xref: /openbmc/linux/net/openvswitch/conntrack.c (revision 1c2dd16a)
1 /*
2  * Copyright (c) 2015 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <net/ip.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_labels.h>
23 #include <net/netfilter/nf_conntrack_seqadj.h>
24 #include <net/netfilter/nf_conntrack_zones.h>
25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26 
27 #ifdef CONFIG_NF_NAT_NEEDED
28 #include <linux/netfilter/nf_nat.h>
29 #include <net/netfilter/nf_nat_core.h>
30 #include <net/netfilter/nf_nat_l3proto.h>
31 #endif
32 
33 #include "datapath.h"
34 #include "conntrack.h"
35 #include "flow.h"
36 #include "flow_netlink.h"
37 
38 struct ovs_ct_len_tbl {
39 	int maxlen;
40 	int minlen;
41 };
42 
43 /* Metadata mark for masked write to conntrack mark */
44 struct md_mark {
45 	u32 value;
46 	u32 mask;
47 };
48 
49 /* Metadata label for masked write to conntrack label. */
50 struct md_labels {
51 	struct ovs_key_ct_labels value;
52 	struct ovs_key_ct_labels mask;
53 };
54 
55 enum ovs_ct_nat {
56 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
57 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59 };
60 
61 /* Conntrack action context for execution. */
62 struct ovs_conntrack_info {
63 	struct nf_conntrack_helper *helper;
64 	struct nf_conntrack_zone zone;
65 	struct nf_conn *ct;
66 	u8 commit : 1;
67 	u8 nat : 3;                 /* enum ovs_ct_nat */
68 	u8 force : 1;
69 	u8 have_eventmask : 1;
70 	u16 family;
71 	u32 eventmask;              /* Mask of 1 << IPCT_*. */
72 	struct md_mark mark;
73 	struct md_labels labels;
74 #ifdef CONFIG_NF_NAT_NEEDED
75 	struct nf_nat_range range;  /* Only present for SRC NAT and DST NAT. */
76 #endif
77 };
78 
79 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
80 
81 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
82 
83 static u16 key_to_nfproto(const struct sw_flow_key *key)
84 {
85 	switch (ntohs(key->eth.type)) {
86 	case ETH_P_IP:
87 		return NFPROTO_IPV4;
88 	case ETH_P_IPV6:
89 		return NFPROTO_IPV6;
90 	default:
91 		return NFPROTO_UNSPEC;
92 	}
93 }
94 
95 /* Map SKB connection state into the values used by flow definition. */
96 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
97 {
98 	u8 ct_state = OVS_CS_F_TRACKED;
99 
100 	switch (ctinfo) {
101 	case IP_CT_ESTABLISHED_REPLY:
102 	case IP_CT_RELATED_REPLY:
103 		ct_state |= OVS_CS_F_REPLY_DIR;
104 		break;
105 	default:
106 		break;
107 	}
108 
109 	switch (ctinfo) {
110 	case IP_CT_ESTABLISHED:
111 	case IP_CT_ESTABLISHED_REPLY:
112 		ct_state |= OVS_CS_F_ESTABLISHED;
113 		break;
114 	case IP_CT_RELATED:
115 	case IP_CT_RELATED_REPLY:
116 		ct_state |= OVS_CS_F_RELATED;
117 		break;
118 	case IP_CT_NEW:
119 		ct_state |= OVS_CS_F_NEW;
120 		break;
121 	default:
122 		break;
123 	}
124 
125 	return ct_state;
126 }
127 
128 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
129 {
130 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
131 	return ct ? ct->mark : 0;
132 #else
133 	return 0;
134 #endif
135 }
136 
137 /* Guard against conntrack labels max size shrinking below 128 bits. */
138 #if NF_CT_LABELS_MAX_SIZE < 16
139 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
140 #endif
141 
142 static void ovs_ct_get_labels(const struct nf_conn *ct,
143 			      struct ovs_key_ct_labels *labels)
144 {
145 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
146 
147 	if (cl)
148 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
149 	else
150 		memset(labels, 0, OVS_CT_LABELS_LEN);
151 }
152 
153 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
154 					const struct nf_conntrack_tuple *orig,
155 					u8 icmp_proto)
156 {
157 	key->ct_orig_proto = orig->dst.protonum;
158 	if (orig->dst.protonum == icmp_proto) {
159 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
160 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
161 	} else {
162 		key->ct.orig_tp.src = orig->src.u.all;
163 		key->ct.orig_tp.dst = orig->dst.u.all;
164 	}
165 }
166 
167 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
168 				const struct nf_conntrack_zone *zone,
169 				const struct nf_conn *ct)
170 {
171 	key->ct_state = state;
172 	key->ct_zone = zone->id;
173 	key->ct.mark = ovs_ct_get_mark(ct);
174 	ovs_ct_get_labels(ct, &key->ct.labels);
175 
176 	if (ct) {
177 		const struct nf_conntrack_tuple *orig;
178 
179 		/* Use the master if we have one. */
180 		if (ct->master)
181 			ct = ct->master;
182 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
183 
184 		/* IP version must match with the master connection. */
185 		if (key->eth.type == htons(ETH_P_IP) &&
186 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
187 			key->ipv4.ct_orig.src = orig->src.u3.ip;
188 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
189 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
190 			return;
191 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
192 			   !sw_flow_key_is_nd(key) &&
193 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
194 			key->ipv6.ct_orig.src = orig->src.u3.in6;
195 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
196 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
197 			return;
198 		}
199 	}
200 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
201 	 * original direction key fields.
202 	 */
203 	key->ct_orig_proto = 0;
204 }
205 
206 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
207  * previously sent the packet to conntrack via the ct action.  If
208  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
209  * initialized from the connection status.
210  */
211 static void ovs_ct_update_key(const struct sk_buff *skb,
212 			      const struct ovs_conntrack_info *info,
213 			      struct sw_flow_key *key, bool post_ct,
214 			      bool keep_nat_flags)
215 {
216 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
217 	enum ip_conntrack_info ctinfo;
218 	struct nf_conn *ct;
219 	u8 state = 0;
220 
221 	ct = nf_ct_get(skb, &ctinfo);
222 	if (ct) {
223 		state = ovs_ct_get_state(ctinfo);
224 		/* All unconfirmed entries are NEW connections. */
225 		if (!nf_ct_is_confirmed(ct))
226 			state |= OVS_CS_F_NEW;
227 		/* OVS persists the related flag for the duration of the
228 		 * connection.
229 		 */
230 		if (ct->master)
231 			state |= OVS_CS_F_RELATED;
232 		if (keep_nat_flags) {
233 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
234 		} else {
235 			if (ct->status & IPS_SRC_NAT)
236 				state |= OVS_CS_F_SRC_NAT;
237 			if (ct->status & IPS_DST_NAT)
238 				state |= OVS_CS_F_DST_NAT;
239 		}
240 		zone = nf_ct_zone(ct);
241 	} else if (post_ct) {
242 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
243 		if (info)
244 			zone = &info->zone;
245 	}
246 	__ovs_ct_update_key(key, state, zone, ct);
247 }
248 
249 /* This is called to initialize CT key fields possibly coming in from the local
250  * stack.
251  */
252 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
253 {
254 	ovs_ct_update_key(skb, NULL, key, false, false);
255 }
256 
257 #define IN6_ADDR_INITIALIZER(ADDR) \
258 	{ (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
259 	  (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
260 
261 int ovs_ct_put_key(const struct sw_flow_key *swkey,
262 		   const struct sw_flow_key *output, struct sk_buff *skb)
263 {
264 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
265 		return -EMSGSIZE;
266 
267 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
268 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
269 		return -EMSGSIZE;
270 
271 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
272 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
273 		return -EMSGSIZE;
274 
275 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
276 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
277 		    &output->ct.labels))
278 		return -EMSGSIZE;
279 
280 	if (swkey->ct_orig_proto) {
281 		if (swkey->eth.type == htons(ETH_P_IP)) {
282 			struct ovs_key_ct_tuple_ipv4 orig = {
283 				output->ipv4.ct_orig.src,
284 				output->ipv4.ct_orig.dst,
285 				output->ct.orig_tp.src,
286 				output->ct.orig_tp.dst,
287 				output->ct_orig_proto,
288 			};
289 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
290 				    sizeof(orig), &orig))
291 				return -EMSGSIZE;
292 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
293 			struct ovs_key_ct_tuple_ipv6 orig = {
294 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
295 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
296 				output->ct.orig_tp.src,
297 				output->ct.orig_tp.dst,
298 				output->ct_orig_proto,
299 			};
300 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
301 				    sizeof(orig), &orig))
302 				return -EMSGSIZE;
303 		}
304 	}
305 
306 	return 0;
307 }
308 
309 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
310 			   u32 ct_mark, u32 mask)
311 {
312 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
313 	u32 new_mark;
314 
315 	new_mark = ct_mark | (ct->mark & ~(mask));
316 	if (ct->mark != new_mark) {
317 		ct->mark = new_mark;
318 		if (nf_ct_is_confirmed(ct))
319 			nf_conntrack_event_cache(IPCT_MARK, ct);
320 		key->ct.mark = new_mark;
321 	}
322 
323 	return 0;
324 #else
325 	return -ENOTSUPP;
326 #endif
327 }
328 
329 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
330 {
331 	struct nf_conn_labels *cl;
332 
333 	cl = nf_ct_labels_find(ct);
334 	if (!cl) {
335 		nf_ct_labels_ext_add(ct);
336 		cl = nf_ct_labels_find(ct);
337 	}
338 
339 	return cl;
340 }
341 
342 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
343  * since the new connection is not yet confirmed, and thus no-one else has
344  * access to it's labels, we simply write them over.
345  */
346 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
347 			      const struct ovs_key_ct_labels *labels,
348 			      const struct ovs_key_ct_labels *mask)
349 {
350 	struct nf_conn_labels *cl, *master_cl;
351 	bool have_mask = labels_nonzero(mask);
352 
353 	/* Inherit master's labels to the related connection? */
354 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
355 
356 	if (!master_cl && !have_mask)
357 		return 0;   /* Nothing to do. */
358 
359 	cl = ovs_ct_get_conn_labels(ct);
360 	if (!cl)
361 		return -ENOSPC;
362 
363 	/* Inherit the master's labels, if any. */
364 	if (master_cl)
365 		*cl = *master_cl;
366 
367 	if (have_mask) {
368 		u32 *dst = (u32 *)cl->bits;
369 		int i;
370 
371 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
372 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
373 				(labels->ct_labels_32[i]
374 				 & mask->ct_labels_32[i]);
375 	}
376 
377 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
378 	 * IPCT_LABEL bit is set in the event cache.
379 	 */
380 	nf_conntrack_event_cache(IPCT_LABEL, ct);
381 
382 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
383 
384 	return 0;
385 }
386 
387 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
388 			     const struct ovs_key_ct_labels *labels,
389 			     const struct ovs_key_ct_labels *mask)
390 {
391 	struct nf_conn_labels *cl;
392 	int err;
393 
394 	cl = ovs_ct_get_conn_labels(ct);
395 	if (!cl)
396 		return -ENOSPC;
397 
398 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
399 				    mask->ct_labels_32,
400 				    OVS_CT_LABELS_LEN_32);
401 	if (err)
402 		return err;
403 
404 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
405 
406 	return 0;
407 }
408 
409 /* 'skb' should already be pulled to nh_ofs. */
410 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
411 {
412 	const struct nf_conntrack_helper *helper;
413 	const struct nf_conn_help *help;
414 	enum ip_conntrack_info ctinfo;
415 	unsigned int protoff;
416 	struct nf_conn *ct;
417 	int err;
418 
419 	ct = nf_ct_get(skb, &ctinfo);
420 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
421 		return NF_ACCEPT;
422 
423 	help = nfct_help(ct);
424 	if (!help)
425 		return NF_ACCEPT;
426 
427 	helper = rcu_dereference(help->helper);
428 	if (!helper)
429 		return NF_ACCEPT;
430 
431 	switch (proto) {
432 	case NFPROTO_IPV4:
433 		protoff = ip_hdrlen(skb);
434 		break;
435 	case NFPROTO_IPV6: {
436 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
437 		__be16 frag_off;
438 		int ofs;
439 
440 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
441 				       &frag_off);
442 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
443 			pr_debug("proto header not found\n");
444 			return NF_ACCEPT;
445 		}
446 		protoff = ofs;
447 		break;
448 	}
449 	default:
450 		WARN_ONCE(1, "helper invoked on non-IP family!");
451 		return NF_DROP;
452 	}
453 
454 	err = helper->help(skb, protoff, ct, ctinfo);
455 	if (err != NF_ACCEPT)
456 		return err;
457 
458 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
459 	 * FTP with NAT) adusting the TCP payload size when mangling IP
460 	 * addresses and/or port numbers in the text-based control connection.
461 	 */
462 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
463 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
464 		return NF_DROP;
465 	return NF_ACCEPT;
466 }
467 
468 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
469  * value if 'skb' is freed.
470  */
471 static int handle_fragments(struct net *net, struct sw_flow_key *key,
472 			    u16 zone, struct sk_buff *skb)
473 {
474 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
475 	int err;
476 
477 	if (key->eth.type == htons(ETH_P_IP)) {
478 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
479 
480 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
481 		err = ip_defrag(net, skb, user);
482 		if (err)
483 			return err;
484 
485 		ovs_cb.mru = IPCB(skb)->frag_max_size;
486 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
487 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
488 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
489 
490 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
491 		err = nf_ct_frag6_gather(net, skb, user);
492 		if (err) {
493 			if (err != -EINPROGRESS)
494 				kfree_skb(skb);
495 			return err;
496 		}
497 
498 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
499 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
500 #endif
501 	} else {
502 		kfree_skb(skb);
503 		return -EPFNOSUPPORT;
504 	}
505 
506 	key->ip.frag = OVS_FRAG_TYPE_NONE;
507 	skb_clear_hash(skb);
508 	skb->ignore_df = 1;
509 	*OVS_CB(skb) = ovs_cb;
510 
511 	return 0;
512 }
513 
514 static struct nf_conntrack_expect *
515 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
516 		   u16 proto, const struct sk_buff *skb)
517 {
518 	struct nf_conntrack_tuple tuple;
519 
520 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
521 		return NULL;
522 	return __nf_ct_expect_find(net, zone, &tuple);
523 }
524 
525 /* This replicates logic from nf_conntrack_core.c that is not exported. */
526 static enum ip_conntrack_info
527 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
528 {
529 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
530 
531 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
532 		return IP_CT_ESTABLISHED_REPLY;
533 	/* Once we've had two way comms, always ESTABLISHED. */
534 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
535 		return IP_CT_ESTABLISHED;
536 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
537 		return IP_CT_RELATED;
538 	return IP_CT_NEW;
539 }
540 
541 /* Find an existing connection which this packet belongs to without
542  * re-attributing statistics or modifying the connection state.  This allows an
543  * skb->_nfct lost due to an upcall to be recovered during actions execution.
544  *
545  * Must be called with rcu_read_lock.
546  *
547  * On success, populates skb->_nfct and returns the connection.  Returns NULL
548  * if there is no existing entry.
549  */
550 static struct nf_conn *
551 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
552 		     u8 l3num, struct sk_buff *skb, bool natted)
553 {
554 	struct nf_conntrack_l3proto *l3proto;
555 	struct nf_conntrack_l4proto *l4proto;
556 	struct nf_conntrack_tuple tuple;
557 	struct nf_conntrack_tuple_hash *h;
558 	struct nf_conn *ct;
559 	unsigned int dataoff;
560 	u8 protonum;
561 
562 	l3proto = __nf_ct_l3proto_find(l3num);
563 	if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
564 				 &protonum) <= 0) {
565 		pr_debug("ovs_ct_find_existing: Can't get protonum\n");
566 		return NULL;
567 	}
568 	l4proto = __nf_ct_l4proto_find(l3num, protonum);
569 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
570 			     protonum, net, &tuple, l3proto, l4proto)) {
571 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
572 		return NULL;
573 	}
574 
575 	/* Must invert the tuple if skb has been transformed by NAT. */
576 	if (natted) {
577 		struct nf_conntrack_tuple inverse;
578 
579 		if (!nf_ct_invert_tuple(&inverse, &tuple, l3proto, l4proto)) {
580 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
581 			return NULL;
582 		}
583 		tuple = inverse;
584 	}
585 
586 	/* look for tuple match */
587 	h = nf_conntrack_find_get(net, zone, &tuple);
588 	if (!h)
589 		return NULL;   /* Not found. */
590 
591 	ct = nf_ct_tuplehash_to_ctrack(h);
592 
593 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
594 	 * select the other tuplehash to get the right 'ctinfo' bits for this
595 	 * packet.
596 	 */
597 	if (natted)
598 		h = &ct->tuplehash[!h->tuple.dst.dir];
599 
600 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
601 	return ct;
602 }
603 
604 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
605 static bool skb_nfct_cached(struct net *net,
606 			    const struct sw_flow_key *key,
607 			    const struct ovs_conntrack_info *info,
608 			    struct sk_buff *skb)
609 {
610 	enum ip_conntrack_info ctinfo;
611 	struct nf_conn *ct;
612 
613 	ct = nf_ct_get(skb, &ctinfo);
614 	/* If no ct, check if we have evidence that an existing conntrack entry
615 	 * might be found for this skb.  This happens when we lose a skb->_nfct
616 	 * due to an upcall.  If the connection was not confirmed, it is not
617 	 * cached and needs to be run through conntrack again.
618 	 */
619 	if (!ct && key->ct_state & OVS_CS_F_TRACKED &&
620 	    !(key->ct_state & OVS_CS_F_INVALID) &&
621 	    key->ct_zone == info->zone.id) {
622 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
623 					  !!(key->ct_state
624 					     & OVS_CS_F_NAT_MASK));
625 		if (ct)
626 			nf_ct_get(skb, &ctinfo);
627 	}
628 	if (!ct)
629 		return false;
630 	if (!net_eq(net, read_pnet(&ct->ct_net)))
631 		return false;
632 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
633 		return false;
634 	if (info->helper) {
635 		struct nf_conn_help *help;
636 
637 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
638 		if (help && rcu_access_pointer(help->helper) != info->helper)
639 			return false;
640 	}
641 	/* Force conntrack entry direction to the current packet? */
642 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
643 		/* Delete the conntrack entry if confirmed, else just release
644 		 * the reference.
645 		 */
646 		if (nf_ct_is_confirmed(ct))
647 			nf_ct_delete(ct, 0, 0);
648 
649 		nf_conntrack_put(&ct->ct_general);
650 		nf_ct_set(skb, NULL, 0);
651 		return false;
652 	}
653 
654 	return true;
655 }
656 
657 #ifdef CONFIG_NF_NAT_NEEDED
658 /* Modelled after nf_nat_ipv[46]_fn().
659  * range is only used for new, uninitialized NAT state.
660  * Returns either NF_ACCEPT or NF_DROP.
661  */
662 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
663 			      enum ip_conntrack_info ctinfo,
664 			      const struct nf_nat_range *range,
665 			      enum nf_nat_manip_type maniptype)
666 {
667 	int hooknum, nh_off, err = NF_ACCEPT;
668 
669 	nh_off = skb_network_offset(skb);
670 	skb_pull_rcsum(skb, nh_off);
671 
672 	/* See HOOK2MANIP(). */
673 	if (maniptype == NF_NAT_MANIP_SRC)
674 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
675 	else
676 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
677 
678 	switch (ctinfo) {
679 	case IP_CT_RELATED:
680 	case IP_CT_RELATED_REPLY:
681 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
682 		    skb->protocol == htons(ETH_P_IP) &&
683 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
684 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
685 							   hooknum))
686 				err = NF_DROP;
687 			goto push;
688 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
689 			   skb->protocol == htons(ETH_P_IPV6)) {
690 			__be16 frag_off;
691 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
692 			int hdrlen = ipv6_skip_exthdr(skb,
693 						      sizeof(struct ipv6hdr),
694 						      &nexthdr, &frag_off);
695 
696 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
697 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
698 								     ctinfo,
699 								     hooknum,
700 								     hdrlen))
701 					err = NF_DROP;
702 				goto push;
703 			}
704 		}
705 		/* Non-ICMP, fall thru to initialize if needed. */
706 	case IP_CT_NEW:
707 		/* Seen it before?  This can happen for loopback, retrans,
708 		 * or local packets.
709 		 */
710 		if (!nf_nat_initialized(ct, maniptype)) {
711 			/* Initialize according to the NAT action. */
712 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
713 				/* Action is set up to establish a new
714 				 * mapping.
715 				 */
716 				? nf_nat_setup_info(ct, range, maniptype)
717 				: nf_nat_alloc_null_binding(ct, hooknum);
718 			if (err != NF_ACCEPT)
719 				goto push;
720 		}
721 		break;
722 
723 	case IP_CT_ESTABLISHED:
724 	case IP_CT_ESTABLISHED_REPLY:
725 		break;
726 
727 	default:
728 		err = NF_DROP;
729 		goto push;
730 	}
731 
732 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
733 push:
734 	skb_push(skb, nh_off);
735 	skb_postpush_rcsum(skb, skb->data, nh_off);
736 
737 	return err;
738 }
739 
740 static void ovs_nat_update_key(struct sw_flow_key *key,
741 			       const struct sk_buff *skb,
742 			       enum nf_nat_manip_type maniptype)
743 {
744 	if (maniptype == NF_NAT_MANIP_SRC) {
745 		__be16 src;
746 
747 		key->ct_state |= OVS_CS_F_SRC_NAT;
748 		if (key->eth.type == htons(ETH_P_IP))
749 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
750 		else if (key->eth.type == htons(ETH_P_IPV6))
751 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
752 			       sizeof(key->ipv6.addr.src));
753 		else
754 			return;
755 
756 		if (key->ip.proto == IPPROTO_UDP)
757 			src = udp_hdr(skb)->source;
758 		else if (key->ip.proto == IPPROTO_TCP)
759 			src = tcp_hdr(skb)->source;
760 		else if (key->ip.proto == IPPROTO_SCTP)
761 			src = sctp_hdr(skb)->source;
762 		else
763 			return;
764 
765 		key->tp.src = src;
766 	} else {
767 		__be16 dst;
768 
769 		key->ct_state |= OVS_CS_F_DST_NAT;
770 		if (key->eth.type == htons(ETH_P_IP))
771 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
772 		else if (key->eth.type == htons(ETH_P_IPV6))
773 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
774 			       sizeof(key->ipv6.addr.dst));
775 		else
776 			return;
777 
778 		if (key->ip.proto == IPPROTO_UDP)
779 			dst = udp_hdr(skb)->dest;
780 		else if (key->ip.proto == IPPROTO_TCP)
781 			dst = tcp_hdr(skb)->dest;
782 		else if (key->ip.proto == IPPROTO_SCTP)
783 			dst = sctp_hdr(skb)->dest;
784 		else
785 			return;
786 
787 		key->tp.dst = dst;
788 	}
789 }
790 
791 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
792 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
793 		      const struct ovs_conntrack_info *info,
794 		      struct sk_buff *skb, struct nf_conn *ct,
795 		      enum ip_conntrack_info ctinfo)
796 {
797 	enum nf_nat_manip_type maniptype;
798 	int err;
799 
800 	/* Add NAT extension if not confirmed yet. */
801 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
802 		return NF_ACCEPT;   /* Can't NAT. */
803 
804 	/* Determine NAT type.
805 	 * Check if the NAT type can be deduced from the tracked connection.
806 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
807 	 * when committing.
808 	 */
809 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
810 	    ct->status & IPS_NAT_MASK &&
811 	    (ctinfo != IP_CT_RELATED || info->commit)) {
812 		/* NAT an established or related connection like before. */
813 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
814 			/* This is the REPLY direction for a connection
815 			 * for which NAT was applied in the forward
816 			 * direction.  Do the reverse NAT.
817 			 */
818 			maniptype = ct->status & IPS_SRC_NAT
819 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
820 		else
821 			maniptype = ct->status & IPS_SRC_NAT
822 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
823 	} else if (info->nat & OVS_CT_SRC_NAT) {
824 		maniptype = NF_NAT_MANIP_SRC;
825 	} else if (info->nat & OVS_CT_DST_NAT) {
826 		maniptype = NF_NAT_MANIP_DST;
827 	} else {
828 		return NF_ACCEPT; /* Connection is not NATed. */
829 	}
830 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
831 
832 	/* Mark NAT done if successful and update the flow key. */
833 	if (err == NF_ACCEPT)
834 		ovs_nat_update_key(key, skb, maniptype);
835 
836 	return err;
837 }
838 #else /* !CONFIG_NF_NAT_NEEDED */
839 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
840 		      const struct ovs_conntrack_info *info,
841 		      struct sk_buff *skb, struct nf_conn *ct,
842 		      enum ip_conntrack_info ctinfo)
843 {
844 	return NF_ACCEPT;
845 }
846 #endif
847 
848 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
849  * not done already.  Update key with new CT state after passing the packet
850  * through conntrack.
851  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
852  * set to NULL and 0 will be returned.
853  */
854 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
855 			   const struct ovs_conntrack_info *info,
856 			   struct sk_buff *skb)
857 {
858 	/* If we are recirculating packets to match on conntrack fields and
859 	 * committing with a separate conntrack action,  then we don't need to
860 	 * actually run the packet through conntrack twice unless it's for a
861 	 * different zone.
862 	 */
863 	bool cached = skb_nfct_cached(net, key, info, skb);
864 	enum ip_conntrack_info ctinfo;
865 	struct nf_conn *ct;
866 
867 	if (!cached) {
868 		struct nf_conn *tmpl = info->ct;
869 		int err;
870 
871 		/* Associate skb with specified zone. */
872 		if (tmpl) {
873 			if (skb_nfct(skb))
874 				nf_conntrack_put(skb_nfct(skb));
875 			nf_conntrack_get(&tmpl->ct_general);
876 			nf_ct_set(skb, tmpl, IP_CT_NEW);
877 		}
878 
879 		err = nf_conntrack_in(net, info->family,
880 				      NF_INET_PRE_ROUTING, skb);
881 		if (err != NF_ACCEPT)
882 			return -ENOENT;
883 
884 		/* Clear CT state NAT flags to mark that we have not yet done
885 		 * NAT after the nf_conntrack_in() call.  We can actually clear
886 		 * the whole state, as it will be re-initialized below.
887 		 */
888 		key->ct_state = 0;
889 
890 		/* Update the key, but keep the NAT flags. */
891 		ovs_ct_update_key(skb, info, key, true, true);
892 	}
893 
894 	ct = nf_ct_get(skb, &ctinfo);
895 	if (ct) {
896 		/* Packets starting a new connection must be NATted before the
897 		 * helper, so that the helper knows about the NAT.  We enforce
898 		 * this by delaying both NAT and helper calls for unconfirmed
899 		 * connections until the committing CT action.  For later
900 		 * packets NAT and Helper may be called in either order.
901 		 *
902 		 * NAT will be done only if the CT action has NAT, and only
903 		 * once per packet (per zone), as guarded by the NAT bits in
904 		 * the key->ct_state.
905 		 */
906 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
907 		    (nf_ct_is_confirmed(ct) || info->commit) &&
908 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
909 			return -EINVAL;
910 		}
911 
912 		/* Userspace may decide to perform a ct lookup without a helper
913 		 * specified followed by a (recirculate and) commit with one.
914 		 * Therefore, for unconfirmed connections which we will commit,
915 		 * we need to attach the helper here.
916 		 */
917 		if (!nf_ct_is_confirmed(ct) && info->commit &&
918 		    info->helper && !nfct_help(ct)) {
919 			int err = __nf_ct_try_assign_helper(ct, info->ct,
920 							    GFP_ATOMIC);
921 			if (err)
922 				return err;
923 		}
924 
925 		/* Call the helper only if:
926 		 * - nf_conntrack_in() was executed above ("!cached") for a
927 		 *   confirmed connection, or
928 		 * - When committing an unconfirmed connection.
929 		 */
930 		if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
931 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
932 			return -EINVAL;
933 		}
934 	}
935 
936 	return 0;
937 }
938 
939 /* Lookup connection and read fields into key. */
940 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
941 			 const struct ovs_conntrack_info *info,
942 			 struct sk_buff *skb)
943 {
944 	struct nf_conntrack_expect *exp;
945 
946 	/* If we pass an expected packet through nf_conntrack_in() the
947 	 * expectation is typically removed, but the packet could still be
948 	 * lost in upcall processing.  To prevent this from happening we
949 	 * perform an explicit expectation lookup.  Expected connections are
950 	 * always new, and will be passed through conntrack only when they are
951 	 * committed, as it is OK to remove the expectation at that time.
952 	 */
953 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
954 	if (exp) {
955 		u8 state;
956 
957 		/* NOTE: New connections are NATted and Helped only when
958 		 * committed, so we are not calling into NAT here.
959 		 */
960 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
961 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
962 	} else {
963 		struct nf_conn *ct;
964 		int err;
965 
966 		err = __ovs_ct_lookup(net, key, info, skb);
967 		if (err)
968 			return err;
969 
970 		ct = (struct nf_conn *)skb_nfct(skb);
971 		if (ct)
972 			nf_ct_deliver_cached_events(ct);
973 	}
974 
975 	return 0;
976 }
977 
978 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
979 {
980 	size_t i;
981 
982 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
983 		if (labels->ct_labels_32[i])
984 			return true;
985 
986 	return false;
987 }
988 
989 /* Lookup connection and confirm if unconfirmed. */
990 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
991 			 const struct ovs_conntrack_info *info,
992 			 struct sk_buff *skb)
993 {
994 	enum ip_conntrack_info ctinfo;
995 	struct nf_conn *ct;
996 	int err;
997 
998 	err = __ovs_ct_lookup(net, key, info, skb);
999 	if (err)
1000 		return err;
1001 
1002 	/* The connection could be invalid, in which case this is a no-op.*/
1003 	ct = nf_ct_get(skb, &ctinfo);
1004 	if (!ct)
1005 		return 0;
1006 
1007 	/* Set the conntrack event mask if given.  NEW and DELETE events have
1008 	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1009 	 * typically would receive many kinds of updates.  Setting the event
1010 	 * mask allows those events to be filtered.  The set event mask will
1011 	 * remain in effect for the lifetime of the connection unless changed
1012 	 * by a further CT action with both the commit flag and the eventmask
1013 	 * option. */
1014 	if (info->have_eventmask) {
1015 		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1016 
1017 		if (cache)
1018 			cache->ctmask = info->eventmask;
1019 	}
1020 
1021 	/* Apply changes before confirming the connection so that the initial
1022 	 * conntrack NEW netlink event carries the values given in the CT
1023 	 * action.
1024 	 */
1025 	if (info->mark.mask) {
1026 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1027 				      info->mark.mask);
1028 		if (err)
1029 			return err;
1030 	}
1031 	if (!nf_ct_is_confirmed(ct)) {
1032 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1033 					 &info->labels.mask);
1034 		if (err)
1035 			return err;
1036 	} else if (labels_nonzero(&info->labels.mask)) {
1037 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1038 					&info->labels.mask);
1039 		if (err)
1040 			return err;
1041 	}
1042 	/* This will take care of sending queued events even if the connection
1043 	 * is already confirmed.
1044 	 */
1045 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1046 		return -EINVAL;
1047 
1048 	return 0;
1049 }
1050 
1051 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1052  * value if 'skb' is freed.
1053  */
1054 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1055 		   struct sw_flow_key *key,
1056 		   const struct ovs_conntrack_info *info)
1057 {
1058 	int nh_ofs;
1059 	int err;
1060 
1061 	/* The conntrack module expects to be working at L3. */
1062 	nh_ofs = skb_network_offset(skb);
1063 	skb_pull_rcsum(skb, nh_ofs);
1064 
1065 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1066 		err = handle_fragments(net, key, info->zone.id, skb);
1067 		if (err)
1068 			return err;
1069 	}
1070 
1071 	if (info->commit)
1072 		err = ovs_ct_commit(net, key, info, skb);
1073 	else
1074 		err = ovs_ct_lookup(net, key, info, skb);
1075 
1076 	skb_push(skb, nh_ofs);
1077 	skb_postpush_rcsum(skb, skb->data, nh_ofs);
1078 	if (err)
1079 		kfree_skb(skb);
1080 	return err;
1081 }
1082 
1083 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1084 			     const struct sw_flow_key *key, bool log)
1085 {
1086 	struct nf_conntrack_helper *helper;
1087 	struct nf_conn_help *help;
1088 
1089 	helper = nf_conntrack_helper_try_module_get(name, info->family,
1090 						    key->ip.proto);
1091 	if (!helper) {
1092 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1093 		return -EINVAL;
1094 	}
1095 
1096 	help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
1097 	if (!help) {
1098 		module_put(helper->me);
1099 		return -ENOMEM;
1100 	}
1101 
1102 	rcu_assign_pointer(help->helper, helper);
1103 	info->helper = helper;
1104 	return 0;
1105 }
1106 
1107 #ifdef CONFIG_NF_NAT_NEEDED
1108 static int parse_nat(const struct nlattr *attr,
1109 		     struct ovs_conntrack_info *info, bool log)
1110 {
1111 	struct nlattr *a;
1112 	int rem;
1113 	bool have_ip_max = false;
1114 	bool have_proto_max = false;
1115 	bool ip_vers = (info->family == NFPROTO_IPV6);
1116 
1117 	nla_for_each_nested(a, attr, rem) {
1118 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1119 			[OVS_NAT_ATTR_SRC] = {0, 0},
1120 			[OVS_NAT_ATTR_DST] = {0, 0},
1121 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1122 						 sizeof(struct in6_addr)},
1123 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1124 						 sizeof(struct in6_addr)},
1125 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1126 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1127 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1128 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1129 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1130 		};
1131 		int type = nla_type(a);
1132 
1133 		if (type > OVS_NAT_ATTR_MAX) {
1134 			OVS_NLERR(log,
1135 				  "Unknown NAT attribute (type=%d, max=%d).\n",
1136 				  type, OVS_NAT_ATTR_MAX);
1137 			return -EINVAL;
1138 		}
1139 
1140 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1141 			OVS_NLERR(log,
1142 				  "NAT attribute type %d has unexpected length (%d != %d).\n",
1143 				  type, nla_len(a),
1144 				  ovs_nat_attr_lens[type][ip_vers]);
1145 			return -EINVAL;
1146 		}
1147 
1148 		switch (type) {
1149 		case OVS_NAT_ATTR_SRC:
1150 		case OVS_NAT_ATTR_DST:
1151 			if (info->nat) {
1152 				OVS_NLERR(log,
1153 					  "Only one type of NAT may be specified.\n"
1154 					  );
1155 				return -ERANGE;
1156 			}
1157 			info->nat |= OVS_CT_NAT;
1158 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1159 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1160 			break;
1161 
1162 		case OVS_NAT_ATTR_IP_MIN:
1163 			nla_memcpy(&info->range.min_addr, a,
1164 				   sizeof(info->range.min_addr));
1165 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1166 			break;
1167 
1168 		case OVS_NAT_ATTR_IP_MAX:
1169 			have_ip_max = true;
1170 			nla_memcpy(&info->range.max_addr, a,
1171 				   sizeof(info->range.max_addr));
1172 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1173 			break;
1174 
1175 		case OVS_NAT_ATTR_PROTO_MIN:
1176 			info->range.min_proto.all = htons(nla_get_u16(a));
1177 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1178 			break;
1179 
1180 		case OVS_NAT_ATTR_PROTO_MAX:
1181 			have_proto_max = true;
1182 			info->range.max_proto.all = htons(nla_get_u16(a));
1183 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1184 			break;
1185 
1186 		case OVS_NAT_ATTR_PERSISTENT:
1187 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1188 			break;
1189 
1190 		case OVS_NAT_ATTR_PROTO_HASH:
1191 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1192 			break;
1193 
1194 		case OVS_NAT_ATTR_PROTO_RANDOM:
1195 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1196 			break;
1197 
1198 		default:
1199 			OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1200 			return -EINVAL;
1201 		}
1202 	}
1203 
1204 	if (rem > 0) {
1205 		OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1206 		return -EINVAL;
1207 	}
1208 	if (!info->nat) {
1209 		/* Do not allow flags if no type is given. */
1210 		if (info->range.flags) {
1211 			OVS_NLERR(log,
1212 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1213 				  );
1214 			return -EINVAL;
1215 		}
1216 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1217 	} else if (!info->commit) {
1218 		OVS_NLERR(log,
1219 			  "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1220 			  );
1221 		return -EINVAL;
1222 	}
1223 	/* Allow missing IP_MAX. */
1224 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1225 		memcpy(&info->range.max_addr, &info->range.min_addr,
1226 		       sizeof(info->range.max_addr));
1227 	}
1228 	/* Allow missing PROTO_MAX. */
1229 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1230 	    !have_proto_max) {
1231 		info->range.max_proto.all = info->range.min_proto.all;
1232 	}
1233 	return 0;
1234 }
1235 #endif
1236 
1237 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1238 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1239 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1240 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1241 				    .maxlen = sizeof(u16) },
1242 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1243 				    .maxlen = sizeof(struct md_mark) },
1244 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1245 				    .maxlen = sizeof(struct md_labels) },
1246 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1247 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1248 #ifdef CONFIG_NF_NAT_NEEDED
1249 	/* NAT length is checked when parsing the nested attributes. */
1250 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1251 #endif
1252 	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1253 				    .maxlen = sizeof(u32) },
1254 };
1255 
1256 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1257 		    const char **helper, bool log)
1258 {
1259 	struct nlattr *a;
1260 	int rem;
1261 
1262 	nla_for_each_nested(a, attr, rem) {
1263 		int type = nla_type(a);
1264 		int maxlen = ovs_ct_attr_lens[type].maxlen;
1265 		int minlen = ovs_ct_attr_lens[type].minlen;
1266 
1267 		if (type > OVS_CT_ATTR_MAX) {
1268 			OVS_NLERR(log,
1269 				  "Unknown conntrack attr (type=%d, max=%d)",
1270 				  type, OVS_CT_ATTR_MAX);
1271 			return -EINVAL;
1272 		}
1273 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1274 			OVS_NLERR(log,
1275 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1276 				  type, nla_len(a), maxlen);
1277 			return -EINVAL;
1278 		}
1279 
1280 		switch (type) {
1281 		case OVS_CT_ATTR_FORCE_COMMIT:
1282 			info->force = true;
1283 			/* fall through. */
1284 		case OVS_CT_ATTR_COMMIT:
1285 			info->commit = true;
1286 			break;
1287 #ifdef CONFIG_NF_CONNTRACK_ZONES
1288 		case OVS_CT_ATTR_ZONE:
1289 			info->zone.id = nla_get_u16(a);
1290 			break;
1291 #endif
1292 #ifdef CONFIG_NF_CONNTRACK_MARK
1293 		case OVS_CT_ATTR_MARK: {
1294 			struct md_mark *mark = nla_data(a);
1295 
1296 			if (!mark->mask) {
1297 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1298 				return -EINVAL;
1299 			}
1300 			info->mark = *mark;
1301 			break;
1302 		}
1303 #endif
1304 #ifdef CONFIG_NF_CONNTRACK_LABELS
1305 		case OVS_CT_ATTR_LABELS: {
1306 			struct md_labels *labels = nla_data(a);
1307 
1308 			if (!labels_nonzero(&labels->mask)) {
1309 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1310 				return -EINVAL;
1311 			}
1312 			info->labels = *labels;
1313 			break;
1314 		}
1315 #endif
1316 		case OVS_CT_ATTR_HELPER:
1317 			*helper = nla_data(a);
1318 			if (!memchr(*helper, '\0', nla_len(a))) {
1319 				OVS_NLERR(log, "Invalid conntrack helper");
1320 				return -EINVAL;
1321 			}
1322 			break;
1323 #ifdef CONFIG_NF_NAT_NEEDED
1324 		case OVS_CT_ATTR_NAT: {
1325 			int err = parse_nat(a, info, log);
1326 
1327 			if (err)
1328 				return err;
1329 			break;
1330 		}
1331 #endif
1332 		case OVS_CT_ATTR_EVENTMASK:
1333 			info->have_eventmask = true;
1334 			info->eventmask = nla_get_u32(a);
1335 			break;
1336 
1337 		default:
1338 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1339 				  type);
1340 			return -EINVAL;
1341 		}
1342 	}
1343 
1344 #ifdef CONFIG_NF_CONNTRACK_MARK
1345 	if (!info->commit && info->mark.mask) {
1346 		OVS_NLERR(log,
1347 			  "Setting conntrack mark requires 'commit' flag.");
1348 		return -EINVAL;
1349 	}
1350 #endif
1351 #ifdef CONFIG_NF_CONNTRACK_LABELS
1352 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1353 		OVS_NLERR(log,
1354 			  "Setting conntrack labels requires 'commit' flag.");
1355 		return -EINVAL;
1356 	}
1357 #endif
1358 	if (rem > 0) {
1359 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1360 		return -EINVAL;
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1367 {
1368 	if (attr == OVS_KEY_ATTR_CT_STATE)
1369 		return true;
1370 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1371 	    attr == OVS_KEY_ATTR_CT_ZONE)
1372 		return true;
1373 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1374 	    attr == OVS_KEY_ATTR_CT_MARK)
1375 		return true;
1376 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1377 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1378 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1379 
1380 		return ovs_net->xt_label;
1381 	}
1382 
1383 	return false;
1384 }
1385 
1386 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1387 		       const struct sw_flow_key *key,
1388 		       struct sw_flow_actions **sfa,  bool log)
1389 {
1390 	struct ovs_conntrack_info ct_info;
1391 	const char *helper = NULL;
1392 	u16 family;
1393 	int err;
1394 
1395 	family = key_to_nfproto(key);
1396 	if (family == NFPROTO_UNSPEC) {
1397 		OVS_NLERR(log, "ct family unspecified");
1398 		return -EINVAL;
1399 	}
1400 
1401 	memset(&ct_info, 0, sizeof(ct_info));
1402 	ct_info.family = family;
1403 
1404 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1405 			NF_CT_DEFAULT_ZONE_DIR, 0);
1406 
1407 	err = parse_ct(attr, &ct_info, &helper, log);
1408 	if (err)
1409 		return err;
1410 
1411 	/* Set up template for tracking connections in specific zones. */
1412 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1413 	if (!ct_info.ct) {
1414 		OVS_NLERR(log, "Failed to allocate conntrack template");
1415 		return -ENOMEM;
1416 	}
1417 
1418 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1419 	nf_conntrack_get(&ct_info.ct->ct_general);
1420 
1421 	if (helper) {
1422 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1423 		if (err)
1424 			goto err_free_ct;
1425 	}
1426 
1427 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1428 				 sizeof(ct_info), log);
1429 	if (err)
1430 		goto err_free_ct;
1431 
1432 	return 0;
1433 err_free_ct:
1434 	__ovs_ct_free_action(&ct_info);
1435 	return err;
1436 }
1437 
1438 #ifdef CONFIG_NF_NAT_NEEDED
1439 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1440 			       struct sk_buff *skb)
1441 {
1442 	struct nlattr *start;
1443 
1444 	start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1445 	if (!start)
1446 		return false;
1447 
1448 	if (info->nat & OVS_CT_SRC_NAT) {
1449 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1450 			return false;
1451 	} else if (info->nat & OVS_CT_DST_NAT) {
1452 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1453 			return false;
1454 	} else {
1455 		goto out;
1456 	}
1457 
1458 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1459 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1460 		    info->family == NFPROTO_IPV4) {
1461 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1462 					    info->range.min_addr.ip) ||
1463 			    (info->range.max_addr.ip
1464 			     != info->range.min_addr.ip &&
1465 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1466 					      info->range.max_addr.ip))))
1467 				return false;
1468 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1469 			   info->family == NFPROTO_IPV6) {
1470 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1471 					     &info->range.min_addr.in6) ||
1472 			    (memcmp(&info->range.max_addr.in6,
1473 				    &info->range.min_addr.in6,
1474 				    sizeof(info->range.max_addr.in6)) &&
1475 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1476 					       &info->range.max_addr.in6))))
1477 				return false;
1478 		} else {
1479 			return false;
1480 		}
1481 	}
1482 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1483 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1484 			 ntohs(info->range.min_proto.all)) ||
1485 	     (info->range.max_proto.all != info->range.min_proto.all &&
1486 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1487 			  ntohs(info->range.max_proto.all)))))
1488 		return false;
1489 
1490 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1491 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1492 		return false;
1493 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1494 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1495 		return false;
1496 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1497 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1498 		return false;
1499 out:
1500 	nla_nest_end(skb, start);
1501 
1502 	return true;
1503 }
1504 #endif
1505 
1506 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1507 			  struct sk_buff *skb)
1508 {
1509 	struct nlattr *start;
1510 
1511 	start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1512 	if (!start)
1513 		return -EMSGSIZE;
1514 
1515 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1516 					    ? OVS_CT_ATTR_FORCE_COMMIT
1517 					    : OVS_CT_ATTR_COMMIT))
1518 		return -EMSGSIZE;
1519 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1520 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1521 		return -EMSGSIZE;
1522 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1523 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1524 		    &ct_info->mark))
1525 		return -EMSGSIZE;
1526 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1527 	    labels_nonzero(&ct_info->labels.mask) &&
1528 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1529 		    &ct_info->labels))
1530 		return -EMSGSIZE;
1531 	if (ct_info->helper) {
1532 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1533 				   ct_info->helper->name))
1534 			return -EMSGSIZE;
1535 	}
1536 	if (ct_info->have_eventmask &&
1537 	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1538 		return -EMSGSIZE;
1539 
1540 #ifdef CONFIG_NF_NAT_NEEDED
1541 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1542 		return -EMSGSIZE;
1543 #endif
1544 	nla_nest_end(skb, start);
1545 
1546 	return 0;
1547 }
1548 
1549 void ovs_ct_free_action(const struct nlattr *a)
1550 {
1551 	struct ovs_conntrack_info *ct_info = nla_data(a);
1552 
1553 	__ovs_ct_free_action(ct_info);
1554 }
1555 
1556 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1557 {
1558 	if (ct_info->helper)
1559 		module_put(ct_info->helper->me);
1560 	if (ct_info->ct)
1561 		nf_ct_tmpl_free(ct_info->ct);
1562 }
1563 
1564 void ovs_ct_init(struct net *net)
1565 {
1566 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1567 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1568 
1569 	if (nf_connlabels_get(net, n_bits - 1)) {
1570 		ovs_net->xt_label = false;
1571 		OVS_NLERR(true, "Failed to set connlabel length");
1572 	} else {
1573 		ovs_net->xt_label = true;
1574 	}
1575 }
1576 
1577 void ovs_ct_exit(struct net *net)
1578 {
1579 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1580 
1581 	if (ovs_net->xt_label)
1582 		nf_connlabels_put(net);
1583 }
1584