1 /* 2 * Copyright (c) 2015 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/openvswitch.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/sctp.h> 19 #include <net/ip.h> 20 #include <net/netfilter/nf_conntrack_core.h> 21 #include <net/netfilter/nf_conntrack_helper.h> 22 #include <net/netfilter/nf_conntrack_labels.h> 23 #include <net/netfilter/nf_conntrack_seqadj.h> 24 #include <net/netfilter/nf_conntrack_zones.h> 25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 26 27 #ifdef CONFIG_NF_NAT_NEEDED 28 #include <linux/netfilter/nf_nat.h> 29 #include <net/netfilter/nf_nat_core.h> 30 #include <net/netfilter/nf_nat_l3proto.h> 31 #endif 32 33 #include "datapath.h" 34 #include "conntrack.h" 35 #include "flow.h" 36 #include "flow_netlink.h" 37 38 struct ovs_ct_len_tbl { 39 int maxlen; 40 int minlen; 41 }; 42 43 /* Metadata mark for masked write to conntrack mark */ 44 struct md_mark { 45 u32 value; 46 u32 mask; 47 }; 48 49 /* Metadata label for masked write to conntrack label. */ 50 struct md_labels { 51 struct ovs_key_ct_labels value; 52 struct ovs_key_ct_labels mask; 53 }; 54 55 enum ovs_ct_nat { 56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 59 }; 60 61 /* Conntrack action context for execution. */ 62 struct ovs_conntrack_info { 63 struct nf_conntrack_helper *helper; 64 struct nf_conntrack_zone zone; 65 struct nf_conn *ct; 66 u8 commit : 1; 67 u8 nat : 3; /* enum ovs_ct_nat */ 68 u8 force : 1; 69 u8 have_eventmask : 1; 70 u16 family; 71 u32 eventmask; /* Mask of 1 << IPCT_*. */ 72 struct md_mark mark; 73 struct md_labels labels; 74 #ifdef CONFIG_NF_NAT_NEEDED 75 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */ 76 #endif 77 }; 78 79 static bool labels_nonzero(const struct ovs_key_ct_labels *labels); 80 81 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 82 83 static u16 key_to_nfproto(const struct sw_flow_key *key) 84 { 85 switch (ntohs(key->eth.type)) { 86 case ETH_P_IP: 87 return NFPROTO_IPV4; 88 case ETH_P_IPV6: 89 return NFPROTO_IPV6; 90 default: 91 return NFPROTO_UNSPEC; 92 } 93 } 94 95 /* Map SKB connection state into the values used by flow definition. */ 96 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 97 { 98 u8 ct_state = OVS_CS_F_TRACKED; 99 100 switch (ctinfo) { 101 case IP_CT_ESTABLISHED_REPLY: 102 case IP_CT_RELATED_REPLY: 103 ct_state |= OVS_CS_F_REPLY_DIR; 104 break; 105 default: 106 break; 107 } 108 109 switch (ctinfo) { 110 case IP_CT_ESTABLISHED: 111 case IP_CT_ESTABLISHED_REPLY: 112 ct_state |= OVS_CS_F_ESTABLISHED; 113 break; 114 case IP_CT_RELATED: 115 case IP_CT_RELATED_REPLY: 116 ct_state |= OVS_CS_F_RELATED; 117 break; 118 case IP_CT_NEW: 119 ct_state |= OVS_CS_F_NEW; 120 break; 121 default: 122 break; 123 } 124 125 return ct_state; 126 } 127 128 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 129 { 130 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 131 return ct ? ct->mark : 0; 132 #else 133 return 0; 134 #endif 135 } 136 137 /* Guard against conntrack labels max size shrinking below 128 bits. */ 138 #if NF_CT_LABELS_MAX_SIZE < 16 139 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes 140 #endif 141 142 static void ovs_ct_get_labels(const struct nf_conn *ct, 143 struct ovs_key_ct_labels *labels) 144 { 145 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 146 147 if (cl) 148 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN); 149 else 150 memset(labels, 0, OVS_CT_LABELS_LEN); 151 } 152 153 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key, 154 const struct nf_conntrack_tuple *orig, 155 u8 icmp_proto) 156 { 157 key->ct_orig_proto = orig->dst.protonum; 158 if (orig->dst.protonum == icmp_proto) { 159 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type); 160 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code); 161 } else { 162 key->ct.orig_tp.src = orig->src.u.all; 163 key->ct.orig_tp.dst = orig->dst.u.all; 164 } 165 } 166 167 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 168 const struct nf_conntrack_zone *zone, 169 const struct nf_conn *ct) 170 { 171 key->ct_state = state; 172 key->ct_zone = zone->id; 173 key->ct.mark = ovs_ct_get_mark(ct); 174 ovs_ct_get_labels(ct, &key->ct.labels); 175 176 if (ct) { 177 const struct nf_conntrack_tuple *orig; 178 179 /* Use the master if we have one. */ 180 if (ct->master) 181 ct = ct->master; 182 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 183 184 /* IP version must match with the master connection. */ 185 if (key->eth.type == htons(ETH_P_IP) && 186 nf_ct_l3num(ct) == NFPROTO_IPV4) { 187 key->ipv4.ct_orig.src = orig->src.u3.ip; 188 key->ipv4.ct_orig.dst = orig->dst.u3.ip; 189 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP); 190 return; 191 } else if (key->eth.type == htons(ETH_P_IPV6) && 192 !sw_flow_key_is_nd(key) && 193 nf_ct_l3num(ct) == NFPROTO_IPV6) { 194 key->ipv6.ct_orig.src = orig->src.u3.in6; 195 key->ipv6.ct_orig.dst = orig->dst.u3.in6; 196 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP); 197 return; 198 } 199 } 200 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack 201 * original direction key fields. 202 */ 203 key->ct_orig_proto = 0; 204 } 205 206 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has 207 * previously sent the packet to conntrack via the ct action. If 208 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 209 * initialized from the connection status. 210 */ 211 static void ovs_ct_update_key(const struct sk_buff *skb, 212 const struct ovs_conntrack_info *info, 213 struct sw_flow_key *key, bool post_ct, 214 bool keep_nat_flags) 215 { 216 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 217 enum ip_conntrack_info ctinfo; 218 struct nf_conn *ct; 219 u8 state = 0; 220 221 ct = nf_ct_get(skb, &ctinfo); 222 if (ct) { 223 state = ovs_ct_get_state(ctinfo); 224 /* All unconfirmed entries are NEW connections. */ 225 if (!nf_ct_is_confirmed(ct)) 226 state |= OVS_CS_F_NEW; 227 /* OVS persists the related flag for the duration of the 228 * connection. 229 */ 230 if (ct->master) 231 state |= OVS_CS_F_RELATED; 232 if (keep_nat_flags) { 233 state |= key->ct_state & OVS_CS_F_NAT_MASK; 234 } else { 235 if (ct->status & IPS_SRC_NAT) 236 state |= OVS_CS_F_SRC_NAT; 237 if (ct->status & IPS_DST_NAT) 238 state |= OVS_CS_F_DST_NAT; 239 } 240 zone = nf_ct_zone(ct); 241 } else if (post_ct) { 242 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 243 if (info) 244 zone = &info->zone; 245 } 246 __ovs_ct_update_key(key, state, zone, ct); 247 } 248 249 /* This is called to initialize CT key fields possibly coming in from the local 250 * stack. 251 */ 252 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 253 { 254 ovs_ct_update_key(skb, NULL, key, false, false); 255 } 256 257 #define IN6_ADDR_INITIALIZER(ADDR) \ 258 { (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \ 259 (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] } 260 261 int ovs_ct_put_key(const struct sw_flow_key *swkey, 262 const struct sw_flow_key *output, struct sk_buff *skb) 263 { 264 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state)) 265 return -EMSGSIZE; 266 267 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 268 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone)) 269 return -EMSGSIZE; 270 271 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 272 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark)) 273 return -EMSGSIZE; 274 275 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 276 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels), 277 &output->ct.labels)) 278 return -EMSGSIZE; 279 280 if (swkey->ct_orig_proto) { 281 if (swkey->eth.type == htons(ETH_P_IP)) { 282 struct ovs_key_ct_tuple_ipv4 orig = { 283 output->ipv4.ct_orig.src, 284 output->ipv4.ct_orig.dst, 285 output->ct.orig_tp.src, 286 output->ct.orig_tp.dst, 287 output->ct_orig_proto, 288 }; 289 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4, 290 sizeof(orig), &orig)) 291 return -EMSGSIZE; 292 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 293 struct ovs_key_ct_tuple_ipv6 orig = { 294 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src), 295 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst), 296 output->ct.orig_tp.src, 297 output->ct.orig_tp.dst, 298 output->ct_orig_proto, 299 }; 300 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6, 301 sizeof(orig), &orig)) 302 return -EMSGSIZE; 303 } 304 } 305 306 return 0; 307 } 308 309 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key, 310 u32 ct_mark, u32 mask) 311 { 312 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 313 u32 new_mark; 314 315 new_mark = ct_mark | (ct->mark & ~(mask)); 316 if (ct->mark != new_mark) { 317 ct->mark = new_mark; 318 if (nf_ct_is_confirmed(ct)) 319 nf_conntrack_event_cache(IPCT_MARK, ct); 320 key->ct.mark = new_mark; 321 } 322 323 return 0; 324 #else 325 return -ENOTSUPP; 326 #endif 327 } 328 329 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct) 330 { 331 struct nf_conn_labels *cl; 332 333 cl = nf_ct_labels_find(ct); 334 if (!cl) { 335 nf_ct_labels_ext_add(ct); 336 cl = nf_ct_labels_find(ct); 337 } 338 339 return cl; 340 } 341 342 /* Initialize labels for a new, yet to be committed conntrack entry. Note that 343 * since the new connection is not yet confirmed, and thus no-one else has 344 * access to it's labels, we simply write them over. 345 */ 346 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key, 347 const struct ovs_key_ct_labels *labels, 348 const struct ovs_key_ct_labels *mask) 349 { 350 struct nf_conn_labels *cl, *master_cl; 351 bool have_mask = labels_nonzero(mask); 352 353 /* Inherit master's labels to the related connection? */ 354 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL; 355 356 if (!master_cl && !have_mask) 357 return 0; /* Nothing to do. */ 358 359 cl = ovs_ct_get_conn_labels(ct); 360 if (!cl) 361 return -ENOSPC; 362 363 /* Inherit the master's labels, if any. */ 364 if (master_cl) 365 *cl = *master_cl; 366 367 if (have_mask) { 368 u32 *dst = (u32 *)cl->bits; 369 int i; 370 371 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 372 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) | 373 (labels->ct_labels_32[i] 374 & mask->ct_labels_32[i]); 375 } 376 377 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the 378 * IPCT_LABEL bit is set in the event cache. 379 */ 380 nf_conntrack_event_cache(IPCT_LABEL, ct); 381 382 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 383 384 return 0; 385 } 386 387 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key, 388 const struct ovs_key_ct_labels *labels, 389 const struct ovs_key_ct_labels *mask) 390 { 391 struct nf_conn_labels *cl; 392 int err; 393 394 cl = ovs_ct_get_conn_labels(ct); 395 if (!cl) 396 return -ENOSPC; 397 398 err = nf_connlabels_replace(ct, labels->ct_labels_32, 399 mask->ct_labels_32, 400 OVS_CT_LABELS_LEN_32); 401 if (err) 402 return err; 403 404 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 405 406 return 0; 407 } 408 409 /* 'skb' should already be pulled to nh_ofs. */ 410 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 411 { 412 const struct nf_conntrack_helper *helper; 413 const struct nf_conn_help *help; 414 enum ip_conntrack_info ctinfo; 415 unsigned int protoff; 416 struct nf_conn *ct; 417 int err; 418 419 ct = nf_ct_get(skb, &ctinfo); 420 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 421 return NF_ACCEPT; 422 423 help = nfct_help(ct); 424 if (!help) 425 return NF_ACCEPT; 426 427 helper = rcu_dereference(help->helper); 428 if (!helper) 429 return NF_ACCEPT; 430 431 switch (proto) { 432 case NFPROTO_IPV4: 433 protoff = ip_hdrlen(skb); 434 break; 435 case NFPROTO_IPV6: { 436 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 437 __be16 frag_off; 438 int ofs; 439 440 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 441 &frag_off); 442 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 443 pr_debug("proto header not found\n"); 444 return NF_ACCEPT; 445 } 446 protoff = ofs; 447 break; 448 } 449 default: 450 WARN_ONCE(1, "helper invoked on non-IP family!"); 451 return NF_DROP; 452 } 453 454 err = helper->help(skb, protoff, ct, ctinfo); 455 if (err != NF_ACCEPT) 456 return err; 457 458 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 459 * FTP with NAT) adusting the TCP payload size when mangling IP 460 * addresses and/or port numbers in the text-based control connection. 461 */ 462 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 463 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 464 return NF_DROP; 465 return NF_ACCEPT; 466 } 467 468 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 469 * value if 'skb' is freed. 470 */ 471 static int handle_fragments(struct net *net, struct sw_flow_key *key, 472 u16 zone, struct sk_buff *skb) 473 { 474 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 475 int err; 476 477 if (key->eth.type == htons(ETH_P_IP)) { 478 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 479 480 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 481 err = ip_defrag(net, skb, user); 482 if (err) 483 return err; 484 485 ovs_cb.mru = IPCB(skb)->frag_max_size; 486 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 487 } else if (key->eth.type == htons(ETH_P_IPV6)) { 488 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 489 490 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 491 err = nf_ct_frag6_gather(net, skb, user); 492 if (err) { 493 if (err != -EINPROGRESS) 494 kfree_skb(skb); 495 return err; 496 } 497 498 key->ip.proto = ipv6_hdr(skb)->nexthdr; 499 ovs_cb.mru = IP6CB(skb)->frag_max_size; 500 #endif 501 } else { 502 kfree_skb(skb); 503 return -EPFNOSUPPORT; 504 } 505 506 key->ip.frag = OVS_FRAG_TYPE_NONE; 507 skb_clear_hash(skb); 508 skb->ignore_df = 1; 509 *OVS_CB(skb) = ovs_cb; 510 511 return 0; 512 } 513 514 static struct nf_conntrack_expect * 515 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 516 u16 proto, const struct sk_buff *skb) 517 { 518 struct nf_conntrack_tuple tuple; 519 520 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 521 return NULL; 522 return __nf_ct_expect_find(net, zone, &tuple); 523 } 524 525 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 526 static enum ip_conntrack_info 527 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 528 { 529 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 530 531 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 532 return IP_CT_ESTABLISHED_REPLY; 533 /* Once we've had two way comms, always ESTABLISHED. */ 534 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 535 return IP_CT_ESTABLISHED; 536 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 537 return IP_CT_RELATED; 538 return IP_CT_NEW; 539 } 540 541 /* Find an existing connection which this packet belongs to without 542 * re-attributing statistics or modifying the connection state. This allows an 543 * skb->_nfct lost due to an upcall to be recovered during actions execution. 544 * 545 * Must be called with rcu_read_lock. 546 * 547 * On success, populates skb->_nfct and returns the connection. Returns NULL 548 * if there is no existing entry. 549 */ 550 static struct nf_conn * 551 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 552 u8 l3num, struct sk_buff *skb, bool natted) 553 { 554 struct nf_conntrack_l3proto *l3proto; 555 struct nf_conntrack_l4proto *l4proto; 556 struct nf_conntrack_tuple tuple; 557 struct nf_conntrack_tuple_hash *h; 558 struct nf_conn *ct; 559 unsigned int dataoff; 560 u8 protonum; 561 562 l3proto = __nf_ct_l3proto_find(l3num); 563 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff, 564 &protonum) <= 0) { 565 pr_debug("ovs_ct_find_existing: Can't get protonum\n"); 566 return NULL; 567 } 568 l4proto = __nf_ct_l4proto_find(l3num, protonum); 569 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, 570 protonum, net, &tuple, l3proto, l4proto)) { 571 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 572 return NULL; 573 } 574 575 /* Must invert the tuple if skb has been transformed by NAT. */ 576 if (natted) { 577 struct nf_conntrack_tuple inverse; 578 579 if (!nf_ct_invert_tuple(&inverse, &tuple, l3proto, l4proto)) { 580 pr_debug("ovs_ct_find_existing: Inversion failed!\n"); 581 return NULL; 582 } 583 tuple = inverse; 584 } 585 586 /* look for tuple match */ 587 h = nf_conntrack_find_get(net, zone, &tuple); 588 if (!h) 589 return NULL; /* Not found. */ 590 591 ct = nf_ct_tuplehash_to_ctrack(h); 592 593 /* Inverted packet tuple matches the reverse direction conntrack tuple, 594 * select the other tuplehash to get the right 'ctinfo' bits for this 595 * packet. 596 */ 597 if (natted) 598 h = &ct->tuplehash[!h->tuple.dst.dir]; 599 600 nf_ct_set(skb, ct, ovs_ct_get_info(h)); 601 return ct; 602 } 603 604 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 605 static bool skb_nfct_cached(struct net *net, 606 const struct sw_flow_key *key, 607 const struct ovs_conntrack_info *info, 608 struct sk_buff *skb) 609 { 610 enum ip_conntrack_info ctinfo; 611 struct nf_conn *ct; 612 613 ct = nf_ct_get(skb, &ctinfo); 614 /* If no ct, check if we have evidence that an existing conntrack entry 615 * might be found for this skb. This happens when we lose a skb->_nfct 616 * due to an upcall. If the connection was not confirmed, it is not 617 * cached and needs to be run through conntrack again. 618 */ 619 if (!ct && key->ct_state & OVS_CS_F_TRACKED && 620 !(key->ct_state & OVS_CS_F_INVALID) && 621 key->ct_zone == info->zone.id) { 622 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb, 623 !!(key->ct_state 624 & OVS_CS_F_NAT_MASK)); 625 if (ct) 626 nf_ct_get(skb, &ctinfo); 627 } 628 if (!ct) 629 return false; 630 if (!net_eq(net, read_pnet(&ct->ct_net))) 631 return false; 632 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 633 return false; 634 if (info->helper) { 635 struct nf_conn_help *help; 636 637 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 638 if (help && rcu_access_pointer(help->helper) != info->helper) 639 return false; 640 } 641 /* Force conntrack entry direction to the current packet? */ 642 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 643 /* Delete the conntrack entry if confirmed, else just release 644 * the reference. 645 */ 646 if (nf_ct_is_confirmed(ct)) 647 nf_ct_delete(ct, 0, 0); 648 649 nf_conntrack_put(&ct->ct_general); 650 nf_ct_set(skb, NULL, 0); 651 return false; 652 } 653 654 return true; 655 } 656 657 #ifdef CONFIG_NF_NAT_NEEDED 658 /* Modelled after nf_nat_ipv[46]_fn(). 659 * range is only used for new, uninitialized NAT state. 660 * Returns either NF_ACCEPT or NF_DROP. 661 */ 662 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 663 enum ip_conntrack_info ctinfo, 664 const struct nf_nat_range *range, 665 enum nf_nat_manip_type maniptype) 666 { 667 int hooknum, nh_off, err = NF_ACCEPT; 668 669 nh_off = skb_network_offset(skb); 670 skb_pull_rcsum(skb, nh_off); 671 672 /* See HOOK2MANIP(). */ 673 if (maniptype == NF_NAT_MANIP_SRC) 674 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 675 else 676 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 677 678 switch (ctinfo) { 679 case IP_CT_RELATED: 680 case IP_CT_RELATED_REPLY: 681 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 682 skb->protocol == htons(ETH_P_IP) && 683 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 684 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 685 hooknum)) 686 err = NF_DROP; 687 goto push; 688 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 689 skb->protocol == htons(ETH_P_IPV6)) { 690 __be16 frag_off; 691 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 692 int hdrlen = ipv6_skip_exthdr(skb, 693 sizeof(struct ipv6hdr), 694 &nexthdr, &frag_off); 695 696 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 697 if (!nf_nat_icmpv6_reply_translation(skb, ct, 698 ctinfo, 699 hooknum, 700 hdrlen)) 701 err = NF_DROP; 702 goto push; 703 } 704 } 705 /* Non-ICMP, fall thru to initialize if needed. */ 706 case IP_CT_NEW: 707 /* Seen it before? This can happen for loopback, retrans, 708 * or local packets. 709 */ 710 if (!nf_nat_initialized(ct, maniptype)) { 711 /* Initialize according to the NAT action. */ 712 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 713 /* Action is set up to establish a new 714 * mapping. 715 */ 716 ? nf_nat_setup_info(ct, range, maniptype) 717 : nf_nat_alloc_null_binding(ct, hooknum); 718 if (err != NF_ACCEPT) 719 goto push; 720 } 721 break; 722 723 case IP_CT_ESTABLISHED: 724 case IP_CT_ESTABLISHED_REPLY: 725 break; 726 727 default: 728 err = NF_DROP; 729 goto push; 730 } 731 732 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 733 push: 734 skb_push(skb, nh_off); 735 skb_postpush_rcsum(skb, skb->data, nh_off); 736 737 return err; 738 } 739 740 static void ovs_nat_update_key(struct sw_flow_key *key, 741 const struct sk_buff *skb, 742 enum nf_nat_manip_type maniptype) 743 { 744 if (maniptype == NF_NAT_MANIP_SRC) { 745 __be16 src; 746 747 key->ct_state |= OVS_CS_F_SRC_NAT; 748 if (key->eth.type == htons(ETH_P_IP)) 749 key->ipv4.addr.src = ip_hdr(skb)->saddr; 750 else if (key->eth.type == htons(ETH_P_IPV6)) 751 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 752 sizeof(key->ipv6.addr.src)); 753 else 754 return; 755 756 if (key->ip.proto == IPPROTO_UDP) 757 src = udp_hdr(skb)->source; 758 else if (key->ip.proto == IPPROTO_TCP) 759 src = tcp_hdr(skb)->source; 760 else if (key->ip.proto == IPPROTO_SCTP) 761 src = sctp_hdr(skb)->source; 762 else 763 return; 764 765 key->tp.src = src; 766 } else { 767 __be16 dst; 768 769 key->ct_state |= OVS_CS_F_DST_NAT; 770 if (key->eth.type == htons(ETH_P_IP)) 771 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 772 else if (key->eth.type == htons(ETH_P_IPV6)) 773 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 774 sizeof(key->ipv6.addr.dst)); 775 else 776 return; 777 778 if (key->ip.proto == IPPROTO_UDP) 779 dst = udp_hdr(skb)->dest; 780 else if (key->ip.proto == IPPROTO_TCP) 781 dst = tcp_hdr(skb)->dest; 782 else if (key->ip.proto == IPPROTO_SCTP) 783 dst = sctp_hdr(skb)->dest; 784 else 785 return; 786 787 key->tp.dst = dst; 788 } 789 } 790 791 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 792 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 793 const struct ovs_conntrack_info *info, 794 struct sk_buff *skb, struct nf_conn *ct, 795 enum ip_conntrack_info ctinfo) 796 { 797 enum nf_nat_manip_type maniptype; 798 int err; 799 800 /* Add NAT extension if not confirmed yet. */ 801 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 802 return NF_ACCEPT; /* Can't NAT. */ 803 804 /* Determine NAT type. 805 * Check if the NAT type can be deduced from the tracked connection. 806 * Make sure new expected connections (IP_CT_RELATED) are NATted only 807 * when committing. 808 */ 809 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 810 ct->status & IPS_NAT_MASK && 811 (ctinfo != IP_CT_RELATED || info->commit)) { 812 /* NAT an established or related connection like before. */ 813 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 814 /* This is the REPLY direction for a connection 815 * for which NAT was applied in the forward 816 * direction. Do the reverse NAT. 817 */ 818 maniptype = ct->status & IPS_SRC_NAT 819 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 820 else 821 maniptype = ct->status & IPS_SRC_NAT 822 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 823 } else if (info->nat & OVS_CT_SRC_NAT) { 824 maniptype = NF_NAT_MANIP_SRC; 825 } else if (info->nat & OVS_CT_DST_NAT) { 826 maniptype = NF_NAT_MANIP_DST; 827 } else { 828 return NF_ACCEPT; /* Connection is not NATed. */ 829 } 830 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 831 832 /* Mark NAT done if successful and update the flow key. */ 833 if (err == NF_ACCEPT) 834 ovs_nat_update_key(key, skb, maniptype); 835 836 return err; 837 } 838 #else /* !CONFIG_NF_NAT_NEEDED */ 839 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 840 const struct ovs_conntrack_info *info, 841 struct sk_buff *skb, struct nf_conn *ct, 842 enum ip_conntrack_info ctinfo) 843 { 844 return NF_ACCEPT; 845 } 846 #endif 847 848 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 849 * not done already. Update key with new CT state after passing the packet 850 * through conntrack. 851 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be 852 * set to NULL and 0 will be returned. 853 */ 854 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 855 const struct ovs_conntrack_info *info, 856 struct sk_buff *skb) 857 { 858 /* If we are recirculating packets to match on conntrack fields and 859 * committing with a separate conntrack action, then we don't need to 860 * actually run the packet through conntrack twice unless it's for a 861 * different zone. 862 */ 863 bool cached = skb_nfct_cached(net, key, info, skb); 864 enum ip_conntrack_info ctinfo; 865 struct nf_conn *ct; 866 867 if (!cached) { 868 struct nf_conn *tmpl = info->ct; 869 int err; 870 871 /* Associate skb with specified zone. */ 872 if (tmpl) { 873 if (skb_nfct(skb)) 874 nf_conntrack_put(skb_nfct(skb)); 875 nf_conntrack_get(&tmpl->ct_general); 876 nf_ct_set(skb, tmpl, IP_CT_NEW); 877 } 878 879 err = nf_conntrack_in(net, info->family, 880 NF_INET_PRE_ROUTING, skb); 881 if (err != NF_ACCEPT) 882 return -ENOENT; 883 884 /* Clear CT state NAT flags to mark that we have not yet done 885 * NAT after the nf_conntrack_in() call. We can actually clear 886 * the whole state, as it will be re-initialized below. 887 */ 888 key->ct_state = 0; 889 890 /* Update the key, but keep the NAT flags. */ 891 ovs_ct_update_key(skb, info, key, true, true); 892 } 893 894 ct = nf_ct_get(skb, &ctinfo); 895 if (ct) { 896 /* Packets starting a new connection must be NATted before the 897 * helper, so that the helper knows about the NAT. We enforce 898 * this by delaying both NAT and helper calls for unconfirmed 899 * connections until the committing CT action. For later 900 * packets NAT and Helper may be called in either order. 901 * 902 * NAT will be done only if the CT action has NAT, and only 903 * once per packet (per zone), as guarded by the NAT bits in 904 * the key->ct_state. 905 */ 906 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) && 907 (nf_ct_is_confirmed(ct) || info->commit) && 908 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 909 return -EINVAL; 910 } 911 912 /* Userspace may decide to perform a ct lookup without a helper 913 * specified followed by a (recirculate and) commit with one. 914 * Therefore, for unconfirmed connections which we will commit, 915 * we need to attach the helper here. 916 */ 917 if (!nf_ct_is_confirmed(ct) && info->commit && 918 info->helper && !nfct_help(ct)) { 919 int err = __nf_ct_try_assign_helper(ct, info->ct, 920 GFP_ATOMIC); 921 if (err) 922 return err; 923 } 924 925 /* Call the helper only if: 926 * - nf_conntrack_in() was executed above ("!cached") for a 927 * confirmed connection, or 928 * - When committing an unconfirmed connection. 929 */ 930 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && 931 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 932 return -EINVAL; 933 } 934 } 935 936 return 0; 937 } 938 939 /* Lookup connection and read fields into key. */ 940 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 941 const struct ovs_conntrack_info *info, 942 struct sk_buff *skb) 943 { 944 struct nf_conntrack_expect *exp; 945 946 /* If we pass an expected packet through nf_conntrack_in() the 947 * expectation is typically removed, but the packet could still be 948 * lost in upcall processing. To prevent this from happening we 949 * perform an explicit expectation lookup. Expected connections are 950 * always new, and will be passed through conntrack only when they are 951 * committed, as it is OK to remove the expectation at that time. 952 */ 953 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 954 if (exp) { 955 u8 state; 956 957 /* NOTE: New connections are NATted and Helped only when 958 * committed, so we are not calling into NAT here. 959 */ 960 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 961 __ovs_ct_update_key(key, state, &info->zone, exp->master); 962 } else { 963 struct nf_conn *ct; 964 int err; 965 966 err = __ovs_ct_lookup(net, key, info, skb); 967 if (err) 968 return err; 969 970 ct = (struct nf_conn *)skb_nfct(skb); 971 if (ct) 972 nf_ct_deliver_cached_events(ct); 973 } 974 975 return 0; 976 } 977 978 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 979 { 980 size_t i; 981 982 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 983 if (labels->ct_labels_32[i]) 984 return true; 985 986 return false; 987 } 988 989 /* Lookup connection and confirm if unconfirmed. */ 990 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 991 const struct ovs_conntrack_info *info, 992 struct sk_buff *skb) 993 { 994 enum ip_conntrack_info ctinfo; 995 struct nf_conn *ct; 996 int err; 997 998 err = __ovs_ct_lookup(net, key, info, skb); 999 if (err) 1000 return err; 1001 1002 /* The connection could be invalid, in which case this is a no-op.*/ 1003 ct = nf_ct_get(skb, &ctinfo); 1004 if (!ct) 1005 return 0; 1006 1007 /* Set the conntrack event mask if given. NEW and DELETE events have 1008 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener 1009 * typically would receive many kinds of updates. Setting the event 1010 * mask allows those events to be filtered. The set event mask will 1011 * remain in effect for the lifetime of the connection unless changed 1012 * by a further CT action with both the commit flag and the eventmask 1013 * option. */ 1014 if (info->have_eventmask) { 1015 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct); 1016 1017 if (cache) 1018 cache->ctmask = info->eventmask; 1019 } 1020 1021 /* Apply changes before confirming the connection so that the initial 1022 * conntrack NEW netlink event carries the values given in the CT 1023 * action. 1024 */ 1025 if (info->mark.mask) { 1026 err = ovs_ct_set_mark(ct, key, info->mark.value, 1027 info->mark.mask); 1028 if (err) 1029 return err; 1030 } 1031 if (!nf_ct_is_confirmed(ct)) { 1032 err = ovs_ct_init_labels(ct, key, &info->labels.value, 1033 &info->labels.mask); 1034 if (err) 1035 return err; 1036 } else if (labels_nonzero(&info->labels.mask)) { 1037 err = ovs_ct_set_labels(ct, key, &info->labels.value, 1038 &info->labels.mask); 1039 if (err) 1040 return err; 1041 } 1042 /* This will take care of sending queued events even if the connection 1043 * is already confirmed. 1044 */ 1045 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 1046 return -EINVAL; 1047 1048 return 0; 1049 } 1050 1051 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 1052 * value if 'skb' is freed. 1053 */ 1054 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 1055 struct sw_flow_key *key, 1056 const struct ovs_conntrack_info *info) 1057 { 1058 int nh_ofs; 1059 int err; 1060 1061 /* The conntrack module expects to be working at L3. */ 1062 nh_ofs = skb_network_offset(skb); 1063 skb_pull_rcsum(skb, nh_ofs); 1064 1065 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 1066 err = handle_fragments(net, key, info->zone.id, skb); 1067 if (err) 1068 return err; 1069 } 1070 1071 if (info->commit) 1072 err = ovs_ct_commit(net, key, info, skb); 1073 else 1074 err = ovs_ct_lookup(net, key, info, skb); 1075 1076 skb_push(skb, nh_ofs); 1077 skb_postpush_rcsum(skb, skb->data, nh_ofs); 1078 if (err) 1079 kfree_skb(skb); 1080 return err; 1081 } 1082 1083 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 1084 const struct sw_flow_key *key, bool log) 1085 { 1086 struct nf_conntrack_helper *helper; 1087 struct nf_conn_help *help; 1088 1089 helper = nf_conntrack_helper_try_module_get(name, info->family, 1090 key->ip.proto); 1091 if (!helper) { 1092 OVS_NLERR(log, "Unknown helper \"%s\"", name); 1093 return -EINVAL; 1094 } 1095 1096 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); 1097 if (!help) { 1098 module_put(helper->me); 1099 return -ENOMEM; 1100 } 1101 1102 rcu_assign_pointer(help->helper, helper); 1103 info->helper = helper; 1104 return 0; 1105 } 1106 1107 #ifdef CONFIG_NF_NAT_NEEDED 1108 static int parse_nat(const struct nlattr *attr, 1109 struct ovs_conntrack_info *info, bool log) 1110 { 1111 struct nlattr *a; 1112 int rem; 1113 bool have_ip_max = false; 1114 bool have_proto_max = false; 1115 bool ip_vers = (info->family == NFPROTO_IPV6); 1116 1117 nla_for_each_nested(a, attr, rem) { 1118 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 1119 [OVS_NAT_ATTR_SRC] = {0, 0}, 1120 [OVS_NAT_ATTR_DST] = {0, 0}, 1121 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 1122 sizeof(struct in6_addr)}, 1123 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 1124 sizeof(struct in6_addr)}, 1125 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 1126 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 1127 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 1128 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 1129 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 1130 }; 1131 int type = nla_type(a); 1132 1133 if (type > OVS_NAT_ATTR_MAX) { 1134 OVS_NLERR(log, 1135 "Unknown NAT attribute (type=%d, max=%d).\n", 1136 type, OVS_NAT_ATTR_MAX); 1137 return -EINVAL; 1138 } 1139 1140 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 1141 OVS_NLERR(log, 1142 "NAT attribute type %d has unexpected length (%d != %d).\n", 1143 type, nla_len(a), 1144 ovs_nat_attr_lens[type][ip_vers]); 1145 return -EINVAL; 1146 } 1147 1148 switch (type) { 1149 case OVS_NAT_ATTR_SRC: 1150 case OVS_NAT_ATTR_DST: 1151 if (info->nat) { 1152 OVS_NLERR(log, 1153 "Only one type of NAT may be specified.\n" 1154 ); 1155 return -ERANGE; 1156 } 1157 info->nat |= OVS_CT_NAT; 1158 info->nat |= ((type == OVS_NAT_ATTR_SRC) 1159 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 1160 break; 1161 1162 case OVS_NAT_ATTR_IP_MIN: 1163 nla_memcpy(&info->range.min_addr, a, 1164 sizeof(info->range.min_addr)); 1165 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1166 break; 1167 1168 case OVS_NAT_ATTR_IP_MAX: 1169 have_ip_max = true; 1170 nla_memcpy(&info->range.max_addr, a, 1171 sizeof(info->range.max_addr)); 1172 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1173 break; 1174 1175 case OVS_NAT_ATTR_PROTO_MIN: 1176 info->range.min_proto.all = htons(nla_get_u16(a)); 1177 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1178 break; 1179 1180 case OVS_NAT_ATTR_PROTO_MAX: 1181 have_proto_max = true; 1182 info->range.max_proto.all = htons(nla_get_u16(a)); 1183 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1184 break; 1185 1186 case OVS_NAT_ATTR_PERSISTENT: 1187 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1188 break; 1189 1190 case OVS_NAT_ATTR_PROTO_HASH: 1191 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1192 break; 1193 1194 case OVS_NAT_ATTR_PROTO_RANDOM: 1195 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1196 break; 1197 1198 default: 1199 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type); 1200 return -EINVAL; 1201 } 1202 } 1203 1204 if (rem > 0) { 1205 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem); 1206 return -EINVAL; 1207 } 1208 if (!info->nat) { 1209 /* Do not allow flags if no type is given. */ 1210 if (info->range.flags) { 1211 OVS_NLERR(log, 1212 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n" 1213 ); 1214 return -EINVAL; 1215 } 1216 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1217 } else if (!info->commit) { 1218 OVS_NLERR(log, 1219 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n" 1220 ); 1221 return -EINVAL; 1222 } 1223 /* Allow missing IP_MAX. */ 1224 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1225 memcpy(&info->range.max_addr, &info->range.min_addr, 1226 sizeof(info->range.max_addr)); 1227 } 1228 /* Allow missing PROTO_MAX. */ 1229 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1230 !have_proto_max) { 1231 info->range.max_proto.all = info->range.min_proto.all; 1232 } 1233 return 0; 1234 } 1235 #endif 1236 1237 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1238 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1239 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1240 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1241 .maxlen = sizeof(u16) }, 1242 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1243 .maxlen = sizeof(struct md_mark) }, 1244 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1245 .maxlen = sizeof(struct md_labels) }, 1246 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1247 .maxlen = NF_CT_HELPER_NAME_LEN }, 1248 #ifdef CONFIG_NF_NAT_NEEDED 1249 /* NAT length is checked when parsing the nested attributes. */ 1250 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1251 #endif 1252 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32), 1253 .maxlen = sizeof(u32) }, 1254 }; 1255 1256 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1257 const char **helper, bool log) 1258 { 1259 struct nlattr *a; 1260 int rem; 1261 1262 nla_for_each_nested(a, attr, rem) { 1263 int type = nla_type(a); 1264 int maxlen = ovs_ct_attr_lens[type].maxlen; 1265 int minlen = ovs_ct_attr_lens[type].minlen; 1266 1267 if (type > OVS_CT_ATTR_MAX) { 1268 OVS_NLERR(log, 1269 "Unknown conntrack attr (type=%d, max=%d)", 1270 type, OVS_CT_ATTR_MAX); 1271 return -EINVAL; 1272 } 1273 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1274 OVS_NLERR(log, 1275 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1276 type, nla_len(a), maxlen); 1277 return -EINVAL; 1278 } 1279 1280 switch (type) { 1281 case OVS_CT_ATTR_FORCE_COMMIT: 1282 info->force = true; 1283 /* fall through. */ 1284 case OVS_CT_ATTR_COMMIT: 1285 info->commit = true; 1286 break; 1287 #ifdef CONFIG_NF_CONNTRACK_ZONES 1288 case OVS_CT_ATTR_ZONE: 1289 info->zone.id = nla_get_u16(a); 1290 break; 1291 #endif 1292 #ifdef CONFIG_NF_CONNTRACK_MARK 1293 case OVS_CT_ATTR_MARK: { 1294 struct md_mark *mark = nla_data(a); 1295 1296 if (!mark->mask) { 1297 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1298 return -EINVAL; 1299 } 1300 info->mark = *mark; 1301 break; 1302 } 1303 #endif 1304 #ifdef CONFIG_NF_CONNTRACK_LABELS 1305 case OVS_CT_ATTR_LABELS: { 1306 struct md_labels *labels = nla_data(a); 1307 1308 if (!labels_nonzero(&labels->mask)) { 1309 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1310 return -EINVAL; 1311 } 1312 info->labels = *labels; 1313 break; 1314 } 1315 #endif 1316 case OVS_CT_ATTR_HELPER: 1317 *helper = nla_data(a); 1318 if (!memchr(*helper, '\0', nla_len(a))) { 1319 OVS_NLERR(log, "Invalid conntrack helper"); 1320 return -EINVAL; 1321 } 1322 break; 1323 #ifdef CONFIG_NF_NAT_NEEDED 1324 case OVS_CT_ATTR_NAT: { 1325 int err = parse_nat(a, info, log); 1326 1327 if (err) 1328 return err; 1329 break; 1330 } 1331 #endif 1332 case OVS_CT_ATTR_EVENTMASK: 1333 info->have_eventmask = true; 1334 info->eventmask = nla_get_u32(a); 1335 break; 1336 1337 default: 1338 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1339 type); 1340 return -EINVAL; 1341 } 1342 } 1343 1344 #ifdef CONFIG_NF_CONNTRACK_MARK 1345 if (!info->commit && info->mark.mask) { 1346 OVS_NLERR(log, 1347 "Setting conntrack mark requires 'commit' flag."); 1348 return -EINVAL; 1349 } 1350 #endif 1351 #ifdef CONFIG_NF_CONNTRACK_LABELS 1352 if (!info->commit && labels_nonzero(&info->labels.mask)) { 1353 OVS_NLERR(log, 1354 "Setting conntrack labels requires 'commit' flag."); 1355 return -EINVAL; 1356 } 1357 #endif 1358 if (rem > 0) { 1359 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1360 return -EINVAL; 1361 } 1362 1363 return 0; 1364 } 1365 1366 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1367 { 1368 if (attr == OVS_KEY_ATTR_CT_STATE) 1369 return true; 1370 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1371 attr == OVS_KEY_ATTR_CT_ZONE) 1372 return true; 1373 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1374 attr == OVS_KEY_ATTR_CT_MARK) 1375 return true; 1376 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1377 attr == OVS_KEY_ATTR_CT_LABELS) { 1378 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1379 1380 return ovs_net->xt_label; 1381 } 1382 1383 return false; 1384 } 1385 1386 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1387 const struct sw_flow_key *key, 1388 struct sw_flow_actions **sfa, bool log) 1389 { 1390 struct ovs_conntrack_info ct_info; 1391 const char *helper = NULL; 1392 u16 family; 1393 int err; 1394 1395 family = key_to_nfproto(key); 1396 if (family == NFPROTO_UNSPEC) { 1397 OVS_NLERR(log, "ct family unspecified"); 1398 return -EINVAL; 1399 } 1400 1401 memset(&ct_info, 0, sizeof(ct_info)); 1402 ct_info.family = family; 1403 1404 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1405 NF_CT_DEFAULT_ZONE_DIR, 0); 1406 1407 err = parse_ct(attr, &ct_info, &helper, log); 1408 if (err) 1409 return err; 1410 1411 /* Set up template for tracking connections in specific zones. */ 1412 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1413 if (!ct_info.ct) { 1414 OVS_NLERR(log, "Failed to allocate conntrack template"); 1415 return -ENOMEM; 1416 } 1417 1418 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1419 nf_conntrack_get(&ct_info.ct->ct_general); 1420 1421 if (helper) { 1422 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1423 if (err) 1424 goto err_free_ct; 1425 } 1426 1427 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1428 sizeof(ct_info), log); 1429 if (err) 1430 goto err_free_ct; 1431 1432 return 0; 1433 err_free_ct: 1434 __ovs_ct_free_action(&ct_info); 1435 return err; 1436 } 1437 1438 #ifdef CONFIG_NF_NAT_NEEDED 1439 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1440 struct sk_buff *skb) 1441 { 1442 struct nlattr *start; 1443 1444 start = nla_nest_start(skb, OVS_CT_ATTR_NAT); 1445 if (!start) 1446 return false; 1447 1448 if (info->nat & OVS_CT_SRC_NAT) { 1449 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1450 return false; 1451 } else if (info->nat & OVS_CT_DST_NAT) { 1452 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1453 return false; 1454 } else { 1455 goto out; 1456 } 1457 1458 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1459 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 1460 info->family == NFPROTO_IPV4) { 1461 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1462 info->range.min_addr.ip) || 1463 (info->range.max_addr.ip 1464 != info->range.min_addr.ip && 1465 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1466 info->range.max_addr.ip)))) 1467 return false; 1468 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 1469 info->family == NFPROTO_IPV6) { 1470 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1471 &info->range.min_addr.in6) || 1472 (memcmp(&info->range.max_addr.in6, 1473 &info->range.min_addr.in6, 1474 sizeof(info->range.max_addr.in6)) && 1475 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1476 &info->range.max_addr.in6)))) 1477 return false; 1478 } else { 1479 return false; 1480 } 1481 } 1482 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1483 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1484 ntohs(info->range.min_proto.all)) || 1485 (info->range.max_proto.all != info->range.min_proto.all && 1486 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1487 ntohs(info->range.max_proto.all))))) 1488 return false; 1489 1490 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1491 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1492 return false; 1493 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1494 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1495 return false; 1496 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1497 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1498 return false; 1499 out: 1500 nla_nest_end(skb, start); 1501 1502 return true; 1503 } 1504 #endif 1505 1506 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1507 struct sk_buff *skb) 1508 { 1509 struct nlattr *start; 1510 1511 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); 1512 if (!start) 1513 return -EMSGSIZE; 1514 1515 if (ct_info->commit && nla_put_flag(skb, ct_info->force 1516 ? OVS_CT_ATTR_FORCE_COMMIT 1517 : OVS_CT_ATTR_COMMIT)) 1518 return -EMSGSIZE; 1519 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1520 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1521 return -EMSGSIZE; 1522 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1523 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1524 &ct_info->mark)) 1525 return -EMSGSIZE; 1526 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1527 labels_nonzero(&ct_info->labels.mask) && 1528 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1529 &ct_info->labels)) 1530 return -EMSGSIZE; 1531 if (ct_info->helper) { 1532 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1533 ct_info->helper->name)) 1534 return -EMSGSIZE; 1535 } 1536 if (ct_info->have_eventmask && 1537 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask)) 1538 return -EMSGSIZE; 1539 1540 #ifdef CONFIG_NF_NAT_NEEDED 1541 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1542 return -EMSGSIZE; 1543 #endif 1544 nla_nest_end(skb, start); 1545 1546 return 0; 1547 } 1548 1549 void ovs_ct_free_action(const struct nlattr *a) 1550 { 1551 struct ovs_conntrack_info *ct_info = nla_data(a); 1552 1553 __ovs_ct_free_action(ct_info); 1554 } 1555 1556 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1557 { 1558 if (ct_info->helper) 1559 module_put(ct_info->helper->me); 1560 if (ct_info->ct) 1561 nf_ct_tmpl_free(ct_info->ct); 1562 } 1563 1564 void ovs_ct_init(struct net *net) 1565 { 1566 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 1567 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1568 1569 if (nf_connlabels_get(net, n_bits - 1)) { 1570 ovs_net->xt_label = false; 1571 OVS_NLERR(true, "Failed to set connlabel length"); 1572 } else { 1573 ovs_net->xt_label = true; 1574 } 1575 } 1576 1577 void ovs_ct_exit(struct net *net) 1578 { 1579 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1580 1581 if (ovs_net->xt_label) 1582 nf_connlabels_put(net); 1583 } 1584