xref: /openbmc/linux/net/openvswitch/actions.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/netfilter_ipv6.h>
13 #include <linux/sctp.h>
14 #include <linux/tcp.h>
15 #include <linux/udp.h>
16 #include <linux/in6.h>
17 #include <linux/if_arp.h>
18 #include <linux/if_vlan.h>
19 
20 #include <net/dst.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
27 #include <net/sctp/checksum.h>
28 
29 #include "datapath.h"
30 #include "flow.h"
31 #include "conntrack.h"
32 #include "vport.h"
33 #include "flow_netlink.h"
34 
35 struct deferred_action {
36 	struct sk_buff *skb;
37 	const struct nlattr *actions;
38 	int actions_len;
39 
40 	/* Store pkt_key clone when creating deferred action. */
41 	struct sw_flow_key pkt_key;
42 };
43 
44 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
45 struct ovs_frag_data {
46 	unsigned long dst;
47 	struct vport *vport;
48 	struct ovs_skb_cb cb;
49 	__be16 inner_protocol;
50 	u16 network_offset;	/* valid only for MPLS */
51 	u16 vlan_tci;
52 	__be16 vlan_proto;
53 	unsigned int l2_len;
54 	u8 mac_proto;
55 	u8 l2_data[MAX_L2_LEN];
56 };
57 
58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
59 
60 #define DEFERRED_ACTION_FIFO_SIZE 10
61 #define OVS_RECURSION_LIMIT 5
62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
63 struct action_fifo {
64 	int head;
65 	int tail;
66 	/* Deferred action fifo queue storage. */
67 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
68 };
69 
70 struct action_flow_keys {
71 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
72 };
73 
74 static struct action_fifo __percpu *action_fifos;
75 static struct action_flow_keys __percpu *flow_keys;
76 static DEFINE_PER_CPU(int, exec_actions_level);
77 
78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
79  * space. Return NULL if out of key spaces.
80  */
81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
82 {
83 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
84 	int level = this_cpu_read(exec_actions_level);
85 	struct sw_flow_key *key = NULL;
86 
87 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
88 		key = &keys->key[level - 1];
89 		*key = *key_;
90 	}
91 
92 	return key;
93 }
94 
95 static void action_fifo_init(struct action_fifo *fifo)
96 {
97 	fifo->head = 0;
98 	fifo->tail = 0;
99 }
100 
101 static bool action_fifo_is_empty(const struct action_fifo *fifo)
102 {
103 	return (fifo->head == fifo->tail);
104 }
105 
106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
107 {
108 	if (action_fifo_is_empty(fifo))
109 		return NULL;
110 
111 	return &fifo->fifo[fifo->tail++];
112 }
113 
114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
115 {
116 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
117 		return NULL;
118 
119 	return &fifo->fifo[fifo->head++];
120 }
121 
122 /* Return true if fifo is not full */
123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
124 				    const struct sw_flow_key *key,
125 				    const struct nlattr *actions,
126 				    const int actions_len)
127 {
128 	struct action_fifo *fifo;
129 	struct deferred_action *da;
130 
131 	fifo = this_cpu_ptr(action_fifos);
132 	da = action_fifo_put(fifo);
133 	if (da) {
134 		da->skb = skb;
135 		da->actions = actions;
136 		da->actions_len = actions_len;
137 		da->pkt_key = *key;
138 	}
139 
140 	return da;
141 }
142 
143 static void invalidate_flow_key(struct sw_flow_key *key)
144 {
145 	key->mac_proto |= SW_FLOW_KEY_INVALID;
146 }
147 
148 static bool is_flow_key_valid(const struct sw_flow_key *key)
149 {
150 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
151 }
152 
153 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
154 			 struct sw_flow_key *key,
155 			 u32 recirc_id,
156 			 const struct nlattr *actions, int len,
157 			 bool last, bool clone_flow_key);
158 
159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
160 			      struct sw_flow_key *key,
161 			      const struct nlattr *attr, int len);
162 
163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
164 		     const struct ovs_action_push_mpls *mpls)
165 {
166 	int err;
167 
168 	err = skb_mpls_push(skb, mpls->mpls_lse, mpls->mpls_ethertype);
169 	if (err)
170 		return err;
171 
172 	invalidate_flow_key(key);
173 	return 0;
174 }
175 
176 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
177 		    const __be16 ethertype)
178 {
179 	int err;
180 
181 	err = skb_mpls_pop(skb, ethertype);
182 	if (err)
183 		return err;
184 
185 	invalidate_flow_key(key);
186 	return 0;
187 }
188 
189 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
190 		    const __be32 *mpls_lse, const __be32 *mask)
191 {
192 	struct mpls_shim_hdr *stack;
193 	__be32 lse;
194 	int err;
195 
196 	stack = mpls_hdr(skb);
197 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
198 	err = skb_mpls_update_lse(skb, lse);
199 	if (err)
200 		return err;
201 
202 	flow_key->mpls.top_lse = lse;
203 	return 0;
204 }
205 
206 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
207 {
208 	int err;
209 
210 	err = skb_vlan_pop(skb);
211 	if (skb_vlan_tag_present(skb)) {
212 		invalidate_flow_key(key);
213 	} else {
214 		key->eth.vlan.tci = 0;
215 		key->eth.vlan.tpid = 0;
216 	}
217 	return err;
218 }
219 
220 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
221 		     const struct ovs_action_push_vlan *vlan)
222 {
223 	if (skb_vlan_tag_present(skb)) {
224 		invalidate_flow_key(key);
225 	} else {
226 		key->eth.vlan.tci = vlan->vlan_tci;
227 		key->eth.vlan.tpid = vlan->vlan_tpid;
228 	}
229 	return skb_vlan_push(skb, vlan->vlan_tpid,
230 			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
231 }
232 
233 /* 'src' is already properly masked. */
234 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
235 {
236 	u16 *dst = (u16 *)dst_;
237 	const u16 *src = (const u16 *)src_;
238 	const u16 *mask = (const u16 *)mask_;
239 
240 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
241 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
242 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
243 }
244 
245 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
246 			const struct ovs_key_ethernet *key,
247 			const struct ovs_key_ethernet *mask)
248 {
249 	int err;
250 
251 	err = skb_ensure_writable(skb, ETH_HLEN);
252 	if (unlikely(err))
253 		return err;
254 
255 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
256 
257 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
258 			       mask->eth_src);
259 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
260 			       mask->eth_dst);
261 
262 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
263 
264 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
265 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
266 	return 0;
267 }
268 
269 /* pop_eth does not support VLAN packets as this action is never called
270  * for them.
271  */
272 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
273 {
274 	skb_pull_rcsum(skb, ETH_HLEN);
275 	skb_reset_mac_header(skb);
276 	skb_reset_mac_len(skb);
277 
278 	/* safe right before invalidate_flow_key */
279 	key->mac_proto = MAC_PROTO_NONE;
280 	invalidate_flow_key(key);
281 	return 0;
282 }
283 
284 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
285 		    const struct ovs_action_push_eth *ethh)
286 {
287 	struct ethhdr *hdr;
288 
289 	/* Add the new Ethernet header */
290 	if (skb_cow_head(skb, ETH_HLEN) < 0)
291 		return -ENOMEM;
292 
293 	skb_push(skb, ETH_HLEN);
294 	skb_reset_mac_header(skb);
295 	skb_reset_mac_len(skb);
296 
297 	hdr = eth_hdr(skb);
298 	ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
299 	ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
300 	hdr->h_proto = skb->protocol;
301 
302 	skb_postpush_rcsum(skb, hdr, ETH_HLEN);
303 
304 	/* safe right before invalidate_flow_key */
305 	key->mac_proto = MAC_PROTO_ETHERNET;
306 	invalidate_flow_key(key);
307 	return 0;
308 }
309 
310 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
311 		    const struct nshhdr *nh)
312 {
313 	int err;
314 
315 	err = nsh_push(skb, nh);
316 	if (err)
317 		return err;
318 
319 	/* safe right before invalidate_flow_key */
320 	key->mac_proto = MAC_PROTO_NONE;
321 	invalidate_flow_key(key);
322 	return 0;
323 }
324 
325 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
326 {
327 	int err;
328 
329 	err = nsh_pop(skb);
330 	if (err)
331 		return err;
332 
333 	/* safe right before invalidate_flow_key */
334 	if (skb->protocol == htons(ETH_P_TEB))
335 		key->mac_proto = MAC_PROTO_ETHERNET;
336 	else
337 		key->mac_proto = MAC_PROTO_NONE;
338 	invalidate_flow_key(key);
339 	return 0;
340 }
341 
342 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
343 				  __be32 addr, __be32 new_addr)
344 {
345 	int transport_len = skb->len - skb_transport_offset(skb);
346 
347 	if (nh->frag_off & htons(IP_OFFSET))
348 		return;
349 
350 	if (nh->protocol == IPPROTO_TCP) {
351 		if (likely(transport_len >= sizeof(struct tcphdr)))
352 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
353 						 addr, new_addr, true);
354 	} else if (nh->protocol == IPPROTO_UDP) {
355 		if (likely(transport_len >= sizeof(struct udphdr))) {
356 			struct udphdr *uh = udp_hdr(skb);
357 
358 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
359 				inet_proto_csum_replace4(&uh->check, skb,
360 							 addr, new_addr, true);
361 				if (!uh->check)
362 					uh->check = CSUM_MANGLED_0;
363 			}
364 		}
365 	}
366 }
367 
368 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
369 			__be32 *addr, __be32 new_addr)
370 {
371 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
372 	csum_replace4(&nh->check, *addr, new_addr);
373 	skb_clear_hash(skb);
374 	*addr = new_addr;
375 }
376 
377 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
378 				 __be32 addr[4], const __be32 new_addr[4])
379 {
380 	int transport_len = skb->len - skb_transport_offset(skb);
381 
382 	if (l4_proto == NEXTHDR_TCP) {
383 		if (likely(transport_len >= sizeof(struct tcphdr)))
384 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
385 						  addr, new_addr, true);
386 	} else if (l4_proto == NEXTHDR_UDP) {
387 		if (likely(transport_len >= sizeof(struct udphdr))) {
388 			struct udphdr *uh = udp_hdr(skb);
389 
390 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
391 				inet_proto_csum_replace16(&uh->check, skb,
392 							  addr, new_addr, true);
393 				if (!uh->check)
394 					uh->check = CSUM_MANGLED_0;
395 			}
396 		}
397 	} else if (l4_proto == NEXTHDR_ICMP) {
398 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
399 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
400 						  skb, addr, new_addr, true);
401 	}
402 }
403 
404 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
405 			   const __be32 mask[4], __be32 masked[4])
406 {
407 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
408 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
409 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
410 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
411 }
412 
413 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
414 			  __be32 addr[4], const __be32 new_addr[4],
415 			  bool recalculate_csum)
416 {
417 	if (recalculate_csum)
418 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
419 
420 	skb_clear_hash(skb);
421 	memcpy(addr, new_addr, sizeof(__be32[4]));
422 }
423 
424 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
425 {
426 	/* Bits 21-24 are always unmasked, so this retains their values. */
427 	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
428 	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
429 	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
430 }
431 
432 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
433 		       u8 mask)
434 {
435 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
436 
437 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
438 	nh->ttl = new_ttl;
439 }
440 
441 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
442 		    const struct ovs_key_ipv4 *key,
443 		    const struct ovs_key_ipv4 *mask)
444 {
445 	struct iphdr *nh;
446 	__be32 new_addr;
447 	int err;
448 
449 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
450 				  sizeof(struct iphdr));
451 	if (unlikely(err))
452 		return err;
453 
454 	nh = ip_hdr(skb);
455 
456 	/* Setting an IP addresses is typically only a side effect of
457 	 * matching on them in the current userspace implementation, so it
458 	 * makes sense to check if the value actually changed.
459 	 */
460 	if (mask->ipv4_src) {
461 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
462 
463 		if (unlikely(new_addr != nh->saddr)) {
464 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
465 			flow_key->ipv4.addr.src = new_addr;
466 		}
467 	}
468 	if (mask->ipv4_dst) {
469 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
470 
471 		if (unlikely(new_addr != nh->daddr)) {
472 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
473 			flow_key->ipv4.addr.dst = new_addr;
474 		}
475 	}
476 	if (mask->ipv4_tos) {
477 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
478 		flow_key->ip.tos = nh->tos;
479 	}
480 	if (mask->ipv4_ttl) {
481 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
482 		flow_key->ip.ttl = nh->ttl;
483 	}
484 
485 	return 0;
486 }
487 
488 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
489 {
490 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
491 }
492 
493 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
494 		    const struct ovs_key_ipv6 *key,
495 		    const struct ovs_key_ipv6 *mask)
496 {
497 	struct ipv6hdr *nh;
498 	int err;
499 
500 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
501 				  sizeof(struct ipv6hdr));
502 	if (unlikely(err))
503 		return err;
504 
505 	nh = ipv6_hdr(skb);
506 
507 	/* Setting an IP addresses is typically only a side effect of
508 	 * matching on them in the current userspace implementation, so it
509 	 * makes sense to check if the value actually changed.
510 	 */
511 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
512 		__be32 *saddr = (__be32 *)&nh->saddr;
513 		__be32 masked[4];
514 
515 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
516 
517 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
518 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
519 				      true);
520 			memcpy(&flow_key->ipv6.addr.src, masked,
521 			       sizeof(flow_key->ipv6.addr.src));
522 		}
523 	}
524 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
525 		unsigned int offset = 0;
526 		int flags = IP6_FH_F_SKIP_RH;
527 		bool recalc_csum = true;
528 		__be32 *daddr = (__be32 *)&nh->daddr;
529 		__be32 masked[4];
530 
531 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
532 
533 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
534 			if (ipv6_ext_hdr(nh->nexthdr))
535 				recalc_csum = (ipv6_find_hdr(skb, &offset,
536 							     NEXTHDR_ROUTING,
537 							     NULL, &flags)
538 					       != NEXTHDR_ROUTING);
539 
540 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
541 				      recalc_csum);
542 			memcpy(&flow_key->ipv6.addr.dst, masked,
543 			       sizeof(flow_key->ipv6.addr.dst));
544 		}
545 	}
546 	if (mask->ipv6_tclass) {
547 		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
548 		flow_key->ip.tos = ipv6_get_dsfield(nh);
549 	}
550 	if (mask->ipv6_label) {
551 		set_ipv6_fl(nh, ntohl(key->ipv6_label),
552 			    ntohl(mask->ipv6_label));
553 		flow_key->ipv6.label =
554 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
555 	}
556 	if (mask->ipv6_hlimit) {
557 		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
558 			       mask->ipv6_hlimit);
559 		flow_key->ip.ttl = nh->hop_limit;
560 	}
561 	return 0;
562 }
563 
564 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
565 		   const struct nlattr *a)
566 {
567 	struct nshhdr *nh;
568 	size_t length;
569 	int err;
570 	u8 flags;
571 	u8 ttl;
572 	int i;
573 
574 	struct ovs_key_nsh key;
575 	struct ovs_key_nsh mask;
576 
577 	err = nsh_key_from_nlattr(a, &key, &mask);
578 	if (err)
579 		return err;
580 
581 	/* Make sure the NSH base header is there */
582 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
583 		return -ENOMEM;
584 
585 	nh = nsh_hdr(skb);
586 	length = nsh_hdr_len(nh);
587 
588 	/* Make sure the whole NSH header is there */
589 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
590 				       length);
591 	if (unlikely(err))
592 		return err;
593 
594 	nh = nsh_hdr(skb);
595 	skb_postpull_rcsum(skb, nh, length);
596 	flags = nsh_get_flags(nh);
597 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
598 	flow_key->nsh.base.flags = flags;
599 	ttl = nsh_get_ttl(nh);
600 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
601 	flow_key->nsh.base.ttl = ttl;
602 	nsh_set_flags_and_ttl(nh, flags, ttl);
603 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
604 				  mask.base.path_hdr);
605 	flow_key->nsh.base.path_hdr = nh->path_hdr;
606 	switch (nh->mdtype) {
607 	case NSH_M_TYPE1:
608 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
609 			nh->md1.context[i] =
610 			    OVS_MASKED(nh->md1.context[i], key.context[i],
611 				       mask.context[i]);
612 		}
613 		memcpy(flow_key->nsh.context, nh->md1.context,
614 		       sizeof(nh->md1.context));
615 		break;
616 	case NSH_M_TYPE2:
617 		memset(flow_key->nsh.context, 0,
618 		       sizeof(flow_key->nsh.context));
619 		break;
620 	default:
621 		return -EINVAL;
622 	}
623 	skb_postpush_rcsum(skb, nh, length);
624 	return 0;
625 }
626 
627 /* Must follow skb_ensure_writable() since that can move the skb data. */
628 static void set_tp_port(struct sk_buff *skb, __be16 *port,
629 			__be16 new_port, __sum16 *check)
630 {
631 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
632 	*port = new_port;
633 }
634 
635 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
636 		   const struct ovs_key_udp *key,
637 		   const struct ovs_key_udp *mask)
638 {
639 	struct udphdr *uh;
640 	__be16 src, dst;
641 	int err;
642 
643 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
644 				  sizeof(struct udphdr));
645 	if (unlikely(err))
646 		return err;
647 
648 	uh = udp_hdr(skb);
649 	/* Either of the masks is non-zero, so do not bother checking them. */
650 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
651 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
652 
653 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
654 		if (likely(src != uh->source)) {
655 			set_tp_port(skb, &uh->source, src, &uh->check);
656 			flow_key->tp.src = src;
657 		}
658 		if (likely(dst != uh->dest)) {
659 			set_tp_port(skb, &uh->dest, dst, &uh->check);
660 			flow_key->tp.dst = dst;
661 		}
662 
663 		if (unlikely(!uh->check))
664 			uh->check = CSUM_MANGLED_0;
665 	} else {
666 		uh->source = src;
667 		uh->dest = dst;
668 		flow_key->tp.src = src;
669 		flow_key->tp.dst = dst;
670 	}
671 
672 	skb_clear_hash(skb);
673 
674 	return 0;
675 }
676 
677 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
678 		   const struct ovs_key_tcp *key,
679 		   const struct ovs_key_tcp *mask)
680 {
681 	struct tcphdr *th;
682 	__be16 src, dst;
683 	int err;
684 
685 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
686 				  sizeof(struct tcphdr));
687 	if (unlikely(err))
688 		return err;
689 
690 	th = tcp_hdr(skb);
691 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
692 	if (likely(src != th->source)) {
693 		set_tp_port(skb, &th->source, src, &th->check);
694 		flow_key->tp.src = src;
695 	}
696 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
697 	if (likely(dst != th->dest)) {
698 		set_tp_port(skb, &th->dest, dst, &th->check);
699 		flow_key->tp.dst = dst;
700 	}
701 	skb_clear_hash(skb);
702 
703 	return 0;
704 }
705 
706 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
707 		    const struct ovs_key_sctp *key,
708 		    const struct ovs_key_sctp *mask)
709 {
710 	unsigned int sctphoff = skb_transport_offset(skb);
711 	struct sctphdr *sh;
712 	__le32 old_correct_csum, new_csum, old_csum;
713 	int err;
714 
715 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
716 	if (unlikely(err))
717 		return err;
718 
719 	sh = sctp_hdr(skb);
720 	old_csum = sh->checksum;
721 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
722 
723 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
724 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
725 
726 	new_csum = sctp_compute_cksum(skb, sctphoff);
727 
728 	/* Carry any checksum errors through. */
729 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
730 
731 	skb_clear_hash(skb);
732 	flow_key->tp.src = sh->source;
733 	flow_key->tp.dst = sh->dest;
734 
735 	return 0;
736 }
737 
738 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
739 {
740 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
741 	struct vport *vport = data->vport;
742 
743 	if (skb_cow_head(skb, data->l2_len) < 0) {
744 		kfree_skb(skb);
745 		return -ENOMEM;
746 	}
747 
748 	__skb_dst_copy(skb, data->dst);
749 	*OVS_CB(skb) = data->cb;
750 	skb->inner_protocol = data->inner_protocol;
751 	if (data->vlan_tci & VLAN_CFI_MASK)
752 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
753 	else
754 		__vlan_hwaccel_clear_tag(skb);
755 
756 	/* Reconstruct the MAC header.  */
757 	skb_push(skb, data->l2_len);
758 	memcpy(skb->data, &data->l2_data, data->l2_len);
759 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
760 	skb_reset_mac_header(skb);
761 
762 	if (eth_p_mpls(skb->protocol)) {
763 		skb->inner_network_header = skb->network_header;
764 		skb_set_network_header(skb, data->network_offset);
765 		skb_reset_mac_len(skb);
766 	}
767 
768 	ovs_vport_send(vport, skb, data->mac_proto);
769 	return 0;
770 }
771 
772 static unsigned int
773 ovs_dst_get_mtu(const struct dst_entry *dst)
774 {
775 	return dst->dev->mtu;
776 }
777 
778 static struct dst_ops ovs_dst_ops = {
779 	.family = AF_UNSPEC,
780 	.mtu = ovs_dst_get_mtu,
781 };
782 
783 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
784  * ovs_vport_output(), which is called once per fragmented packet.
785  */
786 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
787 			 u16 orig_network_offset, u8 mac_proto)
788 {
789 	unsigned int hlen = skb_network_offset(skb);
790 	struct ovs_frag_data *data;
791 
792 	data = this_cpu_ptr(&ovs_frag_data_storage);
793 	data->dst = skb->_skb_refdst;
794 	data->vport = vport;
795 	data->cb = *OVS_CB(skb);
796 	data->inner_protocol = skb->inner_protocol;
797 	data->network_offset = orig_network_offset;
798 	if (skb_vlan_tag_present(skb))
799 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
800 	else
801 		data->vlan_tci = 0;
802 	data->vlan_proto = skb->vlan_proto;
803 	data->mac_proto = mac_proto;
804 	data->l2_len = hlen;
805 	memcpy(&data->l2_data, skb->data, hlen);
806 
807 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
808 	skb_pull(skb, hlen);
809 }
810 
811 static void ovs_fragment(struct net *net, struct vport *vport,
812 			 struct sk_buff *skb, u16 mru,
813 			 struct sw_flow_key *key)
814 {
815 	u16 orig_network_offset = 0;
816 
817 	if (eth_p_mpls(skb->protocol)) {
818 		orig_network_offset = skb_network_offset(skb);
819 		skb->network_header = skb->inner_network_header;
820 	}
821 
822 	if (skb_network_offset(skb) > MAX_L2_LEN) {
823 		OVS_NLERR(1, "L2 header too long to fragment");
824 		goto err;
825 	}
826 
827 	if (key->eth.type == htons(ETH_P_IP)) {
828 		struct dst_entry ovs_dst;
829 		unsigned long orig_dst;
830 
831 		prepare_frag(vport, skb, orig_network_offset,
832 			     ovs_key_mac_proto(key));
833 		dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
834 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
835 		ovs_dst.dev = vport->dev;
836 
837 		orig_dst = skb->_skb_refdst;
838 		skb_dst_set_noref(skb, &ovs_dst);
839 		IPCB(skb)->frag_max_size = mru;
840 
841 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
842 		refdst_drop(orig_dst);
843 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
844 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
845 		unsigned long orig_dst;
846 		struct rt6_info ovs_rt;
847 
848 		if (!v6ops)
849 			goto err;
850 
851 		prepare_frag(vport, skb, orig_network_offset,
852 			     ovs_key_mac_proto(key));
853 		memset(&ovs_rt, 0, sizeof(ovs_rt));
854 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
855 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
856 		ovs_rt.dst.dev = vport->dev;
857 
858 		orig_dst = skb->_skb_refdst;
859 		skb_dst_set_noref(skb, &ovs_rt.dst);
860 		IP6CB(skb)->frag_max_size = mru;
861 
862 		v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
863 		refdst_drop(orig_dst);
864 	} else {
865 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
866 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
867 			  vport->dev->mtu);
868 		goto err;
869 	}
870 
871 	return;
872 err:
873 	kfree_skb(skb);
874 }
875 
876 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
877 		      struct sw_flow_key *key)
878 {
879 	struct vport *vport = ovs_vport_rcu(dp, out_port);
880 
881 	if (likely(vport)) {
882 		u16 mru = OVS_CB(skb)->mru;
883 		u32 cutlen = OVS_CB(skb)->cutlen;
884 
885 		if (unlikely(cutlen > 0)) {
886 			if (skb->len - cutlen > ovs_mac_header_len(key))
887 				pskb_trim(skb, skb->len - cutlen);
888 			else
889 				pskb_trim(skb, ovs_mac_header_len(key));
890 		}
891 
892 		if (likely(!mru ||
893 		           (skb->len <= mru + vport->dev->hard_header_len))) {
894 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
895 		} else if (mru <= vport->dev->mtu) {
896 			struct net *net = read_pnet(&dp->net);
897 
898 			ovs_fragment(net, vport, skb, mru, key);
899 		} else {
900 			kfree_skb(skb);
901 		}
902 	} else {
903 		kfree_skb(skb);
904 	}
905 }
906 
907 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
908 			    struct sw_flow_key *key, const struct nlattr *attr,
909 			    const struct nlattr *actions, int actions_len,
910 			    uint32_t cutlen)
911 {
912 	struct dp_upcall_info upcall;
913 	const struct nlattr *a;
914 	int rem;
915 
916 	memset(&upcall, 0, sizeof(upcall));
917 	upcall.cmd = OVS_PACKET_CMD_ACTION;
918 	upcall.mru = OVS_CB(skb)->mru;
919 
920 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
921 		 a = nla_next(a, &rem)) {
922 		switch (nla_type(a)) {
923 		case OVS_USERSPACE_ATTR_USERDATA:
924 			upcall.userdata = a;
925 			break;
926 
927 		case OVS_USERSPACE_ATTR_PID:
928 			upcall.portid = nla_get_u32(a);
929 			break;
930 
931 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
932 			/* Get out tunnel info. */
933 			struct vport *vport;
934 
935 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
936 			if (vport) {
937 				int err;
938 
939 				err = dev_fill_metadata_dst(vport->dev, skb);
940 				if (!err)
941 					upcall.egress_tun_info = skb_tunnel_info(skb);
942 			}
943 
944 			break;
945 		}
946 
947 		case OVS_USERSPACE_ATTR_ACTIONS: {
948 			/* Include actions. */
949 			upcall.actions = actions;
950 			upcall.actions_len = actions_len;
951 			break;
952 		}
953 
954 		} /* End of switch. */
955 	}
956 
957 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
958 }
959 
960 /* When 'last' is true, sample() should always consume the 'skb'.
961  * Otherwise, sample() should keep 'skb' intact regardless what
962  * actions are executed within sample().
963  */
964 static int sample(struct datapath *dp, struct sk_buff *skb,
965 		  struct sw_flow_key *key, const struct nlattr *attr,
966 		  bool last)
967 {
968 	struct nlattr *actions;
969 	struct nlattr *sample_arg;
970 	int rem = nla_len(attr);
971 	const struct sample_arg *arg;
972 	bool clone_flow_key;
973 
974 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
975 	sample_arg = nla_data(attr);
976 	arg = nla_data(sample_arg);
977 	actions = nla_next(sample_arg, &rem);
978 
979 	if ((arg->probability != U32_MAX) &&
980 	    (!arg->probability || prandom_u32() > arg->probability)) {
981 		if (last)
982 			consume_skb(skb);
983 		return 0;
984 	}
985 
986 	clone_flow_key = !arg->exec;
987 	return clone_execute(dp, skb, key, 0, actions, rem, last,
988 			     clone_flow_key);
989 }
990 
991 /* When 'last' is true, clone() should always consume the 'skb'.
992  * Otherwise, clone() should keep 'skb' intact regardless what
993  * actions are executed within clone().
994  */
995 static int clone(struct datapath *dp, struct sk_buff *skb,
996 		 struct sw_flow_key *key, const struct nlattr *attr,
997 		 bool last)
998 {
999 	struct nlattr *actions;
1000 	struct nlattr *clone_arg;
1001 	int rem = nla_len(attr);
1002 	bool dont_clone_flow_key;
1003 
1004 	/* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1005 	clone_arg = nla_data(attr);
1006 	dont_clone_flow_key = nla_get_u32(clone_arg);
1007 	actions = nla_next(clone_arg, &rem);
1008 
1009 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1010 			     !dont_clone_flow_key);
1011 }
1012 
1013 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1014 			 const struct nlattr *attr)
1015 {
1016 	struct ovs_action_hash *hash_act = nla_data(attr);
1017 	u32 hash = 0;
1018 
1019 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1020 	hash = skb_get_hash(skb);
1021 	hash = jhash_1word(hash, hash_act->hash_basis);
1022 	if (!hash)
1023 		hash = 0x1;
1024 
1025 	key->ovs_flow_hash = hash;
1026 }
1027 
1028 static int execute_set_action(struct sk_buff *skb,
1029 			      struct sw_flow_key *flow_key,
1030 			      const struct nlattr *a)
1031 {
1032 	/* Only tunnel set execution is supported without a mask. */
1033 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1034 		struct ovs_tunnel_info *tun = nla_data(a);
1035 
1036 		skb_dst_drop(skb);
1037 		dst_hold((struct dst_entry *)tun->tun_dst);
1038 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1039 		return 0;
1040 	}
1041 
1042 	return -EINVAL;
1043 }
1044 
1045 /* Mask is at the midpoint of the data. */
1046 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1047 
1048 static int execute_masked_set_action(struct sk_buff *skb,
1049 				     struct sw_flow_key *flow_key,
1050 				     const struct nlattr *a)
1051 {
1052 	int err = 0;
1053 
1054 	switch (nla_type(a)) {
1055 	case OVS_KEY_ATTR_PRIORITY:
1056 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1057 			       *get_mask(a, u32 *));
1058 		flow_key->phy.priority = skb->priority;
1059 		break;
1060 
1061 	case OVS_KEY_ATTR_SKB_MARK:
1062 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1063 		flow_key->phy.skb_mark = skb->mark;
1064 		break;
1065 
1066 	case OVS_KEY_ATTR_TUNNEL_INFO:
1067 		/* Masked data not supported for tunnel. */
1068 		err = -EINVAL;
1069 		break;
1070 
1071 	case OVS_KEY_ATTR_ETHERNET:
1072 		err = set_eth_addr(skb, flow_key, nla_data(a),
1073 				   get_mask(a, struct ovs_key_ethernet *));
1074 		break;
1075 
1076 	case OVS_KEY_ATTR_NSH:
1077 		err = set_nsh(skb, flow_key, a);
1078 		break;
1079 
1080 	case OVS_KEY_ATTR_IPV4:
1081 		err = set_ipv4(skb, flow_key, nla_data(a),
1082 			       get_mask(a, struct ovs_key_ipv4 *));
1083 		break;
1084 
1085 	case OVS_KEY_ATTR_IPV6:
1086 		err = set_ipv6(skb, flow_key, nla_data(a),
1087 			       get_mask(a, struct ovs_key_ipv6 *));
1088 		break;
1089 
1090 	case OVS_KEY_ATTR_TCP:
1091 		err = set_tcp(skb, flow_key, nla_data(a),
1092 			      get_mask(a, struct ovs_key_tcp *));
1093 		break;
1094 
1095 	case OVS_KEY_ATTR_UDP:
1096 		err = set_udp(skb, flow_key, nla_data(a),
1097 			      get_mask(a, struct ovs_key_udp *));
1098 		break;
1099 
1100 	case OVS_KEY_ATTR_SCTP:
1101 		err = set_sctp(skb, flow_key, nla_data(a),
1102 			       get_mask(a, struct ovs_key_sctp *));
1103 		break;
1104 
1105 	case OVS_KEY_ATTR_MPLS:
1106 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1107 								    __be32 *));
1108 		break;
1109 
1110 	case OVS_KEY_ATTR_CT_STATE:
1111 	case OVS_KEY_ATTR_CT_ZONE:
1112 	case OVS_KEY_ATTR_CT_MARK:
1113 	case OVS_KEY_ATTR_CT_LABELS:
1114 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1115 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1116 		err = -EINVAL;
1117 		break;
1118 	}
1119 
1120 	return err;
1121 }
1122 
1123 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1124 			  struct sw_flow_key *key,
1125 			  const struct nlattr *a, bool last)
1126 {
1127 	u32 recirc_id;
1128 
1129 	if (!is_flow_key_valid(key)) {
1130 		int err;
1131 
1132 		err = ovs_flow_key_update(skb, key);
1133 		if (err)
1134 			return err;
1135 	}
1136 	BUG_ON(!is_flow_key_valid(key));
1137 
1138 	recirc_id = nla_get_u32(a);
1139 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1140 }
1141 
1142 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1143 				 struct sw_flow_key *key,
1144 				 const struct nlattr *attr, bool last)
1145 {
1146 	const struct nlattr *actions, *cpl_arg;
1147 	const struct check_pkt_len_arg *arg;
1148 	int rem = nla_len(attr);
1149 	bool clone_flow_key;
1150 
1151 	/* The first netlink attribute in 'attr' is always
1152 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1153 	 */
1154 	cpl_arg = nla_data(attr);
1155 	arg = nla_data(cpl_arg);
1156 
1157 	if (skb->len <= arg->pkt_len) {
1158 		/* Second netlink attribute in 'attr' is always
1159 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1160 		 */
1161 		actions = nla_next(cpl_arg, &rem);
1162 		clone_flow_key = !arg->exec_for_lesser_equal;
1163 	} else {
1164 		/* Third netlink attribute in 'attr' is always
1165 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1166 		 */
1167 		actions = nla_next(cpl_arg, &rem);
1168 		actions = nla_next(actions, &rem);
1169 		clone_flow_key = !arg->exec_for_greater;
1170 	}
1171 
1172 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1173 			     nla_len(actions), last, clone_flow_key);
1174 }
1175 
1176 /* Execute a list of actions against 'skb'. */
1177 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1178 			      struct sw_flow_key *key,
1179 			      const struct nlattr *attr, int len)
1180 {
1181 	const struct nlattr *a;
1182 	int rem;
1183 
1184 	for (a = attr, rem = len; rem > 0;
1185 	     a = nla_next(a, &rem)) {
1186 		int err = 0;
1187 
1188 		switch (nla_type(a)) {
1189 		case OVS_ACTION_ATTR_OUTPUT: {
1190 			int port = nla_get_u32(a);
1191 			struct sk_buff *clone;
1192 
1193 			/* Every output action needs a separate clone
1194 			 * of 'skb', In case the output action is the
1195 			 * last action, cloning can be avoided.
1196 			 */
1197 			if (nla_is_last(a, rem)) {
1198 				do_output(dp, skb, port, key);
1199 				/* 'skb' has been used for output.
1200 				 */
1201 				return 0;
1202 			}
1203 
1204 			clone = skb_clone(skb, GFP_ATOMIC);
1205 			if (clone)
1206 				do_output(dp, clone, port, key);
1207 			OVS_CB(skb)->cutlen = 0;
1208 			break;
1209 		}
1210 
1211 		case OVS_ACTION_ATTR_TRUNC: {
1212 			struct ovs_action_trunc *trunc = nla_data(a);
1213 
1214 			if (skb->len > trunc->max_len)
1215 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1216 			break;
1217 		}
1218 
1219 		case OVS_ACTION_ATTR_USERSPACE:
1220 			output_userspace(dp, skb, key, a, attr,
1221 						     len, OVS_CB(skb)->cutlen);
1222 			OVS_CB(skb)->cutlen = 0;
1223 			break;
1224 
1225 		case OVS_ACTION_ATTR_HASH:
1226 			execute_hash(skb, key, a);
1227 			break;
1228 
1229 		case OVS_ACTION_ATTR_PUSH_MPLS:
1230 			err = push_mpls(skb, key, nla_data(a));
1231 			break;
1232 
1233 		case OVS_ACTION_ATTR_POP_MPLS:
1234 			err = pop_mpls(skb, key, nla_get_be16(a));
1235 			break;
1236 
1237 		case OVS_ACTION_ATTR_PUSH_VLAN:
1238 			err = push_vlan(skb, key, nla_data(a));
1239 			break;
1240 
1241 		case OVS_ACTION_ATTR_POP_VLAN:
1242 			err = pop_vlan(skb, key);
1243 			break;
1244 
1245 		case OVS_ACTION_ATTR_RECIRC: {
1246 			bool last = nla_is_last(a, rem);
1247 
1248 			err = execute_recirc(dp, skb, key, a, last);
1249 			if (last) {
1250 				/* If this is the last action, the skb has
1251 				 * been consumed or freed.
1252 				 * Return immediately.
1253 				 */
1254 				return err;
1255 			}
1256 			break;
1257 		}
1258 
1259 		case OVS_ACTION_ATTR_SET:
1260 			err = execute_set_action(skb, key, nla_data(a));
1261 			break;
1262 
1263 		case OVS_ACTION_ATTR_SET_MASKED:
1264 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1265 			err = execute_masked_set_action(skb, key, nla_data(a));
1266 			break;
1267 
1268 		case OVS_ACTION_ATTR_SAMPLE: {
1269 			bool last = nla_is_last(a, rem);
1270 
1271 			err = sample(dp, skb, key, a, last);
1272 			if (last)
1273 				return err;
1274 
1275 			break;
1276 		}
1277 
1278 		case OVS_ACTION_ATTR_CT:
1279 			if (!is_flow_key_valid(key)) {
1280 				err = ovs_flow_key_update(skb, key);
1281 				if (err)
1282 					return err;
1283 			}
1284 
1285 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1286 					     nla_data(a));
1287 
1288 			/* Hide stolen IP fragments from user space. */
1289 			if (err)
1290 				return err == -EINPROGRESS ? 0 : err;
1291 			break;
1292 
1293 		case OVS_ACTION_ATTR_CT_CLEAR:
1294 			err = ovs_ct_clear(skb, key);
1295 			break;
1296 
1297 		case OVS_ACTION_ATTR_PUSH_ETH:
1298 			err = push_eth(skb, key, nla_data(a));
1299 			break;
1300 
1301 		case OVS_ACTION_ATTR_POP_ETH:
1302 			err = pop_eth(skb, key);
1303 			break;
1304 
1305 		case OVS_ACTION_ATTR_PUSH_NSH: {
1306 			u8 buffer[NSH_HDR_MAX_LEN];
1307 			struct nshhdr *nh = (struct nshhdr *)buffer;
1308 
1309 			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1310 						  NSH_HDR_MAX_LEN);
1311 			if (unlikely(err))
1312 				break;
1313 			err = push_nsh(skb, key, nh);
1314 			break;
1315 		}
1316 
1317 		case OVS_ACTION_ATTR_POP_NSH:
1318 			err = pop_nsh(skb, key);
1319 			break;
1320 
1321 		case OVS_ACTION_ATTR_METER:
1322 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1323 				consume_skb(skb);
1324 				return 0;
1325 			}
1326 			break;
1327 
1328 		case OVS_ACTION_ATTR_CLONE: {
1329 			bool last = nla_is_last(a, rem);
1330 
1331 			err = clone(dp, skb, key, a, last);
1332 			if (last)
1333 				return err;
1334 
1335 			break;
1336 		}
1337 
1338 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1339 			bool last = nla_is_last(a, rem);
1340 
1341 			err = execute_check_pkt_len(dp, skb, key, a, last);
1342 			if (last)
1343 				return err;
1344 
1345 			break;
1346 		}
1347 		}
1348 
1349 		if (unlikely(err)) {
1350 			kfree_skb(skb);
1351 			return err;
1352 		}
1353 	}
1354 
1355 	consume_skb(skb);
1356 	return 0;
1357 }
1358 
1359 /* Execute the actions on the clone of the packet. The effect of the
1360  * execution does not affect the original 'skb' nor the original 'key'.
1361  *
1362  * The execution may be deferred in case the actions can not be executed
1363  * immediately.
1364  */
1365 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1366 			 struct sw_flow_key *key, u32 recirc_id,
1367 			 const struct nlattr *actions, int len,
1368 			 bool last, bool clone_flow_key)
1369 {
1370 	struct deferred_action *da;
1371 	struct sw_flow_key *clone;
1372 
1373 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1374 	if (!skb) {
1375 		/* Out of memory, skip this action.
1376 		 */
1377 		return 0;
1378 	}
1379 
1380 	/* When clone_flow_key is false, the 'key' will not be change
1381 	 * by the actions, then the 'key' can be used directly.
1382 	 * Otherwise, try to clone key from the next recursion level of
1383 	 * 'flow_keys'. If clone is successful, execute the actions
1384 	 * without deferring.
1385 	 */
1386 	clone = clone_flow_key ? clone_key(key) : key;
1387 	if (clone) {
1388 		int err = 0;
1389 
1390 		if (actions) { /* Sample action */
1391 			if (clone_flow_key)
1392 				__this_cpu_inc(exec_actions_level);
1393 
1394 			err = do_execute_actions(dp, skb, clone,
1395 						 actions, len);
1396 
1397 			if (clone_flow_key)
1398 				__this_cpu_dec(exec_actions_level);
1399 		} else { /* Recirc action */
1400 			clone->recirc_id = recirc_id;
1401 			ovs_dp_process_packet(skb, clone);
1402 		}
1403 		return err;
1404 	}
1405 
1406 	/* Out of 'flow_keys' space. Defer actions */
1407 	da = add_deferred_actions(skb, key, actions, len);
1408 	if (da) {
1409 		if (!actions) { /* Recirc action */
1410 			key = &da->pkt_key;
1411 			key->recirc_id = recirc_id;
1412 		}
1413 	} else {
1414 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1415 		 * log an error.
1416 		 */
1417 		kfree_skb(skb);
1418 
1419 		if (net_ratelimit()) {
1420 			if (actions) { /* Sample action */
1421 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1422 					ovs_dp_name(dp));
1423 			} else {  /* Recirc action */
1424 				pr_warn("%s: deferred action limit reached, drop recirc action\n",
1425 					ovs_dp_name(dp));
1426 			}
1427 		}
1428 	}
1429 	return 0;
1430 }
1431 
1432 static void process_deferred_actions(struct datapath *dp)
1433 {
1434 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1435 
1436 	/* Do not touch the FIFO in case there is no deferred actions. */
1437 	if (action_fifo_is_empty(fifo))
1438 		return;
1439 
1440 	/* Finishing executing all deferred actions. */
1441 	do {
1442 		struct deferred_action *da = action_fifo_get(fifo);
1443 		struct sk_buff *skb = da->skb;
1444 		struct sw_flow_key *key = &da->pkt_key;
1445 		const struct nlattr *actions = da->actions;
1446 		int actions_len = da->actions_len;
1447 
1448 		if (actions)
1449 			do_execute_actions(dp, skb, key, actions, actions_len);
1450 		else
1451 			ovs_dp_process_packet(skb, key);
1452 	} while (!action_fifo_is_empty(fifo));
1453 
1454 	/* Reset FIFO for the next packet.  */
1455 	action_fifo_init(fifo);
1456 }
1457 
1458 /* Execute a list of actions against 'skb'. */
1459 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1460 			const struct sw_flow_actions *acts,
1461 			struct sw_flow_key *key)
1462 {
1463 	int err, level;
1464 
1465 	level = __this_cpu_inc_return(exec_actions_level);
1466 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1467 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1468 				     ovs_dp_name(dp));
1469 		kfree_skb(skb);
1470 		err = -ENETDOWN;
1471 		goto out;
1472 	}
1473 
1474 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1475 	err = do_execute_actions(dp, skb, key,
1476 				 acts->actions, acts->actions_len);
1477 
1478 	if (level == 1)
1479 		process_deferred_actions(dp);
1480 
1481 out:
1482 	__this_cpu_dec(exec_actions_level);
1483 	return err;
1484 }
1485 
1486 int action_fifos_init(void)
1487 {
1488 	action_fifos = alloc_percpu(struct action_fifo);
1489 	if (!action_fifos)
1490 		return -ENOMEM;
1491 
1492 	flow_keys = alloc_percpu(struct action_flow_keys);
1493 	if (!flow_keys) {
1494 		free_percpu(action_fifos);
1495 		return -ENOMEM;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 void action_fifos_exit(void)
1502 {
1503 	free_percpu(action_fifos);
1504 	free_percpu(flow_keys);
1505 }
1506