xref: /openbmc/linux/net/openvswitch/actions.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 /*
2  * Copyright (c) 2007-2017 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/netfilter_ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/in6.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_vlan.h>
32 
33 #include <net/dst.h>
34 #include <net/ip.h>
35 #include <net/ipv6.h>
36 #include <net/ip6_fib.h>
37 #include <net/checksum.h>
38 #include <net/dsfield.h>
39 #include <net/mpls.h>
40 #include <net/sctp/checksum.h>
41 
42 #include "datapath.h"
43 #include "flow.h"
44 #include "conntrack.h"
45 #include "vport.h"
46 #include "flow_netlink.h"
47 
48 struct deferred_action {
49 	struct sk_buff *skb;
50 	const struct nlattr *actions;
51 	int actions_len;
52 
53 	/* Store pkt_key clone when creating deferred action. */
54 	struct sw_flow_key pkt_key;
55 };
56 
57 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
58 struct ovs_frag_data {
59 	unsigned long dst;
60 	struct vport *vport;
61 	struct ovs_skb_cb cb;
62 	__be16 inner_protocol;
63 	u16 network_offset;	/* valid only for MPLS */
64 	u16 vlan_tci;
65 	__be16 vlan_proto;
66 	unsigned int l2_len;
67 	u8 mac_proto;
68 	u8 l2_data[MAX_L2_LEN];
69 };
70 
71 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
72 
73 #define DEFERRED_ACTION_FIFO_SIZE 10
74 #define OVS_RECURSION_LIMIT 5
75 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
76 struct action_fifo {
77 	int head;
78 	int tail;
79 	/* Deferred action fifo queue storage. */
80 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
81 };
82 
83 struct action_flow_keys {
84 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
85 };
86 
87 static struct action_fifo __percpu *action_fifos;
88 static struct action_flow_keys __percpu *flow_keys;
89 static DEFINE_PER_CPU(int, exec_actions_level);
90 
91 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
92  * space. Return NULL if out of key spaces.
93  */
94 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
95 {
96 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
97 	int level = this_cpu_read(exec_actions_level);
98 	struct sw_flow_key *key = NULL;
99 
100 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
101 		key = &keys->key[level - 1];
102 		*key = *key_;
103 	}
104 
105 	return key;
106 }
107 
108 static void action_fifo_init(struct action_fifo *fifo)
109 {
110 	fifo->head = 0;
111 	fifo->tail = 0;
112 }
113 
114 static bool action_fifo_is_empty(const struct action_fifo *fifo)
115 {
116 	return (fifo->head == fifo->tail);
117 }
118 
119 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
120 {
121 	if (action_fifo_is_empty(fifo))
122 		return NULL;
123 
124 	return &fifo->fifo[fifo->tail++];
125 }
126 
127 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
128 {
129 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
130 		return NULL;
131 
132 	return &fifo->fifo[fifo->head++];
133 }
134 
135 /* Return true if fifo is not full */
136 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
137 				    const struct sw_flow_key *key,
138 				    const struct nlattr *actions,
139 				    const int actions_len)
140 {
141 	struct action_fifo *fifo;
142 	struct deferred_action *da;
143 
144 	fifo = this_cpu_ptr(action_fifos);
145 	da = action_fifo_put(fifo);
146 	if (da) {
147 		da->skb = skb;
148 		da->actions = actions;
149 		da->actions_len = actions_len;
150 		da->pkt_key = *key;
151 	}
152 
153 	return da;
154 }
155 
156 static void invalidate_flow_key(struct sw_flow_key *key)
157 {
158 	key->mac_proto |= SW_FLOW_KEY_INVALID;
159 }
160 
161 static bool is_flow_key_valid(const struct sw_flow_key *key)
162 {
163 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
164 }
165 
166 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
167 			 struct sw_flow_key *key,
168 			 u32 recirc_id,
169 			 const struct nlattr *actions, int len,
170 			 bool last, bool clone_flow_key);
171 
172 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
173 			      struct sw_flow_key *key,
174 			      const struct nlattr *attr, int len);
175 
176 static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
177 			     __be16 ethertype)
178 {
179 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
180 		__be16 diff[] = { ~(hdr->h_proto), ethertype };
181 
182 		skb->csum = ~csum_partial((char *)diff, sizeof(diff),
183 					~skb->csum);
184 	}
185 
186 	hdr->h_proto = ethertype;
187 }
188 
189 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
190 		     const struct ovs_action_push_mpls *mpls)
191 {
192 	struct mpls_shim_hdr *new_mpls_lse;
193 
194 	/* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
195 	if (skb->encapsulation)
196 		return -ENOTSUPP;
197 
198 	if (skb_cow_head(skb, MPLS_HLEN) < 0)
199 		return -ENOMEM;
200 
201 	if (!skb->inner_protocol) {
202 		skb_set_inner_network_header(skb, skb->mac_len);
203 		skb_set_inner_protocol(skb, skb->protocol);
204 	}
205 
206 	skb_push(skb, MPLS_HLEN);
207 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
208 		skb->mac_len);
209 	skb_reset_mac_header(skb);
210 	skb_set_network_header(skb, skb->mac_len);
211 
212 	new_mpls_lse = mpls_hdr(skb);
213 	new_mpls_lse->label_stack_entry = mpls->mpls_lse;
214 
215 	skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
216 
217 	if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET)
218 		update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
219 	skb->protocol = mpls->mpls_ethertype;
220 
221 	invalidate_flow_key(key);
222 	return 0;
223 }
224 
225 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
226 		    const __be16 ethertype)
227 {
228 	int err;
229 
230 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
231 	if (unlikely(err))
232 		return err;
233 
234 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
235 
236 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
237 		skb->mac_len);
238 
239 	__skb_pull(skb, MPLS_HLEN);
240 	skb_reset_mac_header(skb);
241 	skb_set_network_header(skb, skb->mac_len);
242 
243 	if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) {
244 		struct ethhdr *hdr;
245 
246 		/* mpls_hdr() is used to locate the ethertype field correctly in the
247 		 * presence of VLAN tags.
248 		 */
249 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
250 		update_ethertype(skb, hdr, ethertype);
251 	}
252 	if (eth_p_mpls(skb->protocol))
253 		skb->protocol = ethertype;
254 
255 	invalidate_flow_key(key);
256 	return 0;
257 }
258 
259 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
260 		    const __be32 *mpls_lse, const __be32 *mask)
261 {
262 	struct mpls_shim_hdr *stack;
263 	__be32 lse;
264 	int err;
265 
266 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
267 	if (unlikely(err))
268 		return err;
269 
270 	stack = mpls_hdr(skb);
271 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
272 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
273 		__be32 diff[] = { ~(stack->label_stack_entry), lse };
274 
275 		skb->csum = ~csum_partial((char *)diff, sizeof(diff),
276 					  ~skb->csum);
277 	}
278 
279 	stack->label_stack_entry = lse;
280 	flow_key->mpls.top_lse = lse;
281 	return 0;
282 }
283 
284 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
285 {
286 	int err;
287 
288 	err = skb_vlan_pop(skb);
289 	if (skb_vlan_tag_present(skb)) {
290 		invalidate_flow_key(key);
291 	} else {
292 		key->eth.vlan.tci = 0;
293 		key->eth.vlan.tpid = 0;
294 	}
295 	return err;
296 }
297 
298 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
299 		     const struct ovs_action_push_vlan *vlan)
300 {
301 	if (skb_vlan_tag_present(skb)) {
302 		invalidate_flow_key(key);
303 	} else {
304 		key->eth.vlan.tci = vlan->vlan_tci;
305 		key->eth.vlan.tpid = vlan->vlan_tpid;
306 	}
307 	return skb_vlan_push(skb, vlan->vlan_tpid,
308 			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
309 }
310 
311 /* 'src' is already properly masked. */
312 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
313 {
314 	u16 *dst = (u16 *)dst_;
315 	const u16 *src = (const u16 *)src_;
316 	const u16 *mask = (const u16 *)mask_;
317 
318 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
319 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
320 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
321 }
322 
323 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
324 			const struct ovs_key_ethernet *key,
325 			const struct ovs_key_ethernet *mask)
326 {
327 	int err;
328 
329 	err = skb_ensure_writable(skb, ETH_HLEN);
330 	if (unlikely(err))
331 		return err;
332 
333 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
334 
335 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
336 			       mask->eth_src);
337 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
338 			       mask->eth_dst);
339 
340 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
341 
342 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
343 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
344 	return 0;
345 }
346 
347 /* pop_eth does not support VLAN packets as this action is never called
348  * for them.
349  */
350 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
351 {
352 	skb_pull_rcsum(skb, ETH_HLEN);
353 	skb_reset_mac_header(skb);
354 	skb_reset_mac_len(skb);
355 
356 	/* safe right before invalidate_flow_key */
357 	key->mac_proto = MAC_PROTO_NONE;
358 	invalidate_flow_key(key);
359 	return 0;
360 }
361 
362 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
363 		    const struct ovs_action_push_eth *ethh)
364 {
365 	struct ethhdr *hdr;
366 
367 	/* Add the new Ethernet header */
368 	if (skb_cow_head(skb, ETH_HLEN) < 0)
369 		return -ENOMEM;
370 
371 	skb_push(skb, ETH_HLEN);
372 	skb_reset_mac_header(skb);
373 	skb_reset_mac_len(skb);
374 
375 	hdr = eth_hdr(skb);
376 	ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
377 	ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
378 	hdr->h_proto = skb->protocol;
379 
380 	skb_postpush_rcsum(skb, hdr, ETH_HLEN);
381 
382 	/* safe right before invalidate_flow_key */
383 	key->mac_proto = MAC_PROTO_ETHERNET;
384 	invalidate_flow_key(key);
385 	return 0;
386 }
387 
388 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
389 		    const struct nshhdr *nh)
390 {
391 	int err;
392 
393 	err = nsh_push(skb, nh);
394 	if (err)
395 		return err;
396 
397 	/* safe right before invalidate_flow_key */
398 	key->mac_proto = MAC_PROTO_NONE;
399 	invalidate_flow_key(key);
400 	return 0;
401 }
402 
403 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
404 {
405 	int err;
406 
407 	err = nsh_pop(skb);
408 	if (err)
409 		return err;
410 
411 	/* safe right before invalidate_flow_key */
412 	if (skb->protocol == htons(ETH_P_TEB))
413 		key->mac_proto = MAC_PROTO_ETHERNET;
414 	else
415 		key->mac_proto = MAC_PROTO_NONE;
416 	invalidate_flow_key(key);
417 	return 0;
418 }
419 
420 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
421 				  __be32 addr, __be32 new_addr)
422 {
423 	int transport_len = skb->len - skb_transport_offset(skb);
424 
425 	if (nh->frag_off & htons(IP_OFFSET))
426 		return;
427 
428 	if (nh->protocol == IPPROTO_TCP) {
429 		if (likely(transport_len >= sizeof(struct tcphdr)))
430 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
431 						 addr, new_addr, true);
432 	} else if (nh->protocol == IPPROTO_UDP) {
433 		if (likely(transport_len >= sizeof(struct udphdr))) {
434 			struct udphdr *uh = udp_hdr(skb);
435 
436 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
437 				inet_proto_csum_replace4(&uh->check, skb,
438 							 addr, new_addr, true);
439 				if (!uh->check)
440 					uh->check = CSUM_MANGLED_0;
441 			}
442 		}
443 	}
444 }
445 
446 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
447 			__be32 *addr, __be32 new_addr)
448 {
449 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
450 	csum_replace4(&nh->check, *addr, new_addr);
451 	skb_clear_hash(skb);
452 	*addr = new_addr;
453 }
454 
455 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
456 				 __be32 addr[4], const __be32 new_addr[4])
457 {
458 	int transport_len = skb->len - skb_transport_offset(skb);
459 
460 	if (l4_proto == NEXTHDR_TCP) {
461 		if (likely(transport_len >= sizeof(struct tcphdr)))
462 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
463 						  addr, new_addr, true);
464 	} else if (l4_proto == NEXTHDR_UDP) {
465 		if (likely(transport_len >= sizeof(struct udphdr))) {
466 			struct udphdr *uh = udp_hdr(skb);
467 
468 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
469 				inet_proto_csum_replace16(&uh->check, skb,
470 							  addr, new_addr, true);
471 				if (!uh->check)
472 					uh->check = CSUM_MANGLED_0;
473 			}
474 		}
475 	} else if (l4_proto == NEXTHDR_ICMP) {
476 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
477 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
478 						  skb, addr, new_addr, true);
479 	}
480 }
481 
482 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
483 			   const __be32 mask[4], __be32 masked[4])
484 {
485 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
486 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
487 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
488 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
489 }
490 
491 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
492 			  __be32 addr[4], const __be32 new_addr[4],
493 			  bool recalculate_csum)
494 {
495 	if (recalculate_csum)
496 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
497 
498 	skb_clear_hash(skb);
499 	memcpy(addr, new_addr, sizeof(__be32[4]));
500 }
501 
502 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
503 {
504 	/* Bits 21-24 are always unmasked, so this retains their values. */
505 	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
506 	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
507 	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
508 }
509 
510 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
511 		       u8 mask)
512 {
513 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
514 
515 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
516 	nh->ttl = new_ttl;
517 }
518 
519 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
520 		    const struct ovs_key_ipv4 *key,
521 		    const struct ovs_key_ipv4 *mask)
522 {
523 	struct iphdr *nh;
524 	__be32 new_addr;
525 	int err;
526 
527 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
528 				  sizeof(struct iphdr));
529 	if (unlikely(err))
530 		return err;
531 
532 	nh = ip_hdr(skb);
533 
534 	/* Setting an IP addresses is typically only a side effect of
535 	 * matching on them in the current userspace implementation, so it
536 	 * makes sense to check if the value actually changed.
537 	 */
538 	if (mask->ipv4_src) {
539 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
540 
541 		if (unlikely(new_addr != nh->saddr)) {
542 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
543 			flow_key->ipv4.addr.src = new_addr;
544 		}
545 	}
546 	if (mask->ipv4_dst) {
547 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
548 
549 		if (unlikely(new_addr != nh->daddr)) {
550 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
551 			flow_key->ipv4.addr.dst = new_addr;
552 		}
553 	}
554 	if (mask->ipv4_tos) {
555 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
556 		flow_key->ip.tos = nh->tos;
557 	}
558 	if (mask->ipv4_ttl) {
559 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
560 		flow_key->ip.ttl = nh->ttl;
561 	}
562 
563 	return 0;
564 }
565 
566 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
567 {
568 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
569 }
570 
571 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
572 		    const struct ovs_key_ipv6 *key,
573 		    const struct ovs_key_ipv6 *mask)
574 {
575 	struct ipv6hdr *nh;
576 	int err;
577 
578 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
579 				  sizeof(struct ipv6hdr));
580 	if (unlikely(err))
581 		return err;
582 
583 	nh = ipv6_hdr(skb);
584 
585 	/* Setting an IP addresses is typically only a side effect of
586 	 * matching on them in the current userspace implementation, so it
587 	 * makes sense to check if the value actually changed.
588 	 */
589 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
590 		__be32 *saddr = (__be32 *)&nh->saddr;
591 		__be32 masked[4];
592 
593 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
594 
595 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
596 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
597 				      true);
598 			memcpy(&flow_key->ipv6.addr.src, masked,
599 			       sizeof(flow_key->ipv6.addr.src));
600 		}
601 	}
602 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
603 		unsigned int offset = 0;
604 		int flags = IP6_FH_F_SKIP_RH;
605 		bool recalc_csum = true;
606 		__be32 *daddr = (__be32 *)&nh->daddr;
607 		__be32 masked[4];
608 
609 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
610 
611 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
612 			if (ipv6_ext_hdr(nh->nexthdr))
613 				recalc_csum = (ipv6_find_hdr(skb, &offset,
614 							     NEXTHDR_ROUTING,
615 							     NULL, &flags)
616 					       != NEXTHDR_ROUTING);
617 
618 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
619 				      recalc_csum);
620 			memcpy(&flow_key->ipv6.addr.dst, masked,
621 			       sizeof(flow_key->ipv6.addr.dst));
622 		}
623 	}
624 	if (mask->ipv6_tclass) {
625 		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
626 		flow_key->ip.tos = ipv6_get_dsfield(nh);
627 	}
628 	if (mask->ipv6_label) {
629 		set_ipv6_fl(nh, ntohl(key->ipv6_label),
630 			    ntohl(mask->ipv6_label));
631 		flow_key->ipv6.label =
632 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
633 	}
634 	if (mask->ipv6_hlimit) {
635 		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
636 			       mask->ipv6_hlimit);
637 		flow_key->ip.ttl = nh->hop_limit;
638 	}
639 	return 0;
640 }
641 
642 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
643 		   const struct nlattr *a)
644 {
645 	struct nshhdr *nh;
646 	size_t length;
647 	int err;
648 	u8 flags;
649 	u8 ttl;
650 	int i;
651 
652 	struct ovs_key_nsh key;
653 	struct ovs_key_nsh mask;
654 
655 	err = nsh_key_from_nlattr(a, &key, &mask);
656 	if (err)
657 		return err;
658 
659 	/* Make sure the NSH base header is there */
660 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
661 		return -ENOMEM;
662 
663 	nh = nsh_hdr(skb);
664 	length = nsh_hdr_len(nh);
665 
666 	/* Make sure the whole NSH header is there */
667 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
668 				       length);
669 	if (unlikely(err))
670 		return err;
671 
672 	nh = nsh_hdr(skb);
673 	skb_postpull_rcsum(skb, nh, length);
674 	flags = nsh_get_flags(nh);
675 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
676 	flow_key->nsh.base.flags = flags;
677 	ttl = nsh_get_ttl(nh);
678 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
679 	flow_key->nsh.base.ttl = ttl;
680 	nsh_set_flags_and_ttl(nh, flags, ttl);
681 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
682 				  mask.base.path_hdr);
683 	flow_key->nsh.base.path_hdr = nh->path_hdr;
684 	switch (nh->mdtype) {
685 	case NSH_M_TYPE1:
686 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
687 			nh->md1.context[i] =
688 			    OVS_MASKED(nh->md1.context[i], key.context[i],
689 				       mask.context[i]);
690 		}
691 		memcpy(flow_key->nsh.context, nh->md1.context,
692 		       sizeof(nh->md1.context));
693 		break;
694 	case NSH_M_TYPE2:
695 		memset(flow_key->nsh.context, 0,
696 		       sizeof(flow_key->nsh.context));
697 		break;
698 	default:
699 		return -EINVAL;
700 	}
701 	skb_postpush_rcsum(skb, nh, length);
702 	return 0;
703 }
704 
705 /* Must follow skb_ensure_writable() since that can move the skb data. */
706 static void set_tp_port(struct sk_buff *skb, __be16 *port,
707 			__be16 new_port, __sum16 *check)
708 {
709 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
710 	*port = new_port;
711 }
712 
713 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
714 		   const struct ovs_key_udp *key,
715 		   const struct ovs_key_udp *mask)
716 {
717 	struct udphdr *uh;
718 	__be16 src, dst;
719 	int err;
720 
721 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
722 				  sizeof(struct udphdr));
723 	if (unlikely(err))
724 		return err;
725 
726 	uh = udp_hdr(skb);
727 	/* Either of the masks is non-zero, so do not bother checking them. */
728 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
729 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
730 
731 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
732 		if (likely(src != uh->source)) {
733 			set_tp_port(skb, &uh->source, src, &uh->check);
734 			flow_key->tp.src = src;
735 		}
736 		if (likely(dst != uh->dest)) {
737 			set_tp_port(skb, &uh->dest, dst, &uh->check);
738 			flow_key->tp.dst = dst;
739 		}
740 
741 		if (unlikely(!uh->check))
742 			uh->check = CSUM_MANGLED_0;
743 	} else {
744 		uh->source = src;
745 		uh->dest = dst;
746 		flow_key->tp.src = src;
747 		flow_key->tp.dst = dst;
748 	}
749 
750 	skb_clear_hash(skb);
751 
752 	return 0;
753 }
754 
755 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
756 		   const struct ovs_key_tcp *key,
757 		   const struct ovs_key_tcp *mask)
758 {
759 	struct tcphdr *th;
760 	__be16 src, dst;
761 	int err;
762 
763 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
764 				  sizeof(struct tcphdr));
765 	if (unlikely(err))
766 		return err;
767 
768 	th = tcp_hdr(skb);
769 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
770 	if (likely(src != th->source)) {
771 		set_tp_port(skb, &th->source, src, &th->check);
772 		flow_key->tp.src = src;
773 	}
774 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
775 	if (likely(dst != th->dest)) {
776 		set_tp_port(skb, &th->dest, dst, &th->check);
777 		flow_key->tp.dst = dst;
778 	}
779 	skb_clear_hash(skb);
780 
781 	return 0;
782 }
783 
784 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
785 		    const struct ovs_key_sctp *key,
786 		    const struct ovs_key_sctp *mask)
787 {
788 	unsigned int sctphoff = skb_transport_offset(skb);
789 	struct sctphdr *sh;
790 	__le32 old_correct_csum, new_csum, old_csum;
791 	int err;
792 
793 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
794 	if (unlikely(err))
795 		return err;
796 
797 	sh = sctp_hdr(skb);
798 	old_csum = sh->checksum;
799 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
800 
801 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
802 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
803 
804 	new_csum = sctp_compute_cksum(skb, sctphoff);
805 
806 	/* Carry any checksum errors through. */
807 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
808 
809 	skb_clear_hash(skb);
810 	flow_key->tp.src = sh->source;
811 	flow_key->tp.dst = sh->dest;
812 
813 	return 0;
814 }
815 
816 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
817 {
818 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
819 	struct vport *vport = data->vport;
820 
821 	if (skb_cow_head(skb, data->l2_len) < 0) {
822 		kfree_skb(skb);
823 		return -ENOMEM;
824 	}
825 
826 	__skb_dst_copy(skb, data->dst);
827 	*OVS_CB(skb) = data->cb;
828 	skb->inner_protocol = data->inner_protocol;
829 	if (data->vlan_tci & VLAN_CFI_MASK)
830 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
831 	else
832 		__vlan_hwaccel_clear_tag(skb);
833 
834 	/* Reconstruct the MAC header.  */
835 	skb_push(skb, data->l2_len);
836 	memcpy(skb->data, &data->l2_data, data->l2_len);
837 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
838 	skb_reset_mac_header(skb);
839 
840 	if (eth_p_mpls(skb->protocol)) {
841 		skb->inner_network_header = skb->network_header;
842 		skb_set_network_header(skb, data->network_offset);
843 		skb_reset_mac_len(skb);
844 	}
845 
846 	ovs_vport_send(vport, skb, data->mac_proto);
847 	return 0;
848 }
849 
850 static unsigned int
851 ovs_dst_get_mtu(const struct dst_entry *dst)
852 {
853 	return dst->dev->mtu;
854 }
855 
856 static struct dst_ops ovs_dst_ops = {
857 	.family = AF_UNSPEC,
858 	.mtu = ovs_dst_get_mtu,
859 };
860 
861 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
862  * ovs_vport_output(), which is called once per fragmented packet.
863  */
864 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
865 			 u16 orig_network_offset, u8 mac_proto)
866 {
867 	unsigned int hlen = skb_network_offset(skb);
868 	struct ovs_frag_data *data;
869 
870 	data = this_cpu_ptr(&ovs_frag_data_storage);
871 	data->dst = skb->_skb_refdst;
872 	data->vport = vport;
873 	data->cb = *OVS_CB(skb);
874 	data->inner_protocol = skb->inner_protocol;
875 	data->network_offset = orig_network_offset;
876 	if (skb_vlan_tag_present(skb))
877 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
878 	else
879 		data->vlan_tci = 0;
880 	data->vlan_proto = skb->vlan_proto;
881 	data->mac_proto = mac_proto;
882 	data->l2_len = hlen;
883 	memcpy(&data->l2_data, skb->data, hlen);
884 
885 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
886 	skb_pull(skb, hlen);
887 }
888 
889 static void ovs_fragment(struct net *net, struct vport *vport,
890 			 struct sk_buff *skb, u16 mru,
891 			 struct sw_flow_key *key)
892 {
893 	u16 orig_network_offset = 0;
894 
895 	if (eth_p_mpls(skb->protocol)) {
896 		orig_network_offset = skb_network_offset(skb);
897 		skb->network_header = skb->inner_network_header;
898 	}
899 
900 	if (skb_network_offset(skb) > MAX_L2_LEN) {
901 		OVS_NLERR(1, "L2 header too long to fragment");
902 		goto err;
903 	}
904 
905 	if (key->eth.type == htons(ETH_P_IP)) {
906 		struct dst_entry ovs_dst;
907 		unsigned long orig_dst;
908 
909 		prepare_frag(vport, skb, orig_network_offset,
910 			     ovs_key_mac_proto(key));
911 		dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
912 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
913 		ovs_dst.dev = vport->dev;
914 
915 		orig_dst = skb->_skb_refdst;
916 		skb_dst_set_noref(skb, &ovs_dst);
917 		IPCB(skb)->frag_max_size = mru;
918 
919 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
920 		refdst_drop(orig_dst);
921 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
922 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
923 		unsigned long orig_dst;
924 		struct rt6_info ovs_rt;
925 
926 		if (!v6ops)
927 			goto err;
928 
929 		prepare_frag(vport, skb, orig_network_offset,
930 			     ovs_key_mac_proto(key));
931 		memset(&ovs_rt, 0, sizeof(ovs_rt));
932 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
933 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
934 		ovs_rt.dst.dev = vport->dev;
935 
936 		orig_dst = skb->_skb_refdst;
937 		skb_dst_set_noref(skb, &ovs_rt.dst);
938 		IP6CB(skb)->frag_max_size = mru;
939 
940 		v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
941 		refdst_drop(orig_dst);
942 	} else {
943 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
944 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
945 			  vport->dev->mtu);
946 		goto err;
947 	}
948 
949 	return;
950 err:
951 	kfree_skb(skb);
952 }
953 
954 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
955 		      struct sw_flow_key *key)
956 {
957 	struct vport *vport = ovs_vport_rcu(dp, out_port);
958 
959 	if (likely(vport)) {
960 		u16 mru = OVS_CB(skb)->mru;
961 		u32 cutlen = OVS_CB(skb)->cutlen;
962 
963 		if (unlikely(cutlen > 0)) {
964 			if (skb->len - cutlen > ovs_mac_header_len(key))
965 				pskb_trim(skb, skb->len - cutlen);
966 			else
967 				pskb_trim(skb, ovs_mac_header_len(key));
968 		}
969 
970 		if (likely(!mru ||
971 		           (skb->len <= mru + vport->dev->hard_header_len))) {
972 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
973 		} else if (mru <= vport->dev->mtu) {
974 			struct net *net = read_pnet(&dp->net);
975 
976 			ovs_fragment(net, vport, skb, mru, key);
977 		} else {
978 			kfree_skb(skb);
979 		}
980 	} else {
981 		kfree_skb(skb);
982 	}
983 }
984 
985 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
986 			    struct sw_flow_key *key, const struct nlattr *attr,
987 			    const struct nlattr *actions, int actions_len,
988 			    uint32_t cutlen)
989 {
990 	struct dp_upcall_info upcall;
991 	const struct nlattr *a;
992 	int rem;
993 
994 	memset(&upcall, 0, sizeof(upcall));
995 	upcall.cmd = OVS_PACKET_CMD_ACTION;
996 	upcall.mru = OVS_CB(skb)->mru;
997 
998 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
999 		 a = nla_next(a, &rem)) {
1000 		switch (nla_type(a)) {
1001 		case OVS_USERSPACE_ATTR_USERDATA:
1002 			upcall.userdata = a;
1003 			break;
1004 
1005 		case OVS_USERSPACE_ATTR_PID:
1006 			upcall.portid = nla_get_u32(a);
1007 			break;
1008 
1009 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
1010 			/* Get out tunnel info. */
1011 			struct vport *vport;
1012 
1013 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
1014 			if (vport) {
1015 				int err;
1016 
1017 				err = dev_fill_metadata_dst(vport->dev, skb);
1018 				if (!err)
1019 					upcall.egress_tun_info = skb_tunnel_info(skb);
1020 			}
1021 
1022 			break;
1023 		}
1024 
1025 		case OVS_USERSPACE_ATTR_ACTIONS: {
1026 			/* Include actions. */
1027 			upcall.actions = actions;
1028 			upcall.actions_len = actions_len;
1029 			break;
1030 		}
1031 
1032 		} /* End of switch. */
1033 	}
1034 
1035 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1036 }
1037 
1038 /* When 'last' is true, sample() should always consume the 'skb'.
1039  * Otherwise, sample() should keep 'skb' intact regardless what
1040  * actions are executed within sample().
1041  */
1042 static int sample(struct datapath *dp, struct sk_buff *skb,
1043 		  struct sw_flow_key *key, const struct nlattr *attr,
1044 		  bool last)
1045 {
1046 	struct nlattr *actions;
1047 	struct nlattr *sample_arg;
1048 	int rem = nla_len(attr);
1049 	const struct sample_arg *arg;
1050 	bool clone_flow_key;
1051 
1052 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1053 	sample_arg = nla_data(attr);
1054 	arg = nla_data(sample_arg);
1055 	actions = nla_next(sample_arg, &rem);
1056 
1057 	if ((arg->probability != U32_MAX) &&
1058 	    (!arg->probability || prandom_u32() > arg->probability)) {
1059 		if (last)
1060 			consume_skb(skb);
1061 		return 0;
1062 	}
1063 
1064 	clone_flow_key = !arg->exec;
1065 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1066 			     clone_flow_key);
1067 }
1068 
1069 /* When 'last' is true, clone() should always consume the 'skb'.
1070  * Otherwise, clone() should keep 'skb' intact regardless what
1071  * actions are executed within clone().
1072  */
1073 static int clone(struct datapath *dp, struct sk_buff *skb,
1074 		 struct sw_flow_key *key, const struct nlattr *attr,
1075 		 bool last)
1076 {
1077 	struct nlattr *actions;
1078 	struct nlattr *clone_arg;
1079 	int rem = nla_len(attr);
1080 	bool dont_clone_flow_key;
1081 
1082 	/* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1083 	clone_arg = nla_data(attr);
1084 	dont_clone_flow_key = nla_get_u32(clone_arg);
1085 	actions = nla_next(clone_arg, &rem);
1086 
1087 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1088 			     !dont_clone_flow_key);
1089 }
1090 
1091 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1092 			 const struct nlattr *attr)
1093 {
1094 	struct ovs_action_hash *hash_act = nla_data(attr);
1095 	u32 hash = 0;
1096 
1097 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1098 	hash = skb_get_hash(skb);
1099 	hash = jhash_1word(hash, hash_act->hash_basis);
1100 	if (!hash)
1101 		hash = 0x1;
1102 
1103 	key->ovs_flow_hash = hash;
1104 }
1105 
1106 static int execute_set_action(struct sk_buff *skb,
1107 			      struct sw_flow_key *flow_key,
1108 			      const struct nlattr *a)
1109 {
1110 	/* Only tunnel set execution is supported without a mask. */
1111 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1112 		struct ovs_tunnel_info *tun = nla_data(a);
1113 
1114 		skb_dst_drop(skb);
1115 		dst_hold((struct dst_entry *)tun->tun_dst);
1116 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1117 		return 0;
1118 	}
1119 
1120 	return -EINVAL;
1121 }
1122 
1123 /* Mask is at the midpoint of the data. */
1124 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1125 
1126 static int execute_masked_set_action(struct sk_buff *skb,
1127 				     struct sw_flow_key *flow_key,
1128 				     const struct nlattr *a)
1129 {
1130 	int err = 0;
1131 
1132 	switch (nla_type(a)) {
1133 	case OVS_KEY_ATTR_PRIORITY:
1134 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1135 			       *get_mask(a, u32 *));
1136 		flow_key->phy.priority = skb->priority;
1137 		break;
1138 
1139 	case OVS_KEY_ATTR_SKB_MARK:
1140 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1141 		flow_key->phy.skb_mark = skb->mark;
1142 		break;
1143 
1144 	case OVS_KEY_ATTR_TUNNEL_INFO:
1145 		/* Masked data not supported for tunnel. */
1146 		err = -EINVAL;
1147 		break;
1148 
1149 	case OVS_KEY_ATTR_ETHERNET:
1150 		err = set_eth_addr(skb, flow_key, nla_data(a),
1151 				   get_mask(a, struct ovs_key_ethernet *));
1152 		break;
1153 
1154 	case OVS_KEY_ATTR_NSH:
1155 		err = set_nsh(skb, flow_key, a);
1156 		break;
1157 
1158 	case OVS_KEY_ATTR_IPV4:
1159 		err = set_ipv4(skb, flow_key, nla_data(a),
1160 			       get_mask(a, struct ovs_key_ipv4 *));
1161 		break;
1162 
1163 	case OVS_KEY_ATTR_IPV6:
1164 		err = set_ipv6(skb, flow_key, nla_data(a),
1165 			       get_mask(a, struct ovs_key_ipv6 *));
1166 		break;
1167 
1168 	case OVS_KEY_ATTR_TCP:
1169 		err = set_tcp(skb, flow_key, nla_data(a),
1170 			      get_mask(a, struct ovs_key_tcp *));
1171 		break;
1172 
1173 	case OVS_KEY_ATTR_UDP:
1174 		err = set_udp(skb, flow_key, nla_data(a),
1175 			      get_mask(a, struct ovs_key_udp *));
1176 		break;
1177 
1178 	case OVS_KEY_ATTR_SCTP:
1179 		err = set_sctp(skb, flow_key, nla_data(a),
1180 			       get_mask(a, struct ovs_key_sctp *));
1181 		break;
1182 
1183 	case OVS_KEY_ATTR_MPLS:
1184 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1185 								    __be32 *));
1186 		break;
1187 
1188 	case OVS_KEY_ATTR_CT_STATE:
1189 	case OVS_KEY_ATTR_CT_ZONE:
1190 	case OVS_KEY_ATTR_CT_MARK:
1191 	case OVS_KEY_ATTR_CT_LABELS:
1192 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1193 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1194 		err = -EINVAL;
1195 		break;
1196 	}
1197 
1198 	return err;
1199 }
1200 
1201 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1202 			  struct sw_flow_key *key,
1203 			  const struct nlattr *a, bool last)
1204 {
1205 	u32 recirc_id;
1206 
1207 	if (!is_flow_key_valid(key)) {
1208 		int err;
1209 
1210 		err = ovs_flow_key_update(skb, key);
1211 		if (err)
1212 			return err;
1213 	}
1214 	BUG_ON(!is_flow_key_valid(key));
1215 
1216 	recirc_id = nla_get_u32(a);
1217 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1218 }
1219 
1220 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1221 				 struct sw_flow_key *key,
1222 				 const struct nlattr *attr, bool last)
1223 {
1224 	const struct nlattr *actions, *cpl_arg;
1225 	const struct check_pkt_len_arg *arg;
1226 	int rem = nla_len(attr);
1227 	bool clone_flow_key;
1228 
1229 	/* The first netlink attribute in 'attr' is always
1230 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1231 	 */
1232 	cpl_arg = nla_data(attr);
1233 	arg = nla_data(cpl_arg);
1234 
1235 	if (skb->len <= arg->pkt_len) {
1236 		/* Second netlink attribute in 'attr' is always
1237 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1238 		 */
1239 		actions = nla_next(cpl_arg, &rem);
1240 		clone_flow_key = !arg->exec_for_lesser_equal;
1241 	} else {
1242 		/* Third netlink attribute in 'attr' is always
1243 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1244 		 */
1245 		actions = nla_next(cpl_arg, &rem);
1246 		actions = nla_next(actions, &rem);
1247 		clone_flow_key = !arg->exec_for_greater;
1248 	}
1249 
1250 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1251 			     nla_len(actions), last, clone_flow_key);
1252 }
1253 
1254 /* Execute a list of actions against 'skb'. */
1255 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1256 			      struct sw_flow_key *key,
1257 			      const struct nlattr *attr, int len)
1258 {
1259 	const struct nlattr *a;
1260 	int rem;
1261 
1262 	for (a = attr, rem = len; rem > 0;
1263 	     a = nla_next(a, &rem)) {
1264 		int err = 0;
1265 
1266 		switch (nla_type(a)) {
1267 		case OVS_ACTION_ATTR_OUTPUT: {
1268 			int port = nla_get_u32(a);
1269 			struct sk_buff *clone;
1270 
1271 			/* Every output action needs a separate clone
1272 			 * of 'skb', In case the output action is the
1273 			 * last action, cloning can be avoided.
1274 			 */
1275 			if (nla_is_last(a, rem)) {
1276 				do_output(dp, skb, port, key);
1277 				/* 'skb' has been used for output.
1278 				 */
1279 				return 0;
1280 			}
1281 
1282 			clone = skb_clone(skb, GFP_ATOMIC);
1283 			if (clone)
1284 				do_output(dp, clone, port, key);
1285 			OVS_CB(skb)->cutlen = 0;
1286 			break;
1287 		}
1288 
1289 		case OVS_ACTION_ATTR_TRUNC: {
1290 			struct ovs_action_trunc *trunc = nla_data(a);
1291 
1292 			if (skb->len > trunc->max_len)
1293 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1294 			break;
1295 		}
1296 
1297 		case OVS_ACTION_ATTR_USERSPACE:
1298 			output_userspace(dp, skb, key, a, attr,
1299 						     len, OVS_CB(skb)->cutlen);
1300 			OVS_CB(skb)->cutlen = 0;
1301 			break;
1302 
1303 		case OVS_ACTION_ATTR_HASH:
1304 			execute_hash(skb, key, a);
1305 			break;
1306 
1307 		case OVS_ACTION_ATTR_PUSH_MPLS:
1308 			err = push_mpls(skb, key, nla_data(a));
1309 			break;
1310 
1311 		case OVS_ACTION_ATTR_POP_MPLS:
1312 			err = pop_mpls(skb, key, nla_get_be16(a));
1313 			break;
1314 
1315 		case OVS_ACTION_ATTR_PUSH_VLAN:
1316 			err = push_vlan(skb, key, nla_data(a));
1317 			break;
1318 
1319 		case OVS_ACTION_ATTR_POP_VLAN:
1320 			err = pop_vlan(skb, key);
1321 			break;
1322 
1323 		case OVS_ACTION_ATTR_RECIRC: {
1324 			bool last = nla_is_last(a, rem);
1325 
1326 			err = execute_recirc(dp, skb, key, a, last);
1327 			if (last) {
1328 				/* If this is the last action, the skb has
1329 				 * been consumed or freed.
1330 				 * Return immediately.
1331 				 */
1332 				return err;
1333 			}
1334 			break;
1335 		}
1336 
1337 		case OVS_ACTION_ATTR_SET:
1338 			err = execute_set_action(skb, key, nla_data(a));
1339 			break;
1340 
1341 		case OVS_ACTION_ATTR_SET_MASKED:
1342 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1343 			err = execute_masked_set_action(skb, key, nla_data(a));
1344 			break;
1345 
1346 		case OVS_ACTION_ATTR_SAMPLE: {
1347 			bool last = nla_is_last(a, rem);
1348 
1349 			err = sample(dp, skb, key, a, last);
1350 			if (last)
1351 				return err;
1352 
1353 			break;
1354 		}
1355 
1356 		case OVS_ACTION_ATTR_CT:
1357 			if (!is_flow_key_valid(key)) {
1358 				err = ovs_flow_key_update(skb, key);
1359 				if (err)
1360 					return err;
1361 			}
1362 
1363 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1364 					     nla_data(a));
1365 
1366 			/* Hide stolen IP fragments from user space. */
1367 			if (err)
1368 				return err == -EINPROGRESS ? 0 : err;
1369 			break;
1370 
1371 		case OVS_ACTION_ATTR_CT_CLEAR:
1372 			err = ovs_ct_clear(skb, key);
1373 			break;
1374 
1375 		case OVS_ACTION_ATTR_PUSH_ETH:
1376 			err = push_eth(skb, key, nla_data(a));
1377 			break;
1378 
1379 		case OVS_ACTION_ATTR_POP_ETH:
1380 			err = pop_eth(skb, key);
1381 			break;
1382 
1383 		case OVS_ACTION_ATTR_PUSH_NSH: {
1384 			u8 buffer[NSH_HDR_MAX_LEN];
1385 			struct nshhdr *nh = (struct nshhdr *)buffer;
1386 
1387 			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1388 						  NSH_HDR_MAX_LEN);
1389 			if (unlikely(err))
1390 				break;
1391 			err = push_nsh(skb, key, nh);
1392 			break;
1393 		}
1394 
1395 		case OVS_ACTION_ATTR_POP_NSH:
1396 			err = pop_nsh(skb, key);
1397 			break;
1398 
1399 		case OVS_ACTION_ATTR_METER:
1400 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1401 				consume_skb(skb);
1402 				return 0;
1403 			}
1404 			break;
1405 
1406 		case OVS_ACTION_ATTR_CLONE: {
1407 			bool last = nla_is_last(a, rem);
1408 
1409 			err = clone(dp, skb, key, a, last);
1410 			if (last)
1411 				return err;
1412 
1413 			break;
1414 		}
1415 
1416 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1417 			bool last = nla_is_last(a, rem);
1418 
1419 			err = execute_check_pkt_len(dp, skb, key, a, last);
1420 			if (last)
1421 				return err;
1422 
1423 			break;
1424 		}
1425 		}
1426 
1427 		if (unlikely(err)) {
1428 			kfree_skb(skb);
1429 			return err;
1430 		}
1431 	}
1432 
1433 	consume_skb(skb);
1434 	return 0;
1435 }
1436 
1437 /* Execute the actions on the clone of the packet. The effect of the
1438  * execution does not affect the original 'skb' nor the original 'key'.
1439  *
1440  * The execution may be deferred in case the actions can not be executed
1441  * immediately.
1442  */
1443 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1444 			 struct sw_flow_key *key, u32 recirc_id,
1445 			 const struct nlattr *actions, int len,
1446 			 bool last, bool clone_flow_key)
1447 {
1448 	struct deferred_action *da;
1449 	struct sw_flow_key *clone;
1450 
1451 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1452 	if (!skb) {
1453 		/* Out of memory, skip this action.
1454 		 */
1455 		return 0;
1456 	}
1457 
1458 	/* When clone_flow_key is false, the 'key' will not be change
1459 	 * by the actions, then the 'key' can be used directly.
1460 	 * Otherwise, try to clone key from the next recursion level of
1461 	 * 'flow_keys'. If clone is successful, execute the actions
1462 	 * without deferring.
1463 	 */
1464 	clone = clone_flow_key ? clone_key(key) : key;
1465 	if (clone) {
1466 		int err = 0;
1467 
1468 		if (actions) { /* Sample action */
1469 			if (clone_flow_key)
1470 				__this_cpu_inc(exec_actions_level);
1471 
1472 			err = do_execute_actions(dp, skb, clone,
1473 						 actions, len);
1474 
1475 			if (clone_flow_key)
1476 				__this_cpu_dec(exec_actions_level);
1477 		} else { /* Recirc action */
1478 			clone->recirc_id = recirc_id;
1479 			ovs_dp_process_packet(skb, clone);
1480 		}
1481 		return err;
1482 	}
1483 
1484 	/* Out of 'flow_keys' space. Defer actions */
1485 	da = add_deferred_actions(skb, key, actions, len);
1486 	if (da) {
1487 		if (!actions) { /* Recirc action */
1488 			key = &da->pkt_key;
1489 			key->recirc_id = recirc_id;
1490 		}
1491 	} else {
1492 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1493 		 * log an error.
1494 		 */
1495 		kfree_skb(skb);
1496 
1497 		if (net_ratelimit()) {
1498 			if (actions) { /* Sample action */
1499 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1500 					ovs_dp_name(dp));
1501 			} else {  /* Recirc action */
1502 				pr_warn("%s: deferred action limit reached, drop recirc action\n",
1503 					ovs_dp_name(dp));
1504 			}
1505 		}
1506 	}
1507 	return 0;
1508 }
1509 
1510 static void process_deferred_actions(struct datapath *dp)
1511 {
1512 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1513 
1514 	/* Do not touch the FIFO in case there is no deferred actions. */
1515 	if (action_fifo_is_empty(fifo))
1516 		return;
1517 
1518 	/* Finishing executing all deferred actions. */
1519 	do {
1520 		struct deferred_action *da = action_fifo_get(fifo);
1521 		struct sk_buff *skb = da->skb;
1522 		struct sw_flow_key *key = &da->pkt_key;
1523 		const struct nlattr *actions = da->actions;
1524 		int actions_len = da->actions_len;
1525 
1526 		if (actions)
1527 			do_execute_actions(dp, skb, key, actions, actions_len);
1528 		else
1529 			ovs_dp_process_packet(skb, key);
1530 	} while (!action_fifo_is_empty(fifo));
1531 
1532 	/* Reset FIFO for the next packet.  */
1533 	action_fifo_init(fifo);
1534 }
1535 
1536 /* Execute a list of actions against 'skb'. */
1537 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1538 			const struct sw_flow_actions *acts,
1539 			struct sw_flow_key *key)
1540 {
1541 	int err, level;
1542 
1543 	level = __this_cpu_inc_return(exec_actions_level);
1544 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1545 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1546 				     ovs_dp_name(dp));
1547 		kfree_skb(skb);
1548 		err = -ENETDOWN;
1549 		goto out;
1550 	}
1551 
1552 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1553 	err = do_execute_actions(dp, skb, key,
1554 				 acts->actions, acts->actions_len);
1555 
1556 	if (level == 1)
1557 		process_deferred_actions(dp);
1558 
1559 out:
1560 	__this_cpu_dec(exec_actions_level);
1561 	return err;
1562 }
1563 
1564 int action_fifos_init(void)
1565 {
1566 	action_fifos = alloc_percpu(struct action_fifo);
1567 	if (!action_fifos)
1568 		return -ENOMEM;
1569 
1570 	flow_keys = alloc_percpu(struct action_flow_keys);
1571 	if (!flow_keys) {
1572 		free_percpu(action_fifos);
1573 		return -ENOMEM;
1574 	}
1575 
1576 	return 0;
1577 }
1578 
1579 void action_fifos_exit(void)
1580 {
1581 	free_percpu(action_fifos);
1582 	free_percpu(flow_keys);
1583 }
1584