xref: /openbmc/linux/net/openvswitch/actions.c (revision a2cce7a9)
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/netfilter_ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/in6.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_vlan.h>
32 
33 #include <net/dst.h>
34 #include <net/ip.h>
35 #include <net/ipv6.h>
36 #include <net/ip6_fib.h>
37 #include <net/checksum.h>
38 #include <net/dsfield.h>
39 #include <net/mpls.h>
40 #include <net/sctp/checksum.h>
41 
42 #include "datapath.h"
43 #include "flow.h"
44 #include "conntrack.h"
45 #include "vport.h"
46 
47 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
48 			      struct sw_flow_key *key,
49 			      const struct nlattr *attr, int len);
50 
51 struct deferred_action {
52 	struct sk_buff *skb;
53 	const struct nlattr *actions;
54 
55 	/* Store pkt_key clone when creating deferred action. */
56 	struct sw_flow_key pkt_key;
57 };
58 
59 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
60 struct ovs_frag_data {
61 	unsigned long dst;
62 	struct vport *vport;
63 	struct ovs_skb_cb cb;
64 	__be16 inner_protocol;
65 	__u16 vlan_tci;
66 	__be16 vlan_proto;
67 	unsigned int l2_len;
68 	u8 l2_data[MAX_L2_LEN];
69 };
70 
71 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
72 
73 #define DEFERRED_ACTION_FIFO_SIZE 10
74 struct action_fifo {
75 	int head;
76 	int tail;
77 	/* Deferred action fifo queue storage. */
78 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
79 };
80 
81 static struct action_fifo __percpu *action_fifos;
82 static DEFINE_PER_CPU(int, exec_actions_level);
83 
84 static void action_fifo_init(struct action_fifo *fifo)
85 {
86 	fifo->head = 0;
87 	fifo->tail = 0;
88 }
89 
90 static bool action_fifo_is_empty(const struct action_fifo *fifo)
91 {
92 	return (fifo->head == fifo->tail);
93 }
94 
95 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
96 {
97 	if (action_fifo_is_empty(fifo))
98 		return NULL;
99 
100 	return &fifo->fifo[fifo->tail++];
101 }
102 
103 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
104 {
105 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
106 		return NULL;
107 
108 	return &fifo->fifo[fifo->head++];
109 }
110 
111 /* Return true if fifo is not full */
112 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
113 						    const struct sw_flow_key *key,
114 						    const struct nlattr *attr)
115 {
116 	struct action_fifo *fifo;
117 	struct deferred_action *da;
118 
119 	fifo = this_cpu_ptr(action_fifos);
120 	da = action_fifo_put(fifo);
121 	if (da) {
122 		da->skb = skb;
123 		da->actions = attr;
124 		da->pkt_key = *key;
125 	}
126 
127 	return da;
128 }
129 
130 static void invalidate_flow_key(struct sw_flow_key *key)
131 {
132 	key->eth.type = htons(0);
133 }
134 
135 static bool is_flow_key_valid(const struct sw_flow_key *key)
136 {
137 	return !!key->eth.type;
138 }
139 
140 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
141 		     const struct ovs_action_push_mpls *mpls)
142 {
143 	__be32 *new_mpls_lse;
144 	struct ethhdr *hdr;
145 
146 	/* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
147 	if (skb->encapsulation)
148 		return -ENOTSUPP;
149 
150 	if (skb_cow_head(skb, MPLS_HLEN) < 0)
151 		return -ENOMEM;
152 
153 	skb_push(skb, MPLS_HLEN);
154 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
155 		skb->mac_len);
156 	skb_reset_mac_header(skb);
157 
158 	new_mpls_lse = (__be32 *)skb_mpls_header(skb);
159 	*new_mpls_lse = mpls->mpls_lse;
160 
161 	if (skb->ip_summed == CHECKSUM_COMPLETE)
162 		skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
163 							     MPLS_HLEN, 0));
164 
165 	hdr = eth_hdr(skb);
166 	hdr->h_proto = mpls->mpls_ethertype;
167 
168 	if (!skb->inner_protocol)
169 		skb_set_inner_protocol(skb, skb->protocol);
170 	skb->protocol = mpls->mpls_ethertype;
171 
172 	invalidate_flow_key(key);
173 	return 0;
174 }
175 
176 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
177 		    const __be16 ethertype)
178 {
179 	struct ethhdr *hdr;
180 	int err;
181 
182 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
183 	if (unlikely(err))
184 		return err;
185 
186 	skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
187 
188 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
189 		skb->mac_len);
190 
191 	__skb_pull(skb, MPLS_HLEN);
192 	skb_reset_mac_header(skb);
193 
194 	/* skb_mpls_header() is used to locate the ethertype
195 	 * field correctly in the presence of VLAN tags.
196 	 */
197 	hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
198 	hdr->h_proto = ethertype;
199 	if (eth_p_mpls(skb->protocol))
200 		skb->protocol = ethertype;
201 
202 	invalidate_flow_key(key);
203 	return 0;
204 }
205 
206 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
207 		    const __be32 *mpls_lse, const __be32 *mask)
208 {
209 	__be32 *stack;
210 	__be32 lse;
211 	int err;
212 
213 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
214 	if (unlikely(err))
215 		return err;
216 
217 	stack = (__be32 *)skb_mpls_header(skb);
218 	lse = OVS_MASKED(*stack, *mpls_lse, *mask);
219 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
220 		__be32 diff[] = { ~(*stack), lse };
221 
222 		skb->csum = ~csum_partial((char *)diff, sizeof(diff),
223 					  ~skb->csum);
224 	}
225 
226 	*stack = lse;
227 	flow_key->mpls.top_lse = lse;
228 	return 0;
229 }
230 
231 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
232 {
233 	int err;
234 
235 	err = skb_vlan_pop(skb);
236 	if (skb_vlan_tag_present(skb))
237 		invalidate_flow_key(key);
238 	else
239 		key->eth.tci = 0;
240 	return err;
241 }
242 
243 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
244 		     const struct ovs_action_push_vlan *vlan)
245 {
246 	if (skb_vlan_tag_present(skb))
247 		invalidate_flow_key(key);
248 	else
249 		key->eth.tci = vlan->vlan_tci;
250 	return skb_vlan_push(skb, vlan->vlan_tpid,
251 			     ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
252 }
253 
254 /* 'src' is already properly masked. */
255 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
256 {
257 	u16 *dst = (u16 *)dst_;
258 	const u16 *src = (const u16 *)src_;
259 	const u16 *mask = (const u16 *)mask_;
260 
261 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
262 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
263 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
264 }
265 
266 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
267 			const struct ovs_key_ethernet *key,
268 			const struct ovs_key_ethernet *mask)
269 {
270 	int err;
271 
272 	err = skb_ensure_writable(skb, ETH_HLEN);
273 	if (unlikely(err))
274 		return err;
275 
276 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
277 
278 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
279 			       mask->eth_src);
280 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
281 			       mask->eth_dst);
282 
283 	ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
284 
285 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
286 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
287 	return 0;
288 }
289 
290 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
291 				  __be32 addr, __be32 new_addr)
292 {
293 	int transport_len = skb->len - skb_transport_offset(skb);
294 
295 	if (nh->frag_off & htons(IP_OFFSET))
296 		return;
297 
298 	if (nh->protocol == IPPROTO_TCP) {
299 		if (likely(transport_len >= sizeof(struct tcphdr)))
300 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
301 						 addr, new_addr, true);
302 	} else if (nh->protocol == IPPROTO_UDP) {
303 		if (likely(transport_len >= sizeof(struct udphdr))) {
304 			struct udphdr *uh = udp_hdr(skb);
305 
306 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
307 				inet_proto_csum_replace4(&uh->check, skb,
308 							 addr, new_addr, true);
309 				if (!uh->check)
310 					uh->check = CSUM_MANGLED_0;
311 			}
312 		}
313 	}
314 }
315 
316 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
317 			__be32 *addr, __be32 new_addr)
318 {
319 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
320 	csum_replace4(&nh->check, *addr, new_addr);
321 	skb_clear_hash(skb);
322 	*addr = new_addr;
323 }
324 
325 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
326 				 __be32 addr[4], const __be32 new_addr[4])
327 {
328 	int transport_len = skb->len - skb_transport_offset(skb);
329 
330 	if (l4_proto == NEXTHDR_TCP) {
331 		if (likely(transport_len >= sizeof(struct tcphdr)))
332 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
333 						  addr, new_addr, true);
334 	} else if (l4_proto == NEXTHDR_UDP) {
335 		if (likely(transport_len >= sizeof(struct udphdr))) {
336 			struct udphdr *uh = udp_hdr(skb);
337 
338 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
339 				inet_proto_csum_replace16(&uh->check, skb,
340 							  addr, new_addr, true);
341 				if (!uh->check)
342 					uh->check = CSUM_MANGLED_0;
343 			}
344 		}
345 	} else if (l4_proto == NEXTHDR_ICMP) {
346 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
347 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
348 						  skb, addr, new_addr, true);
349 	}
350 }
351 
352 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
353 			   const __be32 mask[4], __be32 masked[4])
354 {
355 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
356 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
357 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
358 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
359 }
360 
361 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
362 			  __be32 addr[4], const __be32 new_addr[4],
363 			  bool recalculate_csum)
364 {
365 	if (recalculate_csum)
366 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
367 
368 	skb_clear_hash(skb);
369 	memcpy(addr, new_addr, sizeof(__be32[4]));
370 }
371 
372 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
373 {
374 	/* Bits 21-24 are always unmasked, so this retains their values. */
375 	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
376 	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
377 	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
378 }
379 
380 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
381 		       u8 mask)
382 {
383 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
384 
385 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
386 	nh->ttl = new_ttl;
387 }
388 
389 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
390 		    const struct ovs_key_ipv4 *key,
391 		    const struct ovs_key_ipv4 *mask)
392 {
393 	struct iphdr *nh;
394 	__be32 new_addr;
395 	int err;
396 
397 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
398 				  sizeof(struct iphdr));
399 	if (unlikely(err))
400 		return err;
401 
402 	nh = ip_hdr(skb);
403 
404 	/* Setting an IP addresses is typically only a side effect of
405 	 * matching on them in the current userspace implementation, so it
406 	 * makes sense to check if the value actually changed.
407 	 */
408 	if (mask->ipv4_src) {
409 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
410 
411 		if (unlikely(new_addr != nh->saddr)) {
412 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
413 			flow_key->ipv4.addr.src = new_addr;
414 		}
415 	}
416 	if (mask->ipv4_dst) {
417 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
418 
419 		if (unlikely(new_addr != nh->daddr)) {
420 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
421 			flow_key->ipv4.addr.dst = new_addr;
422 		}
423 	}
424 	if (mask->ipv4_tos) {
425 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
426 		flow_key->ip.tos = nh->tos;
427 	}
428 	if (mask->ipv4_ttl) {
429 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
430 		flow_key->ip.ttl = nh->ttl;
431 	}
432 
433 	return 0;
434 }
435 
436 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
437 {
438 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
439 }
440 
441 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
442 		    const struct ovs_key_ipv6 *key,
443 		    const struct ovs_key_ipv6 *mask)
444 {
445 	struct ipv6hdr *nh;
446 	int err;
447 
448 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
449 				  sizeof(struct ipv6hdr));
450 	if (unlikely(err))
451 		return err;
452 
453 	nh = ipv6_hdr(skb);
454 
455 	/* Setting an IP addresses is typically only a side effect of
456 	 * matching on them in the current userspace implementation, so it
457 	 * makes sense to check if the value actually changed.
458 	 */
459 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
460 		__be32 *saddr = (__be32 *)&nh->saddr;
461 		__be32 masked[4];
462 
463 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
464 
465 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
466 			set_ipv6_addr(skb, key->ipv6_proto, saddr, masked,
467 				      true);
468 			memcpy(&flow_key->ipv6.addr.src, masked,
469 			       sizeof(flow_key->ipv6.addr.src));
470 		}
471 	}
472 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
473 		unsigned int offset = 0;
474 		int flags = IP6_FH_F_SKIP_RH;
475 		bool recalc_csum = true;
476 		__be32 *daddr = (__be32 *)&nh->daddr;
477 		__be32 masked[4];
478 
479 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
480 
481 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
482 			if (ipv6_ext_hdr(nh->nexthdr))
483 				recalc_csum = (ipv6_find_hdr(skb, &offset,
484 							     NEXTHDR_ROUTING,
485 							     NULL, &flags)
486 					       != NEXTHDR_ROUTING);
487 
488 			set_ipv6_addr(skb, key->ipv6_proto, daddr, masked,
489 				      recalc_csum);
490 			memcpy(&flow_key->ipv6.addr.dst, masked,
491 			       sizeof(flow_key->ipv6.addr.dst));
492 		}
493 	}
494 	if (mask->ipv6_tclass) {
495 		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
496 		flow_key->ip.tos = ipv6_get_dsfield(nh);
497 	}
498 	if (mask->ipv6_label) {
499 		set_ipv6_fl(nh, ntohl(key->ipv6_label),
500 			    ntohl(mask->ipv6_label));
501 		flow_key->ipv6.label =
502 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
503 	}
504 	if (mask->ipv6_hlimit) {
505 		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
506 			       mask->ipv6_hlimit);
507 		flow_key->ip.ttl = nh->hop_limit;
508 	}
509 	return 0;
510 }
511 
512 /* Must follow skb_ensure_writable() since that can move the skb data. */
513 static void set_tp_port(struct sk_buff *skb, __be16 *port,
514 			__be16 new_port, __sum16 *check)
515 {
516 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
517 	*port = new_port;
518 }
519 
520 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
521 		   const struct ovs_key_udp *key,
522 		   const struct ovs_key_udp *mask)
523 {
524 	struct udphdr *uh;
525 	__be16 src, dst;
526 	int err;
527 
528 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
529 				  sizeof(struct udphdr));
530 	if (unlikely(err))
531 		return err;
532 
533 	uh = udp_hdr(skb);
534 	/* Either of the masks is non-zero, so do not bother checking them. */
535 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
536 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
537 
538 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
539 		if (likely(src != uh->source)) {
540 			set_tp_port(skb, &uh->source, src, &uh->check);
541 			flow_key->tp.src = src;
542 		}
543 		if (likely(dst != uh->dest)) {
544 			set_tp_port(skb, &uh->dest, dst, &uh->check);
545 			flow_key->tp.dst = dst;
546 		}
547 
548 		if (unlikely(!uh->check))
549 			uh->check = CSUM_MANGLED_0;
550 	} else {
551 		uh->source = src;
552 		uh->dest = dst;
553 		flow_key->tp.src = src;
554 		flow_key->tp.dst = dst;
555 	}
556 
557 	skb_clear_hash(skb);
558 
559 	return 0;
560 }
561 
562 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
563 		   const struct ovs_key_tcp *key,
564 		   const struct ovs_key_tcp *mask)
565 {
566 	struct tcphdr *th;
567 	__be16 src, dst;
568 	int err;
569 
570 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
571 				  sizeof(struct tcphdr));
572 	if (unlikely(err))
573 		return err;
574 
575 	th = tcp_hdr(skb);
576 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
577 	if (likely(src != th->source)) {
578 		set_tp_port(skb, &th->source, src, &th->check);
579 		flow_key->tp.src = src;
580 	}
581 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
582 	if (likely(dst != th->dest)) {
583 		set_tp_port(skb, &th->dest, dst, &th->check);
584 		flow_key->tp.dst = dst;
585 	}
586 	skb_clear_hash(skb);
587 
588 	return 0;
589 }
590 
591 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
592 		    const struct ovs_key_sctp *key,
593 		    const struct ovs_key_sctp *mask)
594 {
595 	unsigned int sctphoff = skb_transport_offset(skb);
596 	struct sctphdr *sh;
597 	__le32 old_correct_csum, new_csum, old_csum;
598 	int err;
599 
600 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
601 	if (unlikely(err))
602 		return err;
603 
604 	sh = sctp_hdr(skb);
605 	old_csum = sh->checksum;
606 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
607 
608 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
609 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
610 
611 	new_csum = sctp_compute_cksum(skb, sctphoff);
612 
613 	/* Carry any checksum errors through. */
614 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
615 
616 	skb_clear_hash(skb);
617 	flow_key->tp.src = sh->source;
618 	flow_key->tp.dst = sh->dest;
619 
620 	return 0;
621 }
622 
623 static int ovs_vport_output(struct sock *sock, struct sk_buff *skb)
624 {
625 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
626 	struct vport *vport = data->vport;
627 
628 	if (skb_cow_head(skb, data->l2_len) < 0) {
629 		kfree_skb(skb);
630 		return -ENOMEM;
631 	}
632 
633 	__skb_dst_copy(skb, data->dst);
634 	*OVS_CB(skb) = data->cb;
635 	skb->inner_protocol = data->inner_protocol;
636 	skb->vlan_tci = data->vlan_tci;
637 	skb->vlan_proto = data->vlan_proto;
638 
639 	/* Reconstruct the MAC header.  */
640 	skb_push(skb, data->l2_len);
641 	memcpy(skb->data, &data->l2_data, data->l2_len);
642 	ovs_skb_postpush_rcsum(skb, skb->data, data->l2_len);
643 	skb_reset_mac_header(skb);
644 
645 	ovs_vport_send(vport, skb);
646 	return 0;
647 }
648 
649 static unsigned int
650 ovs_dst_get_mtu(const struct dst_entry *dst)
651 {
652 	return dst->dev->mtu;
653 }
654 
655 static struct dst_ops ovs_dst_ops = {
656 	.family = AF_UNSPEC,
657 	.mtu = ovs_dst_get_mtu,
658 };
659 
660 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
661  * ovs_vport_output(), which is called once per fragmented packet.
662  */
663 static void prepare_frag(struct vport *vport, struct sk_buff *skb)
664 {
665 	unsigned int hlen = skb_network_offset(skb);
666 	struct ovs_frag_data *data;
667 
668 	data = this_cpu_ptr(&ovs_frag_data_storage);
669 	data->dst = skb->_skb_refdst;
670 	data->vport = vport;
671 	data->cb = *OVS_CB(skb);
672 	data->inner_protocol = skb->inner_protocol;
673 	data->vlan_tci = skb->vlan_tci;
674 	data->vlan_proto = skb->vlan_proto;
675 	data->l2_len = hlen;
676 	memcpy(&data->l2_data, skb->data, hlen);
677 
678 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
679 	skb_pull(skb, hlen);
680 }
681 
682 static void ovs_fragment(struct vport *vport, struct sk_buff *skb, u16 mru,
683 			 __be16 ethertype)
684 {
685 	if (skb_network_offset(skb) > MAX_L2_LEN) {
686 		OVS_NLERR(1, "L2 header too long to fragment");
687 		return;
688 	}
689 
690 	if (ethertype == htons(ETH_P_IP)) {
691 		struct dst_entry ovs_dst;
692 		unsigned long orig_dst;
693 
694 		prepare_frag(vport, skb);
695 		dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
696 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
697 		ovs_dst.dev = vport->dev;
698 
699 		orig_dst = skb->_skb_refdst;
700 		skb_dst_set_noref(skb, &ovs_dst);
701 		IPCB(skb)->frag_max_size = mru;
702 
703 		ip_do_fragment(skb->sk, skb, ovs_vport_output);
704 		refdst_drop(orig_dst);
705 	} else if (ethertype == htons(ETH_P_IPV6)) {
706 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
707 		unsigned long orig_dst;
708 		struct rt6_info ovs_rt;
709 
710 		if (!v6ops) {
711 			kfree_skb(skb);
712 			return;
713 		}
714 
715 		prepare_frag(vport, skb);
716 		memset(&ovs_rt, 0, sizeof(ovs_rt));
717 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
718 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
719 		ovs_rt.dst.dev = vport->dev;
720 
721 		orig_dst = skb->_skb_refdst;
722 		skb_dst_set_noref(skb, &ovs_rt.dst);
723 		IP6CB(skb)->frag_max_size = mru;
724 
725 		v6ops->fragment(skb->sk, skb, ovs_vport_output);
726 		refdst_drop(orig_dst);
727 	} else {
728 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
729 			  ovs_vport_name(vport), ntohs(ethertype), mru,
730 			  vport->dev->mtu);
731 		kfree_skb(skb);
732 	}
733 }
734 
735 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
736 		      struct sw_flow_key *key)
737 {
738 	struct vport *vport = ovs_vport_rcu(dp, out_port);
739 
740 	if (likely(vport)) {
741 		u16 mru = OVS_CB(skb)->mru;
742 
743 		if (likely(!mru || (skb->len <= mru + ETH_HLEN))) {
744 			ovs_vport_send(vport, skb);
745 		} else if (mru <= vport->dev->mtu) {
746 			__be16 ethertype = key->eth.type;
747 
748 			if (!is_flow_key_valid(key)) {
749 				if (eth_p_mpls(skb->protocol))
750 					ethertype = skb->inner_protocol;
751 				else
752 					ethertype = vlan_get_protocol(skb);
753 			}
754 
755 			ovs_fragment(vport, skb, mru, ethertype);
756 		} else {
757 			kfree_skb(skb);
758 		}
759 	} else {
760 		kfree_skb(skb);
761 	}
762 }
763 
764 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
765 			    struct sw_flow_key *key, const struct nlattr *attr,
766 			    const struct nlattr *actions, int actions_len)
767 {
768 	struct ip_tunnel_info info;
769 	struct dp_upcall_info upcall;
770 	const struct nlattr *a;
771 	int rem;
772 
773 	memset(&upcall, 0, sizeof(upcall));
774 	upcall.cmd = OVS_PACKET_CMD_ACTION;
775 	upcall.mru = OVS_CB(skb)->mru;
776 
777 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
778 		 a = nla_next(a, &rem)) {
779 		switch (nla_type(a)) {
780 		case OVS_USERSPACE_ATTR_USERDATA:
781 			upcall.userdata = a;
782 			break;
783 
784 		case OVS_USERSPACE_ATTR_PID:
785 			upcall.portid = nla_get_u32(a);
786 			break;
787 
788 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
789 			/* Get out tunnel info. */
790 			struct vport *vport;
791 
792 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
793 			if (vport) {
794 				int err;
795 
796 				upcall.egress_tun_info = &info;
797 				err = ovs_vport_get_egress_tun_info(vport, skb,
798 								    &upcall);
799 				if (err)
800 					upcall.egress_tun_info = NULL;
801 			}
802 
803 			break;
804 		}
805 
806 		case OVS_USERSPACE_ATTR_ACTIONS: {
807 			/* Include actions. */
808 			upcall.actions = actions;
809 			upcall.actions_len = actions_len;
810 			break;
811 		}
812 
813 		} /* End of switch. */
814 	}
815 
816 	return ovs_dp_upcall(dp, skb, key, &upcall);
817 }
818 
819 static int sample(struct datapath *dp, struct sk_buff *skb,
820 		  struct sw_flow_key *key, const struct nlattr *attr,
821 		  const struct nlattr *actions, int actions_len)
822 {
823 	const struct nlattr *acts_list = NULL;
824 	const struct nlattr *a;
825 	int rem;
826 
827 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
828 		 a = nla_next(a, &rem)) {
829 		u32 probability;
830 
831 		switch (nla_type(a)) {
832 		case OVS_SAMPLE_ATTR_PROBABILITY:
833 			probability = nla_get_u32(a);
834 			if (!probability || prandom_u32() > probability)
835 				return 0;
836 			break;
837 
838 		case OVS_SAMPLE_ATTR_ACTIONS:
839 			acts_list = a;
840 			break;
841 		}
842 	}
843 
844 	rem = nla_len(acts_list);
845 	a = nla_data(acts_list);
846 
847 	/* Actions list is empty, do nothing */
848 	if (unlikely(!rem))
849 		return 0;
850 
851 	/* The only known usage of sample action is having a single user-space
852 	 * action. Treat this usage as a special case.
853 	 * The output_userspace() should clone the skb to be sent to the
854 	 * user space. This skb will be consumed by its caller.
855 	 */
856 	if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
857 		   nla_is_last(a, rem)))
858 		return output_userspace(dp, skb, key, a, actions, actions_len);
859 
860 	skb = skb_clone(skb, GFP_ATOMIC);
861 	if (!skb)
862 		/* Skip the sample action when out of memory. */
863 		return 0;
864 
865 	if (!add_deferred_actions(skb, key, a)) {
866 		if (net_ratelimit())
867 			pr_warn("%s: deferred actions limit reached, dropping sample action\n",
868 				ovs_dp_name(dp));
869 
870 		kfree_skb(skb);
871 	}
872 	return 0;
873 }
874 
875 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
876 			 const struct nlattr *attr)
877 {
878 	struct ovs_action_hash *hash_act = nla_data(attr);
879 	u32 hash = 0;
880 
881 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
882 	hash = skb_get_hash(skb);
883 	hash = jhash_1word(hash, hash_act->hash_basis);
884 	if (!hash)
885 		hash = 0x1;
886 
887 	key->ovs_flow_hash = hash;
888 }
889 
890 static int execute_set_action(struct sk_buff *skb,
891 			      struct sw_flow_key *flow_key,
892 			      const struct nlattr *a)
893 {
894 	/* Only tunnel set execution is supported without a mask. */
895 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
896 		struct ovs_tunnel_info *tun = nla_data(a);
897 
898 		skb_dst_drop(skb);
899 		dst_hold((struct dst_entry *)tun->tun_dst);
900 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
901 		return 0;
902 	}
903 
904 	return -EINVAL;
905 }
906 
907 /* Mask is at the midpoint of the data. */
908 #define get_mask(a, type) ((const type)nla_data(a) + 1)
909 
910 static int execute_masked_set_action(struct sk_buff *skb,
911 				     struct sw_flow_key *flow_key,
912 				     const struct nlattr *a)
913 {
914 	int err = 0;
915 
916 	switch (nla_type(a)) {
917 	case OVS_KEY_ATTR_PRIORITY:
918 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
919 			       *get_mask(a, u32 *));
920 		flow_key->phy.priority = skb->priority;
921 		break;
922 
923 	case OVS_KEY_ATTR_SKB_MARK:
924 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
925 		flow_key->phy.skb_mark = skb->mark;
926 		break;
927 
928 	case OVS_KEY_ATTR_TUNNEL_INFO:
929 		/* Masked data not supported for tunnel. */
930 		err = -EINVAL;
931 		break;
932 
933 	case OVS_KEY_ATTR_ETHERNET:
934 		err = set_eth_addr(skb, flow_key, nla_data(a),
935 				   get_mask(a, struct ovs_key_ethernet *));
936 		break;
937 
938 	case OVS_KEY_ATTR_IPV4:
939 		err = set_ipv4(skb, flow_key, nla_data(a),
940 			       get_mask(a, struct ovs_key_ipv4 *));
941 		break;
942 
943 	case OVS_KEY_ATTR_IPV6:
944 		err = set_ipv6(skb, flow_key, nla_data(a),
945 			       get_mask(a, struct ovs_key_ipv6 *));
946 		break;
947 
948 	case OVS_KEY_ATTR_TCP:
949 		err = set_tcp(skb, flow_key, nla_data(a),
950 			      get_mask(a, struct ovs_key_tcp *));
951 		break;
952 
953 	case OVS_KEY_ATTR_UDP:
954 		err = set_udp(skb, flow_key, nla_data(a),
955 			      get_mask(a, struct ovs_key_udp *));
956 		break;
957 
958 	case OVS_KEY_ATTR_SCTP:
959 		err = set_sctp(skb, flow_key, nla_data(a),
960 			       get_mask(a, struct ovs_key_sctp *));
961 		break;
962 
963 	case OVS_KEY_ATTR_MPLS:
964 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
965 								    __be32 *));
966 		break;
967 
968 	case OVS_KEY_ATTR_CT_STATE:
969 	case OVS_KEY_ATTR_CT_ZONE:
970 	case OVS_KEY_ATTR_CT_MARK:
971 	case OVS_KEY_ATTR_CT_LABEL:
972 		err = -EINVAL;
973 		break;
974 	}
975 
976 	return err;
977 }
978 
979 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
980 			  struct sw_flow_key *key,
981 			  const struct nlattr *a, int rem)
982 {
983 	struct deferred_action *da;
984 
985 	if (!is_flow_key_valid(key)) {
986 		int err;
987 
988 		err = ovs_flow_key_update(skb, key);
989 		if (err)
990 			return err;
991 	}
992 	BUG_ON(!is_flow_key_valid(key));
993 
994 	if (!nla_is_last(a, rem)) {
995 		/* Recirc action is the not the last action
996 		 * of the action list, need to clone the skb.
997 		 */
998 		skb = skb_clone(skb, GFP_ATOMIC);
999 
1000 		/* Skip the recirc action when out of memory, but
1001 		 * continue on with the rest of the action list.
1002 		 */
1003 		if (!skb)
1004 			return 0;
1005 	}
1006 
1007 	da = add_deferred_actions(skb, key, NULL);
1008 	if (da) {
1009 		da->pkt_key.recirc_id = nla_get_u32(a);
1010 	} else {
1011 		kfree_skb(skb);
1012 
1013 		if (net_ratelimit())
1014 			pr_warn("%s: deferred action limit reached, drop recirc action\n",
1015 				ovs_dp_name(dp));
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 /* Execute a list of actions against 'skb'. */
1022 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1023 			      struct sw_flow_key *key,
1024 			      const struct nlattr *attr, int len)
1025 {
1026 	/* Every output action needs a separate clone of 'skb', but the common
1027 	 * case is just a single output action, so that doing a clone and
1028 	 * then freeing the original skbuff is wasteful.  So the following code
1029 	 * is slightly obscure just to avoid that.
1030 	 */
1031 	int prev_port = -1;
1032 	const struct nlattr *a;
1033 	int rem;
1034 
1035 	for (a = attr, rem = len; rem > 0;
1036 	     a = nla_next(a, &rem)) {
1037 		int err = 0;
1038 
1039 		if (unlikely(prev_port != -1)) {
1040 			struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
1041 
1042 			if (out_skb)
1043 				do_output(dp, out_skb, prev_port, key);
1044 
1045 			prev_port = -1;
1046 		}
1047 
1048 		switch (nla_type(a)) {
1049 		case OVS_ACTION_ATTR_OUTPUT:
1050 			prev_port = nla_get_u32(a);
1051 			break;
1052 
1053 		case OVS_ACTION_ATTR_USERSPACE:
1054 			output_userspace(dp, skb, key, a, attr, len);
1055 			break;
1056 
1057 		case OVS_ACTION_ATTR_HASH:
1058 			execute_hash(skb, key, a);
1059 			break;
1060 
1061 		case OVS_ACTION_ATTR_PUSH_MPLS:
1062 			err = push_mpls(skb, key, nla_data(a));
1063 			break;
1064 
1065 		case OVS_ACTION_ATTR_POP_MPLS:
1066 			err = pop_mpls(skb, key, nla_get_be16(a));
1067 			break;
1068 
1069 		case OVS_ACTION_ATTR_PUSH_VLAN:
1070 			err = push_vlan(skb, key, nla_data(a));
1071 			break;
1072 
1073 		case OVS_ACTION_ATTR_POP_VLAN:
1074 			err = pop_vlan(skb, key);
1075 			break;
1076 
1077 		case OVS_ACTION_ATTR_RECIRC:
1078 			err = execute_recirc(dp, skb, key, a, rem);
1079 			if (nla_is_last(a, rem)) {
1080 				/* If this is the last action, the skb has
1081 				 * been consumed or freed.
1082 				 * Return immediately.
1083 				 */
1084 				return err;
1085 			}
1086 			break;
1087 
1088 		case OVS_ACTION_ATTR_SET:
1089 			err = execute_set_action(skb, key, nla_data(a));
1090 			break;
1091 
1092 		case OVS_ACTION_ATTR_SET_MASKED:
1093 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1094 			err = execute_masked_set_action(skb, key, nla_data(a));
1095 			break;
1096 
1097 		case OVS_ACTION_ATTR_SAMPLE:
1098 			err = sample(dp, skb, key, a, attr, len);
1099 			break;
1100 
1101 		case OVS_ACTION_ATTR_CT:
1102 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1103 					     nla_data(a));
1104 
1105 			/* Hide stolen IP fragments from user space. */
1106 			if (err == -EINPROGRESS)
1107 				return 0;
1108 			break;
1109 		}
1110 
1111 		if (unlikely(err)) {
1112 			kfree_skb(skb);
1113 			return err;
1114 		}
1115 	}
1116 
1117 	if (prev_port != -1)
1118 		do_output(dp, skb, prev_port, key);
1119 	else
1120 		consume_skb(skb);
1121 
1122 	return 0;
1123 }
1124 
1125 static void process_deferred_actions(struct datapath *dp)
1126 {
1127 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1128 
1129 	/* Do not touch the FIFO in case there is no deferred actions. */
1130 	if (action_fifo_is_empty(fifo))
1131 		return;
1132 
1133 	/* Finishing executing all deferred actions. */
1134 	do {
1135 		struct deferred_action *da = action_fifo_get(fifo);
1136 		struct sk_buff *skb = da->skb;
1137 		struct sw_flow_key *key = &da->pkt_key;
1138 		const struct nlattr *actions = da->actions;
1139 
1140 		if (actions)
1141 			do_execute_actions(dp, skb, key, actions,
1142 					   nla_len(actions));
1143 		else
1144 			ovs_dp_process_packet(skb, key);
1145 	} while (!action_fifo_is_empty(fifo));
1146 
1147 	/* Reset FIFO for the next packet.  */
1148 	action_fifo_init(fifo);
1149 }
1150 
1151 /* Execute a list of actions against 'skb'. */
1152 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1153 			const struct sw_flow_actions *acts,
1154 			struct sw_flow_key *key)
1155 {
1156 	int level = this_cpu_read(exec_actions_level);
1157 	int err;
1158 
1159 	this_cpu_inc(exec_actions_level);
1160 	err = do_execute_actions(dp, skb, key,
1161 				 acts->actions, acts->actions_len);
1162 
1163 	if (!level)
1164 		process_deferred_actions(dp);
1165 
1166 	this_cpu_dec(exec_actions_level);
1167 	return err;
1168 }
1169 
1170 int action_fifos_init(void)
1171 {
1172 	action_fifos = alloc_percpu(struct action_fifo);
1173 	if (!action_fifos)
1174 		return -ENOMEM;
1175 
1176 	return 0;
1177 }
1178 
1179 void action_fifos_exit(void)
1180 {
1181 	free_percpu(action_fifos);
1182 }
1183