1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2007-2017 Nicira, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/skbuff.h> 9 #include <linux/in.h> 10 #include <linux/ip.h> 11 #include <linux/openvswitch.h> 12 #include <linux/sctp.h> 13 #include <linux/tcp.h> 14 #include <linux/udp.h> 15 #include <linux/in6.h> 16 #include <linux/if_arp.h> 17 #include <linux/if_vlan.h> 18 19 #include <net/dst.h> 20 #include <net/ip.h> 21 #include <net/ipv6.h> 22 #include <net/ip6_fib.h> 23 #include <net/checksum.h> 24 #include <net/dsfield.h> 25 #include <net/mpls.h> 26 #include <net/sctp/checksum.h> 27 28 #include "datapath.h" 29 #include "flow.h" 30 #include "conntrack.h" 31 #include "vport.h" 32 #include "flow_netlink.h" 33 #include "openvswitch_trace.h" 34 35 struct deferred_action { 36 struct sk_buff *skb; 37 const struct nlattr *actions; 38 int actions_len; 39 40 /* Store pkt_key clone when creating deferred action. */ 41 struct sw_flow_key pkt_key; 42 }; 43 44 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN) 45 struct ovs_frag_data { 46 unsigned long dst; 47 struct vport *vport; 48 struct ovs_skb_cb cb; 49 __be16 inner_protocol; 50 u16 network_offset; /* valid only for MPLS */ 51 u16 vlan_tci; 52 __be16 vlan_proto; 53 unsigned int l2_len; 54 u8 mac_proto; 55 u8 l2_data[MAX_L2_LEN]; 56 }; 57 58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage); 59 60 #define DEFERRED_ACTION_FIFO_SIZE 10 61 #define OVS_RECURSION_LIMIT 5 62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2) 63 struct action_fifo { 64 int head; 65 int tail; 66 /* Deferred action fifo queue storage. */ 67 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; 68 }; 69 70 struct action_flow_keys { 71 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD]; 72 }; 73 74 static struct action_fifo __percpu *action_fifos; 75 static struct action_flow_keys __percpu *flow_keys; 76 static DEFINE_PER_CPU(int, exec_actions_level); 77 78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys' 79 * space. Return NULL if out of key spaces. 80 */ 81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_) 82 { 83 struct action_flow_keys *keys = this_cpu_ptr(flow_keys); 84 int level = this_cpu_read(exec_actions_level); 85 struct sw_flow_key *key = NULL; 86 87 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) { 88 key = &keys->key[level - 1]; 89 *key = *key_; 90 } 91 92 return key; 93 } 94 95 static void action_fifo_init(struct action_fifo *fifo) 96 { 97 fifo->head = 0; 98 fifo->tail = 0; 99 } 100 101 static bool action_fifo_is_empty(const struct action_fifo *fifo) 102 { 103 return (fifo->head == fifo->tail); 104 } 105 106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo) 107 { 108 if (action_fifo_is_empty(fifo)) 109 return NULL; 110 111 return &fifo->fifo[fifo->tail++]; 112 } 113 114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo) 115 { 116 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) 117 return NULL; 118 119 return &fifo->fifo[fifo->head++]; 120 } 121 122 /* Return true if fifo is not full */ 123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb, 124 const struct sw_flow_key *key, 125 const struct nlattr *actions, 126 const int actions_len) 127 { 128 struct action_fifo *fifo; 129 struct deferred_action *da; 130 131 fifo = this_cpu_ptr(action_fifos); 132 da = action_fifo_put(fifo); 133 if (da) { 134 da->skb = skb; 135 da->actions = actions; 136 da->actions_len = actions_len; 137 da->pkt_key = *key; 138 } 139 140 return da; 141 } 142 143 static void invalidate_flow_key(struct sw_flow_key *key) 144 { 145 key->mac_proto |= SW_FLOW_KEY_INVALID; 146 } 147 148 static bool is_flow_key_valid(const struct sw_flow_key *key) 149 { 150 return !(key->mac_proto & SW_FLOW_KEY_INVALID); 151 } 152 153 static int clone_execute(struct datapath *dp, struct sk_buff *skb, 154 struct sw_flow_key *key, 155 u32 recirc_id, 156 const struct nlattr *actions, int len, 157 bool last, bool clone_flow_key); 158 159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 160 struct sw_flow_key *key, 161 const struct nlattr *attr, int len); 162 163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, 164 __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len) 165 { 166 int err; 167 168 err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len); 169 if (err) 170 return err; 171 172 if (!mac_len) 173 key->mac_proto = MAC_PROTO_NONE; 174 175 invalidate_flow_key(key); 176 return 0; 177 } 178 179 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, 180 const __be16 ethertype) 181 { 182 int err; 183 184 err = skb_mpls_pop(skb, ethertype, skb->mac_len, 185 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET); 186 if (err) 187 return err; 188 189 if (ethertype == htons(ETH_P_TEB)) 190 key->mac_proto = MAC_PROTO_ETHERNET; 191 192 invalidate_flow_key(key); 193 return 0; 194 } 195 196 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, 197 const __be32 *mpls_lse, const __be32 *mask) 198 { 199 struct mpls_shim_hdr *stack; 200 __be32 lse; 201 int err; 202 203 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 204 return -ENOMEM; 205 206 stack = mpls_hdr(skb); 207 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask); 208 err = skb_mpls_update_lse(skb, lse); 209 if (err) 210 return err; 211 212 flow_key->mpls.lse[0] = lse; 213 return 0; 214 } 215 216 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) 217 { 218 int err; 219 220 err = skb_vlan_pop(skb); 221 if (skb_vlan_tag_present(skb)) { 222 invalidate_flow_key(key); 223 } else { 224 key->eth.vlan.tci = 0; 225 key->eth.vlan.tpid = 0; 226 } 227 return err; 228 } 229 230 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, 231 const struct ovs_action_push_vlan *vlan) 232 { 233 if (skb_vlan_tag_present(skb)) { 234 invalidate_flow_key(key); 235 } else { 236 key->eth.vlan.tci = vlan->vlan_tci; 237 key->eth.vlan.tpid = vlan->vlan_tpid; 238 } 239 return skb_vlan_push(skb, vlan->vlan_tpid, 240 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK); 241 } 242 243 /* 'src' is already properly masked. */ 244 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) 245 { 246 u16 *dst = (u16 *)dst_; 247 const u16 *src = (const u16 *)src_; 248 const u16 *mask = (const u16 *)mask_; 249 250 OVS_SET_MASKED(dst[0], src[0], mask[0]); 251 OVS_SET_MASKED(dst[1], src[1], mask[1]); 252 OVS_SET_MASKED(dst[2], src[2], mask[2]); 253 } 254 255 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, 256 const struct ovs_key_ethernet *key, 257 const struct ovs_key_ethernet *mask) 258 { 259 int err; 260 261 err = skb_ensure_writable(skb, ETH_HLEN); 262 if (unlikely(err)) 263 return err; 264 265 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 266 267 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, 268 mask->eth_src); 269 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, 270 mask->eth_dst); 271 272 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 273 274 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); 275 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); 276 return 0; 277 } 278 279 /* pop_eth does not support VLAN packets as this action is never called 280 * for them. 281 */ 282 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key) 283 { 284 int err; 285 286 err = skb_eth_pop(skb); 287 if (err) 288 return err; 289 290 /* safe right before invalidate_flow_key */ 291 key->mac_proto = MAC_PROTO_NONE; 292 invalidate_flow_key(key); 293 return 0; 294 } 295 296 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key, 297 const struct ovs_action_push_eth *ethh) 298 { 299 int err; 300 301 err = skb_eth_push(skb, ethh->addresses.eth_dst, 302 ethh->addresses.eth_src); 303 if (err) 304 return err; 305 306 /* safe right before invalidate_flow_key */ 307 key->mac_proto = MAC_PROTO_ETHERNET; 308 invalidate_flow_key(key); 309 return 0; 310 } 311 312 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key, 313 const struct nshhdr *nh) 314 { 315 int err; 316 317 err = nsh_push(skb, nh); 318 if (err) 319 return err; 320 321 /* safe right before invalidate_flow_key */ 322 key->mac_proto = MAC_PROTO_NONE; 323 invalidate_flow_key(key); 324 return 0; 325 } 326 327 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key) 328 { 329 int err; 330 331 err = nsh_pop(skb); 332 if (err) 333 return err; 334 335 /* safe right before invalidate_flow_key */ 336 if (skb->protocol == htons(ETH_P_TEB)) 337 key->mac_proto = MAC_PROTO_ETHERNET; 338 else 339 key->mac_proto = MAC_PROTO_NONE; 340 invalidate_flow_key(key); 341 return 0; 342 } 343 344 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, 345 __be32 addr, __be32 new_addr) 346 { 347 int transport_len = skb->len - skb_transport_offset(skb); 348 349 if (nh->frag_off & htons(IP_OFFSET)) 350 return; 351 352 if (nh->protocol == IPPROTO_TCP) { 353 if (likely(transport_len >= sizeof(struct tcphdr))) 354 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, 355 addr, new_addr, true); 356 } else if (nh->protocol == IPPROTO_UDP) { 357 if (likely(transport_len >= sizeof(struct udphdr))) { 358 struct udphdr *uh = udp_hdr(skb); 359 360 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 361 inet_proto_csum_replace4(&uh->check, skb, 362 addr, new_addr, true); 363 if (!uh->check) 364 uh->check = CSUM_MANGLED_0; 365 } 366 } 367 } 368 } 369 370 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, 371 __be32 *addr, __be32 new_addr) 372 { 373 update_ip_l4_checksum(skb, nh, *addr, new_addr); 374 csum_replace4(&nh->check, *addr, new_addr); 375 skb_clear_hash(skb); 376 *addr = new_addr; 377 } 378 379 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, 380 __be32 addr[4], const __be32 new_addr[4]) 381 { 382 int transport_len = skb->len - skb_transport_offset(skb); 383 384 if (l4_proto == NEXTHDR_TCP) { 385 if (likely(transport_len >= sizeof(struct tcphdr))) 386 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, 387 addr, new_addr, true); 388 } else if (l4_proto == NEXTHDR_UDP) { 389 if (likely(transport_len >= sizeof(struct udphdr))) { 390 struct udphdr *uh = udp_hdr(skb); 391 392 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 393 inet_proto_csum_replace16(&uh->check, skb, 394 addr, new_addr, true); 395 if (!uh->check) 396 uh->check = CSUM_MANGLED_0; 397 } 398 } 399 } else if (l4_proto == NEXTHDR_ICMP) { 400 if (likely(transport_len >= sizeof(struct icmp6hdr))) 401 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, 402 skb, addr, new_addr, true); 403 } 404 } 405 406 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], 407 const __be32 mask[4], __be32 masked[4]) 408 { 409 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); 410 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); 411 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); 412 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); 413 } 414 415 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, 416 __be32 addr[4], const __be32 new_addr[4], 417 bool recalculate_csum) 418 { 419 if (recalculate_csum) 420 update_ipv6_checksum(skb, l4_proto, addr, new_addr); 421 422 skb_clear_hash(skb); 423 memcpy(addr, new_addr, sizeof(__be32[4])); 424 } 425 426 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask) 427 { 428 u8 old_ipv6_tclass = ipv6_get_dsfield(nh); 429 430 ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask); 431 432 if (skb->ip_summed == CHECKSUM_COMPLETE) 433 csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12), 434 (__force __wsum)(ipv6_tclass << 12)); 435 436 ipv6_change_dsfield(nh, ~mask, ipv6_tclass); 437 } 438 439 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask) 440 { 441 u32 ofl; 442 443 ofl = nh->flow_lbl[0] << 16 | nh->flow_lbl[1] << 8 | nh->flow_lbl[2]; 444 fl = OVS_MASKED(ofl, fl, mask); 445 446 /* Bits 21-24 are always unmasked, so this retains their values. */ 447 nh->flow_lbl[0] = (u8)(fl >> 16); 448 nh->flow_lbl[1] = (u8)(fl >> 8); 449 nh->flow_lbl[2] = (u8)fl; 450 451 if (skb->ip_summed == CHECKSUM_COMPLETE) 452 csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl)); 453 } 454 455 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask) 456 { 457 new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask); 458 459 if (skb->ip_summed == CHECKSUM_COMPLETE) 460 csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8), 461 (__force __wsum)(new_ttl << 8)); 462 nh->hop_limit = new_ttl; 463 } 464 465 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, 466 u8 mask) 467 { 468 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); 469 470 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); 471 nh->ttl = new_ttl; 472 } 473 474 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, 475 const struct ovs_key_ipv4 *key, 476 const struct ovs_key_ipv4 *mask) 477 { 478 struct iphdr *nh; 479 __be32 new_addr; 480 int err; 481 482 err = skb_ensure_writable(skb, skb_network_offset(skb) + 483 sizeof(struct iphdr)); 484 if (unlikely(err)) 485 return err; 486 487 nh = ip_hdr(skb); 488 489 /* Setting an IP addresses is typically only a side effect of 490 * matching on them in the current userspace implementation, so it 491 * makes sense to check if the value actually changed. 492 */ 493 if (mask->ipv4_src) { 494 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); 495 496 if (unlikely(new_addr != nh->saddr)) { 497 set_ip_addr(skb, nh, &nh->saddr, new_addr); 498 flow_key->ipv4.addr.src = new_addr; 499 } 500 } 501 if (mask->ipv4_dst) { 502 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); 503 504 if (unlikely(new_addr != nh->daddr)) { 505 set_ip_addr(skb, nh, &nh->daddr, new_addr); 506 flow_key->ipv4.addr.dst = new_addr; 507 } 508 } 509 if (mask->ipv4_tos) { 510 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); 511 flow_key->ip.tos = nh->tos; 512 } 513 if (mask->ipv4_ttl) { 514 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); 515 flow_key->ip.ttl = nh->ttl; 516 } 517 518 return 0; 519 } 520 521 static bool is_ipv6_mask_nonzero(const __be32 addr[4]) 522 { 523 return !!(addr[0] | addr[1] | addr[2] | addr[3]); 524 } 525 526 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, 527 const struct ovs_key_ipv6 *key, 528 const struct ovs_key_ipv6 *mask) 529 { 530 struct ipv6hdr *nh; 531 int err; 532 533 err = skb_ensure_writable(skb, skb_network_offset(skb) + 534 sizeof(struct ipv6hdr)); 535 if (unlikely(err)) 536 return err; 537 538 nh = ipv6_hdr(skb); 539 540 /* Setting an IP addresses is typically only a side effect of 541 * matching on them in the current userspace implementation, so it 542 * makes sense to check if the value actually changed. 543 */ 544 if (is_ipv6_mask_nonzero(mask->ipv6_src)) { 545 __be32 *saddr = (__be32 *)&nh->saddr; 546 __be32 masked[4]; 547 548 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); 549 550 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { 551 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, 552 true); 553 memcpy(&flow_key->ipv6.addr.src, masked, 554 sizeof(flow_key->ipv6.addr.src)); 555 } 556 } 557 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { 558 unsigned int offset = 0; 559 int flags = IP6_FH_F_SKIP_RH; 560 bool recalc_csum = true; 561 __be32 *daddr = (__be32 *)&nh->daddr; 562 __be32 masked[4]; 563 564 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); 565 566 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { 567 if (ipv6_ext_hdr(nh->nexthdr)) 568 recalc_csum = (ipv6_find_hdr(skb, &offset, 569 NEXTHDR_ROUTING, 570 NULL, &flags) 571 != NEXTHDR_ROUTING); 572 573 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, 574 recalc_csum); 575 memcpy(&flow_key->ipv6.addr.dst, masked, 576 sizeof(flow_key->ipv6.addr.dst)); 577 } 578 } 579 if (mask->ipv6_tclass) { 580 set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass); 581 flow_key->ip.tos = ipv6_get_dsfield(nh); 582 } 583 if (mask->ipv6_label) { 584 set_ipv6_fl(skb, nh, ntohl(key->ipv6_label), 585 ntohl(mask->ipv6_label)); 586 flow_key->ipv6.label = 587 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 588 } 589 if (mask->ipv6_hlimit) { 590 set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit); 591 flow_key->ip.ttl = nh->hop_limit; 592 } 593 return 0; 594 } 595 596 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key, 597 const struct nlattr *a) 598 { 599 struct nshhdr *nh; 600 size_t length; 601 int err; 602 u8 flags; 603 u8 ttl; 604 int i; 605 606 struct ovs_key_nsh key; 607 struct ovs_key_nsh mask; 608 609 err = nsh_key_from_nlattr(a, &key, &mask); 610 if (err) 611 return err; 612 613 /* Make sure the NSH base header is there */ 614 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN)) 615 return -ENOMEM; 616 617 nh = nsh_hdr(skb); 618 length = nsh_hdr_len(nh); 619 620 /* Make sure the whole NSH header is there */ 621 err = skb_ensure_writable(skb, skb_network_offset(skb) + 622 length); 623 if (unlikely(err)) 624 return err; 625 626 nh = nsh_hdr(skb); 627 skb_postpull_rcsum(skb, nh, length); 628 flags = nsh_get_flags(nh); 629 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags); 630 flow_key->nsh.base.flags = flags; 631 ttl = nsh_get_ttl(nh); 632 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl); 633 flow_key->nsh.base.ttl = ttl; 634 nsh_set_flags_and_ttl(nh, flags, ttl); 635 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr, 636 mask.base.path_hdr); 637 flow_key->nsh.base.path_hdr = nh->path_hdr; 638 switch (nh->mdtype) { 639 case NSH_M_TYPE1: 640 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) { 641 nh->md1.context[i] = 642 OVS_MASKED(nh->md1.context[i], key.context[i], 643 mask.context[i]); 644 } 645 memcpy(flow_key->nsh.context, nh->md1.context, 646 sizeof(nh->md1.context)); 647 break; 648 case NSH_M_TYPE2: 649 memset(flow_key->nsh.context, 0, 650 sizeof(flow_key->nsh.context)); 651 break; 652 default: 653 return -EINVAL; 654 } 655 skb_postpush_rcsum(skb, nh, length); 656 return 0; 657 } 658 659 /* Must follow skb_ensure_writable() since that can move the skb data. */ 660 static void set_tp_port(struct sk_buff *skb, __be16 *port, 661 __be16 new_port, __sum16 *check) 662 { 663 inet_proto_csum_replace2(check, skb, *port, new_port, false); 664 *port = new_port; 665 } 666 667 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, 668 const struct ovs_key_udp *key, 669 const struct ovs_key_udp *mask) 670 { 671 struct udphdr *uh; 672 __be16 src, dst; 673 int err; 674 675 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 676 sizeof(struct udphdr)); 677 if (unlikely(err)) 678 return err; 679 680 uh = udp_hdr(skb); 681 /* Either of the masks is non-zero, so do not bother checking them. */ 682 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); 683 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); 684 685 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { 686 if (likely(src != uh->source)) { 687 set_tp_port(skb, &uh->source, src, &uh->check); 688 flow_key->tp.src = src; 689 } 690 if (likely(dst != uh->dest)) { 691 set_tp_port(skb, &uh->dest, dst, &uh->check); 692 flow_key->tp.dst = dst; 693 } 694 695 if (unlikely(!uh->check)) 696 uh->check = CSUM_MANGLED_0; 697 } else { 698 uh->source = src; 699 uh->dest = dst; 700 flow_key->tp.src = src; 701 flow_key->tp.dst = dst; 702 } 703 704 skb_clear_hash(skb); 705 706 return 0; 707 } 708 709 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, 710 const struct ovs_key_tcp *key, 711 const struct ovs_key_tcp *mask) 712 { 713 struct tcphdr *th; 714 __be16 src, dst; 715 int err; 716 717 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 718 sizeof(struct tcphdr)); 719 if (unlikely(err)) 720 return err; 721 722 th = tcp_hdr(skb); 723 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); 724 if (likely(src != th->source)) { 725 set_tp_port(skb, &th->source, src, &th->check); 726 flow_key->tp.src = src; 727 } 728 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); 729 if (likely(dst != th->dest)) { 730 set_tp_port(skb, &th->dest, dst, &th->check); 731 flow_key->tp.dst = dst; 732 } 733 skb_clear_hash(skb); 734 735 return 0; 736 } 737 738 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, 739 const struct ovs_key_sctp *key, 740 const struct ovs_key_sctp *mask) 741 { 742 unsigned int sctphoff = skb_transport_offset(skb); 743 struct sctphdr *sh; 744 __le32 old_correct_csum, new_csum, old_csum; 745 int err; 746 747 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); 748 if (unlikely(err)) 749 return err; 750 751 sh = sctp_hdr(skb); 752 old_csum = sh->checksum; 753 old_correct_csum = sctp_compute_cksum(skb, sctphoff); 754 755 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); 756 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); 757 758 new_csum = sctp_compute_cksum(skb, sctphoff); 759 760 /* Carry any checksum errors through. */ 761 sh->checksum = old_csum ^ old_correct_csum ^ new_csum; 762 763 skb_clear_hash(skb); 764 flow_key->tp.src = sh->source; 765 flow_key->tp.dst = sh->dest; 766 767 return 0; 768 } 769 770 static int ovs_vport_output(struct net *net, struct sock *sk, 771 struct sk_buff *skb) 772 { 773 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage); 774 struct vport *vport = data->vport; 775 776 if (skb_cow_head(skb, data->l2_len) < 0) { 777 kfree_skb(skb); 778 return -ENOMEM; 779 } 780 781 __skb_dst_copy(skb, data->dst); 782 *OVS_CB(skb) = data->cb; 783 skb->inner_protocol = data->inner_protocol; 784 if (data->vlan_tci & VLAN_CFI_MASK) 785 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK); 786 else 787 __vlan_hwaccel_clear_tag(skb); 788 789 /* Reconstruct the MAC header. */ 790 skb_push(skb, data->l2_len); 791 memcpy(skb->data, &data->l2_data, data->l2_len); 792 skb_postpush_rcsum(skb, skb->data, data->l2_len); 793 skb_reset_mac_header(skb); 794 795 if (eth_p_mpls(skb->protocol)) { 796 skb->inner_network_header = skb->network_header; 797 skb_set_network_header(skb, data->network_offset); 798 skb_reset_mac_len(skb); 799 } 800 801 ovs_vport_send(vport, skb, data->mac_proto); 802 return 0; 803 } 804 805 static unsigned int 806 ovs_dst_get_mtu(const struct dst_entry *dst) 807 { 808 return dst->dev->mtu; 809 } 810 811 static struct dst_ops ovs_dst_ops = { 812 .family = AF_UNSPEC, 813 .mtu = ovs_dst_get_mtu, 814 }; 815 816 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is 817 * ovs_vport_output(), which is called once per fragmented packet. 818 */ 819 static void prepare_frag(struct vport *vport, struct sk_buff *skb, 820 u16 orig_network_offset, u8 mac_proto) 821 { 822 unsigned int hlen = skb_network_offset(skb); 823 struct ovs_frag_data *data; 824 825 data = this_cpu_ptr(&ovs_frag_data_storage); 826 data->dst = skb->_skb_refdst; 827 data->vport = vport; 828 data->cb = *OVS_CB(skb); 829 data->inner_protocol = skb->inner_protocol; 830 data->network_offset = orig_network_offset; 831 if (skb_vlan_tag_present(skb)) 832 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK; 833 else 834 data->vlan_tci = 0; 835 data->vlan_proto = skb->vlan_proto; 836 data->mac_proto = mac_proto; 837 data->l2_len = hlen; 838 memcpy(&data->l2_data, skb->data, hlen); 839 840 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 841 skb_pull(skb, hlen); 842 } 843 844 static void ovs_fragment(struct net *net, struct vport *vport, 845 struct sk_buff *skb, u16 mru, 846 struct sw_flow_key *key) 847 { 848 u16 orig_network_offset = 0; 849 850 if (eth_p_mpls(skb->protocol)) { 851 orig_network_offset = skb_network_offset(skb); 852 skb->network_header = skb->inner_network_header; 853 } 854 855 if (skb_network_offset(skb) > MAX_L2_LEN) { 856 OVS_NLERR(1, "L2 header too long to fragment"); 857 goto err; 858 } 859 860 if (key->eth.type == htons(ETH_P_IP)) { 861 struct rtable ovs_rt = { 0 }; 862 unsigned long orig_dst; 863 864 prepare_frag(vport, skb, orig_network_offset, 865 ovs_key_mac_proto(key)); 866 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, 867 DST_OBSOLETE_NONE, DST_NOCOUNT); 868 ovs_rt.dst.dev = vport->dev; 869 870 orig_dst = skb->_skb_refdst; 871 skb_dst_set_noref(skb, &ovs_rt.dst); 872 IPCB(skb)->frag_max_size = mru; 873 874 ip_do_fragment(net, skb->sk, skb, ovs_vport_output); 875 refdst_drop(orig_dst); 876 } else if (key->eth.type == htons(ETH_P_IPV6)) { 877 unsigned long orig_dst; 878 struct rt6_info ovs_rt; 879 880 prepare_frag(vport, skb, orig_network_offset, 881 ovs_key_mac_proto(key)); 882 memset(&ovs_rt, 0, sizeof(ovs_rt)); 883 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, 884 DST_OBSOLETE_NONE, DST_NOCOUNT); 885 ovs_rt.dst.dev = vport->dev; 886 887 orig_dst = skb->_skb_refdst; 888 skb_dst_set_noref(skb, &ovs_rt.dst); 889 IP6CB(skb)->frag_max_size = mru; 890 891 ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output); 892 refdst_drop(orig_dst); 893 } else { 894 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", 895 ovs_vport_name(vport), ntohs(key->eth.type), mru, 896 vport->dev->mtu); 897 goto err; 898 } 899 900 return; 901 err: 902 kfree_skb(skb); 903 } 904 905 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, 906 struct sw_flow_key *key) 907 { 908 struct vport *vport = ovs_vport_rcu(dp, out_port); 909 910 if (likely(vport)) { 911 u16 mru = OVS_CB(skb)->mru; 912 u32 cutlen = OVS_CB(skb)->cutlen; 913 914 if (unlikely(cutlen > 0)) { 915 if (skb->len - cutlen > ovs_mac_header_len(key)) 916 pskb_trim(skb, skb->len - cutlen); 917 else 918 pskb_trim(skb, ovs_mac_header_len(key)); 919 } 920 921 if (likely(!mru || 922 (skb->len <= mru + vport->dev->hard_header_len))) { 923 ovs_vport_send(vport, skb, ovs_key_mac_proto(key)); 924 } else if (mru <= vport->dev->mtu) { 925 struct net *net = read_pnet(&dp->net); 926 927 ovs_fragment(net, vport, skb, mru, key); 928 } else { 929 kfree_skb(skb); 930 } 931 } else { 932 kfree_skb(skb); 933 } 934 } 935 936 static int output_userspace(struct datapath *dp, struct sk_buff *skb, 937 struct sw_flow_key *key, const struct nlattr *attr, 938 const struct nlattr *actions, int actions_len, 939 uint32_t cutlen) 940 { 941 struct dp_upcall_info upcall; 942 const struct nlattr *a; 943 int rem; 944 945 memset(&upcall, 0, sizeof(upcall)); 946 upcall.cmd = OVS_PACKET_CMD_ACTION; 947 upcall.mru = OVS_CB(skb)->mru; 948 949 for (a = nla_data(attr), rem = nla_len(attr); rem > 0; 950 a = nla_next(a, &rem)) { 951 switch (nla_type(a)) { 952 case OVS_USERSPACE_ATTR_USERDATA: 953 upcall.userdata = a; 954 break; 955 956 case OVS_USERSPACE_ATTR_PID: 957 if (dp->user_features & 958 OVS_DP_F_DISPATCH_UPCALL_PER_CPU) 959 upcall.portid = 960 ovs_dp_get_upcall_portid(dp, 961 smp_processor_id()); 962 else 963 upcall.portid = nla_get_u32(a); 964 break; 965 966 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { 967 /* Get out tunnel info. */ 968 struct vport *vport; 969 970 vport = ovs_vport_rcu(dp, nla_get_u32(a)); 971 if (vport) { 972 int err; 973 974 err = dev_fill_metadata_dst(vport->dev, skb); 975 if (!err) 976 upcall.egress_tun_info = skb_tunnel_info(skb); 977 } 978 979 break; 980 } 981 982 case OVS_USERSPACE_ATTR_ACTIONS: { 983 /* Include actions. */ 984 upcall.actions = actions; 985 upcall.actions_len = actions_len; 986 break; 987 } 988 989 } /* End of switch. */ 990 } 991 992 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen); 993 } 994 995 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb, 996 struct sw_flow_key *key, 997 const struct nlattr *attr) 998 { 999 /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */ 1000 struct nlattr *actions = nla_data(attr); 1001 1002 if (nla_len(actions)) 1003 return clone_execute(dp, skb, key, 0, nla_data(actions), 1004 nla_len(actions), true, false); 1005 1006 consume_skb(skb); 1007 return 0; 1008 } 1009 1010 /* When 'last' is true, sample() should always consume the 'skb'. 1011 * Otherwise, sample() should keep 'skb' intact regardless what 1012 * actions are executed within sample(). 1013 */ 1014 static int sample(struct datapath *dp, struct sk_buff *skb, 1015 struct sw_flow_key *key, const struct nlattr *attr, 1016 bool last) 1017 { 1018 struct nlattr *actions; 1019 struct nlattr *sample_arg; 1020 int rem = nla_len(attr); 1021 const struct sample_arg *arg; 1022 bool clone_flow_key; 1023 1024 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */ 1025 sample_arg = nla_data(attr); 1026 arg = nla_data(sample_arg); 1027 actions = nla_next(sample_arg, &rem); 1028 1029 if ((arg->probability != U32_MAX) && 1030 (!arg->probability || prandom_u32() > arg->probability)) { 1031 if (last) 1032 consume_skb(skb); 1033 return 0; 1034 } 1035 1036 clone_flow_key = !arg->exec; 1037 return clone_execute(dp, skb, key, 0, actions, rem, last, 1038 clone_flow_key); 1039 } 1040 1041 /* When 'last' is true, clone() should always consume the 'skb'. 1042 * Otherwise, clone() should keep 'skb' intact regardless what 1043 * actions are executed within clone(). 1044 */ 1045 static int clone(struct datapath *dp, struct sk_buff *skb, 1046 struct sw_flow_key *key, const struct nlattr *attr, 1047 bool last) 1048 { 1049 struct nlattr *actions; 1050 struct nlattr *clone_arg; 1051 int rem = nla_len(attr); 1052 bool dont_clone_flow_key; 1053 1054 /* The first action is always 'OVS_CLONE_ATTR_ARG'. */ 1055 clone_arg = nla_data(attr); 1056 dont_clone_flow_key = nla_get_u32(clone_arg); 1057 actions = nla_next(clone_arg, &rem); 1058 1059 return clone_execute(dp, skb, key, 0, actions, rem, last, 1060 !dont_clone_flow_key); 1061 } 1062 1063 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, 1064 const struct nlattr *attr) 1065 { 1066 struct ovs_action_hash *hash_act = nla_data(attr); 1067 u32 hash = 0; 1068 1069 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */ 1070 hash = skb_get_hash(skb); 1071 hash = jhash_1word(hash, hash_act->hash_basis); 1072 if (!hash) 1073 hash = 0x1; 1074 1075 key->ovs_flow_hash = hash; 1076 } 1077 1078 static int execute_set_action(struct sk_buff *skb, 1079 struct sw_flow_key *flow_key, 1080 const struct nlattr *a) 1081 { 1082 /* Only tunnel set execution is supported without a mask. */ 1083 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { 1084 struct ovs_tunnel_info *tun = nla_data(a); 1085 1086 skb_dst_drop(skb); 1087 dst_hold((struct dst_entry *)tun->tun_dst); 1088 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); 1089 return 0; 1090 } 1091 1092 return -EINVAL; 1093 } 1094 1095 /* Mask is at the midpoint of the data. */ 1096 #define get_mask(a, type) ((const type)nla_data(a) + 1) 1097 1098 static int execute_masked_set_action(struct sk_buff *skb, 1099 struct sw_flow_key *flow_key, 1100 const struct nlattr *a) 1101 { 1102 int err = 0; 1103 1104 switch (nla_type(a)) { 1105 case OVS_KEY_ATTR_PRIORITY: 1106 OVS_SET_MASKED(skb->priority, nla_get_u32(a), 1107 *get_mask(a, u32 *)); 1108 flow_key->phy.priority = skb->priority; 1109 break; 1110 1111 case OVS_KEY_ATTR_SKB_MARK: 1112 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); 1113 flow_key->phy.skb_mark = skb->mark; 1114 break; 1115 1116 case OVS_KEY_ATTR_TUNNEL_INFO: 1117 /* Masked data not supported for tunnel. */ 1118 err = -EINVAL; 1119 break; 1120 1121 case OVS_KEY_ATTR_ETHERNET: 1122 err = set_eth_addr(skb, flow_key, nla_data(a), 1123 get_mask(a, struct ovs_key_ethernet *)); 1124 break; 1125 1126 case OVS_KEY_ATTR_NSH: 1127 err = set_nsh(skb, flow_key, a); 1128 break; 1129 1130 case OVS_KEY_ATTR_IPV4: 1131 err = set_ipv4(skb, flow_key, nla_data(a), 1132 get_mask(a, struct ovs_key_ipv4 *)); 1133 break; 1134 1135 case OVS_KEY_ATTR_IPV6: 1136 err = set_ipv6(skb, flow_key, nla_data(a), 1137 get_mask(a, struct ovs_key_ipv6 *)); 1138 break; 1139 1140 case OVS_KEY_ATTR_TCP: 1141 err = set_tcp(skb, flow_key, nla_data(a), 1142 get_mask(a, struct ovs_key_tcp *)); 1143 break; 1144 1145 case OVS_KEY_ATTR_UDP: 1146 err = set_udp(skb, flow_key, nla_data(a), 1147 get_mask(a, struct ovs_key_udp *)); 1148 break; 1149 1150 case OVS_KEY_ATTR_SCTP: 1151 err = set_sctp(skb, flow_key, nla_data(a), 1152 get_mask(a, struct ovs_key_sctp *)); 1153 break; 1154 1155 case OVS_KEY_ATTR_MPLS: 1156 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, 1157 __be32 *)); 1158 break; 1159 1160 case OVS_KEY_ATTR_CT_STATE: 1161 case OVS_KEY_ATTR_CT_ZONE: 1162 case OVS_KEY_ATTR_CT_MARK: 1163 case OVS_KEY_ATTR_CT_LABELS: 1164 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4: 1165 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6: 1166 err = -EINVAL; 1167 break; 1168 } 1169 1170 return err; 1171 } 1172 1173 static int execute_recirc(struct datapath *dp, struct sk_buff *skb, 1174 struct sw_flow_key *key, 1175 const struct nlattr *a, bool last) 1176 { 1177 u32 recirc_id; 1178 1179 if (!is_flow_key_valid(key)) { 1180 int err; 1181 1182 err = ovs_flow_key_update(skb, key); 1183 if (err) 1184 return err; 1185 } 1186 BUG_ON(!is_flow_key_valid(key)); 1187 1188 recirc_id = nla_get_u32(a); 1189 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true); 1190 } 1191 1192 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb, 1193 struct sw_flow_key *key, 1194 const struct nlattr *attr, bool last) 1195 { 1196 struct ovs_skb_cb *ovs_cb = OVS_CB(skb); 1197 const struct nlattr *actions, *cpl_arg; 1198 int len, max_len, rem = nla_len(attr); 1199 const struct check_pkt_len_arg *arg; 1200 bool clone_flow_key; 1201 1202 /* The first netlink attribute in 'attr' is always 1203 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'. 1204 */ 1205 cpl_arg = nla_data(attr); 1206 arg = nla_data(cpl_arg); 1207 1208 len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len; 1209 max_len = arg->pkt_len; 1210 1211 if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) || 1212 len <= max_len) { 1213 /* Second netlink attribute in 'attr' is always 1214 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'. 1215 */ 1216 actions = nla_next(cpl_arg, &rem); 1217 clone_flow_key = !arg->exec_for_lesser_equal; 1218 } else { 1219 /* Third netlink attribute in 'attr' is always 1220 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'. 1221 */ 1222 actions = nla_next(cpl_arg, &rem); 1223 actions = nla_next(actions, &rem); 1224 clone_flow_key = !arg->exec_for_greater; 1225 } 1226 1227 return clone_execute(dp, skb, key, 0, nla_data(actions), 1228 nla_len(actions), last, clone_flow_key); 1229 } 1230 1231 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key) 1232 { 1233 int err; 1234 1235 if (skb->protocol == htons(ETH_P_IPV6)) { 1236 struct ipv6hdr *nh; 1237 1238 err = skb_ensure_writable(skb, skb_network_offset(skb) + 1239 sizeof(*nh)); 1240 if (unlikely(err)) 1241 return err; 1242 1243 nh = ipv6_hdr(skb); 1244 1245 if (nh->hop_limit <= 1) 1246 return -EHOSTUNREACH; 1247 1248 key->ip.ttl = --nh->hop_limit; 1249 } else if (skb->protocol == htons(ETH_P_IP)) { 1250 struct iphdr *nh; 1251 u8 old_ttl; 1252 1253 err = skb_ensure_writable(skb, skb_network_offset(skb) + 1254 sizeof(*nh)); 1255 if (unlikely(err)) 1256 return err; 1257 1258 nh = ip_hdr(skb); 1259 if (nh->ttl <= 1) 1260 return -EHOSTUNREACH; 1261 1262 old_ttl = nh->ttl--; 1263 csum_replace2(&nh->check, htons(old_ttl << 8), 1264 htons(nh->ttl << 8)); 1265 key->ip.ttl = nh->ttl; 1266 } 1267 return 0; 1268 } 1269 1270 /* Execute a list of actions against 'skb'. */ 1271 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 1272 struct sw_flow_key *key, 1273 const struct nlattr *attr, int len) 1274 { 1275 const struct nlattr *a; 1276 int rem; 1277 1278 for (a = attr, rem = len; rem > 0; 1279 a = nla_next(a, &rem)) { 1280 int err = 0; 1281 1282 if (trace_ovs_do_execute_action_enabled()) 1283 trace_ovs_do_execute_action(dp, skb, key, a, rem); 1284 1285 switch (nla_type(a)) { 1286 case OVS_ACTION_ATTR_OUTPUT: { 1287 int port = nla_get_u32(a); 1288 struct sk_buff *clone; 1289 1290 /* Every output action needs a separate clone 1291 * of 'skb', In case the output action is the 1292 * last action, cloning can be avoided. 1293 */ 1294 if (nla_is_last(a, rem)) { 1295 do_output(dp, skb, port, key); 1296 /* 'skb' has been used for output. 1297 */ 1298 return 0; 1299 } 1300 1301 clone = skb_clone(skb, GFP_ATOMIC); 1302 if (clone) 1303 do_output(dp, clone, port, key); 1304 OVS_CB(skb)->cutlen = 0; 1305 break; 1306 } 1307 1308 case OVS_ACTION_ATTR_TRUNC: { 1309 struct ovs_action_trunc *trunc = nla_data(a); 1310 1311 if (skb->len > trunc->max_len) 1312 OVS_CB(skb)->cutlen = skb->len - trunc->max_len; 1313 break; 1314 } 1315 1316 case OVS_ACTION_ATTR_USERSPACE: 1317 output_userspace(dp, skb, key, a, attr, 1318 len, OVS_CB(skb)->cutlen); 1319 OVS_CB(skb)->cutlen = 0; 1320 break; 1321 1322 case OVS_ACTION_ATTR_HASH: 1323 execute_hash(skb, key, a); 1324 break; 1325 1326 case OVS_ACTION_ATTR_PUSH_MPLS: { 1327 struct ovs_action_push_mpls *mpls = nla_data(a); 1328 1329 err = push_mpls(skb, key, mpls->mpls_lse, 1330 mpls->mpls_ethertype, skb->mac_len); 1331 break; 1332 } 1333 case OVS_ACTION_ATTR_ADD_MPLS: { 1334 struct ovs_action_add_mpls *mpls = nla_data(a); 1335 __u16 mac_len = 0; 1336 1337 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) 1338 mac_len = skb->mac_len; 1339 1340 err = push_mpls(skb, key, mpls->mpls_lse, 1341 mpls->mpls_ethertype, mac_len); 1342 break; 1343 } 1344 case OVS_ACTION_ATTR_POP_MPLS: 1345 err = pop_mpls(skb, key, nla_get_be16(a)); 1346 break; 1347 1348 case OVS_ACTION_ATTR_PUSH_VLAN: 1349 err = push_vlan(skb, key, nla_data(a)); 1350 break; 1351 1352 case OVS_ACTION_ATTR_POP_VLAN: 1353 err = pop_vlan(skb, key); 1354 break; 1355 1356 case OVS_ACTION_ATTR_RECIRC: { 1357 bool last = nla_is_last(a, rem); 1358 1359 err = execute_recirc(dp, skb, key, a, last); 1360 if (last) { 1361 /* If this is the last action, the skb has 1362 * been consumed or freed. 1363 * Return immediately. 1364 */ 1365 return err; 1366 } 1367 break; 1368 } 1369 1370 case OVS_ACTION_ATTR_SET: 1371 err = execute_set_action(skb, key, nla_data(a)); 1372 break; 1373 1374 case OVS_ACTION_ATTR_SET_MASKED: 1375 case OVS_ACTION_ATTR_SET_TO_MASKED: 1376 err = execute_masked_set_action(skb, key, nla_data(a)); 1377 break; 1378 1379 case OVS_ACTION_ATTR_SAMPLE: { 1380 bool last = nla_is_last(a, rem); 1381 1382 err = sample(dp, skb, key, a, last); 1383 if (last) 1384 return err; 1385 1386 break; 1387 } 1388 1389 case OVS_ACTION_ATTR_CT: 1390 if (!is_flow_key_valid(key)) { 1391 err = ovs_flow_key_update(skb, key); 1392 if (err) 1393 return err; 1394 } 1395 1396 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, 1397 nla_data(a)); 1398 1399 /* Hide stolen IP fragments from user space. */ 1400 if (err) 1401 return err == -EINPROGRESS ? 0 : err; 1402 break; 1403 1404 case OVS_ACTION_ATTR_CT_CLEAR: 1405 err = ovs_ct_clear(skb, key); 1406 break; 1407 1408 case OVS_ACTION_ATTR_PUSH_ETH: 1409 err = push_eth(skb, key, nla_data(a)); 1410 break; 1411 1412 case OVS_ACTION_ATTR_POP_ETH: 1413 err = pop_eth(skb, key); 1414 break; 1415 1416 case OVS_ACTION_ATTR_PUSH_NSH: { 1417 u8 buffer[NSH_HDR_MAX_LEN]; 1418 struct nshhdr *nh = (struct nshhdr *)buffer; 1419 1420 err = nsh_hdr_from_nlattr(nla_data(a), nh, 1421 NSH_HDR_MAX_LEN); 1422 if (unlikely(err)) 1423 break; 1424 err = push_nsh(skb, key, nh); 1425 break; 1426 } 1427 1428 case OVS_ACTION_ATTR_POP_NSH: 1429 err = pop_nsh(skb, key); 1430 break; 1431 1432 case OVS_ACTION_ATTR_METER: 1433 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) { 1434 consume_skb(skb); 1435 return 0; 1436 } 1437 break; 1438 1439 case OVS_ACTION_ATTR_CLONE: { 1440 bool last = nla_is_last(a, rem); 1441 1442 err = clone(dp, skb, key, a, last); 1443 if (last) 1444 return err; 1445 1446 break; 1447 } 1448 1449 case OVS_ACTION_ATTR_CHECK_PKT_LEN: { 1450 bool last = nla_is_last(a, rem); 1451 1452 err = execute_check_pkt_len(dp, skb, key, a, last); 1453 if (last) 1454 return err; 1455 1456 break; 1457 } 1458 1459 case OVS_ACTION_ATTR_DEC_TTL: 1460 err = execute_dec_ttl(skb, key); 1461 if (err == -EHOSTUNREACH) 1462 return dec_ttl_exception_handler(dp, skb, 1463 key, a); 1464 break; 1465 } 1466 1467 if (unlikely(err)) { 1468 kfree_skb(skb); 1469 return err; 1470 } 1471 } 1472 1473 consume_skb(skb); 1474 return 0; 1475 } 1476 1477 /* Execute the actions on the clone of the packet. The effect of the 1478 * execution does not affect the original 'skb' nor the original 'key'. 1479 * 1480 * The execution may be deferred in case the actions can not be executed 1481 * immediately. 1482 */ 1483 static int clone_execute(struct datapath *dp, struct sk_buff *skb, 1484 struct sw_flow_key *key, u32 recirc_id, 1485 const struct nlattr *actions, int len, 1486 bool last, bool clone_flow_key) 1487 { 1488 struct deferred_action *da; 1489 struct sw_flow_key *clone; 1490 1491 skb = last ? skb : skb_clone(skb, GFP_ATOMIC); 1492 if (!skb) { 1493 /* Out of memory, skip this action. 1494 */ 1495 return 0; 1496 } 1497 1498 /* When clone_flow_key is false, the 'key' will not be change 1499 * by the actions, then the 'key' can be used directly. 1500 * Otherwise, try to clone key from the next recursion level of 1501 * 'flow_keys'. If clone is successful, execute the actions 1502 * without deferring. 1503 */ 1504 clone = clone_flow_key ? clone_key(key) : key; 1505 if (clone) { 1506 int err = 0; 1507 1508 if (actions) { /* Sample action */ 1509 if (clone_flow_key) 1510 __this_cpu_inc(exec_actions_level); 1511 1512 err = do_execute_actions(dp, skb, clone, 1513 actions, len); 1514 1515 if (clone_flow_key) 1516 __this_cpu_dec(exec_actions_level); 1517 } else { /* Recirc action */ 1518 clone->recirc_id = recirc_id; 1519 ovs_dp_process_packet(skb, clone); 1520 } 1521 return err; 1522 } 1523 1524 /* Out of 'flow_keys' space. Defer actions */ 1525 da = add_deferred_actions(skb, key, actions, len); 1526 if (da) { 1527 if (!actions) { /* Recirc action */ 1528 key = &da->pkt_key; 1529 key->recirc_id = recirc_id; 1530 } 1531 } else { 1532 /* Out of per CPU action FIFO space. Drop the 'skb' and 1533 * log an error. 1534 */ 1535 kfree_skb(skb); 1536 1537 if (net_ratelimit()) { 1538 if (actions) { /* Sample action */ 1539 pr_warn("%s: deferred action limit reached, drop sample action\n", 1540 ovs_dp_name(dp)); 1541 } else { /* Recirc action */ 1542 pr_warn("%s: deferred action limit reached, drop recirc action\n", 1543 ovs_dp_name(dp)); 1544 } 1545 } 1546 } 1547 return 0; 1548 } 1549 1550 static void process_deferred_actions(struct datapath *dp) 1551 { 1552 struct action_fifo *fifo = this_cpu_ptr(action_fifos); 1553 1554 /* Do not touch the FIFO in case there is no deferred actions. */ 1555 if (action_fifo_is_empty(fifo)) 1556 return; 1557 1558 /* Finishing executing all deferred actions. */ 1559 do { 1560 struct deferred_action *da = action_fifo_get(fifo); 1561 struct sk_buff *skb = da->skb; 1562 struct sw_flow_key *key = &da->pkt_key; 1563 const struct nlattr *actions = da->actions; 1564 int actions_len = da->actions_len; 1565 1566 if (actions) 1567 do_execute_actions(dp, skb, key, actions, actions_len); 1568 else 1569 ovs_dp_process_packet(skb, key); 1570 } while (!action_fifo_is_empty(fifo)); 1571 1572 /* Reset FIFO for the next packet. */ 1573 action_fifo_init(fifo); 1574 } 1575 1576 /* Execute a list of actions against 'skb'. */ 1577 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, 1578 const struct sw_flow_actions *acts, 1579 struct sw_flow_key *key) 1580 { 1581 int err, level; 1582 1583 level = __this_cpu_inc_return(exec_actions_level); 1584 if (unlikely(level > OVS_RECURSION_LIMIT)) { 1585 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n", 1586 ovs_dp_name(dp)); 1587 kfree_skb(skb); 1588 err = -ENETDOWN; 1589 goto out; 1590 } 1591 1592 OVS_CB(skb)->acts_origlen = acts->orig_len; 1593 err = do_execute_actions(dp, skb, key, 1594 acts->actions, acts->actions_len); 1595 1596 if (level == 1) 1597 process_deferred_actions(dp); 1598 1599 out: 1600 __this_cpu_dec(exec_actions_level); 1601 return err; 1602 } 1603 1604 int action_fifos_init(void) 1605 { 1606 action_fifos = alloc_percpu(struct action_fifo); 1607 if (!action_fifos) 1608 return -ENOMEM; 1609 1610 flow_keys = alloc_percpu(struct action_flow_keys); 1611 if (!flow_keys) { 1612 free_percpu(action_fifos); 1613 return -ENOMEM; 1614 } 1615 1616 return 0; 1617 } 1618 1619 void action_fifos_exit(void) 1620 { 1621 free_percpu(action_fifos); 1622 free_percpu(flow_keys); 1623 } 1624