xref: /openbmc/linux/net/openvswitch/actions.c (revision ab3a560a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18 
19 #include <net/dst.h>
20 #include <net/ip.h>
21 #include <net/ipv6.h>
22 #include <net/ip6_fib.h>
23 #include <net/checksum.h>
24 #include <net/dsfield.h>
25 #include <net/mpls.h>
26 #include <net/sctp/checksum.h>
27 
28 #include "datapath.h"
29 #include "flow.h"
30 #include "conntrack.h"
31 #include "vport.h"
32 #include "flow_netlink.h"
33 #include "openvswitch_trace.h"
34 
35 struct deferred_action {
36 	struct sk_buff *skb;
37 	const struct nlattr *actions;
38 	int actions_len;
39 
40 	/* Store pkt_key clone when creating deferred action. */
41 	struct sw_flow_key pkt_key;
42 };
43 
44 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
45 struct ovs_frag_data {
46 	unsigned long dst;
47 	struct vport *vport;
48 	struct ovs_skb_cb cb;
49 	__be16 inner_protocol;
50 	u16 network_offset;	/* valid only for MPLS */
51 	u16 vlan_tci;
52 	__be16 vlan_proto;
53 	unsigned int l2_len;
54 	u8 mac_proto;
55 	u8 l2_data[MAX_L2_LEN];
56 };
57 
58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
59 
60 #define DEFERRED_ACTION_FIFO_SIZE 10
61 #define OVS_RECURSION_LIMIT 5
62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
63 struct action_fifo {
64 	int head;
65 	int tail;
66 	/* Deferred action fifo queue storage. */
67 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
68 };
69 
70 struct action_flow_keys {
71 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
72 };
73 
74 static struct action_fifo __percpu *action_fifos;
75 static struct action_flow_keys __percpu *flow_keys;
76 static DEFINE_PER_CPU(int, exec_actions_level);
77 
78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
79  * space. Return NULL if out of key spaces.
80  */
81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
82 {
83 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
84 	int level = this_cpu_read(exec_actions_level);
85 	struct sw_flow_key *key = NULL;
86 
87 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
88 		key = &keys->key[level - 1];
89 		*key = *key_;
90 	}
91 
92 	return key;
93 }
94 
95 static void action_fifo_init(struct action_fifo *fifo)
96 {
97 	fifo->head = 0;
98 	fifo->tail = 0;
99 }
100 
101 static bool action_fifo_is_empty(const struct action_fifo *fifo)
102 {
103 	return (fifo->head == fifo->tail);
104 }
105 
106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
107 {
108 	if (action_fifo_is_empty(fifo))
109 		return NULL;
110 
111 	return &fifo->fifo[fifo->tail++];
112 }
113 
114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
115 {
116 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
117 		return NULL;
118 
119 	return &fifo->fifo[fifo->head++];
120 }
121 
122 /* Return true if fifo is not full */
123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
124 				    const struct sw_flow_key *key,
125 				    const struct nlattr *actions,
126 				    const int actions_len)
127 {
128 	struct action_fifo *fifo;
129 	struct deferred_action *da;
130 
131 	fifo = this_cpu_ptr(action_fifos);
132 	da = action_fifo_put(fifo);
133 	if (da) {
134 		da->skb = skb;
135 		da->actions = actions;
136 		da->actions_len = actions_len;
137 		da->pkt_key = *key;
138 	}
139 
140 	return da;
141 }
142 
143 static void invalidate_flow_key(struct sw_flow_key *key)
144 {
145 	key->mac_proto |= SW_FLOW_KEY_INVALID;
146 }
147 
148 static bool is_flow_key_valid(const struct sw_flow_key *key)
149 {
150 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
151 }
152 
153 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
154 			 struct sw_flow_key *key,
155 			 u32 recirc_id,
156 			 const struct nlattr *actions, int len,
157 			 bool last, bool clone_flow_key);
158 
159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
160 			      struct sw_flow_key *key,
161 			      const struct nlattr *attr, int len);
162 
163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
164 		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
165 {
166 	int err;
167 
168 	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
169 	if (err)
170 		return err;
171 
172 	if (!mac_len)
173 		key->mac_proto = MAC_PROTO_NONE;
174 
175 	invalidate_flow_key(key);
176 	return 0;
177 }
178 
179 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
180 		    const __be16 ethertype)
181 {
182 	int err;
183 
184 	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
185 			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
186 	if (err)
187 		return err;
188 
189 	if (ethertype == htons(ETH_P_TEB))
190 		key->mac_proto = MAC_PROTO_ETHERNET;
191 
192 	invalidate_flow_key(key);
193 	return 0;
194 }
195 
196 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
197 		    const __be32 *mpls_lse, const __be32 *mask)
198 {
199 	struct mpls_shim_hdr *stack;
200 	__be32 lse;
201 	int err;
202 
203 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
204 		return -ENOMEM;
205 
206 	stack = mpls_hdr(skb);
207 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
208 	err = skb_mpls_update_lse(skb, lse);
209 	if (err)
210 		return err;
211 
212 	flow_key->mpls.lse[0] = lse;
213 	return 0;
214 }
215 
216 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
217 {
218 	int err;
219 
220 	err = skb_vlan_pop(skb);
221 	if (skb_vlan_tag_present(skb)) {
222 		invalidate_flow_key(key);
223 	} else {
224 		key->eth.vlan.tci = 0;
225 		key->eth.vlan.tpid = 0;
226 	}
227 	return err;
228 }
229 
230 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
231 		     const struct ovs_action_push_vlan *vlan)
232 {
233 	if (skb_vlan_tag_present(skb)) {
234 		invalidate_flow_key(key);
235 	} else {
236 		key->eth.vlan.tci = vlan->vlan_tci;
237 		key->eth.vlan.tpid = vlan->vlan_tpid;
238 	}
239 	return skb_vlan_push(skb, vlan->vlan_tpid,
240 			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
241 }
242 
243 /* 'src' is already properly masked. */
244 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
245 {
246 	u16 *dst = (u16 *)dst_;
247 	const u16 *src = (const u16 *)src_;
248 	const u16 *mask = (const u16 *)mask_;
249 
250 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
251 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
252 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
253 }
254 
255 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
256 			const struct ovs_key_ethernet *key,
257 			const struct ovs_key_ethernet *mask)
258 {
259 	int err;
260 
261 	err = skb_ensure_writable(skb, ETH_HLEN);
262 	if (unlikely(err))
263 		return err;
264 
265 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
266 
267 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
268 			       mask->eth_src);
269 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
270 			       mask->eth_dst);
271 
272 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
273 
274 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
275 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
276 	return 0;
277 }
278 
279 /* pop_eth does not support VLAN packets as this action is never called
280  * for them.
281  */
282 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
283 {
284 	int err;
285 
286 	err = skb_eth_pop(skb);
287 	if (err)
288 		return err;
289 
290 	/* safe right before invalidate_flow_key */
291 	key->mac_proto = MAC_PROTO_NONE;
292 	invalidate_flow_key(key);
293 	return 0;
294 }
295 
296 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
297 		    const struct ovs_action_push_eth *ethh)
298 {
299 	int err;
300 
301 	err = skb_eth_push(skb, ethh->addresses.eth_dst,
302 			   ethh->addresses.eth_src);
303 	if (err)
304 		return err;
305 
306 	/* safe right before invalidate_flow_key */
307 	key->mac_proto = MAC_PROTO_ETHERNET;
308 	invalidate_flow_key(key);
309 	return 0;
310 }
311 
312 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
313 		    const struct nshhdr *nh)
314 {
315 	int err;
316 
317 	err = nsh_push(skb, nh);
318 	if (err)
319 		return err;
320 
321 	/* safe right before invalidate_flow_key */
322 	key->mac_proto = MAC_PROTO_NONE;
323 	invalidate_flow_key(key);
324 	return 0;
325 }
326 
327 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
328 {
329 	int err;
330 
331 	err = nsh_pop(skb);
332 	if (err)
333 		return err;
334 
335 	/* safe right before invalidate_flow_key */
336 	if (skb->protocol == htons(ETH_P_TEB))
337 		key->mac_proto = MAC_PROTO_ETHERNET;
338 	else
339 		key->mac_proto = MAC_PROTO_NONE;
340 	invalidate_flow_key(key);
341 	return 0;
342 }
343 
344 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
345 				  __be32 addr, __be32 new_addr)
346 {
347 	int transport_len = skb->len - skb_transport_offset(skb);
348 
349 	if (nh->frag_off & htons(IP_OFFSET))
350 		return;
351 
352 	if (nh->protocol == IPPROTO_TCP) {
353 		if (likely(transport_len >= sizeof(struct tcphdr)))
354 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
355 						 addr, new_addr, true);
356 	} else if (nh->protocol == IPPROTO_UDP) {
357 		if (likely(transport_len >= sizeof(struct udphdr))) {
358 			struct udphdr *uh = udp_hdr(skb);
359 
360 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
361 				inet_proto_csum_replace4(&uh->check, skb,
362 							 addr, new_addr, true);
363 				if (!uh->check)
364 					uh->check = CSUM_MANGLED_0;
365 			}
366 		}
367 	}
368 }
369 
370 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
371 			__be32 *addr, __be32 new_addr)
372 {
373 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
374 	csum_replace4(&nh->check, *addr, new_addr);
375 	skb_clear_hash(skb);
376 	*addr = new_addr;
377 }
378 
379 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
380 				 __be32 addr[4], const __be32 new_addr[4])
381 {
382 	int transport_len = skb->len - skb_transport_offset(skb);
383 
384 	if (l4_proto == NEXTHDR_TCP) {
385 		if (likely(transport_len >= sizeof(struct tcphdr)))
386 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
387 						  addr, new_addr, true);
388 	} else if (l4_proto == NEXTHDR_UDP) {
389 		if (likely(transport_len >= sizeof(struct udphdr))) {
390 			struct udphdr *uh = udp_hdr(skb);
391 
392 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
393 				inet_proto_csum_replace16(&uh->check, skb,
394 							  addr, new_addr, true);
395 				if (!uh->check)
396 					uh->check = CSUM_MANGLED_0;
397 			}
398 		}
399 	} else if (l4_proto == NEXTHDR_ICMP) {
400 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
401 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
402 						  skb, addr, new_addr, true);
403 	}
404 }
405 
406 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
407 			   const __be32 mask[4], __be32 masked[4])
408 {
409 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
410 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
411 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
412 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
413 }
414 
415 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
416 			  __be32 addr[4], const __be32 new_addr[4],
417 			  bool recalculate_csum)
418 {
419 	if (recalculate_csum)
420 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
421 
422 	skb_clear_hash(skb);
423 	memcpy(addr, new_addr, sizeof(__be32[4]));
424 }
425 
426 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
427 {
428 	u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
429 
430 	ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
431 
432 	if (skb->ip_summed == CHECKSUM_COMPLETE)
433 		csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
434 			     (__force __wsum)(ipv6_tclass << 12));
435 
436 	ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
437 }
438 
439 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
440 {
441 	u32 ofl;
442 
443 	ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
444 	fl = OVS_MASKED(ofl, fl, mask);
445 
446 	/* Bits 21-24 are always unmasked, so this retains their values. */
447 	nh->flow_lbl[0] = (u8)(fl >> 16);
448 	nh->flow_lbl[1] = (u8)(fl >> 8);
449 	nh->flow_lbl[2] = (u8)fl;
450 
451 	if (skb->ip_summed == CHECKSUM_COMPLETE)
452 		csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
453 }
454 
455 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
456 {
457 	new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
458 
459 	if (skb->ip_summed == CHECKSUM_COMPLETE)
460 		csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
461 			     (__force __wsum)(new_ttl << 8));
462 	nh->hop_limit = new_ttl;
463 }
464 
465 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
466 		       u8 mask)
467 {
468 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
469 
470 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
471 	nh->ttl = new_ttl;
472 }
473 
474 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
475 		    const struct ovs_key_ipv4 *key,
476 		    const struct ovs_key_ipv4 *mask)
477 {
478 	struct iphdr *nh;
479 	__be32 new_addr;
480 	int err;
481 
482 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
483 				  sizeof(struct iphdr));
484 	if (unlikely(err))
485 		return err;
486 
487 	nh = ip_hdr(skb);
488 
489 	/* Setting an IP addresses is typically only a side effect of
490 	 * matching on them in the current userspace implementation, so it
491 	 * makes sense to check if the value actually changed.
492 	 */
493 	if (mask->ipv4_src) {
494 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
495 
496 		if (unlikely(new_addr != nh->saddr)) {
497 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
498 			flow_key->ipv4.addr.src = new_addr;
499 		}
500 	}
501 	if (mask->ipv4_dst) {
502 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
503 
504 		if (unlikely(new_addr != nh->daddr)) {
505 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
506 			flow_key->ipv4.addr.dst = new_addr;
507 		}
508 	}
509 	if (mask->ipv4_tos) {
510 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
511 		flow_key->ip.tos = nh->tos;
512 	}
513 	if (mask->ipv4_ttl) {
514 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
515 		flow_key->ip.ttl = nh->ttl;
516 	}
517 
518 	return 0;
519 }
520 
521 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
522 {
523 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
524 }
525 
526 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
527 		    const struct ovs_key_ipv6 *key,
528 		    const struct ovs_key_ipv6 *mask)
529 {
530 	struct ipv6hdr *nh;
531 	int err;
532 
533 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
534 				  sizeof(struct ipv6hdr));
535 	if (unlikely(err))
536 		return err;
537 
538 	nh = ipv6_hdr(skb);
539 
540 	/* Setting an IP addresses is typically only a side effect of
541 	 * matching on them in the current userspace implementation, so it
542 	 * makes sense to check if the value actually changed.
543 	 */
544 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
545 		__be32 *saddr = (__be32 *)&nh->saddr;
546 		__be32 masked[4];
547 
548 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
549 
550 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
551 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
552 				      true);
553 			memcpy(&flow_key->ipv6.addr.src, masked,
554 			       sizeof(flow_key->ipv6.addr.src));
555 		}
556 	}
557 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
558 		unsigned int offset = 0;
559 		int flags = IP6_FH_F_SKIP_RH;
560 		bool recalc_csum = true;
561 		__be32 *daddr = (__be32 *)&nh->daddr;
562 		__be32 masked[4];
563 
564 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
565 
566 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
567 			if (ipv6_ext_hdr(nh->nexthdr))
568 				recalc_csum = (ipv6_find_hdr(skb, &offset,
569 							     NEXTHDR_ROUTING,
570 							     NULL, &flags)
571 					       != NEXTHDR_ROUTING);
572 
573 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
574 				      recalc_csum);
575 			memcpy(&flow_key->ipv6.addr.dst, masked,
576 			       sizeof(flow_key->ipv6.addr.dst));
577 		}
578 	}
579 	if (mask->ipv6_tclass) {
580 		set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
581 		flow_key->ip.tos = ipv6_get_dsfield(nh);
582 	}
583 	if (mask->ipv6_label) {
584 		set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
585 			    ntohl(mask->ipv6_label));
586 		flow_key->ipv6.label =
587 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
588 	}
589 	if (mask->ipv6_hlimit) {
590 		set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
591 		flow_key->ip.ttl = nh->hop_limit;
592 	}
593 	return 0;
594 }
595 
596 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
597 		   const struct nlattr *a)
598 {
599 	struct nshhdr *nh;
600 	size_t length;
601 	int err;
602 	u8 flags;
603 	u8 ttl;
604 	int i;
605 
606 	struct ovs_key_nsh key;
607 	struct ovs_key_nsh mask;
608 
609 	err = nsh_key_from_nlattr(a, &key, &mask);
610 	if (err)
611 		return err;
612 
613 	/* Make sure the NSH base header is there */
614 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
615 		return -ENOMEM;
616 
617 	nh = nsh_hdr(skb);
618 	length = nsh_hdr_len(nh);
619 
620 	/* Make sure the whole NSH header is there */
621 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
622 				       length);
623 	if (unlikely(err))
624 		return err;
625 
626 	nh = nsh_hdr(skb);
627 	skb_postpull_rcsum(skb, nh, length);
628 	flags = nsh_get_flags(nh);
629 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
630 	flow_key->nsh.base.flags = flags;
631 	ttl = nsh_get_ttl(nh);
632 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
633 	flow_key->nsh.base.ttl = ttl;
634 	nsh_set_flags_and_ttl(nh, flags, ttl);
635 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
636 				  mask.base.path_hdr);
637 	flow_key->nsh.base.path_hdr = nh->path_hdr;
638 	switch (nh->mdtype) {
639 	case NSH_M_TYPE1:
640 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
641 			nh->md1.context[i] =
642 			    OVS_MASKED(nh->md1.context[i], key.context[i],
643 				       mask.context[i]);
644 		}
645 		memcpy(flow_key->nsh.context, nh->md1.context,
646 		       sizeof(nh->md1.context));
647 		break;
648 	case NSH_M_TYPE2:
649 		memset(flow_key->nsh.context, 0,
650 		       sizeof(flow_key->nsh.context));
651 		break;
652 	default:
653 		return -EINVAL;
654 	}
655 	skb_postpush_rcsum(skb, nh, length);
656 	return 0;
657 }
658 
659 /* Must follow skb_ensure_writable() since that can move the skb data. */
660 static void set_tp_port(struct sk_buff *skb, __be16 *port,
661 			__be16 new_port, __sum16 *check)
662 {
663 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
664 	*port = new_port;
665 }
666 
667 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
668 		   const struct ovs_key_udp *key,
669 		   const struct ovs_key_udp *mask)
670 {
671 	struct udphdr *uh;
672 	__be16 src, dst;
673 	int err;
674 
675 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
676 				  sizeof(struct udphdr));
677 	if (unlikely(err))
678 		return err;
679 
680 	uh = udp_hdr(skb);
681 	/* Either of the masks is non-zero, so do not bother checking them. */
682 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
683 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
684 
685 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
686 		if (likely(src != uh->source)) {
687 			set_tp_port(skb, &uh->source, src, &uh->check);
688 			flow_key->tp.src = src;
689 		}
690 		if (likely(dst != uh->dest)) {
691 			set_tp_port(skb, &uh->dest, dst, &uh->check);
692 			flow_key->tp.dst = dst;
693 		}
694 
695 		if (unlikely(!uh->check))
696 			uh->check = CSUM_MANGLED_0;
697 	} else {
698 		uh->source = src;
699 		uh->dest = dst;
700 		flow_key->tp.src = src;
701 		flow_key->tp.dst = dst;
702 	}
703 
704 	skb_clear_hash(skb);
705 
706 	return 0;
707 }
708 
709 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
710 		   const struct ovs_key_tcp *key,
711 		   const struct ovs_key_tcp *mask)
712 {
713 	struct tcphdr *th;
714 	__be16 src, dst;
715 	int err;
716 
717 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
718 				  sizeof(struct tcphdr));
719 	if (unlikely(err))
720 		return err;
721 
722 	th = tcp_hdr(skb);
723 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
724 	if (likely(src != th->source)) {
725 		set_tp_port(skb, &th->source, src, &th->check);
726 		flow_key->tp.src = src;
727 	}
728 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
729 	if (likely(dst != th->dest)) {
730 		set_tp_port(skb, &th->dest, dst, &th->check);
731 		flow_key->tp.dst = dst;
732 	}
733 	skb_clear_hash(skb);
734 
735 	return 0;
736 }
737 
738 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
739 		    const struct ovs_key_sctp *key,
740 		    const struct ovs_key_sctp *mask)
741 {
742 	unsigned int sctphoff = skb_transport_offset(skb);
743 	struct sctphdr *sh;
744 	__le32 old_correct_csum, new_csum, old_csum;
745 	int err;
746 
747 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
748 	if (unlikely(err))
749 		return err;
750 
751 	sh = sctp_hdr(skb);
752 	old_csum = sh->checksum;
753 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
754 
755 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
756 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
757 
758 	new_csum = sctp_compute_cksum(skb, sctphoff);
759 
760 	/* Carry any checksum errors through. */
761 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
762 
763 	skb_clear_hash(skb);
764 	flow_key->tp.src = sh->source;
765 	flow_key->tp.dst = sh->dest;
766 
767 	return 0;
768 }
769 
770 static int ovs_vport_output(struct net *net, struct sock *sk,
771 			    struct sk_buff *skb)
772 {
773 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
774 	struct vport *vport = data->vport;
775 
776 	if (skb_cow_head(skb, data->l2_len) < 0) {
777 		kfree_skb(skb);
778 		return -ENOMEM;
779 	}
780 
781 	__skb_dst_copy(skb, data->dst);
782 	*OVS_CB(skb) = data->cb;
783 	skb->inner_protocol = data->inner_protocol;
784 	if (data->vlan_tci & VLAN_CFI_MASK)
785 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
786 	else
787 		__vlan_hwaccel_clear_tag(skb);
788 
789 	/* Reconstruct the MAC header.  */
790 	skb_push(skb, data->l2_len);
791 	memcpy(skb->data, &data->l2_data, data->l2_len);
792 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
793 	skb_reset_mac_header(skb);
794 
795 	if (eth_p_mpls(skb->protocol)) {
796 		skb->inner_network_header = skb->network_header;
797 		skb_set_network_header(skb, data->network_offset);
798 		skb_reset_mac_len(skb);
799 	}
800 
801 	ovs_vport_send(vport, skb, data->mac_proto);
802 	return 0;
803 }
804 
805 static unsigned int
806 ovs_dst_get_mtu(const struct dst_entry *dst)
807 {
808 	return dst->dev->mtu;
809 }
810 
811 static struct dst_ops ovs_dst_ops = {
812 	.family = AF_UNSPEC,
813 	.mtu = ovs_dst_get_mtu,
814 };
815 
816 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
817  * ovs_vport_output(), which is called once per fragmented packet.
818  */
819 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
820 			 u16 orig_network_offset, u8 mac_proto)
821 {
822 	unsigned int hlen = skb_network_offset(skb);
823 	struct ovs_frag_data *data;
824 
825 	data = this_cpu_ptr(&ovs_frag_data_storage);
826 	data->dst = skb->_skb_refdst;
827 	data->vport = vport;
828 	data->cb = *OVS_CB(skb);
829 	data->inner_protocol = skb->inner_protocol;
830 	data->network_offset = orig_network_offset;
831 	if (skb_vlan_tag_present(skb))
832 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
833 	else
834 		data->vlan_tci = 0;
835 	data->vlan_proto = skb->vlan_proto;
836 	data->mac_proto = mac_proto;
837 	data->l2_len = hlen;
838 	memcpy(&data->l2_data, skb->data, hlen);
839 
840 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
841 	skb_pull(skb, hlen);
842 }
843 
844 static void ovs_fragment(struct net *net, struct vport *vport,
845 			 struct sk_buff *skb, u16 mru,
846 			 struct sw_flow_key *key)
847 {
848 	u16 orig_network_offset = 0;
849 
850 	if (eth_p_mpls(skb->protocol)) {
851 		orig_network_offset = skb_network_offset(skb);
852 		skb->network_header = skb->inner_network_header;
853 	}
854 
855 	if (skb_network_offset(skb) > MAX_L2_LEN) {
856 		OVS_NLERR(1, "L2 header too long to fragment");
857 		goto err;
858 	}
859 
860 	if (key->eth.type == htons(ETH_P_IP)) {
861 		struct rtable ovs_rt = { 0 };
862 		unsigned long orig_dst;
863 
864 		prepare_frag(vport, skb, orig_network_offset,
865 			     ovs_key_mac_proto(key));
866 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
867 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
868 		ovs_rt.dst.dev = vport->dev;
869 
870 		orig_dst = skb->_skb_refdst;
871 		skb_dst_set_noref(skb, &ovs_rt.dst);
872 		IPCB(skb)->frag_max_size = mru;
873 
874 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
875 		refdst_drop(orig_dst);
876 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
877 		unsigned long orig_dst;
878 		struct rt6_info ovs_rt;
879 
880 		prepare_frag(vport, skb, orig_network_offset,
881 			     ovs_key_mac_proto(key));
882 		memset(&ovs_rt, 0, sizeof(ovs_rt));
883 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
884 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
885 		ovs_rt.dst.dev = vport->dev;
886 
887 		orig_dst = skb->_skb_refdst;
888 		skb_dst_set_noref(skb, &ovs_rt.dst);
889 		IP6CB(skb)->frag_max_size = mru;
890 
891 		ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
892 		refdst_drop(orig_dst);
893 	} else {
894 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
895 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
896 			  vport->dev->mtu);
897 		goto err;
898 	}
899 
900 	return;
901 err:
902 	kfree_skb(skb);
903 }
904 
905 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
906 		      struct sw_flow_key *key)
907 {
908 	struct vport *vport = ovs_vport_rcu(dp, out_port);
909 
910 	if (likely(vport)) {
911 		u16 mru = OVS_CB(skb)->mru;
912 		u32 cutlen = OVS_CB(skb)->cutlen;
913 
914 		if (unlikely(cutlen > 0)) {
915 			if (skb->len - cutlen > ovs_mac_header_len(key))
916 				pskb_trim(skb, skb->len - cutlen);
917 			else
918 				pskb_trim(skb, ovs_mac_header_len(key));
919 		}
920 
921 		if (likely(!mru ||
922 		           (skb->len <= mru + vport->dev->hard_header_len))) {
923 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
924 		} else if (mru <= vport->dev->mtu) {
925 			struct net *net = read_pnet(&dp->net);
926 
927 			ovs_fragment(net, vport, skb, mru, key);
928 		} else {
929 			kfree_skb(skb);
930 		}
931 	} else {
932 		kfree_skb(skb);
933 	}
934 }
935 
936 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
937 			    struct sw_flow_key *key, const struct nlattr *attr,
938 			    const struct nlattr *actions, int actions_len,
939 			    uint32_t cutlen)
940 {
941 	struct dp_upcall_info upcall;
942 	const struct nlattr *a;
943 	int rem;
944 
945 	memset(&upcall, 0, sizeof(upcall));
946 	upcall.cmd = OVS_PACKET_CMD_ACTION;
947 	upcall.mru = OVS_CB(skb)->mru;
948 
949 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
950 	     a = nla_next(a, &rem)) {
951 		switch (nla_type(a)) {
952 		case OVS_USERSPACE_ATTR_USERDATA:
953 			upcall.userdata = a;
954 			break;
955 
956 		case OVS_USERSPACE_ATTR_PID:
957 			if (dp->user_features &
958 			    OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
959 				upcall.portid =
960 				  ovs_dp_get_upcall_portid(dp,
961 							   smp_processor_id());
962 			else
963 				upcall.portid = nla_get_u32(a);
964 			break;
965 
966 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
967 			/* Get out tunnel info. */
968 			struct vport *vport;
969 
970 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
971 			if (vport) {
972 				int err;
973 
974 				err = dev_fill_metadata_dst(vport->dev, skb);
975 				if (!err)
976 					upcall.egress_tun_info = skb_tunnel_info(skb);
977 			}
978 
979 			break;
980 		}
981 
982 		case OVS_USERSPACE_ATTR_ACTIONS: {
983 			/* Include actions. */
984 			upcall.actions = actions;
985 			upcall.actions_len = actions_len;
986 			break;
987 		}
988 
989 		} /* End of switch. */
990 	}
991 
992 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
993 }
994 
995 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
996 				     struct sw_flow_key *key,
997 				     const struct nlattr *attr)
998 {
999 	/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1000 	struct nlattr *actions = nla_data(attr);
1001 
1002 	if (nla_len(actions))
1003 		return clone_execute(dp, skb, key, 0, nla_data(actions),
1004 				     nla_len(actions), true, false);
1005 
1006 	consume_skb(skb);
1007 	return 0;
1008 }
1009 
1010 /* When 'last' is true, sample() should always consume the 'skb'.
1011  * Otherwise, sample() should keep 'skb' intact regardless what
1012  * actions are executed within sample().
1013  */
1014 static int sample(struct datapath *dp, struct sk_buff *skb,
1015 		  struct sw_flow_key *key, const struct nlattr *attr,
1016 		  bool last)
1017 {
1018 	struct nlattr *actions;
1019 	struct nlattr *sample_arg;
1020 	int rem = nla_len(attr);
1021 	const struct sample_arg *arg;
1022 	bool clone_flow_key;
1023 
1024 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1025 	sample_arg = nla_data(attr);
1026 	arg = nla_data(sample_arg);
1027 	actions = nla_next(sample_arg, &rem);
1028 
1029 	if ((arg->probability != U32_MAX) &&
1030 	    (!arg->probability || prandom_u32() > arg->probability)) {
1031 		if (last)
1032 			consume_skb(skb);
1033 		return 0;
1034 	}
1035 
1036 	clone_flow_key = !arg->exec;
1037 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1038 			     clone_flow_key);
1039 }
1040 
1041 /* When 'last' is true, clone() should always consume the 'skb'.
1042  * Otherwise, clone() should keep 'skb' intact regardless what
1043  * actions are executed within clone().
1044  */
1045 static int clone(struct datapath *dp, struct sk_buff *skb,
1046 		 struct sw_flow_key *key, const struct nlattr *attr,
1047 		 bool last)
1048 {
1049 	struct nlattr *actions;
1050 	struct nlattr *clone_arg;
1051 	int rem = nla_len(attr);
1052 	bool dont_clone_flow_key;
1053 
1054 	/* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1055 	clone_arg = nla_data(attr);
1056 	dont_clone_flow_key = nla_get_u32(clone_arg);
1057 	actions = nla_next(clone_arg, &rem);
1058 
1059 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1060 			     !dont_clone_flow_key);
1061 }
1062 
1063 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1064 			 const struct nlattr *attr)
1065 {
1066 	struct ovs_action_hash *hash_act = nla_data(attr);
1067 	u32 hash = 0;
1068 
1069 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1070 	hash = skb_get_hash(skb);
1071 	hash = jhash_1word(hash, hash_act->hash_basis);
1072 	if (!hash)
1073 		hash = 0x1;
1074 
1075 	key->ovs_flow_hash = hash;
1076 }
1077 
1078 static int execute_set_action(struct sk_buff *skb,
1079 			      struct sw_flow_key *flow_key,
1080 			      const struct nlattr *a)
1081 {
1082 	/* Only tunnel set execution is supported without a mask. */
1083 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1084 		struct ovs_tunnel_info *tun = nla_data(a);
1085 
1086 		skb_dst_drop(skb);
1087 		dst_hold((struct dst_entry *)tun->tun_dst);
1088 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1089 		return 0;
1090 	}
1091 
1092 	return -EINVAL;
1093 }
1094 
1095 /* Mask is at the midpoint of the data. */
1096 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1097 
1098 static int execute_masked_set_action(struct sk_buff *skb,
1099 				     struct sw_flow_key *flow_key,
1100 				     const struct nlattr *a)
1101 {
1102 	int err = 0;
1103 
1104 	switch (nla_type(a)) {
1105 	case OVS_KEY_ATTR_PRIORITY:
1106 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1107 			       *get_mask(a, u32 *));
1108 		flow_key->phy.priority = skb->priority;
1109 		break;
1110 
1111 	case OVS_KEY_ATTR_SKB_MARK:
1112 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1113 		flow_key->phy.skb_mark = skb->mark;
1114 		break;
1115 
1116 	case OVS_KEY_ATTR_TUNNEL_INFO:
1117 		/* Masked data not supported for tunnel. */
1118 		err = -EINVAL;
1119 		break;
1120 
1121 	case OVS_KEY_ATTR_ETHERNET:
1122 		err = set_eth_addr(skb, flow_key, nla_data(a),
1123 				   get_mask(a, struct ovs_key_ethernet *));
1124 		break;
1125 
1126 	case OVS_KEY_ATTR_NSH:
1127 		err = set_nsh(skb, flow_key, a);
1128 		break;
1129 
1130 	case OVS_KEY_ATTR_IPV4:
1131 		err = set_ipv4(skb, flow_key, nla_data(a),
1132 			       get_mask(a, struct ovs_key_ipv4 *));
1133 		break;
1134 
1135 	case OVS_KEY_ATTR_IPV6:
1136 		err = set_ipv6(skb, flow_key, nla_data(a),
1137 			       get_mask(a, struct ovs_key_ipv6 *));
1138 		break;
1139 
1140 	case OVS_KEY_ATTR_TCP:
1141 		err = set_tcp(skb, flow_key, nla_data(a),
1142 			      get_mask(a, struct ovs_key_tcp *));
1143 		break;
1144 
1145 	case OVS_KEY_ATTR_UDP:
1146 		err = set_udp(skb, flow_key, nla_data(a),
1147 			      get_mask(a, struct ovs_key_udp *));
1148 		break;
1149 
1150 	case OVS_KEY_ATTR_SCTP:
1151 		err = set_sctp(skb, flow_key, nla_data(a),
1152 			       get_mask(a, struct ovs_key_sctp *));
1153 		break;
1154 
1155 	case OVS_KEY_ATTR_MPLS:
1156 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1157 								    __be32 *));
1158 		break;
1159 
1160 	case OVS_KEY_ATTR_CT_STATE:
1161 	case OVS_KEY_ATTR_CT_ZONE:
1162 	case OVS_KEY_ATTR_CT_MARK:
1163 	case OVS_KEY_ATTR_CT_LABELS:
1164 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1165 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1166 		err = -EINVAL;
1167 		break;
1168 	}
1169 
1170 	return err;
1171 }
1172 
1173 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1174 			  struct sw_flow_key *key,
1175 			  const struct nlattr *a, bool last)
1176 {
1177 	u32 recirc_id;
1178 
1179 	if (!is_flow_key_valid(key)) {
1180 		int err;
1181 
1182 		err = ovs_flow_key_update(skb, key);
1183 		if (err)
1184 			return err;
1185 	}
1186 	BUG_ON(!is_flow_key_valid(key));
1187 
1188 	recirc_id = nla_get_u32(a);
1189 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1190 }
1191 
1192 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1193 				 struct sw_flow_key *key,
1194 				 const struct nlattr *attr, bool last)
1195 {
1196 	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1197 	const struct nlattr *actions, *cpl_arg;
1198 	int len, max_len, rem = nla_len(attr);
1199 	const struct check_pkt_len_arg *arg;
1200 	bool clone_flow_key;
1201 
1202 	/* The first netlink attribute in 'attr' is always
1203 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1204 	 */
1205 	cpl_arg = nla_data(attr);
1206 	arg = nla_data(cpl_arg);
1207 
1208 	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1209 	max_len = arg->pkt_len;
1210 
1211 	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1212 	    len <= max_len) {
1213 		/* Second netlink attribute in 'attr' is always
1214 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1215 		 */
1216 		actions = nla_next(cpl_arg, &rem);
1217 		clone_flow_key = !arg->exec_for_lesser_equal;
1218 	} else {
1219 		/* Third netlink attribute in 'attr' is always
1220 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1221 		 */
1222 		actions = nla_next(cpl_arg, &rem);
1223 		actions = nla_next(actions, &rem);
1224 		clone_flow_key = !arg->exec_for_greater;
1225 	}
1226 
1227 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1228 			     nla_len(actions), last, clone_flow_key);
1229 }
1230 
1231 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1232 {
1233 	int err;
1234 
1235 	if (skb->protocol == htons(ETH_P_IPV6)) {
1236 		struct ipv6hdr *nh;
1237 
1238 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1239 					  sizeof(*nh));
1240 		if (unlikely(err))
1241 			return err;
1242 
1243 		nh = ipv6_hdr(skb);
1244 
1245 		if (nh->hop_limit <= 1)
1246 			return -EHOSTUNREACH;
1247 
1248 		key->ip.ttl = --nh->hop_limit;
1249 	} else if (skb->protocol == htons(ETH_P_IP)) {
1250 		struct iphdr *nh;
1251 		u8 old_ttl;
1252 
1253 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1254 					  sizeof(*nh));
1255 		if (unlikely(err))
1256 			return err;
1257 
1258 		nh = ip_hdr(skb);
1259 		if (nh->ttl <= 1)
1260 			return -EHOSTUNREACH;
1261 
1262 		old_ttl = nh->ttl--;
1263 		csum_replace2(&nh->check, htons(old_ttl << 8),
1264 			      htons(nh->ttl << 8));
1265 		key->ip.ttl = nh->ttl;
1266 	}
1267 	return 0;
1268 }
1269 
1270 /* Execute a list of actions against 'skb'. */
1271 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1272 			      struct sw_flow_key *key,
1273 			      const struct nlattr *attr, int len)
1274 {
1275 	const struct nlattr *a;
1276 	int rem;
1277 
1278 	for (a = attr, rem = len; rem > 0;
1279 	     a = nla_next(a, &rem)) {
1280 		int err = 0;
1281 
1282 		if (trace_ovs_do_execute_action_enabled())
1283 			trace_ovs_do_execute_action(dp, skb, key, a, rem);
1284 
1285 		switch (nla_type(a)) {
1286 		case OVS_ACTION_ATTR_OUTPUT: {
1287 			int port = nla_get_u32(a);
1288 			struct sk_buff *clone;
1289 
1290 			/* Every output action needs a separate clone
1291 			 * of 'skb', In case the output action is the
1292 			 * last action, cloning can be avoided.
1293 			 */
1294 			if (nla_is_last(a, rem)) {
1295 				do_output(dp, skb, port, key);
1296 				/* 'skb' has been used for output.
1297 				 */
1298 				return 0;
1299 			}
1300 
1301 			clone = skb_clone(skb, GFP_ATOMIC);
1302 			if (clone)
1303 				do_output(dp, clone, port, key);
1304 			OVS_CB(skb)->cutlen = 0;
1305 			break;
1306 		}
1307 
1308 		case OVS_ACTION_ATTR_TRUNC: {
1309 			struct ovs_action_trunc *trunc = nla_data(a);
1310 
1311 			if (skb->len > trunc->max_len)
1312 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1313 			break;
1314 		}
1315 
1316 		case OVS_ACTION_ATTR_USERSPACE:
1317 			output_userspace(dp, skb, key, a, attr,
1318 						     len, OVS_CB(skb)->cutlen);
1319 			OVS_CB(skb)->cutlen = 0;
1320 			break;
1321 
1322 		case OVS_ACTION_ATTR_HASH:
1323 			execute_hash(skb, key, a);
1324 			break;
1325 
1326 		case OVS_ACTION_ATTR_PUSH_MPLS: {
1327 			struct ovs_action_push_mpls *mpls = nla_data(a);
1328 
1329 			err = push_mpls(skb, key, mpls->mpls_lse,
1330 					mpls->mpls_ethertype, skb->mac_len);
1331 			break;
1332 		}
1333 		case OVS_ACTION_ATTR_ADD_MPLS: {
1334 			struct ovs_action_add_mpls *mpls = nla_data(a);
1335 			__u16 mac_len = 0;
1336 
1337 			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1338 				mac_len = skb->mac_len;
1339 
1340 			err = push_mpls(skb, key, mpls->mpls_lse,
1341 					mpls->mpls_ethertype, mac_len);
1342 			break;
1343 		}
1344 		case OVS_ACTION_ATTR_POP_MPLS:
1345 			err = pop_mpls(skb, key, nla_get_be16(a));
1346 			break;
1347 
1348 		case OVS_ACTION_ATTR_PUSH_VLAN:
1349 			err = push_vlan(skb, key, nla_data(a));
1350 			break;
1351 
1352 		case OVS_ACTION_ATTR_POP_VLAN:
1353 			err = pop_vlan(skb, key);
1354 			break;
1355 
1356 		case OVS_ACTION_ATTR_RECIRC: {
1357 			bool last = nla_is_last(a, rem);
1358 
1359 			err = execute_recirc(dp, skb, key, a, last);
1360 			if (last) {
1361 				/* If this is the last action, the skb has
1362 				 * been consumed or freed.
1363 				 * Return immediately.
1364 				 */
1365 				return err;
1366 			}
1367 			break;
1368 		}
1369 
1370 		case OVS_ACTION_ATTR_SET:
1371 			err = execute_set_action(skb, key, nla_data(a));
1372 			break;
1373 
1374 		case OVS_ACTION_ATTR_SET_MASKED:
1375 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1376 			err = execute_masked_set_action(skb, key, nla_data(a));
1377 			break;
1378 
1379 		case OVS_ACTION_ATTR_SAMPLE: {
1380 			bool last = nla_is_last(a, rem);
1381 
1382 			err = sample(dp, skb, key, a, last);
1383 			if (last)
1384 				return err;
1385 
1386 			break;
1387 		}
1388 
1389 		case OVS_ACTION_ATTR_CT:
1390 			if (!is_flow_key_valid(key)) {
1391 				err = ovs_flow_key_update(skb, key);
1392 				if (err)
1393 					return err;
1394 			}
1395 
1396 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1397 					     nla_data(a));
1398 
1399 			/* Hide stolen IP fragments from user space. */
1400 			if (err)
1401 				return err == -EINPROGRESS ? 0 : err;
1402 			break;
1403 
1404 		case OVS_ACTION_ATTR_CT_CLEAR:
1405 			err = ovs_ct_clear(skb, key);
1406 			break;
1407 
1408 		case OVS_ACTION_ATTR_PUSH_ETH:
1409 			err = push_eth(skb, key, nla_data(a));
1410 			break;
1411 
1412 		case OVS_ACTION_ATTR_POP_ETH:
1413 			err = pop_eth(skb, key);
1414 			break;
1415 
1416 		case OVS_ACTION_ATTR_PUSH_NSH: {
1417 			u8 buffer[NSH_HDR_MAX_LEN];
1418 			struct nshhdr *nh = (struct nshhdr *)buffer;
1419 
1420 			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1421 						  NSH_HDR_MAX_LEN);
1422 			if (unlikely(err))
1423 				break;
1424 			err = push_nsh(skb, key, nh);
1425 			break;
1426 		}
1427 
1428 		case OVS_ACTION_ATTR_POP_NSH:
1429 			err = pop_nsh(skb, key);
1430 			break;
1431 
1432 		case OVS_ACTION_ATTR_METER:
1433 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1434 				consume_skb(skb);
1435 				return 0;
1436 			}
1437 			break;
1438 
1439 		case OVS_ACTION_ATTR_CLONE: {
1440 			bool last = nla_is_last(a, rem);
1441 
1442 			err = clone(dp, skb, key, a, last);
1443 			if (last)
1444 				return err;
1445 
1446 			break;
1447 		}
1448 
1449 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1450 			bool last = nla_is_last(a, rem);
1451 
1452 			err = execute_check_pkt_len(dp, skb, key, a, last);
1453 			if (last)
1454 				return err;
1455 
1456 			break;
1457 		}
1458 
1459 		case OVS_ACTION_ATTR_DEC_TTL:
1460 			err = execute_dec_ttl(skb, key);
1461 			if (err == -EHOSTUNREACH)
1462 				return dec_ttl_exception_handler(dp, skb,
1463 								 key, a);
1464 			break;
1465 		}
1466 
1467 		if (unlikely(err)) {
1468 			kfree_skb(skb);
1469 			return err;
1470 		}
1471 	}
1472 
1473 	consume_skb(skb);
1474 	return 0;
1475 }
1476 
1477 /* Execute the actions on the clone of the packet. The effect of the
1478  * execution does not affect the original 'skb' nor the original 'key'.
1479  *
1480  * The execution may be deferred in case the actions can not be executed
1481  * immediately.
1482  */
1483 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1484 			 struct sw_flow_key *key, u32 recirc_id,
1485 			 const struct nlattr *actions, int len,
1486 			 bool last, bool clone_flow_key)
1487 {
1488 	struct deferred_action *da;
1489 	struct sw_flow_key *clone;
1490 
1491 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1492 	if (!skb) {
1493 		/* Out of memory, skip this action.
1494 		 */
1495 		return 0;
1496 	}
1497 
1498 	/* When clone_flow_key is false, the 'key' will not be change
1499 	 * by the actions, then the 'key' can be used directly.
1500 	 * Otherwise, try to clone key from the next recursion level of
1501 	 * 'flow_keys'. If clone is successful, execute the actions
1502 	 * without deferring.
1503 	 */
1504 	clone = clone_flow_key ? clone_key(key) : key;
1505 	if (clone) {
1506 		int err = 0;
1507 
1508 		if (actions) { /* Sample action */
1509 			if (clone_flow_key)
1510 				__this_cpu_inc(exec_actions_level);
1511 
1512 			err = do_execute_actions(dp, skb, clone,
1513 						 actions, len);
1514 
1515 			if (clone_flow_key)
1516 				__this_cpu_dec(exec_actions_level);
1517 		} else { /* Recirc action */
1518 			clone->recirc_id = recirc_id;
1519 			ovs_dp_process_packet(skb, clone);
1520 		}
1521 		return err;
1522 	}
1523 
1524 	/* Out of 'flow_keys' space. Defer actions */
1525 	da = add_deferred_actions(skb, key, actions, len);
1526 	if (da) {
1527 		if (!actions) { /* Recirc action */
1528 			key = &da->pkt_key;
1529 			key->recirc_id = recirc_id;
1530 		}
1531 	} else {
1532 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1533 		 * log an error.
1534 		 */
1535 		kfree_skb(skb);
1536 
1537 		if (net_ratelimit()) {
1538 			if (actions) { /* Sample action */
1539 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1540 					ovs_dp_name(dp));
1541 			} else {  /* Recirc action */
1542 				pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1543 					ovs_dp_name(dp), recirc_id);
1544 			}
1545 		}
1546 	}
1547 	return 0;
1548 }
1549 
1550 static void process_deferred_actions(struct datapath *dp)
1551 {
1552 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1553 
1554 	/* Do not touch the FIFO in case there is no deferred actions. */
1555 	if (action_fifo_is_empty(fifo))
1556 		return;
1557 
1558 	/* Finishing executing all deferred actions. */
1559 	do {
1560 		struct deferred_action *da = action_fifo_get(fifo);
1561 		struct sk_buff *skb = da->skb;
1562 		struct sw_flow_key *key = &da->pkt_key;
1563 		const struct nlattr *actions = da->actions;
1564 		int actions_len = da->actions_len;
1565 
1566 		if (actions)
1567 			do_execute_actions(dp, skb, key, actions, actions_len);
1568 		else
1569 			ovs_dp_process_packet(skb, key);
1570 	} while (!action_fifo_is_empty(fifo));
1571 
1572 	/* Reset FIFO for the next packet.  */
1573 	action_fifo_init(fifo);
1574 }
1575 
1576 /* Execute a list of actions against 'skb'. */
1577 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1578 			const struct sw_flow_actions *acts,
1579 			struct sw_flow_key *key)
1580 {
1581 	int err, level;
1582 
1583 	level = __this_cpu_inc_return(exec_actions_level);
1584 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1585 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1586 				     ovs_dp_name(dp));
1587 		kfree_skb(skb);
1588 		err = -ENETDOWN;
1589 		goto out;
1590 	}
1591 
1592 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1593 	err = do_execute_actions(dp, skb, key,
1594 				 acts->actions, acts->actions_len);
1595 
1596 	if (level == 1)
1597 		process_deferred_actions(dp);
1598 
1599 out:
1600 	__this_cpu_dec(exec_actions_level);
1601 	return err;
1602 }
1603 
1604 int action_fifos_init(void)
1605 {
1606 	action_fifos = alloc_percpu(struct action_fifo);
1607 	if (!action_fifos)
1608 		return -ENOMEM;
1609 
1610 	flow_keys = alloc_percpu(struct action_flow_keys);
1611 	if (!flow_keys) {
1612 		free_percpu(action_fifos);
1613 		return -ENOMEM;
1614 	}
1615 
1616 	return 0;
1617 }
1618 
1619 void action_fifos_exit(void)
1620 {
1621 	free_percpu(action_fifos);
1622 	free_percpu(flow_keys);
1623 }
1624