xref: /openbmc/linux/net/openvswitch/actions.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/netfilter_ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/in6.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_vlan.h>
32 
33 #include <net/dst.h>
34 #include <net/ip.h>
35 #include <net/ipv6.h>
36 #include <net/ip6_fib.h>
37 #include <net/checksum.h>
38 #include <net/dsfield.h>
39 #include <net/mpls.h>
40 #include <net/sctp/checksum.h>
41 
42 #include "datapath.h"
43 #include "flow.h"
44 #include "conntrack.h"
45 #include "vport.h"
46 
47 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
48 			      struct sw_flow_key *key,
49 			      const struct nlattr *attr, int len);
50 
51 struct deferred_action {
52 	struct sk_buff *skb;
53 	const struct nlattr *actions;
54 
55 	/* Store pkt_key clone when creating deferred action. */
56 	struct sw_flow_key pkt_key;
57 };
58 
59 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
60 struct ovs_frag_data {
61 	unsigned long dst;
62 	struct vport *vport;
63 	struct ovs_skb_cb cb;
64 	__be16 inner_protocol;
65 	u16 network_offset;	/* valid only for MPLS */
66 	u16 vlan_tci;
67 	__be16 vlan_proto;
68 	unsigned int l2_len;
69 	u8 mac_proto;
70 	u8 l2_data[MAX_L2_LEN];
71 };
72 
73 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
74 
75 #define DEFERRED_ACTION_FIFO_SIZE 10
76 #define OVS_RECURSION_LIMIT 5
77 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
78 struct action_fifo {
79 	int head;
80 	int tail;
81 	/* Deferred action fifo queue storage. */
82 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
83 };
84 
85 struct recirc_keys {
86 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
87 };
88 
89 static struct action_fifo __percpu *action_fifos;
90 static struct recirc_keys __percpu *recirc_keys;
91 static DEFINE_PER_CPU(int, exec_actions_level);
92 
93 static void action_fifo_init(struct action_fifo *fifo)
94 {
95 	fifo->head = 0;
96 	fifo->tail = 0;
97 }
98 
99 static bool action_fifo_is_empty(const struct action_fifo *fifo)
100 {
101 	return (fifo->head == fifo->tail);
102 }
103 
104 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
105 {
106 	if (action_fifo_is_empty(fifo))
107 		return NULL;
108 
109 	return &fifo->fifo[fifo->tail++];
110 }
111 
112 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
113 {
114 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
115 		return NULL;
116 
117 	return &fifo->fifo[fifo->head++];
118 }
119 
120 /* Return true if fifo is not full */
121 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
122 						    const struct sw_flow_key *key,
123 						    const struct nlattr *attr)
124 {
125 	struct action_fifo *fifo;
126 	struct deferred_action *da;
127 
128 	fifo = this_cpu_ptr(action_fifos);
129 	da = action_fifo_put(fifo);
130 	if (da) {
131 		da->skb = skb;
132 		da->actions = attr;
133 		da->pkt_key = *key;
134 	}
135 
136 	return da;
137 }
138 
139 static void invalidate_flow_key(struct sw_flow_key *key)
140 {
141 	key->mac_proto |= SW_FLOW_KEY_INVALID;
142 }
143 
144 static bool is_flow_key_valid(const struct sw_flow_key *key)
145 {
146 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
147 }
148 
149 static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
150 			     __be16 ethertype)
151 {
152 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
153 		__be16 diff[] = { ~(hdr->h_proto), ethertype };
154 
155 		skb->csum = ~csum_partial((char *)diff, sizeof(diff),
156 					~skb->csum);
157 	}
158 
159 	hdr->h_proto = ethertype;
160 }
161 
162 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
163 		     const struct ovs_action_push_mpls *mpls)
164 {
165 	struct mpls_shim_hdr *new_mpls_lse;
166 
167 	/* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
168 	if (skb->encapsulation)
169 		return -ENOTSUPP;
170 
171 	if (skb_cow_head(skb, MPLS_HLEN) < 0)
172 		return -ENOMEM;
173 
174 	if (!skb->inner_protocol) {
175 		skb_set_inner_network_header(skb, skb->mac_len);
176 		skb_set_inner_protocol(skb, skb->protocol);
177 	}
178 
179 	skb_push(skb, MPLS_HLEN);
180 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
181 		skb->mac_len);
182 	skb_reset_mac_header(skb);
183 	skb_set_network_header(skb, skb->mac_len);
184 
185 	new_mpls_lse = mpls_hdr(skb);
186 	new_mpls_lse->label_stack_entry = mpls->mpls_lse;
187 
188 	skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
189 
190 	if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET)
191 		update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
192 	skb->protocol = mpls->mpls_ethertype;
193 
194 	invalidate_flow_key(key);
195 	return 0;
196 }
197 
198 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
199 		    const __be16 ethertype)
200 {
201 	int err;
202 
203 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
204 	if (unlikely(err))
205 		return err;
206 
207 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
208 
209 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
210 		skb->mac_len);
211 
212 	__skb_pull(skb, MPLS_HLEN);
213 	skb_reset_mac_header(skb);
214 	skb_set_network_header(skb, skb->mac_len);
215 
216 	if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) {
217 		struct ethhdr *hdr;
218 
219 		/* mpls_hdr() is used to locate the ethertype field correctly in the
220 		 * presence of VLAN tags.
221 		 */
222 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
223 		update_ethertype(skb, hdr, ethertype);
224 	}
225 	if (eth_p_mpls(skb->protocol))
226 		skb->protocol = ethertype;
227 
228 	invalidate_flow_key(key);
229 	return 0;
230 }
231 
232 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
233 		    const __be32 *mpls_lse, const __be32 *mask)
234 {
235 	struct mpls_shim_hdr *stack;
236 	__be32 lse;
237 	int err;
238 
239 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
240 	if (unlikely(err))
241 		return err;
242 
243 	stack = mpls_hdr(skb);
244 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
245 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
246 		__be32 diff[] = { ~(stack->label_stack_entry), lse };
247 
248 		skb->csum = ~csum_partial((char *)diff, sizeof(diff),
249 					  ~skb->csum);
250 	}
251 
252 	stack->label_stack_entry = lse;
253 	flow_key->mpls.top_lse = lse;
254 	return 0;
255 }
256 
257 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
258 {
259 	int err;
260 
261 	err = skb_vlan_pop(skb);
262 	if (skb_vlan_tag_present(skb)) {
263 		invalidate_flow_key(key);
264 	} else {
265 		key->eth.vlan.tci = 0;
266 		key->eth.vlan.tpid = 0;
267 	}
268 	return err;
269 }
270 
271 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
272 		     const struct ovs_action_push_vlan *vlan)
273 {
274 	if (skb_vlan_tag_present(skb)) {
275 		invalidate_flow_key(key);
276 	} else {
277 		key->eth.vlan.tci = vlan->vlan_tci;
278 		key->eth.vlan.tpid = vlan->vlan_tpid;
279 	}
280 	return skb_vlan_push(skb, vlan->vlan_tpid,
281 			     ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
282 }
283 
284 /* 'src' is already properly masked. */
285 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
286 {
287 	u16 *dst = (u16 *)dst_;
288 	const u16 *src = (const u16 *)src_;
289 	const u16 *mask = (const u16 *)mask_;
290 
291 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
292 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
293 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
294 }
295 
296 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
297 			const struct ovs_key_ethernet *key,
298 			const struct ovs_key_ethernet *mask)
299 {
300 	int err;
301 
302 	err = skb_ensure_writable(skb, ETH_HLEN);
303 	if (unlikely(err))
304 		return err;
305 
306 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
307 
308 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
309 			       mask->eth_src);
310 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
311 			       mask->eth_dst);
312 
313 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
314 
315 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
316 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
317 	return 0;
318 }
319 
320 /* pop_eth does not support VLAN packets as this action is never called
321  * for them.
322  */
323 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
324 {
325 	skb_pull_rcsum(skb, ETH_HLEN);
326 	skb_reset_mac_header(skb);
327 	skb_reset_mac_len(skb);
328 
329 	/* safe right before invalidate_flow_key */
330 	key->mac_proto = MAC_PROTO_NONE;
331 	invalidate_flow_key(key);
332 	return 0;
333 }
334 
335 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
336 		    const struct ovs_action_push_eth *ethh)
337 {
338 	struct ethhdr *hdr;
339 
340 	/* Add the new Ethernet header */
341 	if (skb_cow_head(skb, ETH_HLEN) < 0)
342 		return -ENOMEM;
343 
344 	skb_push(skb, ETH_HLEN);
345 	skb_reset_mac_header(skb);
346 	skb_reset_mac_len(skb);
347 
348 	hdr = eth_hdr(skb);
349 	ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
350 	ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
351 	hdr->h_proto = skb->protocol;
352 
353 	skb_postpush_rcsum(skb, hdr, ETH_HLEN);
354 
355 	/* safe right before invalidate_flow_key */
356 	key->mac_proto = MAC_PROTO_ETHERNET;
357 	invalidate_flow_key(key);
358 	return 0;
359 }
360 
361 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
362 				  __be32 addr, __be32 new_addr)
363 {
364 	int transport_len = skb->len - skb_transport_offset(skb);
365 
366 	if (nh->frag_off & htons(IP_OFFSET))
367 		return;
368 
369 	if (nh->protocol == IPPROTO_TCP) {
370 		if (likely(transport_len >= sizeof(struct tcphdr)))
371 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
372 						 addr, new_addr, true);
373 	} else if (nh->protocol == IPPROTO_UDP) {
374 		if (likely(transport_len >= sizeof(struct udphdr))) {
375 			struct udphdr *uh = udp_hdr(skb);
376 
377 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
378 				inet_proto_csum_replace4(&uh->check, skb,
379 							 addr, new_addr, true);
380 				if (!uh->check)
381 					uh->check = CSUM_MANGLED_0;
382 			}
383 		}
384 	}
385 }
386 
387 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
388 			__be32 *addr, __be32 new_addr)
389 {
390 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
391 	csum_replace4(&nh->check, *addr, new_addr);
392 	skb_clear_hash(skb);
393 	*addr = new_addr;
394 }
395 
396 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
397 				 __be32 addr[4], const __be32 new_addr[4])
398 {
399 	int transport_len = skb->len - skb_transport_offset(skb);
400 
401 	if (l4_proto == NEXTHDR_TCP) {
402 		if (likely(transport_len >= sizeof(struct tcphdr)))
403 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
404 						  addr, new_addr, true);
405 	} else if (l4_proto == NEXTHDR_UDP) {
406 		if (likely(transport_len >= sizeof(struct udphdr))) {
407 			struct udphdr *uh = udp_hdr(skb);
408 
409 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
410 				inet_proto_csum_replace16(&uh->check, skb,
411 							  addr, new_addr, true);
412 				if (!uh->check)
413 					uh->check = CSUM_MANGLED_0;
414 			}
415 		}
416 	} else if (l4_proto == NEXTHDR_ICMP) {
417 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
418 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
419 						  skb, addr, new_addr, true);
420 	}
421 }
422 
423 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
424 			   const __be32 mask[4], __be32 masked[4])
425 {
426 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
427 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
428 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
429 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
430 }
431 
432 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
433 			  __be32 addr[4], const __be32 new_addr[4],
434 			  bool recalculate_csum)
435 {
436 	if (recalculate_csum)
437 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
438 
439 	skb_clear_hash(skb);
440 	memcpy(addr, new_addr, sizeof(__be32[4]));
441 }
442 
443 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
444 {
445 	/* Bits 21-24 are always unmasked, so this retains their values. */
446 	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
447 	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
448 	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
449 }
450 
451 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
452 		       u8 mask)
453 {
454 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
455 
456 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
457 	nh->ttl = new_ttl;
458 }
459 
460 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
461 		    const struct ovs_key_ipv4 *key,
462 		    const struct ovs_key_ipv4 *mask)
463 {
464 	struct iphdr *nh;
465 	__be32 new_addr;
466 	int err;
467 
468 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
469 				  sizeof(struct iphdr));
470 	if (unlikely(err))
471 		return err;
472 
473 	nh = ip_hdr(skb);
474 
475 	/* Setting an IP addresses is typically only a side effect of
476 	 * matching on them in the current userspace implementation, so it
477 	 * makes sense to check if the value actually changed.
478 	 */
479 	if (mask->ipv4_src) {
480 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
481 
482 		if (unlikely(new_addr != nh->saddr)) {
483 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
484 			flow_key->ipv4.addr.src = new_addr;
485 		}
486 	}
487 	if (mask->ipv4_dst) {
488 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
489 
490 		if (unlikely(new_addr != nh->daddr)) {
491 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
492 			flow_key->ipv4.addr.dst = new_addr;
493 		}
494 	}
495 	if (mask->ipv4_tos) {
496 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
497 		flow_key->ip.tos = nh->tos;
498 	}
499 	if (mask->ipv4_ttl) {
500 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
501 		flow_key->ip.ttl = nh->ttl;
502 	}
503 
504 	return 0;
505 }
506 
507 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
508 {
509 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
510 }
511 
512 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
513 		    const struct ovs_key_ipv6 *key,
514 		    const struct ovs_key_ipv6 *mask)
515 {
516 	struct ipv6hdr *nh;
517 	int err;
518 
519 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
520 				  sizeof(struct ipv6hdr));
521 	if (unlikely(err))
522 		return err;
523 
524 	nh = ipv6_hdr(skb);
525 
526 	/* Setting an IP addresses is typically only a side effect of
527 	 * matching on them in the current userspace implementation, so it
528 	 * makes sense to check if the value actually changed.
529 	 */
530 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
531 		__be32 *saddr = (__be32 *)&nh->saddr;
532 		__be32 masked[4];
533 
534 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
535 
536 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
537 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
538 				      true);
539 			memcpy(&flow_key->ipv6.addr.src, masked,
540 			       sizeof(flow_key->ipv6.addr.src));
541 		}
542 	}
543 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
544 		unsigned int offset = 0;
545 		int flags = IP6_FH_F_SKIP_RH;
546 		bool recalc_csum = true;
547 		__be32 *daddr = (__be32 *)&nh->daddr;
548 		__be32 masked[4];
549 
550 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
551 
552 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
553 			if (ipv6_ext_hdr(nh->nexthdr))
554 				recalc_csum = (ipv6_find_hdr(skb, &offset,
555 							     NEXTHDR_ROUTING,
556 							     NULL, &flags)
557 					       != NEXTHDR_ROUTING);
558 
559 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
560 				      recalc_csum);
561 			memcpy(&flow_key->ipv6.addr.dst, masked,
562 			       sizeof(flow_key->ipv6.addr.dst));
563 		}
564 	}
565 	if (mask->ipv6_tclass) {
566 		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
567 		flow_key->ip.tos = ipv6_get_dsfield(nh);
568 	}
569 	if (mask->ipv6_label) {
570 		set_ipv6_fl(nh, ntohl(key->ipv6_label),
571 			    ntohl(mask->ipv6_label));
572 		flow_key->ipv6.label =
573 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
574 	}
575 	if (mask->ipv6_hlimit) {
576 		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
577 			       mask->ipv6_hlimit);
578 		flow_key->ip.ttl = nh->hop_limit;
579 	}
580 	return 0;
581 }
582 
583 /* Must follow skb_ensure_writable() since that can move the skb data. */
584 static void set_tp_port(struct sk_buff *skb, __be16 *port,
585 			__be16 new_port, __sum16 *check)
586 {
587 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
588 	*port = new_port;
589 }
590 
591 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
592 		   const struct ovs_key_udp *key,
593 		   const struct ovs_key_udp *mask)
594 {
595 	struct udphdr *uh;
596 	__be16 src, dst;
597 	int err;
598 
599 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
600 				  sizeof(struct udphdr));
601 	if (unlikely(err))
602 		return err;
603 
604 	uh = udp_hdr(skb);
605 	/* Either of the masks is non-zero, so do not bother checking them. */
606 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
607 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
608 
609 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
610 		if (likely(src != uh->source)) {
611 			set_tp_port(skb, &uh->source, src, &uh->check);
612 			flow_key->tp.src = src;
613 		}
614 		if (likely(dst != uh->dest)) {
615 			set_tp_port(skb, &uh->dest, dst, &uh->check);
616 			flow_key->tp.dst = dst;
617 		}
618 
619 		if (unlikely(!uh->check))
620 			uh->check = CSUM_MANGLED_0;
621 	} else {
622 		uh->source = src;
623 		uh->dest = dst;
624 		flow_key->tp.src = src;
625 		flow_key->tp.dst = dst;
626 	}
627 
628 	skb_clear_hash(skb);
629 
630 	return 0;
631 }
632 
633 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
634 		   const struct ovs_key_tcp *key,
635 		   const struct ovs_key_tcp *mask)
636 {
637 	struct tcphdr *th;
638 	__be16 src, dst;
639 	int err;
640 
641 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
642 				  sizeof(struct tcphdr));
643 	if (unlikely(err))
644 		return err;
645 
646 	th = tcp_hdr(skb);
647 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
648 	if (likely(src != th->source)) {
649 		set_tp_port(skb, &th->source, src, &th->check);
650 		flow_key->tp.src = src;
651 	}
652 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
653 	if (likely(dst != th->dest)) {
654 		set_tp_port(skb, &th->dest, dst, &th->check);
655 		flow_key->tp.dst = dst;
656 	}
657 	skb_clear_hash(skb);
658 
659 	return 0;
660 }
661 
662 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
663 		    const struct ovs_key_sctp *key,
664 		    const struct ovs_key_sctp *mask)
665 {
666 	unsigned int sctphoff = skb_transport_offset(skb);
667 	struct sctphdr *sh;
668 	__le32 old_correct_csum, new_csum, old_csum;
669 	int err;
670 
671 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
672 	if (unlikely(err))
673 		return err;
674 
675 	sh = sctp_hdr(skb);
676 	old_csum = sh->checksum;
677 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
678 
679 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
680 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
681 
682 	new_csum = sctp_compute_cksum(skb, sctphoff);
683 
684 	/* Carry any checksum errors through. */
685 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
686 
687 	skb_clear_hash(skb);
688 	flow_key->tp.src = sh->source;
689 	flow_key->tp.dst = sh->dest;
690 
691 	return 0;
692 }
693 
694 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
695 {
696 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
697 	struct vport *vport = data->vport;
698 
699 	if (skb_cow_head(skb, data->l2_len) < 0) {
700 		kfree_skb(skb);
701 		return -ENOMEM;
702 	}
703 
704 	__skb_dst_copy(skb, data->dst);
705 	*OVS_CB(skb) = data->cb;
706 	skb->inner_protocol = data->inner_protocol;
707 	skb->vlan_tci = data->vlan_tci;
708 	skb->vlan_proto = data->vlan_proto;
709 
710 	/* Reconstruct the MAC header.  */
711 	skb_push(skb, data->l2_len);
712 	memcpy(skb->data, &data->l2_data, data->l2_len);
713 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
714 	skb_reset_mac_header(skb);
715 
716 	if (eth_p_mpls(skb->protocol)) {
717 		skb->inner_network_header = skb->network_header;
718 		skb_set_network_header(skb, data->network_offset);
719 		skb_reset_mac_len(skb);
720 	}
721 
722 	ovs_vport_send(vport, skb, data->mac_proto);
723 	return 0;
724 }
725 
726 static unsigned int
727 ovs_dst_get_mtu(const struct dst_entry *dst)
728 {
729 	return dst->dev->mtu;
730 }
731 
732 static struct dst_ops ovs_dst_ops = {
733 	.family = AF_UNSPEC,
734 	.mtu = ovs_dst_get_mtu,
735 };
736 
737 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
738  * ovs_vport_output(), which is called once per fragmented packet.
739  */
740 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
741 			 u16 orig_network_offset, u8 mac_proto)
742 {
743 	unsigned int hlen = skb_network_offset(skb);
744 	struct ovs_frag_data *data;
745 
746 	data = this_cpu_ptr(&ovs_frag_data_storage);
747 	data->dst = skb->_skb_refdst;
748 	data->vport = vport;
749 	data->cb = *OVS_CB(skb);
750 	data->inner_protocol = skb->inner_protocol;
751 	data->network_offset = orig_network_offset;
752 	data->vlan_tci = skb->vlan_tci;
753 	data->vlan_proto = skb->vlan_proto;
754 	data->mac_proto = mac_proto;
755 	data->l2_len = hlen;
756 	memcpy(&data->l2_data, skb->data, hlen);
757 
758 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
759 	skb_pull(skb, hlen);
760 }
761 
762 static void ovs_fragment(struct net *net, struct vport *vport,
763 			 struct sk_buff *skb, u16 mru,
764 			 struct sw_flow_key *key)
765 {
766 	u16 orig_network_offset = 0;
767 
768 	if (eth_p_mpls(skb->protocol)) {
769 		orig_network_offset = skb_network_offset(skb);
770 		skb->network_header = skb->inner_network_header;
771 	}
772 
773 	if (skb_network_offset(skb) > MAX_L2_LEN) {
774 		OVS_NLERR(1, "L2 header too long to fragment");
775 		goto err;
776 	}
777 
778 	if (key->eth.type == htons(ETH_P_IP)) {
779 		struct dst_entry ovs_dst;
780 		unsigned long orig_dst;
781 
782 		prepare_frag(vport, skb, orig_network_offset,
783 			     ovs_key_mac_proto(key));
784 		dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
785 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
786 		ovs_dst.dev = vport->dev;
787 
788 		orig_dst = skb->_skb_refdst;
789 		skb_dst_set_noref(skb, &ovs_dst);
790 		IPCB(skb)->frag_max_size = mru;
791 
792 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
793 		refdst_drop(orig_dst);
794 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
795 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
796 		unsigned long orig_dst;
797 		struct rt6_info ovs_rt;
798 
799 		if (!v6ops) {
800 			goto err;
801 		}
802 
803 		prepare_frag(vport, skb, orig_network_offset,
804 			     ovs_key_mac_proto(key));
805 		memset(&ovs_rt, 0, sizeof(ovs_rt));
806 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
807 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
808 		ovs_rt.dst.dev = vport->dev;
809 
810 		orig_dst = skb->_skb_refdst;
811 		skb_dst_set_noref(skb, &ovs_rt.dst);
812 		IP6CB(skb)->frag_max_size = mru;
813 
814 		v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
815 		refdst_drop(orig_dst);
816 	} else {
817 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
818 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
819 			  vport->dev->mtu);
820 		goto err;
821 	}
822 
823 	return;
824 err:
825 	kfree_skb(skb);
826 }
827 
828 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
829 		      struct sw_flow_key *key)
830 {
831 	struct vport *vport = ovs_vport_rcu(dp, out_port);
832 
833 	if (likely(vport)) {
834 		u16 mru = OVS_CB(skb)->mru;
835 		u32 cutlen = OVS_CB(skb)->cutlen;
836 
837 		if (unlikely(cutlen > 0)) {
838 			if (skb->len - cutlen > ovs_mac_header_len(key))
839 				pskb_trim(skb, skb->len - cutlen);
840 			else
841 				pskb_trim(skb, ovs_mac_header_len(key));
842 		}
843 
844 		if (likely(!mru ||
845 		           (skb->len <= mru + vport->dev->hard_header_len))) {
846 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
847 		} else if (mru <= vport->dev->mtu) {
848 			struct net *net = read_pnet(&dp->net);
849 
850 			ovs_fragment(net, vport, skb, mru, key);
851 		} else {
852 			kfree_skb(skb);
853 		}
854 	} else {
855 		kfree_skb(skb);
856 	}
857 }
858 
859 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
860 			    struct sw_flow_key *key, const struct nlattr *attr,
861 			    const struct nlattr *actions, int actions_len,
862 			    uint32_t cutlen)
863 {
864 	struct dp_upcall_info upcall;
865 	const struct nlattr *a;
866 	int rem;
867 
868 	memset(&upcall, 0, sizeof(upcall));
869 	upcall.cmd = OVS_PACKET_CMD_ACTION;
870 	upcall.mru = OVS_CB(skb)->mru;
871 
872 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
873 		 a = nla_next(a, &rem)) {
874 		switch (nla_type(a)) {
875 		case OVS_USERSPACE_ATTR_USERDATA:
876 			upcall.userdata = a;
877 			break;
878 
879 		case OVS_USERSPACE_ATTR_PID:
880 			upcall.portid = nla_get_u32(a);
881 			break;
882 
883 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
884 			/* Get out tunnel info. */
885 			struct vport *vport;
886 
887 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
888 			if (vport) {
889 				int err;
890 
891 				err = dev_fill_metadata_dst(vport->dev, skb);
892 				if (!err)
893 					upcall.egress_tun_info = skb_tunnel_info(skb);
894 			}
895 
896 			break;
897 		}
898 
899 		case OVS_USERSPACE_ATTR_ACTIONS: {
900 			/* Include actions. */
901 			upcall.actions = actions;
902 			upcall.actions_len = actions_len;
903 			break;
904 		}
905 
906 		} /* End of switch. */
907 	}
908 
909 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
910 }
911 
912 static int sample(struct datapath *dp, struct sk_buff *skb,
913 		  struct sw_flow_key *key, const struct nlattr *attr,
914 		  const struct nlattr *actions, int actions_len)
915 {
916 	const struct nlattr *acts_list = NULL;
917 	const struct nlattr *a;
918 	int rem;
919 	u32 cutlen = 0;
920 
921 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
922 		 a = nla_next(a, &rem)) {
923 		u32 probability;
924 
925 		switch (nla_type(a)) {
926 		case OVS_SAMPLE_ATTR_PROBABILITY:
927 			probability = nla_get_u32(a);
928 			if (!probability || prandom_u32() > probability)
929 				return 0;
930 			break;
931 
932 		case OVS_SAMPLE_ATTR_ACTIONS:
933 			acts_list = a;
934 			break;
935 		}
936 	}
937 
938 	rem = nla_len(acts_list);
939 	a = nla_data(acts_list);
940 
941 	/* Actions list is empty, do nothing */
942 	if (unlikely(!rem))
943 		return 0;
944 
945 	/* The only known usage of sample action is having a single user-space
946 	 * action, or having a truncate action followed by a single user-space
947 	 * action. Treat this usage as a special case.
948 	 * The output_userspace() should clone the skb to be sent to the
949 	 * user space. This skb will be consumed by its caller.
950 	 */
951 	if (unlikely(nla_type(a) == OVS_ACTION_ATTR_TRUNC)) {
952 		struct ovs_action_trunc *trunc = nla_data(a);
953 
954 		if (skb->len > trunc->max_len)
955 			cutlen = skb->len - trunc->max_len;
956 
957 		a = nla_next(a, &rem);
958 	}
959 
960 	if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
961 		   nla_is_last(a, rem)))
962 		return output_userspace(dp, skb, key, a, actions,
963 					actions_len, cutlen);
964 
965 	skb = skb_clone(skb, GFP_ATOMIC);
966 	if (!skb)
967 		/* Skip the sample action when out of memory. */
968 		return 0;
969 
970 	if (!add_deferred_actions(skb, key, a)) {
971 		if (net_ratelimit())
972 			pr_warn("%s: deferred actions limit reached, dropping sample action\n",
973 				ovs_dp_name(dp));
974 
975 		kfree_skb(skb);
976 	}
977 	return 0;
978 }
979 
980 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
981 			 const struct nlattr *attr)
982 {
983 	struct ovs_action_hash *hash_act = nla_data(attr);
984 	u32 hash = 0;
985 
986 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
987 	hash = skb_get_hash(skb);
988 	hash = jhash_1word(hash, hash_act->hash_basis);
989 	if (!hash)
990 		hash = 0x1;
991 
992 	key->ovs_flow_hash = hash;
993 }
994 
995 static int execute_set_action(struct sk_buff *skb,
996 			      struct sw_flow_key *flow_key,
997 			      const struct nlattr *a)
998 {
999 	/* Only tunnel set execution is supported without a mask. */
1000 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1001 		struct ovs_tunnel_info *tun = nla_data(a);
1002 
1003 		skb_dst_drop(skb);
1004 		dst_hold((struct dst_entry *)tun->tun_dst);
1005 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1006 		return 0;
1007 	}
1008 
1009 	return -EINVAL;
1010 }
1011 
1012 /* Mask is at the midpoint of the data. */
1013 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1014 
1015 static int execute_masked_set_action(struct sk_buff *skb,
1016 				     struct sw_flow_key *flow_key,
1017 				     const struct nlattr *a)
1018 {
1019 	int err = 0;
1020 
1021 	switch (nla_type(a)) {
1022 	case OVS_KEY_ATTR_PRIORITY:
1023 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1024 			       *get_mask(a, u32 *));
1025 		flow_key->phy.priority = skb->priority;
1026 		break;
1027 
1028 	case OVS_KEY_ATTR_SKB_MARK:
1029 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1030 		flow_key->phy.skb_mark = skb->mark;
1031 		break;
1032 
1033 	case OVS_KEY_ATTR_TUNNEL_INFO:
1034 		/* Masked data not supported for tunnel. */
1035 		err = -EINVAL;
1036 		break;
1037 
1038 	case OVS_KEY_ATTR_ETHERNET:
1039 		err = set_eth_addr(skb, flow_key, nla_data(a),
1040 				   get_mask(a, struct ovs_key_ethernet *));
1041 		break;
1042 
1043 	case OVS_KEY_ATTR_IPV4:
1044 		err = set_ipv4(skb, flow_key, nla_data(a),
1045 			       get_mask(a, struct ovs_key_ipv4 *));
1046 		break;
1047 
1048 	case OVS_KEY_ATTR_IPV6:
1049 		err = set_ipv6(skb, flow_key, nla_data(a),
1050 			       get_mask(a, struct ovs_key_ipv6 *));
1051 		break;
1052 
1053 	case OVS_KEY_ATTR_TCP:
1054 		err = set_tcp(skb, flow_key, nla_data(a),
1055 			      get_mask(a, struct ovs_key_tcp *));
1056 		break;
1057 
1058 	case OVS_KEY_ATTR_UDP:
1059 		err = set_udp(skb, flow_key, nla_data(a),
1060 			      get_mask(a, struct ovs_key_udp *));
1061 		break;
1062 
1063 	case OVS_KEY_ATTR_SCTP:
1064 		err = set_sctp(skb, flow_key, nla_data(a),
1065 			       get_mask(a, struct ovs_key_sctp *));
1066 		break;
1067 
1068 	case OVS_KEY_ATTR_MPLS:
1069 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1070 								    __be32 *));
1071 		break;
1072 
1073 	case OVS_KEY_ATTR_CT_STATE:
1074 	case OVS_KEY_ATTR_CT_ZONE:
1075 	case OVS_KEY_ATTR_CT_MARK:
1076 	case OVS_KEY_ATTR_CT_LABELS:
1077 		err = -EINVAL;
1078 		break;
1079 	}
1080 
1081 	return err;
1082 }
1083 
1084 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1085 			  struct sw_flow_key *key,
1086 			  const struct nlattr *a, int rem)
1087 {
1088 	struct deferred_action *da;
1089 	int level;
1090 
1091 	if (!is_flow_key_valid(key)) {
1092 		int err;
1093 
1094 		err = ovs_flow_key_update(skb, key);
1095 		if (err)
1096 			return err;
1097 	}
1098 	BUG_ON(!is_flow_key_valid(key));
1099 
1100 	if (!nla_is_last(a, rem)) {
1101 		/* Recirc action is the not the last action
1102 		 * of the action list, need to clone the skb.
1103 		 */
1104 		skb = skb_clone(skb, GFP_ATOMIC);
1105 
1106 		/* Skip the recirc action when out of memory, but
1107 		 * continue on with the rest of the action list.
1108 		 */
1109 		if (!skb)
1110 			return 0;
1111 	}
1112 
1113 	level = this_cpu_read(exec_actions_level);
1114 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
1115 		struct recirc_keys *rks = this_cpu_ptr(recirc_keys);
1116 		struct sw_flow_key *recirc_key = &rks->key[level - 1];
1117 
1118 		*recirc_key = *key;
1119 		recirc_key->recirc_id = nla_get_u32(a);
1120 		ovs_dp_process_packet(skb, recirc_key);
1121 
1122 		return 0;
1123 	}
1124 
1125 	da = add_deferred_actions(skb, key, NULL);
1126 	if (da) {
1127 		da->pkt_key.recirc_id = nla_get_u32(a);
1128 	} else {
1129 		kfree_skb(skb);
1130 
1131 		if (net_ratelimit())
1132 			pr_warn("%s: deferred action limit reached, drop recirc action\n",
1133 				ovs_dp_name(dp));
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 /* Execute a list of actions against 'skb'. */
1140 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1141 			      struct sw_flow_key *key,
1142 			      const struct nlattr *attr, int len)
1143 {
1144 	/* Every output action needs a separate clone of 'skb', but the common
1145 	 * case is just a single output action, so that doing a clone and
1146 	 * then freeing the original skbuff is wasteful.  So the following code
1147 	 * is slightly obscure just to avoid that.
1148 	 */
1149 	int prev_port = -1;
1150 	const struct nlattr *a;
1151 	int rem;
1152 
1153 	for (a = attr, rem = len; rem > 0;
1154 	     a = nla_next(a, &rem)) {
1155 		int err = 0;
1156 
1157 		if (unlikely(prev_port != -1)) {
1158 			struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
1159 
1160 			if (out_skb)
1161 				do_output(dp, out_skb, prev_port, key);
1162 
1163 			OVS_CB(skb)->cutlen = 0;
1164 			prev_port = -1;
1165 		}
1166 
1167 		switch (nla_type(a)) {
1168 		case OVS_ACTION_ATTR_OUTPUT:
1169 			prev_port = nla_get_u32(a);
1170 			break;
1171 
1172 		case OVS_ACTION_ATTR_TRUNC: {
1173 			struct ovs_action_trunc *trunc = nla_data(a);
1174 
1175 			if (skb->len > trunc->max_len)
1176 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1177 			break;
1178 		}
1179 
1180 		case OVS_ACTION_ATTR_USERSPACE:
1181 			output_userspace(dp, skb, key, a, attr,
1182 						     len, OVS_CB(skb)->cutlen);
1183 			OVS_CB(skb)->cutlen = 0;
1184 			break;
1185 
1186 		case OVS_ACTION_ATTR_HASH:
1187 			execute_hash(skb, key, a);
1188 			break;
1189 
1190 		case OVS_ACTION_ATTR_PUSH_MPLS:
1191 			err = push_mpls(skb, key, nla_data(a));
1192 			break;
1193 
1194 		case OVS_ACTION_ATTR_POP_MPLS:
1195 			err = pop_mpls(skb, key, nla_get_be16(a));
1196 			break;
1197 
1198 		case OVS_ACTION_ATTR_PUSH_VLAN:
1199 			err = push_vlan(skb, key, nla_data(a));
1200 			break;
1201 
1202 		case OVS_ACTION_ATTR_POP_VLAN:
1203 			err = pop_vlan(skb, key);
1204 			break;
1205 
1206 		case OVS_ACTION_ATTR_RECIRC:
1207 			err = execute_recirc(dp, skb, key, a, rem);
1208 			if (nla_is_last(a, rem)) {
1209 				/* If this is the last action, the skb has
1210 				 * been consumed or freed.
1211 				 * Return immediately.
1212 				 */
1213 				return err;
1214 			}
1215 			break;
1216 
1217 		case OVS_ACTION_ATTR_SET:
1218 			err = execute_set_action(skb, key, nla_data(a));
1219 			break;
1220 
1221 		case OVS_ACTION_ATTR_SET_MASKED:
1222 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1223 			err = execute_masked_set_action(skb, key, nla_data(a));
1224 			break;
1225 
1226 		case OVS_ACTION_ATTR_SAMPLE:
1227 			err = sample(dp, skb, key, a, attr, len);
1228 			break;
1229 
1230 		case OVS_ACTION_ATTR_CT:
1231 			if (!is_flow_key_valid(key)) {
1232 				err = ovs_flow_key_update(skb, key);
1233 				if (err)
1234 					return err;
1235 			}
1236 
1237 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1238 					     nla_data(a));
1239 
1240 			/* Hide stolen IP fragments from user space. */
1241 			if (err)
1242 				return err == -EINPROGRESS ? 0 : err;
1243 			break;
1244 
1245 		case OVS_ACTION_ATTR_PUSH_ETH:
1246 			err = push_eth(skb, key, nla_data(a));
1247 			break;
1248 
1249 		case OVS_ACTION_ATTR_POP_ETH:
1250 			err = pop_eth(skb, key);
1251 			break;
1252 		}
1253 
1254 		if (unlikely(err)) {
1255 			kfree_skb(skb);
1256 			return err;
1257 		}
1258 	}
1259 
1260 	if (prev_port != -1)
1261 		do_output(dp, skb, prev_port, key);
1262 	else
1263 		consume_skb(skb);
1264 
1265 	return 0;
1266 }
1267 
1268 static void process_deferred_actions(struct datapath *dp)
1269 {
1270 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1271 
1272 	/* Do not touch the FIFO in case there is no deferred actions. */
1273 	if (action_fifo_is_empty(fifo))
1274 		return;
1275 
1276 	/* Finishing executing all deferred actions. */
1277 	do {
1278 		struct deferred_action *da = action_fifo_get(fifo);
1279 		struct sk_buff *skb = da->skb;
1280 		struct sw_flow_key *key = &da->pkt_key;
1281 		const struct nlattr *actions = da->actions;
1282 
1283 		if (actions)
1284 			do_execute_actions(dp, skb, key, actions,
1285 					   nla_len(actions));
1286 		else
1287 			ovs_dp_process_packet(skb, key);
1288 	} while (!action_fifo_is_empty(fifo));
1289 
1290 	/* Reset FIFO for the next packet.  */
1291 	action_fifo_init(fifo);
1292 }
1293 
1294 /* Execute a list of actions against 'skb'. */
1295 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1296 			const struct sw_flow_actions *acts,
1297 			struct sw_flow_key *key)
1298 {
1299 	int err, level;
1300 
1301 	level = __this_cpu_inc_return(exec_actions_level);
1302 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1303 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1304 				     ovs_dp_name(dp));
1305 		kfree_skb(skb);
1306 		err = -ENETDOWN;
1307 		goto out;
1308 	}
1309 
1310 	err = do_execute_actions(dp, skb, key,
1311 				 acts->actions, acts->actions_len);
1312 
1313 	if (level == 1)
1314 		process_deferred_actions(dp);
1315 
1316 out:
1317 	__this_cpu_dec(exec_actions_level);
1318 	return err;
1319 }
1320 
1321 int action_fifos_init(void)
1322 {
1323 	action_fifos = alloc_percpu(struct action_fifo);
1324 	if (!action_fifos)
1325 		return -ENOMEM;
1326 
1327 	recirc_keys = alloc_percpu(struct recirc_keys);
1328 	if (!recirc_keys) {
1329 		free_percpu(action_fifos);
1330 		return -ENOMEM;
1331 	}
1332 
1333 	return 0;
1334 }
1335 
1336 void action_fifos_exit(void)
1337 {
1338 	free_percpu(action_fifos);
1339 	free_percpu(recirc_keys);
1340 }
1341