ct: 1528 __ovs_ct_free_action(&ct_info); 1529 return err; 1530 } 1531 1532 #ifdef CONFIG_NF_NAT_NEEDED 1533 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1534 struct sk_buff *skb) 1535 { 1536 struct nlattr *start; 1537 1538 start = nla_nest_start(skb, OVS_CT_ATTR_NAT); 1539 if (!start) 1540 return false; 1541 1542 if (info->nat & OVS_CT_SRC_NAT) { 1543 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1544 return false; 1545 } else if (info->nat & OVS_CT_DST_NAT) { 1546 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1547 return false; 1548 } else { 1549 goto out; 1550 } 1551 1552 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1553 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 1554 info->family == NFPROTO_IPV4) { 1555 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1556 info->range.min_addr.ip) || 1557 (info->range.max_addr.ip 1558 != info->range.min_addr.ip && 1559 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1560 info->range.max_addr.ip)))) 1561 return false; 1562 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 1563 info->family == NFPROTO_IPV6) { 1564 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1565 &info->range.min_addr.in6) || 1566 (memcmp(&info->range.max_addr.in6, 1567 &info->range.min_addr.in6, 1568 sizeof(info->range.max_addr.in6)) && 1569 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1570 &info->range.max_addr.in6)))) 1571 return false; 1572 } else { 1573 return false; 1574 } 1575 } 1576 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1577 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1578 ntohs(info->range.min_proto.all)) || 1579 (info->range.max_proto.all != info->range.min_proto.all && 1580 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1581 ntohs(info->range.max_proto.all))))) 1582 return false; 1583 1584 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1585 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1586 return false; 1587 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1588 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1589 return false; 1590 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1591 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1592 return false; 1593 out: 1594 nla_nest_end(skb, start); 1595 1596 return true; 1597 } 1598 #endif 1599 1600 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1601 struct sk_buff *skb) 1602 { 1603 struct nlattr *start; 1604 1605 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); 1606 if (!start) 1607 return -EMSGSIZE; 1608 1609 if (ct_info->commit && nla_put_flag(skb, ct_info->force 1610 ? OVS_CT_ATTR_FORCE_COMMIT 1611 : OVS_CT_ATTR_COMMIT)) 1612 return -EMSGSIZE; 1613 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1614 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1615 return -EMSGSIZE; 1616 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1617 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1618 &ct_info->mark)) 1619 return -EMSGSIZE; 1620 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1621 labels_nonzero(&ct_info->labels.mask) && 1622 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1623 &ct_info->labels)) 1624 return -EMSGSIZE; 1625 if (ct_info->helper) { 1626 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1627 ct_info->helper->name)) 1628 return -EMSGSIZE; 1629 } 1630 if (ct_info->have_eventmask && 1631 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask)) 1632 return -EMSGSIZE; 1633 1634 #ifdef CONFIG_NF_NAT_NEEDED 1635 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1636 return -EMSGSIZE; 1637 #endif 1638 nla_nest_end(skb, start); 1639 1640 return 0; 1641 } 1642 1643 void ovs_ct_free_action(const struct nlattr *a) 1644 { 1645 struct ovs_conntrack_info *ct_info = nla_data(a); 1646 1647 __ovs_ct_free_action(ct_info); 1648 } 1649 1650 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1651 { 1652 if (ct_info->helper) 1653 nf_conntrack_helper_put(ct_info->helper); 1654 if (ct_info->ct) 1655 nf_ct_tmpl_free(ct_info->ct); 1656 } 1657 1658 void ovs_ct_init(struct net *net) 1659 { 1660 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 1661 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1662 1663 if (nf_connlabels_get(net, n_bits - 1)) { 1664 ovs_net->xt_label = false; 1665 OVS_NLERR(true, "Failed to set connlabel length"); 1666 } else { 1667 ovs_net->xt_label = true; 1668 } 1669 } 1670 1671 void ovs_ct_exit(struct net *net) 1672 { 1673 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1674 1675 if (ovs_net->xt_label) 1676 nf_connlabels_put(net); 1677 } 1678