xref: /openbmc/linux/net/openvswitch/actions.c (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/netfilter_ipv6.h>
13 #include <linux/sctp.h>
14 #include <linux/tcp.h>
15 #include <linux/udp.h>
16 #include <linux/in6.h>
17 #include <linux/if_arp.h>
18 #include <linux/if_vlan.h>
19 
20 #include <net/dst.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
27 #include <net/sctp/checksum.h>
28 
29 #include "datapath.h"
30 #include "flow.h"
31 #include "conntrack.h"
32 #include "vport.h"
33 #include "flow_netlink.h"
34 
35 struct deferred_action {
36 	struct sk_buff *skb;
37 	const struct nlattr *actions;
38 	int actions_len;
39 
40 	/* Store pkt_key clone when creating deferred action. */
41 	struct sw_flow_key pkt_key;
42 };
43 
44 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
45 struct ovs_frag_data {
46 	unsigned long dst;
47 	struct vport *vport;
48 	struct ovs_skb_cb cb;
49 	__be16 inner_protocol;
50 	u16 network_offset;	/* valid only for MPLS */
51 	u16 vlan_tci;
52 	__be16 vlan_proto;
53 	unsigned int l2_len;
54 	u8 mac_proto;
55 	u8 l2_data[MAX_L2_LEN];
56 };
57 
58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
59 
60 #define DEFERRED_ACTION_FIFO_SIZE 10
61 #define OVS_RECURSION_LIMIT 5
62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
63 struct action_fifo {
64 	int head;
65 	int tail;
66 	/* Deferred action fifo queue storage. */
67 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
68 };
69 
70 struct action_flow_keys {
71 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
72 };
73 
74 static struct action_fifo __percpu *action_fifos;
75 static struct action_flow_keys __percpu *flow_keys;
76 static DEFINE_PER_CPU(int, exec_actions_level);
77 
78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
79  * space. Return NULL if out of key spaces.
80  */
81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
82 {
83 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
84 	int level = this_cpu_read(exec_actions_level);
85 	struct sw_flow_key *key = NULL;
86 
87 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
88 		key = &keys->key[level - 1];
89 		*key = *key_;
90 	}
91 
92 	return key;
93 }
94 
95 static void action_fifo_init(struct action_fifo *fifo)
96 {
97 	fifo->head = 0;
98 	fifo->tail = 0;
99 }
100 
101 static bool action_fifo_is_empty(const struct action_fifo *fifo)
102 {
103 	return (fifo->head == fifo->tail);
104 }
105 
106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
107 {
108 	if (action_fifo_is_empty(fifo))
109 		return NULL;
110 
111 	return &fifo->fifo[fifo->tail++];
112 }
113 
114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
115 {
116 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
117 		return NULL;
118 
119 	return &fifo->fifo[fifo->head++];
120 }
121 
122 /* Return true if fifo is not full */
123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
124 				    const struct sw_flow_key *key,
125 				    const struct nlattr *actions,
126 				    const int actions_len)
127 {
128 	struct action_fifo *fifo;
129 	struct deferred_action *da;
130 
131 	fifo = this_cpu_ptr(action_fifos);
132 	da = action_fifo_put(fifo);
133 	if (da) {
134 		da->skb = skb;
135 		da->actions = actions;
136 		da->actions_len = actions_len;
137 		da->pkt_key = *key;
138 	}
139 
140 	return da;
141 }
142 
143 static void invalidate_flow_key(struct sw_flow_key *key)
144 {
145 	key->mac_proto |= SW_FLOW_KEY_INVALID;
146 }
147 
148 static bool is_flow_key_valid(const struct sw_flow_key *key)
149 {
150 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
151 }
152 
153 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
154 			 struct sw_flow_key *key,
155 			 u32 recirc_id,
156 			 const struct nlattr *actions, int len,
157 			 bool last, bool clone_flow_key);
158 
159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
160 			      struct sw_flow_key *key,
161 			      const struct nlattr *attr, int len);
162 
163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
164 		     const struct ovs_action_push_mpls *mpls)
165 {
166 	int err;
167 
168 	err = skb_mpls_push(skb, mpls->mpls_lse, mpls->mpls_ethertype,
169 			    skb->mac_len);
170 	if (err)
171 		return err;
172 
173 	invalidate_flow_key(key);
174 	return 0;
175 }
176 
177 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
178 		    const __be16 ethertype)
179 {
180 	int err;
181 
182 	err = skb_mpls_pop(skb, ethertype, skb->mac_len);
183 	if (err)
184 		return err;
185 
186 	invalidate_flow_key(key);
187 	return 0;
188 }
189 
190 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
191 		    const __be32 *mpls_lse, const __be32 *mask)
192 {
193 	struct mpls_shim_hdr *stack;
194 	__be32 lse;
195 	int err;
196 
197 	stack = mpls_hdr(skb);
198 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
199 	err = skb_mpls_update_lse(skb, lse);
200 	if (err)
201 		return err;
202 
203 	flow_key->mpls.top_lse = lse;
204 	return 0;
205 }
206 
207 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
208 {
209 	int err;
210 
211 	err = skb_vlan_pop(skb);
212 	if (skb_vlan_tag_present(skb)) {
213 		invalidate_flow_key(key);
214 	} else {
215 		key->eth.vlan.tci = 0;
216 		key->eth.vlan.tpid = 0;
217 	}
218 	return err;
219 }
220 
221 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
222 		     const struct ovs_action_push_vlan *vlan)
223 {
224 	if (skb_vlan_tag_present(skb)) {
225 		invalidate_flow_key(key);
226 	} else {
227 		key->eth.vlan.tci = vlan->vlan_tci;
228 		key->eth.vlan.tpid = vlan->vlan_tpid;
229 	}
230 	return skb_vlan_push(skb, vlan->vlan_tpid,
231 			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
232 }
233 
234 /* 'src' is already properly masked. */
235 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
236 {
237 	u16 *dst = (u16 *)dst_;
238 	const u16 *src = (const u16 *)src_;
239 	const u16 *mask = (const u16 *)mask_;
240 
241 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
242 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
243 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
244 }
245 
246 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
247 			const struct ovs_key_ethernet *key,
248 			const struct ovs_key_ethernet *mask)
249 {
250 	int err;
251 
252 	err = skb_ensure_writable(skb, ETH_HLEN);
253 	if (unlikely(err))
254 		return err;
255 
256 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
257 
258 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
259 			       mask->eth_src);
260 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
261 			       mask->eth_dst);
262 
263 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
264 
265 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
266 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
267 	return 0;
268 }
269 
270 /* pop_eth does not support VLAN packets as this action is never called
271  * for them.
272  */
273 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
274 {
275 	skb_pull_rcsum(skb, ETH_HLEN);
276 	skb_reset_mac_header(skb);
277 	skb_reset_mac_len(skb);
278 
279 	/* safe right before invalidate_flow_key */
280 	key->mac_proto = MAC_PROTO_NONE;
281 	invalidate_flow_key(key);
282 	return 0;
283 }
284 
285 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
286 		    const struct ovs_action_push_eth *ethh)
287 {
288 	struct ethhdr *hdr;
289 
290 	/* Add the new Ethernet header */
291 	if (skb_cow_head(skb, ETH_HLEN) < 0)
292 		return -ENOMEM;
293 
294 	skb_push(skb, ETH_HLEN);
295 	skb_reset_mac_header(skb);
296 	skb_reset_mac_len(skb);
297 
298 	hdr = eth_hdr(skb);
299 	ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
300 	ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
301 	hdr->h_proto = skb->protocol;
302 
303 	skb_postpush_rcsum(skb, hdr, ETH_HLEN);
304 
305 	/* safe right before invalidate_flow_key */
306 	key->mac_proto = MAC_PROTO_ETHERNET;
307 	invalidate_flow_key(key);
308 	return 0;
309 }
310 
311 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
312 		    const struct nshhdr *nh)
313 {
314 	int err;
315 
316 	err = nsh_push(skb, nh);
317 	if (err)
318 		return err;
319 
320 	/* safe right before invalidate_flow_key */
321 	key->mac_proto = MAC_PROTO_NONE;
322 	invalidate_flow_key(key);
323 	return 0;
324 }
325 
326 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
327 {
328 	int err;
329 
330 	err = nsh_pop(skb);
331 	if (err)
332 		return err;
333 
334 	/* safe right before invalidate_flow_key */
335 	if (skb->protocol == htons(ETH_P_TEB))
336 		key->mac_proto = MAC_PROTO_ETHERNET;
337 	else
338 		key->mac_proto = MAC_PROTO_NONE;
339 	invalidate_flow_key(key);
340 	return 0;
341 }
342 
343 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
344 				  __be32 addr, __be32 new_addr)
345 {
346 	int transport_len = skb->len - skb_transport_offset(skb);
347 
348 	if (nh->frag_off & htons(IP_OFFSET))
349 		return;
350 
351 	if (nh->protocol == IPPROTO_TCP) {
352 		if (likely(transport_len >= sizeof(struct tcphdr)))
353 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
354 						 addr, new_addr, true);
355 	} else if (nh->protocol == IPPROTO_UDP) {
356 		if (likely(transport_len >= sizeof(struct udphdr))) {
357 			struct udphdr *uh = udp_hdr(skb);
358 
359 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
360 				inet_proto_csum_replace4(&uh->check, skb,
361 							 addr, new_addr, true);
362 				if (!uh->check)
363 					uh->check = CSUM_MANGLED_0;
364 			}
365 		}
366 	}
367 }
368 
369 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
370 			__be32 *addr, __be32 new_addr)
371 {
372 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
373 	csum_replace4(&nh->check, *addr, new_addr);
374 	skb_clear_hash(skb);
375 	*addr = new_addr;
376 }
377 
378 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
379 				 __be32 addr[4], const __be32 new_addr[4])
380 {
381 	int transport_len = skb->len - skb_transport_offset(skb);
382 
383 	if (l4_proto == NEXTHDR_TCP) {
384 		if (likely(transport_len >= sizeof(struct tcphdr)))
385 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
386 						  addr, new_addr, true);
387 	} else if (l4_proto == NEXTHDR_UDP) {
388 		if (likely(transport_len >= sizeof(struct udphdr))) {
389 			struct udphdr *uh = udp_hdr(skb);
390 
391 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
392 				inet_proto_csum_replace16(&uh->check, skb,
393 							  addr, new_addr, true);
394 				if (!uh->check)
395 					uh->check = CSUM_MANGLED_0;
396 			}
397 		}
398 	} else if (l4_proto == NEXTHDR_ICMP) {
399 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
400 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
401 						  skb, addr, new_addr, true);
402 	}
403 }
404 
405 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
406 			   const __be32 mask[4], __be32 masked[4])
407 {
408 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
409 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
410 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
411 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
412 }
413 
414 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
415 			  __be32 addr[4], const __be32 new_addr[4],
416 			  bool recalculate_csum)
417 {
418 	if (recalculate_csum)
419 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
420 
421 	skb_clear_hash(skb);
422 	memcpy(addr, new_addr, sizeof(__be32[4]));
423 }
424 
425 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
426 {
427 	/* Bits 21-24 are always unmasked, so this retains their values. */
428 	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
429 	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
430 	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
431 }
432 
433 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
434 		       u8 mask)
435 {
436 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
437 
438 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
439 	nh->ttl = new_ttl;
440 }
441 
442 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
443 		    const struct ovs_key_ipv4 *key,
444 		    const struct ovs_key_ipv4 *mask)
445 {
446 	struct iphdr *nh;
447 	__be32 new_addr;
448 	int err;
449 
450 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
451 				  sizeof(struct iphdr));
452 	if (unlikely(err))
453 		return err;
454 
455 	nh = ip_hdr(skb);
456 
457 	/* Setting an IP addresses is typically only a side effect of
458 	 * matching on them in the current userspace implementation, so it
459 	 * makes sense to check if the value actually changed.
460 	 */
461 	if (mask->ipv4_src) {
462 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
463 
464 		if (unlikely(new_addr != nh->saddr)) {
465 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
466 			flow_key->ipv4.addr.src = new_addr;
467 		}
468 	}
469 	if (mask->ipv4_dst) {
470 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
471 
472 		if (unlikely(new_addr != nh->daddr)) {
473 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
474 			flow_key->ipv4.addr.dst = new_addr;
475 		}
476 	}
477 	if (mask->ipv4_tos) {
478 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
479 		flow_key->ip.tos = nh->tos;
480 	}
481 	if (mask->ipv4_ttl) {
482 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
483 		flow_key->ip.ttl = nh->ttl;
484 	}
485 
486 	return 0;
487 }
488 
489 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
490 {
491 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
492 }
493 
494 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
495 		    const struct ovs_key_ipv6 *key,
496 		    const struct ovs_key_ipv6 *mask)
497 {
498 	struct ipv6hdr *nh;
499 	int err;
500 
501 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
502 				  sizeof(struct ipv6hdr));
503 	if (unlikely(err))
504 		return err;
505 
506 	nh = ipv6_hdr(skb);
507 
508 	/* Setting an IP addresses is typically only a side effect of
509 	 * matching on them in the current userspace implementation, so it
510 	 * makes sense to check if the value actually changed.
511 	 */
512 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
513 		__be32 *saddr = (__be32 *)&nh->saddr;
514 		__be32 masked[4];
515 
516 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
517 
518 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
519 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
520 				      true);
521 			memcpy(&flow_key->ipv6.addr.src, masked,
522 			       sizeof(flow_key->ipv6.addr.src));
523 		}
524 	}
525 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
526 		unsigned int offset = 0;
527 		int flags = IP6_FH_F_SKIP_RH;
528 		bool recalc_csum = true;
529 		__be32 *daddr = (__be32 *)&nh->daddr;
530 		__be32 masked[4];
531 
532 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
533 
534 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
535 			if (ipv6_ext_hdr(nh->nexthdr))
536 				recalc_csum = (ipv6_find_hdr(skb, &offset,
537 							     NEXTHDR_ROUTING,
538 							     NULL, &flags)
539 					       != NEXTHDR_ROUTING);
540 
541 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
542 				      recalc_csum);
543 			memcpy(&flow_key->ipv6.addr.dst, masked,
544 			       sizeof(flow_key->ipv6.addr.dst));
545 		}
546 	}
547 	if (mask->ipv6_tclass) {
548 		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
549 		flow_key->ip.tos = ipv6_get_dsfield(nh);
550 	}
551 	if (mask->ipv6_label) {
552 		set_ipv6_fl(nh, ntohl(key->ipv6_label),
553 			    ntohl(mask->ipv6_label));
554 		flow_key->ipv6.label =
555 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
556 	}
557 	if (mask->ipv6_hlimit) {
558 		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
559 			       mask->ipv6_hlimit);
560 		flow_key->ip.ttl = nh->hop_limit;
561 	}
562 	return 0;
563 }
564 
565 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
566 		   const struct nlattr *a)
567 {
568 	struct nshhdr *nh;
569 	size_t length;
570 	int err;
571 	u8 flags;
572 	u8 ttl;
573 	int i;
574 
575 	struct ovs_key_nsh key;
576 	struct ovs_key_nsh mask;
577 
578 	err = nsh_key_from_nlattr(a, &key, &mask);
579 	if (err)
580 		return err;
581 
582 	/* Make sure the NSH base header is there */
583 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
584 		return -ENOMEM;
585 
586 	nh = nsh_hdr(skb);
587 	length = nsh_hdr_len(nh);
588 
589 	/* Make sure the whole NSH header is there */
590 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
591 				       length);
592 	if (unlikely(err))
593 		return err;
594 
595 	nh = nsh_hdr(skb);
596 	skb_postpull_rcsum(skb, nh, length);
597 	flags = nsh_get_flags(nh);
598 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
599 	flow_key->nsh.base.flags = flags;
600 	ttl = nsh_get_ttl(nh);
601 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
602 	flow_key->nsh.base.ttl = ttl;
603 	nsh_set_flags_and_ttl(nh, flags, ttl);
604 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
605 				  mask.base.path_hdr);
606 	flow_key->nsh.base.path_hdr = nh->path_hdr;
607 	switch (nh->mdtype) {
608 	case NSH_M_TYPE1:
609 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
610 			nh->md1.context[i] =
611 			    OVS_MASKED(nh->md1.context[i], key.context[i],
612 				       mask.context[i]);
613 		}
614 		memcpy(flow_key->nsh.context, nh->md1.context,
615 		       sizeof(nh->md1.context));
616 		break;
617 	case NSH_M_TYPE2:
618 		memset(flow_key->nsh.context, 0,
619 		       sizeof(flow_key->nsh.context));
620 		break;
621 	default:
622 		return -EINVAL;
623 	}
624 	skb_postpush_rcsum(skb, nh, length);
625 	return 0;
626 }
627 
628 /* Must follow skb_ensure_writable() since that can move the skb data. */
629 static void set_tp_port(struct sk_buff *skb, __be16 *port,
630 			__be16 new_port, __sum16 *check)
631 {
632 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
633 	*port = new_port;
634 }
635 
636 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
637 		   const struct ovs_key_udp *key,
638 		   const struct ovs_key_udp *mask)
639 {
640 	struct udphdr *uh;
641 	__be16 src, dst;
642 	int err;
643 
644 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
645 				  sizeof(struct udphdr));
646 	if (unlikely(err))
647 		return err;
648 
649 	uh = udp_hdr(skb);
650 	/* Either of the masks is non-zero, so do not bother checking them. */
651 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
652 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
653 
654 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
655 		if (likely(src != uh->source)) {
656 			set_tp_port(skb, &uh->source, src, &uh->check);
657 			flow_key->tp.src = src;
658 		}
659 		if (likely(dst != uh->dest)) {
660 			set_tp_port(skb, &uh->dest, dst, &uh->check);
661 			flow_key->tp.dst = dst;
662 		}
663 
664 		if (unlikely(!uh->check))
665 			uh->check = CSUM_MANGLED_0;
666 	} else {
667 		uh->source = src;
668 		uh->dest = dst;
669 		flow_key->tp.src = src;
670 		flow_key->tp.dst = dst;
671 	}
672 
673 	skb_clear_hash(skb);
674 
675 	return 0;
676 }
677 
678 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
679 		   const struct ovs_key_tcp *key,
680 		   const struct ovs_key_tcp *mask)
681 {
682 	struct tcphdr *th;
683 	__be16 src, dst;
684 	int err;
685 
686 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
687 				  sizeof(struct tcphdr));
688 	if (unlikely(err))
689 		return err;
690 
691 	th = tcp_hdr(skb);
692 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
693 	if (likely(src != th->source)) {
694 		set_tp_port(skb, &th->source, src, &th->check);
695 		flow_key->tp.src = src;
696 	}
697 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
698 	if (likely(dst != th->dest)) {
699 		set_tp_port(skb, &th->dest, dst, &th->check);
700 		flow_key->tp.dst = dst;
701 	}
702 	skb_clear_hash(skb);
703 
704 	return 0;
705 }
706 
707 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
708 		    const struct ovs_key_sctp *key,
709 		    const struct ovs_key_sctp *mask)
710 {
711 	unsigned int sctphoff = skb_transport_offset(skb);
712 	struct sctphdr *sh;
713 	__le32 old_correct_csum, new_csum, old_csum;
714 	int err;
715 
716 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
717 	if (unlikely(err))
718 		return err;
719 
720 	sh = sctp_hdr(skb);
721 	old_csum = sh->checksum;
722 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
723 
724 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
725 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
726 
727 	new_csum = sctp_compute_cksum(skb, sctphoff);
728 
729 	/* Carry any checksum errors through. */
730 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
731 
732 	skb_clear_hash(skb);
733 	flow_key->tp.src = sh->source;
734 	flow_key->tp.dst = sh->dest;
735 
736 	return 0;
737 }
738 
739 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
740 {
741 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
742 	struct vport *vport = data->vport;
743 
744 	if (skb_cow_head(skb, data->l2_len) < 0) {
745 		kfree_skb(skb);
746 		return -ENOMEM;
747 	}
748 
749 	__skb_dst_copy(skb, data->dst);
750 	*OVS_CB(skb) = data->cb;
751 	skb->inner_protocol = data->inner_protocol;
752 	if (data->vlan_tci & VLAN_CFI_MASK)
753 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
754 	else
755 		__vlan_hwaccel_clear_tag(skb);
756 
757 	/* Reconstruct the MAC header.  */
758 	skb_push(skb, data->l2_len);
759 	memcpy(skb->data, &data->l2_data, data->l2_len);
760 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
761 	skb_reset_mac_header(skb);
762 
763 	if (eth_p_mpls(skb->protocol)) {
764 		skb->inner_network_header = skb->network_header;
765 		skb_set_network_header(skb, data->network_offset);
766 		skb_reset_mac_len(skb);
767 	}
768 
769 	ovs_vport_send(vport, skb, data->mac_proto);
770 	return 0;
771 }
772 
773 static unsigned int
774 ovs_dst_get_mtu(const struct dst_entry *dst)
775 {
776 	return dst->dev->mtu;
777 }
778 
779 static struct dst_ops ovs_dst_ops = {
780 	.family = AF_UNSPEC,
781 	.mtu = ovs_dst_get_mtu,
782 };
783 
784 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
785  * ovs_vport_output(), which is called once per fragmented packet.
786  */
787 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
788 			 u16 orig_network_offset, u8 mac_proto)
789 {
790 	unsigned int hlen = skb_network_offset(skb);
791 	struct ovs_frag_data *data;
792 
793 	data = this_cpu_ptr(&ovs_frag_data_storage);
794 	data->dst = skb->_skb_refdst;
795 	data->vport = vport;
796 	data->cb = *OVS_CB(skb);
797 	data->inner_protocol = skb->inner_protocol;
798 	data->network_offset = orig_network_offset;
799 	if (skb_vlan_tag_present(skb))
800 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
801 	else
802 		data->vlan_tci = 0;
803 	data->vlan_proto = skb->vlan_proto;
804 	data->mac_proto = mac_proto;
805 	data->l2_len = hlen;
806 	memcpy(&data->l2_data, skb->data, hlen);
807 
808 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
809 	skb_pull(skb, hlen);
810 }
811 
812 static void ovs_fragment(struct net *net, struct vport *vport,
813 			 struct sk_buff *skb, u16 mru,
814 			 struct sw_flow_key *key)
815 {
816 	u16 orig_network_offset = 0;
817 
818 	if (eth_p_mpls(skb->protocol)) {
819 		orig_network_offset = skb_network_offset(skb);
820 		skb->network_header = skb->inner_network_header;
821 	}
822 
823 	if (skb_network_offset(skb) > MAX_L2_LEN) {
824 		OVS_NLERR(1, "L2 header too long to fragment");
825 		goto err;
826 	}
827 
828 	if (key->eth.type == htons(ETH_P_IP)) {
829 		struct dst_entry ovs_dst;
830 		unsigned long orig_dst;
831 
832 		prepare_frag(vport, skb, orig_network_offset,
833 			     ovs_key_mac_proto(key));
834 		dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
835 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
836 		ovs_dst.dev = vport->dev;
837 
838 		orig_dst = skb->_skb_refdst;
839 		skb_dst_set_noref(skb, &ovs_dst);
840 		IPCB(skb)->frag_max_size = mru;
841 
842 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
843 		refdst_drop(orig_dst);
844 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
845 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
846 		unsigned long orig_dst;
847 		struct rt6_info ovs_rt;
848 
849 		if (!v6ops)
850 			goto err;
851 
852 		prepare_frag(vport, skb, orig_network_offset,
853 			     ovs_key_mac_proto(key));
854 		memset(&ovs_rt, 0, sizeof(ovs_rt));
855 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
856 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
857 		ovs_rt.dst.dev = vport->dev;
858 
859 		orig_dst = skb->_skb_refdst;
860 		skb_dst_set_noref(skb, &ovs_rt.dst);
861 		IP6CB(skb)->frag_max_size = mru;
862 
863 		v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
864 		refdst_drop(orig_dst);
865 	} else {
866 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
867 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
868 			  vport->dev->mtu);
869 		goto err;
870 	}
871 
872 	return;
873 err:
874 	kfree_skb(skb);
875 }
876 
877 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
878 		      struct sw_flow_key *key)
879 {
880 	struct vport *vport = ovs_vport_rcu(dp, out_port);
881 
882 	if (likely(vport)) {
883 		u16 mru = OVS_CB(skb)->mru;
884 		u32 cutlen = OVS_CB(skb)->cutlen;
885 
886 		if (unlikely(cutlen > 0)) {
887 			if (skb->len - cutlen > ovs_mac_header_len(key))
888 				pskb_trim(skb, skb->len - cutlen);
889 			else
890 				pskb_trim(skb, ovs_mac_header_len(key));
891 		}
892 
893 		if (likely(!mru ||
894 		           (skb->len <= mru + vport->dev->hard_header_len))) {
895 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
896 		} else if (mru <= vport->dev->mtu) {
897 			struct net *net = read_pnet(&dp->net);
898 
899 			ovs_fragment(net, vport, skb, mru, key);
900 		} else {
901 			kfree_skb(skb);
902 		}
903 	} else {
904 		kfree_skb(skb);
905 	}
906 }
907 
908 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
909 			    struct sw_flow_key *key, const struct nlattr *attr,
910 			    const struct nlattr *actions, int actions_len,
911 			    uint32_t cutlen)
912 {
913 	struct dp_upcall_info upcall;
914 	const struct nlattr *a;
915 	int rem;
916 
917 	memset(&upcall, 0, sizeof(upcall));
918 	upcall.cmd = OVS_PACKET_CMD_ACTION;
919 	upcall.mru = OVS_CB(skb)->mru;
920 
921 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
922 		 a = nla_next(a, &rem)) {
923 		switch (nla_type(a)) {
924 		case OVS_USERSPACE_ATTR_USERDATA:
925 			upcall.userdata = a;
926 			break;
927 
928 		case OVS_USERSPACE_ATTR_PID:
929 			upcall.portid = nla_get_u32(a);
930 			break;
931 
932 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
933 			/* Get out tunnel info. */
934 			struct vport *vport;
935 
936 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
937 			if (vport) {
938 				int err;
939 
940 				err = dev_fill_metadata_dst(vport->dev, skb);
941 				if (!err)
942 					upcall.egress_tun_info = skb_tunnel_info(skb);
943 			}
944 
945 			break;
946 		}
947 
948 		case OVS_USERSPACE_ATTR_ACTIONS: {
949 			/* Include actions. */
950 			upcall.actions = actions;
951 			upcall.actions_len = actions_len;
952 			break;
953 		}
954 
955 		} /* End of switch. */
956 	}
957 
958 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
959 }
960 
961 /* When 'last' is true, sample() should always consume the 'skb'.
962  * Otherwise, sample() should keep 'skb' intact regardless what
963  * actions are executed within sample().
964  */
965 static int sample(struct datapath *dp, struct sk_buff *skb,
966 		  struct sw_flow_key *key, const struct nlattr *attr,
967 		  bool last)
968 {
969 	struct nlattr *actions;
970 	struct nlattr *sample_arg;
971 	int rem = nla_len(attr);
972 	const struct sample_arg *arg;
973 	bool clone_flow_key;
974 
975 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
976 	sample_arg = nla_data(attr);
977 	arg = nla_data(sample_arg);
978 	actions = nla_next(sample_arg, &rem);
979 
980 	if ((arg->probability != U32_MAX) &&
981 	    (!arg->probability || prandom_u32() > arg->probability)) {
982 		if (last)
983 			consume_skb(skb);
984 		return 0;
985 	}
986 
987 	clone_flow_key = !arg->exec;
988 	return clone_execute(dp, skb, key, 0, actions, rem, last,
989 			     clone_flow_key);
990 }
991 
992 /* When 'last' is true, clone() should always consume the 'skb'.
993  * Otherwise, clone() should keep 'skb' intact regardless what
994  * actions are executed within clone().
995  */
996 static int clone(struct datapath *dp, struct sk_buff *skb,
997 		 struct sw_flow_key *key, const struct nlattr *attr,
998 		 bool last)
999 {
1000 	struct nlattr *actions;
1001 	struct nlattr *clone_arg;
1002 	int rem = nla_len(attr);
1003 	bool dont_clone_flow_key;
1004 
1005 	/* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1006 	clone_arg = nla_data(attr);
1007 	dont_clone_flow_key = nla_get_u32(clone_arg);
1008 	actions = nla_next(clone_arg, &rem);
1009 
1010 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1011 			     !dont_clone_flow_key);
1012 }
1013 
1014 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1015 			 const struct nlattr *attr)
1016 {
1017 	struct ovs_action_hash *hash_act = nla_data(attr);
1018 	u32 hash = 0;
1019 
1020 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1021 	hash = skb_get_hash(skb);
1022 	hash = jhash_1word(hash, hash_act->hash_basis);
1023 	if (!hash)
1024 		hash = 0x1;
1025 
1026 	key->ovs_flow_hash = hash;
1027 }
1028 
1029 static int execute_set_action(struct sk_buff *skb,
1030 			      struct sw_flow_key *flow_key,
1031 			      const struct nlattr *a)
1032 {
1033 	/* Only tunnel set execution is supported without a mask. */
1034 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1035 		struct ovs_tunnel_info *tun = nla_data(a);
1036 
1037 		skb_dst_drop(skb);
1038 		dst_hold((struct dst_entry *)tun->tun_dst);
1039 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1040 		return 0;
1041 	}
1042 
1043 	return -EINVAL;
1044 }
1045 
1046 /* Mask is at the midpoint of the data. */
1047 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1048 
1049 static int execute_masked_set_action(struct sk_buff *skb,
1050 				     struct sw_flow_key *flow_key,
1051 				     const struct nlattr *a)
1052 {
1053 	int err = 0;
1054 
1055 	switch (nla_type(a)) {
1056 	case OVS_KEY_ATTR_PRIORITY:
1057 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1058 			       *get_mask(a, u32 *));
1059 		flow_key->phy.priority = skb->priority;
1060 		break;
1061 
1062 	case OVS_KEY_ATTR_SKB_MARK:
1063 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1064 		flow_key->phy.skb_mark = skb->mark;
1065 		break;
1066 
1067 	case OVS_KEY_ATTR_TUNNEL_INFO:
1068 		/* Masked data not supported for tunnel. */
1069 		err = -EINVAL;
1070 		break;
1071 
1072 	case OVS_KEY_ATTR_ETHERNET:
1073 		err = set_eth_addr(skb, flow_key, nla_data(a),
1074 				   get_mask(a, struct ovs_key_ethernet *));
1075 		break;
1076 
1077 	case OVS_KEY_ATTR_NSH:
1078 		err = set_nsh(skb, flow_key, a);
1079 		break;
1080 
1081 	case OVS_KEY_ATTR_IPV4:
1082 		err = set_ipv4(skb, flow_key, nla_data(a),
1083 			       get_mask(a, struct ovs_key_ipv4 *));
1084 		break;
1085 
1086 	case OVS_KEY_ATTR_IPV6:
1087 		err = set_ipv6(skb, flow_key, nla_data(a),
1088 			       get_mask(a, struct ovs_key_ipv6 *));
1089 		break;
1090 
1091 	case OVS_KEY_ATTR_TCP:
1092 		err = set_tcp(skb, flow_key, nla_data(a),
1093 			      get_mask(a, struct ovs_key_tcp *));
1094 		break;
1095 
1096 	case OVS_KEY_ATTR_UDP:
1097 		err = set_udp(skb, flow_key, nla_data(a),
1098 			      get_mask(a, struct ovs_key_udp *));
1099 		break;
1100 
1101 	case OVS_KEY_ATTR_SCTP:
1102 		err = set_sctp(skb, flow_key, nla_data(a),
1103 			       get_mask(a, struct ovs_key_sctp *));
1104 		break;
1105 
1106 	case OVS_KEY_ATTR_MPLS:
1107 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1108 								    __be32 *));
1109 		break;
1110 
1111 	case OVS_KEY_ATTR_CT_STATE:
1112 	case OVS_KEY_ATTR_CT_ZONE:
1113 	case OVS_KEY_ATTR_CT_MARK:
1114 	case OVS_KEY_ATTR_CT_LABELS:
1115 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1116 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1117 		err = -EINVAL;
1118 		break;
1119 	}
1120 
1121 	return err;
1122 }
1123 
1124 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1125 			  struct sw_flow_key *key,
1126 			  const struct nlattr *a, bool last)
1127 {
1128 	u32 recirc_id;
1129 
1130 	if (!is_flow_key_valid(key)) {
1131 		int err;
1132 
1133 		err = ovs_flow_key_update(skb, key);
1134 		if (err)
1135 			return err;
1136 	}
1137 	BUG_ON(!is_flow_key_valid(key));
1138 
1139 	recirc_id = nla_get_u32(a);
1140 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1141 }
1142 
1143 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1144 				 struct sw_flow_key *key,
1145 				 const struct nlattr *attr, bool last)
1146 {
1147 	const struct nlattr *actions, *cpl_arg;
1148 	const struct check_pkt_len_arg *arg;
1149 	int rem = nla_len(attr);
1150 	bool clone_flow_key;
1151 
1152 	/* The first netlink attribute in 'attr' is always
1153 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1154 	 */
1155 	cpl_arg = nla_data(attr);
1156 	arg = nla_data(cpl_arg);
1157 
1158 	if (skb->len <= arg->pkt_len) {
1159 		/* Second netlink attribute in 'attr' is always
1160 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1161 		 */
1162 		actions = nla_next(cpl_arg, &rem);
1163 		clone_flow_key = !arg->exec_for_lesser_equal;
1164 	} else {
1165 		/* Third netlink attribute in 'attr' is always
1166 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1167 		 */
1168 		actions = nla_next(cpl_arg, &rem);
1169 		actions = nla_next(actions, &rem);
1170 		clone_flow_key = !arg->exec_for_greater;
1171 	}
1172 
1173 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1174 			     nla_len(actions), last, clone_flow_key);
1175 }
1176 
1177 /* Execute a list of actions against 'skb'. */
1178 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1179 			      struct sw_flow_key *key,
1180 			      const struct nlattr *attr, int len)
1181 {
1182 	const struct nlattr *a;
1183 	int rem;
1184 
1185 	for (a = attr, rem = len; rem > 0;
1186 	     a = nla_next(a, &rem)) {
1187 		int err = 0;
1188 
1189 		switch (nla_type(a)) {
1190 		case OVS_ACTION_ATTR_OUTPUT: {
1191 			int port = nla_get_u32(a);
1192 			struct sk_buff *clone;
1193 
1194 			/* Every output action needs a separate clone
1195 			 * of 'skb', In case the output action is the
1196 			 * last action, cloning can be avoided.
1197 			 */
1198 			if (nla_is_last(a, rem)) {
1199 				do_output(dp, skb, port, key);
1200 				/* 'skb' has been used for output.
1201 				 */
1202 				return 0;
1203 			}
1204 
1205 			clone = skb_clone(skb, GFP_ATOMIC);
1206 			if (clone)
1207 				do_output(dp, clone, port, key);
1208 			OVS_CB(skb)->cutlen = 0;
1209 			break;
1210 		}
1211 
1212 		case OVS_ACTION_ATTR_TRUNC: {
1213 			struct ovs_action_trunc *trunc = nla_data(a);
1214 
1215 			if (skb->len > trunc->max_len)
1216 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1217 			break;
1218 		}
1219 
1220 		case OVS_ACTION_ATTR_USERSPACE:
1221 			output_userspace(dp, skb, key, a, attr,
1222 						     len, OVS_CB(skb)->cutlen);
1223 			OVS_CB(skb)->cutlen = 0;
1224 			break;
1225 
1226 		case OVS_ACTION_ATTR_HASH:
1227 			execute_hash(skb, key, a);
1228 			break;
1229 
1230 		case OVS_ACTION_ATTR_PUSH_MPLS:
1231 			err = push_mpls(skb, key, nla_data(a));
1232 			break;
1233 
1234 		case OVS_ACTION_ATTR_POP_MPLS:
1235 			err = pop_mpls(skb, key, nla_get_be16(a));
1236 			break;
1237 
1238 		case OVS_ACTION_ATTR_PUSH_VLAN:
1239 			err = push_vlan(skb, key, nla_data(a));
1240 			break;
1241 
1242 		case OVS_ACTION_ATTR_POP_VLAN:
1243 			err = pop_vlan(skb, key);
1244 			break;
1245 
1246 		case OVS_ACTION_ATTR_RECIRC: {
1247 			bool last = nla_is_last(a, rem);
1248 
1249 			err = execute_recirc(dp, skb, key, a, last);
1250 			if (last) {
1251 				/* If this is the last action, the skb has
1252 				 * been consumed or freed.
1253 				 * Return immediately.
1254 				 */
1255 				return err;
1256 			}
1257 			break;
1258 		}
1259 
1260 		case OVS_ACTION_ATTR_SET:
1261 			err = execute_set_action(skb, key, nla_data(a));
1262 			break;
1263 
1264 		case OVS_ACTION_ATTR_SET_MASKED:
1265 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1266 			err = execute_masked_set_action(skb, key, nla_data(a));
1267 			break;
1268 
1269 		case OVS_ACTION_ATTR_SAMPLE: {
1270 			bool last = nla_is_last(a, rem);
1271 
1272 			err = sample(dp, skb, key, a, last);
1273 			if (last)
1274 				return err;
1275 
1276 			break;
1277 		}
1278 
1279 		case OVS_ACTION_ATTR_CT:
1280 			if (!is_flow_key_valid(key)) {
1281 				err = ovs_flow_key_update(skb, key);
1282 				if (err)
1283 					return err;
1284 			}
1285 
1286 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1287 					     nla_data(a));
1288 
1289 			/* Hide stolen IP fragments from user space. */
1290 			if (err)
1291 				return err == -EINPROGRESS ? 0 : err;
1292 			break;
1293 
1294 		case OVS_ACTION_ATTR_CT_CLEAR:
1295 			err = ovs_ct_clear(skb, key);
1296 			break;
1297 
1298 		case OVS_ACTION_ATTR_PUSH_ETH:
1299 			err = push_eth(skb, key, nla_data(a));
1300 			break;
1301 
1302 		case OVS_ACTION_ATTR_POP_ETH:
1303 			err = pop_eth(skb, key);
1304 			break;
1305 
1306 		case OVS_ACTION_ATTR_PUSH_NSH: {
1307 			u8 buffer[NSH_HDR_MAX_LEN];
1308 			struct nshhdr *nh = (struct nshhdr *)buffer;
1309 
1310 			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1311 						  NSH_HDR_MAX_LEN);
1312 			if (unlikely(err))
1313 				break;
1314 			err = push_nsh(skb, key, nh);
1315 			break;
1316 		}
1317 
1318 		case OVS_ACTION_ATTR_POP_NSH:
1319 			err = pop_nsh(skb, key);
1320 			break;
1321 
1322 		case OVS_ACTION_ATTR_METER:
1323 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1324 				consume_skb(skb);
1325 				return 0;
1326 			}
1327 			break;
1328 
1329 		case OVS_ACTION_ATTR_CLONE: {
1330 			bool last = nla_is_last(a, rem);
1331 
1332 			err = clone(dp, skb, key, a, last);
1333 			if (last)
1334 				return err;
1335 
1336 			break;
1337 		}
1338 
1339 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1340 			bool last = nla_is_last(a, rem);
1341 
1342 			err = execute_check_pkt_len(dp, skb, key, a, last);
1343 			if (last)
1344 				return err;
1345 
1346 			break;
1347 		}
1348 		}
1349 
1350 		if (unlikely(err)) {
1351 			kfree_skb(skb);
1352 			return err;
1353 		}
1354 	}
1355 
1356 	consume_skb(skb);
1357 	return 0;
1358 }
1359 
1360 /* Execute the actions on the clone of the packet. The effect of the
1361  * execution does not affect the original 'skb' nor the original 'key'.
1362  *
1363  * The execution may be deferred in case the actions can not be executed
1364  * immediately.
1365  */
1366 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1367 			 struct sw_flow_key *key, u32 recirc_id,
1368 			 const struct nlattr *actions, int len,
1369 			 bool last, bool clone_flow_key)
1370 {
1371 	struct deferred_action *da;
1372 	struct sw_flow_key *clone;
1373 
1374 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1375 	if (!skb) {
1376 		/* Out of memory, skip this action.
1377 		 */
1378 		return 0;
1379 	}
1380 
1381 	/* When clone_flow_key is false, the 'key' will not be change
1382 	 * by the actions, then the 'key' can be used directly.
1383 	 * Otherwise, try to clone key from the next recursion level of
1384 	 * 'flow_keys'. If clone is successful, execute the actions
1385 	 * without deferring.
1386 	 */
1387 	clone = clone_flow_key ? clone_key(key) : key;
1388 	if (clone) {
1389 		int err = 0;
1390 
1391 		if (actions) { /* Sample action */
1392 			if (clone_flow_key)
1393 				__this_cpu_inc(exec_actions_level);
1394 
1395 			err = do_execute_actions(dp, skb, clone,
1396 						 actions, len);
1397 
1398 			if (clone_flow_key)
1399 				__this_cpu_dec(exec_actions_level);
1400 		} else { /* Recirc action */
1401 			clone->recirc_id = recirc_id;
1402 			ovs_dp_process_packet(skb, clone);
1403 		}
1404 		return err;
1405 	}
1406 
1407 	/* Out of 'flow_keys' space. Defer actions */
1408 	da = add_deferred_actions(skb, key, actions, len);
1409 	if (da) {
1410 		if (!actions) { /* Recirc action */
1411 			key = &da->pkt_key;
1412 			key->recirc_id = recirc_id;
1413 		}
1414 	} else {
1415 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1416 		 * log an error.
1417 		 */
1418 		kfree_skb(skb);
1419 
1420 		if (net_ratelimit()) {
1421 			if (actions) { /* Sample action */
1422 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1423 					ovs_dp_name(dp));
1424 			} else {  /* Recirc action */
1425 				pr_warn("%s: deferred action limit reached, drop recirc action\n",
1426 					ovs_dp_name(dp));
1427 			}
1428 		}
1429 	}
1430 	return 0;
1431 }
1432 
1433 static void process_deferred_actions(struct datapath *dp)
1434 {
1435 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1436 
1437 	/* Do not touch the FIFO in case there is no deferred actions. */
1438 	if (action_fifo_is_empty(fifo))
1439 		return;
1440 
1441 	/* Finishing executing all deferred actions. */
1442 	do {
1443 		struct deferred_action *da = action_fifo_get(fifo);
1444 		struct sk_buff *skb = da->skb;
1445 		struct sw_flow_key *key = &da->pkt_key;
1446 		const struct nlattr *actions = da->actions;
1447 		int actions_len = da->actions_len;
1448 
1449 		if (actions)
1450 			do_execute_actions(dp, skb, key, actions, actions_len);
1451 		else
1452 			ovs_dp_process_packet(skb, key);
1453 	} while (!action_fifo_is_empty(fifo));
1454 
1455 	/* Reset FIFO for the next packet.  */
1456 	action_fifo_init(fifo);
1457 }
1458 
1459 /* Execute a list of actions against 'skb'. */
1460 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1461 			const struct sw_flow_actions *acts,
1462 			struct sw_flow_key *key)
1463 {
1464 	int err, level;
1465 
1466 	level = __this_cpu_inc_return(exec_actions_level);
1467 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1468 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1469 				     ovs_dp_name(dp));
1470 		kfree_skb(skb);
1471 		err = -ENETDOWN;
1472 		goto out;
1473 	}
1474 
1475 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1476 	err = do_execute_actions(dp, skb, key,
1477 				 acts->actions, acts->actions_len);
1478 
1479 	if (level == 1)
1480 		process_deferred_actions(dp);
1481 
1482 out:
1483 	__this_cpu_dec(exec_actions_level);
1484 	return err;
1485 }
1486 
1487 int action_fifos_init(void)
1488 {
1489 	action_fifos = alloc_percpu(struct action_fifo);
1490 	if (!action_fifos)
1491 		return -ENOMEM;
1492 
1493 	flow_keys = alloc_percpu(struct action_flow_keys);
1494 	if (!flow_keys) {
1495 		free_percpu(action_fifos);
1496 		return -ENOMEM;
1497 	}
1498 
1499 	return 0;
1500 }
1501 
1502 void action_fifos_exit(void)
1503 {
1504 	free_percpu(action_fifos);
1505 	free_percpu(flow_keys);
1506 }
1507