1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2007-2017 Nicira, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/skbuff.h> 9 #include <linux/in.h> 10 #include <linux/ip.h> 11 #include <linux/openvswitch.h> 12 #include <linux/netfilter_ipv6.h> 13 #include <linux/sctp.h> 14 #include <linux/tcp.h> 15 #include <linux/udp.h> 16 #include <linux/in6.h> 17 #include <linux/if_arp.h> 18 #include <linux/if_vlan.h> 19 20 #include <net/dst.h> 21 #include <net/ip.h> 22 #include <net/ipv6.h> 23 #include <net/ip6_fib.h> 24 #include <net/checksum.h> 25 #include <net/dsfield.h> 26 #include <net/mpls.h> 27 #include <net/sctp/checksum.h> 28 29 #include "datapath.h" 30 #include "flow.h" 31 #include "conntrack.h" 32 #include "vport.h" 33 #include "flow_netlink.h" 34 35 struct deferred_action { 36 struct sk_buff *skb; 37 const struct nlattr *actions; 38 int actions_len; 39 40 /* Store pkt_key clone when creating deferred action. */ 41 struct sw_flow_key pkt_key; 42 }; 43 44 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN) 45 struct ovs_frag_data { 46 unsigned long dst; 47 struct vport *vport; 48 struct ovs_skb_cb cb; 49 __be16 inner_protocol; 50 u16 network_offset; /* valid only for MPLS */ 51 u16 vlan_tci; 52 __be16 vlan_proto; 53 unsigned int l2_len; 54 u8 mac_proto; 55 u8 l2_data[MAX_L2_LEN]; 56 }; 57 58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage); 59 60 #define DEFERRED_ACTION_FIFO_SIZE 10 61 #define OVS_RECURSION_LIMIT 5 62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2) 63 struct action_fifo { 64 int head; 65 int tail; 66 /* Deferred action fifo queue storage. */ 67 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; 68 }; 69 70 struct action_flow_keys { 71 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD]; 72 }; 73 74 static struct action_fifo __percpu *action_fifos; 75 static struct action_flow_keys __percpu *flow_keys; 76 static DEFINE_PER_CPU(int, exec_actions_level); 77 78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys' 79 * space. Return NULL if out of key spaces. 80 */ 81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_) 82 { 83 struct action_flow_keys *keys = this_cpu_ptr(flow_keys); 84 int level = this_cpu_read(exec_actions_level); 85 struct sw_flow_key *key = NULL; 86 87 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) { 88 key = &keys->key[level - 1]; 89 *key = *key_; 90 } 91 92 return key; 93 } 94 95 static void action_fifo_init(struct action_fifo *fifo) 96 { 97 fifo->head = 0; 98 fifo->tail = 0; 99 } 100 101 static bool action_fifo_is_empty(const struct action_fifo *fifo) 102 { 103 return (fifo->head == fifo->tail); 104 } 105 106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo) 107 { 108 if (action_fifo_is_empty(fifo)) 109 return NULL; 110 111 return &fifo->fifo[fifo->tail++]; 112 } 113 114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo) 115 { 116 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) 117 return NULL; 118 119 return &fifo->fifo[fifo->head++]; 120 } 121 122 /* Return true if fifo is not full */ 123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb, 124 const struct sw_flow_key *key, 125 const struct nlattr *actions, 126 const int actions_len) 127 { 128 struct action_fifo *fifo; 129 struct deferred_action *da; 130 131 fifo = this_cpu_ptr(action_fifos); 132 da = action_fifo_put(fifo); 133 if (da) { 134 da->skb = skb; 135 da->actions = actions; 136 da->actions_len = actions_len; 137 da->pkt_key = *key; 138 } 139 140 return da; 141 } 142 143 static void invalidate_flow_key(struct sw_flow_key *key) 144 { 145 key->mac_proto |= SW_FLOW_KEY_INVALID; 146 } 147 148 static bool is_flow_key_valid(const struct sw_flow_key *key) 149 { 150 return !(key->mac_proto & SW_FLOW_KEY_INVALID); 151 } 152 153 static int clone_execute(struct datapath *dp, struct sk_buff *skb, 154 struct sw_flow_key *key, 155 u32 recirc_id, 156 const struct nlattr *actions, int len, 157 bool last, bool clone_flow_key); 158 159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 160 struct sw_flow_key *key, 161 const struct nlattr *attr, int len); 162 163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, 164 const struct ovs_action_push_mpls *mpls) 165 { 166 int err; 167 168 err = skb_mpls_push(skb, mpls->mpls_lse, mpls->mpls_ethertype); 169 if (err) 170 return err; 171 172 invalidate_flow_key(key); 173 return 0; 174 } 175 176 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, 177 const __be16 ethertype) 178 { 179 int err; 180 181 err = skb_mpls_pop(skb, ethertype); 182 if (err) 183 return err; 184 185 invalidate_flow_key(key); 186 return 0; 187 } 188 189 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, 190 const __be32 *mpls_lse, const __be32 *mask) 191 { 192 struct mpls_shim_hdr *stack; 193 __be32 lse; 194 int err; 195 196 stack = mpls_hdr(skb); 197 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask); 198 err = skb_mpls_update_lse(skb, lse); 199 if (err) 200 return err; 201 202 flow_key->mpls.top_lse = lse; 203 return 0; 204 } 205 206 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) 207 { 208 int err; 209 210 err = skb_vlan_pop(skb); 211 if (skb_vlan_tag_present(skb)) { 212 invalidate_flow_key(key); 213 } else { 214 key->eth.vlan.tci = 0; 215 key->eth.vlan.tpid = 0; 216 } 217 return err; 218 } 219 220 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, 221 const struct ovs_action_push_vlan *vlan) 222 { 223 if (skb_vlan_tag_present(skb)) { 224 invalidate_flow_key(key); 225 } else { 226 key->eth.vlan.tci = vlan->vlan_tci; 227 key->eth.vlan.tpid = vlan->vlan_tpid; 228 } 229 return skb_vlan_push(skb, vlan->vlan_tpid, 230 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK); 231 } 232 233 /* 'src' is already properly masked. */ 234 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) 235 { 236 u16 *dst = (u16 *)dst_; 237 const u16 *src = (const u16 *)src_; 238 const u16 *mask = (const u16 *)mask_; 239 240 OVS_SET_MASKED(dst[0], src[0], mask[0]); 241 OVS_SET_MASKED(dst[1], src[1], mask[1]); 242 OVS_SET_MASKED(dst[2], src[2], mask[2]); 243 } 244 245 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, 246 const struct ovs_key_ethernet *key, 247 const struct ovs_key_ethernet *mask) 248 { 249 int err; 250 251 err = skb_ensure_writable(skb, ETH_HLEN); 252 if (unlikely(err)) 253 return err; 254 255 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 256 257 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, 258 mask->eth_src); 259 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, 260 mask->eth_dst); 261 262 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 263 264 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); 265 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); 266 return 0; 267 } 268 269 /* pop_eth does not support VLAN packets as this action is never called 270 * for them. 271 */ 272 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key) 273 { 274 skb_pull_rcsum(skb, ETH_HLEN); 275 skb_reset_mac_header(skb); 276 skb_reset_mac_len(skb); 277 278 /* safe right before invalidate_flow_key */ 279 key->mac_proto = MAC_PROTO_NONE; 280 invalidate_flow_key(key); 281 return 0; 282 } 283 284 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key, 285 const struct ovs_action_push_eth *ethh) 286 { 287 struct ethhdr *hdr; 288 289 /* Add the new Ethernet header */ 290 if (skb_cow_head(skb, ETH_HLEN) < 0) 291 return -ENOMEM; 292 293 skb_push(skb, ETH_HLEN); 294 skb_reset_mac_header(skb); 295 skb_reset_mac_len(skb); 296 297 hdr = eth_hdr(skb); 298 ether_addr_copy(hdr->h_source, ethh->addresses.eth_src); 299 ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst); 300 hdr->h_proto = skb->protocol; 301 302 skb_postpush_rcsum(skb, hdr, ETH_HLEN); 303 304 /* safe right before invalidate_flow_key */ 305 key->mac_proto = MAC_PROTO_ETHERNET; 306 invalidate_flow_key(key); 307 return 0; 308 } 309 310 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key, 311 const struct nshhdr *nh) 312 { 313 int err; 314 315 err = nsh_push(skb, nh); 316 if (err) 317 return err; 318 319 /* safe right before invalidate_flow_key */ 320 key->mac_proto = MAC_PROTO_NONE; 321 invalidate_flow_key(key); 322 return 0; 323 } 324 325 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key) 326 { 327 int err; 328 329 err = nsh_pop(skb); 330 if (err) 331 return err; 332 333 /* safe right before invalidate_flow_key */ 334 if (skb->protocol == htons(ETH_P_TEB)) 335 key->mac_proto = MAC_PROTO_ETHERNET; 336 else 337 key->mac_proto = MAC_PROTO_NONE; 338 invalidate_flow_key(key); 339 return 0; 340 } 341 342 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, 343 __be32 addr, __be32 new_addr) 344 { 345 int transport_len = skb->len - skb_transport_offset(skb); 346 347 if (nh->frag_off & htons(IP_OFFSET)) 348 return; 349 350 if (nh->protocol == IPPROTO_TCP) { 351 if (likely(transport_len >= sizeof(struct tcphdr))) 352 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, 353 addr, new_addr, true); 354 } else if (nh->protocol == IPPROTO_UDP) { 355 if (likely(transport_len >= sizeof(struct udphdr))) { 356 struct udphdr *uh = udp_hdr(skb); 357 358 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 359 inet_proto_csum_replace4(&uh->check, skb, 360 addr, new_addr, true); 361 if (!uh->check) 362 uh->check = CSUM_MANGLED_0; 363 } 364 } 365 } 366 } 367 368 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, 369 __be32 *addr, __be32 new_addr) 370 { 371 update_ip_l4_checksum(skb, nh, *addr, new_addr); 372 csum_replace4(&nh->check, *addr, new_addr); 373 skb_clear_hash(skb); 374 *addr = new_addr; 375 } 376 377 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, 378 __be32 addr[4], const __be32 new_addr[4]) 379 { 380 int transport_len = skb->len - skb_transport_offset(skb); 381 382 if (l4_proto == NEXTHDR_TCP) { 383 if (likely(transport_len >= sizeof(struct tcphdr))) 384 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, 385 addr, new_addr, true); 386 } else if (l4_proto == NEXTHDR_UDP) { 387 if (likely(transport_len >= sizeof(struct udphdr))) { 388 struct udphdr *uh = udp_hdr(skb); 389 390 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 391 inet_proto_csum_replace16(&uh->check, skb, 392 addr, new_addr, true); 393 if (!uh->check) 394 uh->check = CSUM_MANGLED_0; 395 } 396 } 397 } else if (l4_proto == NEXTHDR_ICMP) { 398 if (likely(transport_len >= sizeof(struct icmp6hdr))) 399 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, 400 skb, addr, new_addr, true); 401 } 402 } 403 404 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], 405 const __be32 mask[4], __be32 masked[4]) 406 { 407 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); 408 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); 409 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); 410 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); 411 } 412 413 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, 414 __be32 addr[4], const __be32 new_addr[4], 415 bool recalculate_csum) 416 { 417 if (recalculate_csum) 418 update_ipv6_checksum(skb, l4_proto, addr, new_addr); 419 420 skb_clear_hash(skb); 421 memcpy(addr, new_addr, sizeof(__be32[4])); 422 } 423 424 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask) 425 { 426 /* Bits 21-24 are always unmasked, so this retains their values. */ 427 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16)); 428 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8)); 429 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask); 430 } 431 432 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, 433 u8 mask) 434 { 435 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); 436 437 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); 438 nh->ttl = new_ttl; 439 } 440 441 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, 442 const struct ovs_key_ipv4 *key, 443 const struct ovs_key_ipv4 *mask) 444 { 445 struct iphdr *nh; 446 __be32 new_addr; 447 int err; 448 449 err = skb_ensure_writable(skb, skb_network_offset(skb) + 450 sizeof(struct iphdr)); 451 if (unlikely(err)) 452 return err; 453 454 nh = ip_hdr(skb); 455 456 /* Setting an IP addresses is typically only a side effect of 457 * matching on them in the current userspace implementation, so it 458 * makes sense to check if the value actually changed. 459 */ 460 if (mask->ipv4_src) { 461 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); 462 463 if (unlikely(new_addr != nh->saddr)) { 464 set_ip_addr(skb, nh, &nh->saddr, new_addr); 465 flow_key->ipv4.addr.src = new_addr; 466 } 467 } 468 if (mask->ipv4_dst) { 469 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); 470 471 if (unlikely(new_addr != nh->daddr)) { 472 set_ip_addr(skb, nh, &nh->daddr, new_addr); 473 flow_key->ipv4.addr.dst = new_addr; 474 } 475 } 476 if (mask->ipv4_tos) { 477 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); 478 flow_key->ip.tos = nh->tos; 479 } 480 if (mask->ipv4_ttl) { 481 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); 482 flow_key->ip.ttl = nh->ttl; 483 } 484 485 return 0; 486 } 487 488 static bool is_ipv6_mask_nonzero(const __be32 addr[4]) 489 { 490 return !!(addr[0] | addr[1] | addr[2] | addr[3]); 491 } 492 493 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, 494 const struct ovs_key_ipv6 *key, 495 const struct ovs_key_ipv6 *mask) 496 { 497 struct ipv6hdr *nh; 498 int err; 499 500 err = skb_ensure_writable(skb, skb_network_offset(skb) + 501 sizeof(struct ipv6hdr)); 502 if (unlikely(err)) 503 return err; 504 505 nh = ipv6_hdr(skb); 506 507 /* Setting an IP addresses is typically only a side effect of 508 * matching on them in the current userspace implementation, so it 509 * makes sense to check if the value actually changed. 510 */ 511 if (is_ipv6_mask_nonzero(mask->ipv6_src)) { 512 __be32 *saddr = (__be32 *)&nh->saddr; 513 __be32 masked[4]; 514 515 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); 516 517 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { 518 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, 519 true); 520 memcpy(&flow_key->ipv6.addr.src, masked, 521 sizeof(flow_key->ipv6.addr.src)); 522 } 523 } 524 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { 525 unsigned int offset = 0; 526 int flags = IP6_FH_F_SKIP_RH; 527 bool recalc_csum = true; 528 __be32 *daddr = (__be32 *)&nh->daddr; 529 __be32 masked[4]; 530 531 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); 532 533 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { 534 if (ipv6_ext_hdr(nh->nexthdr)) 535 recalc_csum = (ipv6_find_hdr(skb, &offset, 536 NEXTHDR_ROUTING, 537 NULL, &flags) 538 != NEXTHDR_ROUTING); 539 540 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, 541 recalc_csum); 542 memcpy(&flow_key->ipv6.addr.dst, masked, 543 sizeof(flow_key->ipv6.addr.dst)); 544 } 545 } 546 if (mask->ipv6_tclass) { 547 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass); 548 flow_key->ip.tos = ipv6_get_dsfield(nh); 549 } 550 if (mask->ipv6_label) { 551 set_ipv6_fl(nh, ntohl(key->ipv6_label), 552 ntohl(mask->ipv6_label)); 553 flow_key->ipv6.label = 554 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 555 } 556 if (mask->ipv6_hlimit) { 557 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit, 558 mask->ipv6_hlimit); 559 flow_key->ip.ttl = nh->hop_limit; 560 } 561 return 0; 562 } 563 564 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key, 565 const struct nlattr *a) 566 { 567 struct nshhdr *nh; 568 size_t length; 569 int err; 570 u8 flags; 571 u8 ttl; 572 int i; 573 574 struct ovs_key_nsh key; 575 struct ovs_key_nsh mask; 576 577 err = nsh_key_from_nlattr(a, &key, &mask); 578 if (err) 579 return err; 580 581 /* Make sure the NSH base header is there */ 582 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN)) 583 return -ENOMEM; 584 585 nh = nsh_hdr(skb); 586 length = nsh_hdr_len(nh); 587 588 /* Make sure the whole NSH header is there */ 589 err = skb_ensure_writable(skb, skb_network_offset(skb) + 590 length); 591 if (unlikely(err)) 592 return err; 593 594 nh = nsh_hdr(skb); 595 skb_postpull_rcsum(skb, nh, length); 596 flags = nsh_get_flags(nh); 597 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags); 598 flow_key->nsh.base.flags = flags; 599 ttl = nsh_get_ttl(nh); 600 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl); 601 flow_key->nsh.base.ttl = ttl; 602 nsh_set_flags_and_ttl(nh, flags, ttl); 603 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr, 604 mask.base.path_hdr); 605 flow_key->nsh.base.path_hdr = nh->path_hdr; 606 switch (nh->mdtype) { 607 case NSH_M_TYPE1: 608 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) { 609 nh->md1.context[i] = 610 OVS_MASKED(nh->md1.context[i], key.context[i], 611 mask.context[i]); 612 } 613 memcpy(flow_key->nsh.context, nh->md1.context, 614 sizeof(nh->md1.context)); 615 break; 616 case NSH_M_TYPE2: 617 memset(flow_key->nsh.context, 0, 618 sizeof(flow_key->nsh.context)); 619 break; 620 default: 621 return -EINVAL; 622 } 623 skb_postpush_rcsum(skb, nh, length); 624 return 0; 625 } 626 627 /* Must follow skb_ensure_writable() since that can move the skb data. */ 628 static void set_tp_port(struct sk_buff *skb, __be16 *port, 629 __be16 new_port, __sum16 *check) 630 { 631 inet_proto_csum_replace2(check, skb, *port, new_port, false); 632 *port = new_port; 633 } 634 635 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, 636 const struct ovs_key_udp *key, 637 const struct ovs_key_udp *mask) 638 { 639 struct udphdr *uh; 640 __be16 src, dst; 641 int err; 642 643 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 644 sizeof(struct udphdr)); 645 if (unlikely(err)) 646 return err; 647 648 uh = udp_hdr(skb); 649 /* Either of the masks is non-zero, so do not bother checking them. */ 650 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); 651 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); 652 653 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { 654 if (likely(src != uh->source)) { 655 set_tp_port(skb, &uh->source, src, &uh->check); 656 flow_key->tp.src = src; 657 } 658 if (likely(dst != uh->dest)) { 659 set_tp_port(skb, &uh->dest, dst, &uh->check); 660 flow_key->tp.dst = dst; 661 } 662 663 if (unlikely(!uh->check)) 664 uh->check = CSUM_MANGLED_0; 665 } else { 666 uh->source = src; 667 uh->dest = dst; 668 flow_key->tp.src = src; 669 flow_key->tp.dst = dst; 670 } 671 672 skb_clear_hash(skb); 673 674 return 0; 675 } 676 677 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, 678 const struct ovs_key_tcp *key, 679 const struct ovs_key_tcp *mask) 680 { 681 struct tcphdr *th; 682 __be16 src, dst; 683 int err; 684 685 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 686 sizeof(struct tcphdr)); 687 if (unlikely(err)) 688 return err; 689 690 th = tcp_hdr(skb); 691 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); 692 if (likely(src != th->source)) { 693 set_tp_port(skb, &th->source, src, &th->check); 694 flow_key->tp.src = src; 695 } 696 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); 697 if (likely(dst != th->dest)) { 698 set_tp_port(skb, &th->dest, dst, &th->check); 699 flow_key->tp.dst = dst; 700 } 701 skb_clear_hash(skb); 702 703 return 0; 704 } 705 706 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, 707 const struct ovs_key_sctp *key, 708 const struct ovs_key_sctp *mask) 709 { 710 unsigned int sctphoff = skb_transport_offset(skb); 711 struct sctphdr *sh; 712 __le32 old_correct_csum, new_csum, old_csum; 713 int err; 714 715 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); 716 if (unlikely(err)) 717 return err; 718 719 sh = sctp_hdr(skb); 720 old_csum = sh->checksum; 721 old_correct_csum = sctp_compute_cksum(skb, sctphoff); 722 723 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); 724 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); 725 726 new_csum = sctp_compute_cksum(skb, sctphoff); 727 728 /* Carry any checksum errors through. */ 729 sh->checksum = old_csum ^ old_correct_csum ^ new_csum; 730 731 skb_clear_hash(skb); 732 flow_key->tp.src = sh->source; 733 flow_key->tp.dst = sh->dest; 734 735 return 0; 736 } 737 738 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb) 739 { 740 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage); 741 struct vport *vport = data->vport; 742 743 if (skb_cow_head(skb, data->l2_len) < 0) { 744 kfree_skb(skb); 745 return -ENOMEM; 746 } 747 748 __skb_dst_copy(skb, data->dst); 749 *OVS_CB(skb) = data->cb; 750 skb->inner_protocol = data->inner_protocol; 751 if (data->vlan_tci & VLAN_CFI_MASK) 752 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK); 753 else 754 __vlan_hwaccel_clear_tag(skb); 755 756 /* Reconstruct the MAC header. */ 757 skb_push(skb, data->l2_len); 758 memcpy(skb->data, &data->l2_data, data->l2_len); 759 skb_postpush_rcsum(skb, skb->data, data->l2_len); 760 skb_reset_mac_header(skb); 761 762 if (eth_p_mpls(skb->protocol)) { 763 skb->inner_network_header = skb->network_header; 764 skb_set_network_header(skb, data->network_offset); 765 skb_reset_mac_len(skb); 766 } 767 768 ovs_vport_send(vport, skb, data->mac_proto); 769 return 0; 770 } 771 772 static unsigned int 773 ovs_dst_get_mtu(const struct dst_entry *dst) 774 { 775 return dst->dev->mtu; 776 } 777 778 static struct dst_ops ovs_dst_ops = { 779 .family = AF_UNSPEC, 780 .mtu = ovs_dst_get_mtu, 781 }; 782 783 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is 784 * ovs_vport_output(), which is called once per fragmented packet. 785 */ 786 static void prepare_frag(struct vport *vport, struct sk_buff *skb, 787 u16 orig_network_offset, u8 mac_proto) 788 { 789 unsigned int hlen = skb_network_offset(skb); 790 struct ovs_frag_data *data; 791 792 data = this_cpu_ptr(&ovs_frag_data_storage); 793 data->dst = skb->_skb_refdst; 794 data->vport = vport; 795 data->cb = *OVS_CB(skb); 796 data->inner_protocol = skb->inner_protocol; 797 data->network_offset = orig_network_offset; 798 if (skb_vlan_tag_present(skb)) 799 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK; 800 else 801 data->vlan_tci = 0; 802 data->vlan_proto = skb->vlan_proto; 803 data->mac_proto = mac_proto; 804 data->l2_len = hlen; 805 memcpy(&data->l2_data, skb->data, hlen); 806 807 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 808 skb_pull(skb, hlen); 809 } 810 811 static void ovs_fragment(struct net *net, struct vport *vport, 812 struct sk_buff *skb, u16 mru, 813 struct sw_flow_key *key) 814 { 815 u16 orig_network_offset = 0; 816 817 if (eth_p_mpls(skb->protocol)) { 818 orig_network_offset = skb_network_offset(skb); 819 skb->network_header = skb->inner_network_header; 820 } 821 822 if (skb_network_offset(skb) > MAX_L2_LEN) { 823 OVS_NLERR(1, "L2 header too long to fragment"); 824 goto err; 825 } 826 827 if (key->eth.type == htons(ETH_P_IP)) { 828 struct dst_entry ovs_dst; 829 unsigned long orig_dst; 830 831 prepare_frag(vport, skb, orig_network_offset, 832 ovs_key_mac_proto(key)); 833 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1, 834 DST_OBSOLETE_NONE, DST_NOCOUNT); 835 ovs_dst.dev = vport->dev; 836 837 orig_dst = skb->_skb_refdst; 838 skb_dst_set_noref(skb, &ovs_dst); 839 IPCB(skb)->frag_max_size = mru; 840 841 ip_do_fragment(net, skb->sk, skb, ovs_vport_output); 842 refdst_drop(orig_dst); 843 } else if (key->eth.type == htons(ETH_P_IPV6)) { 844 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops(); 845 unsigned long orig_dst; 846 struct rt6_info ovs_rt; 847 848 if (!v6ops) 849 goto err; 850 851 prepare_frag(vport, skb, orig_network_offset, 852 ovs_key_mac_proto(key)); 853 memset(&ovs_rt, 0, sizeof(ovs_rt)); 854 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, 855 DST_OBSOLETE_NONE, DST_NOCOUNT); 856 ovs_rt.dst.dev = vport->dev; 857 858 orig_dst = skb->_skb_refdst; 859 skb_dst_set_noref(skb, &ovs_rt.dst); 860 IP6CB(skb)->frag_max_size = mru; 861 862 v6ops->fragment(net, skb->sk, skb, ovs_vport_output); 863 refdst_drop(orig_dst); 864 } else { 865 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", 866 ovs_vport_name(vport), ntohs(key->eth.type), mru, 867 vport->dev->mtu); 868 goto err; 869 } 870 871 return; 872 err: 873 kfree_skb(skb); 874 } 875 876 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, 877 struct sw_flow_key *key) 878 { 879 struct vport *vport = ovs_vport_rcu(dp, out_port); 880 881 if (likely(vport)) { 882 u16 mru = OVS_CB(skb)->mru; 883 u32 cutlen = OVS_CB(skb)->cutlen; 884 885 if (unlikely(cutlen > 0)) { 886 if (skb->len - cutlen > ovs_mac_header_len(key)) 887 pskb_trim(skb, skb->len - cutlen); 888 else 889 pskb_trim(skb, ovs_mac_header_len(key)); 890 } 891 892 if (likely(!mru || 893 (skb->len <= mru + vport->dev->hard_header_len))) { 894 ovs_vport_send(vport, skb, ovs_key_mac_proto(key)); 895 } else if (mru <= vport->dev->mtu) { 896 struct net *net = read_pnet(&dp->net); 897 898 ovs_fragment(net, vport, skb, mru, key); 899 } else { 900 kfree_skb(skb); 901 } 902 } else { 903 kfree_skb(skb); 904 } 905 } 906 907 static int output_userspace(struct datapath *dp, struct sk_buff *skb, 908 struct sw_flow_key *key, const struct nlattr *attr, 909 const struct nlattr *actions, int actions_len, 910 uint32_t cutlen) 911 { 912 struct dp_upcall_info upcall; 913 const struct nlattr *a; 914 int rem; 915 916 memset(&upcall, 0, sizeof(upcall)); 917 upcall.cmd = OVS_PACKET_CMD_ACTION; 918 upcall.mru = OVS_CB(skb)->mru; 919 920 for (a = nla_data(attr), rem = nla_len(attr); rem > 0; 921 a = nla_next(a, &rem)) { 922 switch (nla_type(a)) { 923 case OVS_USERSPACE_ATTR_USERDATA: 924 upcall.userdata = a; 925 break; 926 927 case OVS_USERSPACE_ATTR_PID: 928 upcall.portid = nla_get_u32(a); 929 break; 930 931 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { 932 /* Get out tunnel info. */ 933 struct vport *vport; 934 935 vport = ovs_vport_rcu(dp, nla_get_u32(a)); 936 if (vport) { 937 int err; 938 939 err = dev_fill_metadata_dst(vport->dev, skb); 940 if (!err) 941 upcall.egress_tun_info = skb_tunnel_info(skb); 942 } 943 944 break; 945 } 946 947 case OVS_USERSPACE_ATTR_ACTIONS: { 948 /* Include actions. */ 949 upcall.actions = actions; 950 upcall.actions_len = actions_len; 951 break; 952 } 953 954 } /* End of switch. */ 955 } 956 957 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen); 958 } 959 960 /* When 'last' is true, sample() should always consume the 'skb'. 961 * Otherwise, sample() should keep 'skb' intact regardless what 962 * actions are executed within sample(). 963 */ 964 static int sample(struct datapath *dp, struct sk_buff *skb, 965 struct sw_flow_key *key, const struct nlattr *attr, 966 bool last) 967 { 968 struct nlattr *actions; 969 struct nlattr *sample_arg; 970 int rem = nla_len(attr); 971 const struct sample_arg *arg; 972 bool clone_flow_key; 973 974 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */ 975 sample_arg = nla_data(attr); 976 arg = nla_data(sample_arg); 977 actions = nla_next(sample_arg, &rem); 978 979 if ((arg->probability != U32_MAX) && 980 (!arg->probability || prandom_u32() > arg->probability)) { 981 if (last) 982 consume_skb(skb); 983 return 0; 984 } 985 986 clone_flow_key = !arg->exec; 987 return clone_execute(dp, skb, key, 0, actions, rem, last, 988 clone_flow_key); 989 } 990 991 /* When 'last' is true, clone() should always consume the 'skb'. 992 * Otherwise, clone() should keep 'skb' intact regardless what 993 * actions are executed within clone(). 994 */ 995 static int clone(struct datapath *dp, struct sk_buff *skb, 996 struct sw_flow_key *key, const struct nlattr *attr, 997 bool last) 998 { 999 struct nlattr *actions; 1000 struct nlattr *clone_arg; 1001 int rem = nla_len(attr); 1002 bool dont_clone_flow_key; 1003 1004 /* The first action is always 'OVS_CLONE_ATTR_ARG'. */ 1005 clone_arg = nla_data(attr); 1006 dont_clone_flow_key = nla_get_u32(clone_arg); 1007 actions = nla_next(clone_arg, &rem); 1008 1009 return clone_execute(dp, skb, key, 0, actions, rem, last, 1010 !dont_clone_flow_key); 1011 } 1012 1013 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, 1014 const struct nlattr *attr) 1015 { 1016 struct ovs_action_hash *hash_act = nla_data(attr); 1017 u32 hash = 0; 1018 1019 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */ 1020 hash = skb_get_hash(skb); 1021 hash = jhash_1word(hash, hash_act->hash_basis); 1022 if (!hash) 1023 hash = 0x1; 1024 1025 key->ovs_flow_hash = hash; 1026 } 1027 1028 static int execute_set_action(struct sk_buff *skb, 1029 struct sw_flow_key *flow_key, 1030 const struct nlattr *a) 1031 { 1032 /* Only tunnel set execution is supported without a mask. */ 1033 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { 1034 struct ovs_tunnel_info *tun = nla_data(a); 1035 1036 skb_dst_drop(skb); 1037 dst_hold((struct dst_entry *)tun->tun_dst); 1038 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); 1039 return 0; 1040 } 1041 1042 return -EINVAL; 1043 } 1044 1045 /* Mask is at the midpoint of the data. */ 1046 #define get_mask(a, type) ((const type)nla_data(a) + 1) 1047 1048 static int execute_masked_set_action(struct sk_buff *skb, 1049 struct sw_flow_key *flow_key, 1050 const struct nlattr *a) 1051 { 1052 int err = 0; 1053 1054 switch (nla_type(a)) { 1055 case OVS_KEY_ATTR_PRIORITY: 1056 OVS_SET_MASKED(skb->priority, nla_get_u32(a), 1057 *get_mask(a, u32 *)); 1058 flow_key->phy.priority = skb->priority; 1059 break; 1060 1061 case OVS_KEY_ATTR_SKB_MARK: 1062 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); 1063 flow_key->phy.skb_mark = skb->mark; 1064 break; 1065 1066 case OVS_KEY_ATTR_TUNNEL_INFO: 1067 /* Masked data not supported for tunnel. */ 1068 err = -EINVAL; 1069 break; 1070 1071 case OVS_KEY_ATTR_ETHERNET: 1072 err = set_eth_addr(skb, flow_key, nla_data(a), 1073 get_mask(a, struct ovs_key_ethernet *)); 1074 break; 1075 1076 case OVS_KEY_ATTR_NSH: 1077 err = set_nsh(skb, flow_key, a); 1078 break; 1079 1080 case OVS_KEY_ATTR_IPV4: 1081 err = set_ipv4(skb, flow_key, nla_data(a), 1082 get_mask(a, struct ovs_key_ipv4 *)); 1083 break; 1084 1085 case OVS_KEY_ATTR_IPV6: 1086 err = set_ipv6(skb, flow_key, nla_data(a), 1087 get_mask(a, struct ovs_key_ipv6 *)); 1088 break; 1089 1090 case OVS_KEY_ATTR_TCP: 1091 err = set_tcp(skb, flow_key, nla_data(a), 1092 get_mask(a, struct ovs_key_tcp *)); 1093 break; 1094 1095 case OVS_KEY_ATTR_UDP: 1096 err = set_udp(skb, flow_key, nla_data(a), 1097 get_mask(a, struct ovs_key_udp *)); 1098 break; 1099 1100 case OVS_KEY_ATTR_SCTP: 1101 err = set_sctp(skb, flow_key, nla_data(a), 1102 get_mask(a, struct ovs_key_sctp *)); 1103 break; 1104 1105 case OVS_KEY_ATTR_MPLS: 1106 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, 1107 __be32 *)); 1108 break; 1109 1110 case OVS_KEY_ATTR_CT_STATE: 1111 case OVS_KEY_ATTR_CT_ZONE: 1112 case OVS_KEY_ATTR_CT_MARK: 1113 case OVS_KEY_ATTR_CT_LABELS: 1114 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4: 1115 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6: 1116 err = -EINVAL; 1117 break; 1118 } 1119 1120 return err; 1121 } 1122 1123 static int execute_recirc(struct datapath *dp, struct sk_buff *skb, 1124 struct sw_flow_key *key, 1125 const struct nlattr *a, bool last) 1126 { 1127 u32 recirc_id; 1128 1129 if (!is_flow_key_valid(key)) { 1130 int err; 1131 1132 err = ovs_flow_key_update(skb, key); 1133 if (err) 1134 return err; 1135 } 1136 BUG_ON(!is_flow_key_valid(key)); 1137 1138 recirc_id = nla_get_u32(a); 1139 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true); 1140 } 1141 1142 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb, 1143 struct sw_flow_key *key, 1144 const struct nlattr *attr, bool last) 1145 { 1146 const struct nlattr *actions, *cpl_arg; 1147 const struct check_pkt_len_arg *arg; 1148 int rem = nla_len(attr); 1149 bool clone_flow_key; 1150 1151 /* The first netlink attribute in 'attr' is always 1152 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'. 1153 */ 1154 cpl_arg = nla_data(attr); 1155 arg = nla_data(cpl_arg); 1156 1157 if (skb->len <= arg->pkt_len) { 1158 /* Second netlink attribute in 'attr' is always 1159 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'. 1160 */ 1161 actions = nla_next(cpl_arg, &rem); 1162 clone_flow_key = !arg->exec_for_lesser_equal; 1163 } else { 1164 /* Third netlink attribute in 'attr' is always 1165 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'. 1166 */ 1167 actions = nla_next(cpl_arg, &rem); 1168 actions = nla_next(actions, &rem); 1169 clone_flow_key = !arg->exec_for_greater; 1170 } 1171 1172 return clone_execute(dp, skb, key, 0, nla_data(actions), 1173 nla_len(actions), last, clone_flow_key); 1174 } 1175 1176 /* Execute a list of actions against 'skb'. */ 1177 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 1178 struct sw_flow_key *key, 1179 const struct nlattr *attr, int len) 1180 { 1181 const struct nlattr *a; 1182 int rem; 1183 1184 for (a = attr, rem = len; rem > 0; 1185 a = nla_next(a, &rem)) { 1186 int err = 0; 1187 1188 switch (nla_type(a)) { 1189 case OVS_ACTION_ATTR_OUTPUT: { 1190 int port = nla_get_u32(a); 1191 struct sk_buff *clone; 1192 1193 /* Every output action needs a separate clone 1194 * of 'skb', In case the output action is the 1195 * last action, cloning can be avoided. 1196 */ 1197 if (nla_is_last(a, rem)) { 1198 do_output(dp, skb, port, key); 1199 /* 'skb' has been used for output. 1200 */ 1201 return 0; 1202 } 1203 1204 clone = skb_clone(skb, GFP_ATOMIC); 1205 if (clone) 1206 do_output(dp, clone, port, key); 1207 OVS_CB(skb)->cutlen = 0; 1208 break; 1209 } 1210 1211 case OVS_ACTION_ATTR_TRUNC: { 1212 struct ovs_action_trunc *trunc = nla_data(a); 1213 1214 if (skb->len > trunc->max_len) 1215 OVS_CB(skb)->cutlen = skb->len - trunc->max_len; 1216 break; 1217 } 1218 1219 case OVS_ACTION_ATTR_USERSPACE: 1220 output_userspace(dp, skb, key, a, attr, 1221 len, OVS_CB(skb)->cutlen); 1222 OVS_CB(skb)->cutlen = 0; 1223 break; 1224 1225 case OVS_ACTION_ATTR_HASH: 1226 execute_hash(skb, key, a); 1227 break; 1228 1229 case OVS_ACTION_ATTR_PUSH_MPLS: 1230 err = push_mpls(skb, key, nla_data(a)); 1231 break; 1232 1233 case OVS_ACTION_ATTR_POP_MPLS: 1234 err = pop_mpls(skb, key, nla_get_be16(a)); 1235 break; 1236 1237 case OVS_ACTION_ATTR_PUSH_VLAN: 1238 err = push_vlan(skb, key, nla_data(a)); 1239 break; 1240 1241 case OVS_ACTION_ATTR_POP_VLAN: 1242 err = pop_vlan(skb, key); 1243 break; 1244 1245 case OVS_ACTION_ATTR_RECIRC: { 1246 bool last = nla_is_last(a, rem); 1247 1248 err = execute_recirc(dp, skb, key, a, last); 1249 if (last) { 1250 /* If this is the last action, the skb has 1251 * been consumed or freed. 1252 * Return immediately. 1253 */ 1254 return err; 1255 } 1256 break; 1257 } 1258 1259 case OVS_ACTION_ATTR_SET: 1260 err = execute_set_action(skb, key, nla_data(a)); 1261 break; 1262 1263 case OVS_ACTION_ATTR_SET_MASKED: 1264 case OVS_ACTION_ATTR_SET_TO_MASKED: 1265 err = execute_masked_set_action(skb, key, nla_data(a)); 1266 break; 1267 1268 case OVS_ACTION_ATTR_SAMPLE: { 1269 bool last = nla_is_last(a, rem); 1270 1271 err = sample(dp, skb, key, a, last); 1272 if (last) 1273 return err; 1274 1275 break; 1276 } 1277 1278 case OVS_ACTION_ATTR_CT: 1279 if (!is_flow_key_valid(key)) { 1280 err = ovs_flow_key_update(skb, key); 1281 if (err) 1282 return err; 1283 } 1284 1285 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, 1286 nla_data(a)); 1287 1288 /* Hide stolen IP fragments from user space. */ 1289 if (err) 1290 return err == -EINPROGRESS ? 0 : err; 1291 break; 1292 1293 case OVS_ACTION_ATTR_CT_CLEAR: 1294 err = ovs_ct_clear(skb, key); 1295 break; 1296 1297 case OVS_ACTION_ATTR_PUSH_ETH: 1298 err = push_eth(skb, key, nla_data(a)); 1299 break; 1300 1301 case OVS_ACTION_ATTR_POP_ETH: 1302 err = pop_eth(skb, key); 1303 break; 1304 1305 case OVS_ACTION_ATTR_PUSH_NSH: { 1306 u8 buffer[NSH_HDR_MAX_LEN]; 1307 struct nshhdr *nh = (struct nshhdr *)buffer; 1308 1309 err = nsh_hdr_from_nlattr(nla_data(a), nh, 1310 NSH_HDR_MAX_LEN); 1311 if (unlikely(err)) 1312 break; 1313 err = push_nsh(skb, key, nh); 1314 break; 1315 } 1316 1317 case OVS_ACTION_ATTR_POP_NSH: 1318 err = pop_nsh(skb, key); 1319 break; 1320 1321 case OVS_ACTION_ATTR_METER: 1322 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) { 1323 consume_skb(skb); 1324 return 0; 1325 } 1326 break; 1327 1328 case OVS_ACTION_ATTR_CLONE: { 1329 bool last = nla_is_last(a, rem); 1330 1331 err = clone(dp, skb, key, a, last); 1332 if (last) 1333 return err; 1334 1335 break; 1336 } 1337 1338 case OVS_ACTION_ATTR_CHECK_PKT_LEN: { 1339 bool last = nla_is_last(a, rem); 1340 1341 err = execute_check_pkt_len(dp, skb, key, a, last); 1342 if (last) 1343 return err; 1344 1345 break; 1346 } 1347 } 1348 1349 if (unlikely(err)) { 1350 kfree_skb(skb); 1351 return err; 1352 } 1353 } 1354 1355 consume_skb(skb); 1356 return 0; 1357 } 1358 1359 /* Execute the actions on the clone of the packet. The effect of the 1360 * execution does not affect the original 'skb' nor the original 'key'. 1361 * 1362 * The execution may be deferred in case the actions can not be executed 1363 * immediately. 1364 */ 1365 static int clone_execute(struct datapath *dp, struct sk_buff *skb, 1366 struct sw_flow_key *key, u32 recirc_id, 1367 const struct nlattr *actions, int len, 1368 bool last, bool clone_flow_key) 1369 { 1370 struct deferred_action *da; 1371 struct sw_flow_key *clone; 1372 1373 skb = last ? skb : skb_clone(skb, GFP_ATOMIC); 1374 if (!skb) { 1375 /* Out of memory, skip this action. 1376 */ 1377 return 0; 1378 } 1379 1380 /* When clone_flow_key is false, the 'key' will not be change 1381 * by the actions, then the 'key' can be used directly. 1382 * Otherwise, try to clone key from the next recursion level of 1383 * 'flow_keys'. If clone is successful, execute the actions 1384 * without deferring. 1385 */ 1386 clone = clone_flow_key ? clone_key(key) : key; 1387 if (clone) { 1388 int err = 0; 1389 1390 if (actions) { /* Sample action */ 1391 if (clone_flow_key) 1392 __this_cpu_inc(exec_actions_level); 1393 1394 err = do_execute_actions(dp, skb, clone, 1395 actions, len); 1396 1397 if (clone_flow_key) 1398 __this_cpu_dec(exec_actions_level); 1399 } else { /* Recirc action */ 1400 clone->recirc_id = recirc_id; 1401 ovs_dp_process_packet(skb, clone); 1402 } 1403 return err; 1404 } 1405 1406 /* Out of 'flow_keys' space. Defer actions */ 1407 da = add_deferred_actions(skb, key, actions, len); 1408 if (da) { 1409 if (!actions) { /* Recirc action */ 1410 key = &da->pkt_key; 1411 key->recirc_id = recirc_id; 1412 } 1413 } else { 1414 /* Out of per CPU action FIFO space. Drop the 'skb' and 1415 * log an error. 1416 */ 1417 kfree_skb(skb); 1418 1419 if (net_ratelimit()) { 1420 if (actions) { /* Sample action */ 1421 pr_warn("%s: deferred action limit reached, drop sample action\n", 1422 ovs_dp_name(dp)); 1423 } else { /* Recirc action */ 1424 pr_warn("%s: deferred action limit reached, drop recirc action\n", 1425 ovs_dp_name(dp)); 1426 } 1427 } 1428 } 1429 return 0; 1430 } 1431 1432 static void process_deferred_actions(struct datapath *dp) 1433 { 1434 struct action_fifo *fifo = this_cpu_ptr(action_fifos); 1435 1436 /* Do not touch the FIFO in case there is no deferred actions. */ 1437 if (action_fifo_is_empty(fifo)) 1438 return; 1439 1440 /* Finishing executing all deferred actions. */ 1441 do { 1442 struct deferred_action *da = action_fifo_get(fifo); 1443 struct sk_buff *skb = da->skb; 1444 struct sw_flow_key *key = &da->pkt_key; 1445 const struct nlattr *actions = da->actions; 1446 int actions_len = da->actions_len; 1447 1448 if (actions) 1449 do_execute_actions(dp, skb, key, actions, actions_len); 1450 else 1451 ovs_dp_process_packet(skb, key); 1452 } while (!action_fifo_is_empty(fifo)); 1453 1454 /* Reset FIFO for the next packet. */ 1455 action_fifo_init(fifo); 1456 } 1457 1458 /* Execute a list of actions against 'skb'. */ 1459 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, 1460 const struct sw_flow_actions *acts, 1461 struct sw_flow_key *key) 1462 { 1463 int err, level; 1464 1465 level = __this_cpu_inc_return(exec_actions_level); 1466 if (unlikely(level > OVS_RECURSION_LIMIT)) { 1467 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n", 1468 ovs_dp_name(dp)); 1469 kfree_skb(skb); 1470 err = -ENETDOWN; 1471 goto out; 1472 } 1473 1474 OVS_CB(skb)->acts_origlen = acts->orig_len; 1475 err = do_execute_actions(dp, skb, key, 1476 acts->actions, acts->actions_len); 1477 1478 if (level == 1) 1479 process_deferred_actions(dp); 1480 1481 out: 1482 __this_cpu_dec(exec_actions_level); 1483 return err; 1484 } 1485 1486 int action_fifos_init(void) 1487 { 1488 action_fifos = alloc_percpu(struct action_fifo); 1489 if (!action_fifos) 1490 return -ENOMEM; 1491 1492 flow_keys = alloc_percpu(struct action_flow_keys); 1493 if (!flow_keys) { 1494 free_percpu(action_fifos); 1495 return -ENOMEM; 1496 } 1497 1498 return 0; 1499 } 1500 1501 void action_fifos_exit(void) 1502 { 1503 free_percpu(action_fifos); 1504 free_percpu(flow_keys); 1505 } 1506