1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2007-2017 Nicira, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/skbuff.h> 9 #include <linux/in.h> 10 #include <linux/ip.h> 11 #include <linux/openvswitch.h> 12 #include <linux/netfilter_ipv6.h> 13 #include <linux/sctp.h> 14 #include <linux/tcp.h> 15 #include <linux/udp.h> 16 #include <linux/in6.h> 17 #include <linux/if_arp.h> 18 #include <linux/if_vlan.h> 19 20 #include <net/dst.h> 21 #include <net/ip.h> 22 #include <net/ipv6.h> 23 #include <net/ip6_fib.h> 24 #include <net/checksum.h> 25 #include <net/dsfield.h> 26 #include <net/mpls.h> 27 #include <net/sctp/checksum.h> 28 29 #include "datapath.h" 30 #include "flow.h" 31 #include "conntrack.h" 32 #include "vport.h" 33 #include "flow_netlink.h" 34 35 struct deferred_action { 36 struct sk_buff *skb; 37 const struct nlattr *actions; 38 int actions_len; 39 40 /* Store pkt_key clone when creating deferred action. */ 41 struct sw_flow_key pkt_key; 42 }; 43 44 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN) 45 struct ovs_frag_data { 46 unsigned long dst; 47 struct vport *vport; 48 struct ovs_skb_cb cb; 49 __be16 inner_protocol; 50 u16 network_offset; /* valid only for MPLS */ 51 u16 vlan_tci; 52 __be16 vlan_proto; 53 unsigned int l2_len; 54 u8 mac_proto; 55 u8 l2_data[MAX_L2_LEN]; 56 }; 57 58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage); 59 60 #define DEFERRED_ACTION_FIFO_SIZE 10 61 #define OVS_RECURSION_LIMIT 5 62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2) 63 struct action_fifo { 64 int head; 65 int tail; 66 /* Deferred action fifo queue storage. */ 67 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; 68 }; 69 70 struct action_flow_keys { 71 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD]; 72 }; 73 74 static struct action_fifo __percpu *action_fifos; 75 static struct action_flow_keys __percpu *flow_keys; 76 static DEFINE_PER_CPU(int, exec_actions_level); 77 78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys' 79 * space. Return NULL if out of key spaces. 80 */ 81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_) 82 { 83 struct action_flow_keys *keys = this_cpu_ptr(flow_keys); 84 int level = this_cpu_read(exec_actions_level); 85 struct sw_flow_key *key = NULL; 86 87 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) { 88 key = &keys->key[level - 1]; 89 *key = *key_; 90 } 91 92 return key; 93 } 94 95 static void action_fifo_init(struct action_fifo *fifo) 96 { 97 fifo->head = 0; 98 fifo->tail = 0; 99 } 100 101 static bool action_fifo_is_empty(const struct action_fifo *fifo) 102 { 103 return (fifo->head == fifo->tail); 104 } 105 106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo) 107 { 108 if (action_fifo_is_empty(fifo)) 109 return NULL; 110 111 return &fifo->fifo[fifo->tail++]; 112 } 113 114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo) 115 { 116 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) 117 return NULL; 118 119 return &fifo->fifo[fifo->head++]; 120 } 121 122 /* Return true if fifo is not full */ 123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb, 124 const struct sw_flow_key *key, 125 const struct nlattr *actions, 126 const int actions_len) 127 { 128 struct action_fifo *fifo; 129 struct deferred_action *da; 130 131 fifo = this_cpu_ptr(action_fifos); 132 da = action_fifo_put(fifo); 133 if (da) { 134 da->skb = skb; 135 da->actions = actions; 136 da->actions_len = actions_len; 137 da->pkt_key = *key; 138 } 139 140 return da; 141 } 142 143 static void invalidate_flow_key(struct sw_flow_key *key) 144 { 145 key->mac_proto |= SW_FLOW_KEY_INVALID; 146 } 147 148 static bool is_flow_key_valid(const struct sw_flow_key *key) 149 { 150 return !(key->mac_proto & SW_FLOW_KEY_INVALID); 151 } 152 153 static int clone_execute(struct datapath *dp, struct sk_buff *skb, 154 struct sw_flow_key *key, 155 u32 recirc_id, 156 const struct nlattr *actions, int len, 157 bool last, bool clone_flow_key); 158 159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 160 struct sw_flow_key *key, 161 const struct nlattr *attr, int len); 162 163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, 164 const struct ovs_action_push_mpls *mpls) 165 { 166 int err; 167 168 err = skb_mpls_push(skb, mpls->mpls_lse, mpls->mpls_ethertype, 169 skb->mac_len); 170 if (err) 171 return err; 172 173 invalidate_flow_key(key); 174 return 0; 175 } 176 177 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, 178 const __be16 ethertype) 179 { 180 int err; 181 182 err = skb_mpls_pop(skb, ethertype, skb->mac_len); 183 if (err) 184 return err; 185 186 invalidate_flow_key(key); 187 return 0; 188 } 189 190 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, 191 const __be32 *mpls_lse, const __be32 *mask) 192 { 193 struct mpls_shim_hdr *stack; 194 __be32 lse; 195 int err; 196 197 stack = mpls_hdr(skb); 198 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask); 199 err = skb_mpls_update_lse(skb, lse); 200 if (err) 201 return err; 202 203 flow_key->mpls.top_lse = lse; 204 return 0; 205 } 206 207 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) 208 { 209 int err; 210 211 err = skb_vlan_pop(skb); 212 if (skb_vlan_tag_present(skb)) { 213 invalidate_flow_key(key); 214 } else { 215 key->eth.vlan.tci = 0; 216 key->eth.vlan.tpid = 0; 217 } 218 return err; 219 } 220 221 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, 222 const struct ovs_action_push_vlan *vlan) 223 { 224 if (skb_vlan_tag_present(skb)) { 225 invalidate_flow_key(key); 226 } else { 227 key->eth.vlan.tci = vlan->vlan_tci; 228 key->eth.vlan.tpid = vlan->vlan_tpid; 229 } 230 return skb_vlan_push(skb, vlan->vlan_tpid, 231 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK); 232 } 233 234 /* 'src' is already properly masked. */ 235 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) 236 { 237 u16 *dst = (u16 *)dst_; 238 const u16 *src = (const u16 *)src_; 239 const u16 *mask = (const u16 *)mask_; 240 241 OVS_SET_MASKED(dst[0], src[0], mask[0]); 242 OVS_SET_MASKED(dst[1], src[1], mask[1]); 243 OVS_SET_MASKED(dst[2], src[2], mask[2]); 244 } 245 246 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, 247 const struct ovs_key_ethernet *key, 248 const struct ovs_key_ethernet *mask) 249 { 250 int err; 251 252 err = skb_ensure_writable(skb, ETH_HLEN); 253 if (unlikely(err)) 254 return err; 255 256 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 257 258 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, 259 mask->eth_src); 260 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, 261 mask->eth_dst); 262 263 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 264 265 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); 266 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); 267 return 0; 268 } 269 270 /* pop_eth does not support VLAN packets as this action is never called 271 * for them. 272 */ 273 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key) 274 { 275 skb_pull_rcsum(skb, ETH_HLEN); 276 skb_reset_mac_header(skb); 277 skb_reset_mac_len(skb); 278 279 /* safe right before invalidate_flow_key */ 280 key->mac_proto = MAC_PROTO_NONE; 281 invalidate_flow_key(key); 282 return 0; 283 } 284 285 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key, 286 const struct ovs_action_push_eth *ethh) 287 { 288 struct ethhdr *hdr; 289 290 /* Add the new Ethernet header */ 291 if (skb_cow_head(skb, ETH_HLEN) < 0) 292 return -ENOMEM; 293 294 skb_push(skb, ETH_HLEN); 295 skb_reset_mac_header(skb); 296 skb_reset_mac_len(skb); 297 298 hdr = eth_hdr(skb); 299 ether_addr_copy(hdr->h_source, ethh->addresses.eth_src); 300 ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst); 301 hdr->h_proto = skb->protocol; 302 303 skb_postpush_rcsum(skb, hdr, ETH_HLEN); 304 305 /* safe right before invalidate_flow_key */ 306 key->mac_proto = MAC_PROTO_ETHERNET; 307 invalidate_flow_key(key); 308 return 0; 309 } 310 311 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key, 312 const struct nshhdr *nh) 313 { 314 int err; 315 316 err = nsh_push(skb, nh); 317 if (err) 318 return err; 319 320 /* safe right before invalidate_flow_key */ 321 key->mac_proto = MAC_PROTO_NONE; 322 invalidate_flow_key(key); 323 return 0; 324 } 325 326 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key) 327 { 328 int err; 329 330 err = nsh_pop(skb); 331 if (err) 332 return err; 333 334 /* safe right before invalidate_flow_key */ 335 if (skb->protocol == htons(ETH_P_TEB)) 336 key->mac_proto = MAC_PROTO_ETHERNET; 337 else 338 key->mac_proto = MAC_PROTO_NONE; 339 invalidate_flow_key(key); 340 return 0; 341 } 342 343 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, 344 __be32 addr, __be32 new_addr) 345 { 346 int transport_len = skb->len - skb_transport_offset(skb); 347 348 if (nh->frag_off & htons(IP_OFFSET)) 349 return; 350 351 if (nh->protocol == IPPROTO_TCP) { 352 if (likely(transport_len >= sizeof(struct tcphdr))) 353 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, 354 addr, new_addr, true); 355 } else if (nh->protocol == IPPROTO_UDP) { 356 if (likely(transport_len >= sizeof(struct udphdr))) { 357 struct udphdr *uh = udp_hdr(skb); 358 359 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 360 inet_proto_csum_replace4(&uh->check, skb, 361 addr, new_addr, true); 362 if (!uh->check) 363 uh->check = CSUM_MANGLED_0; 364 } 365 } 366 } 367 } 368 369 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, 370 __be32 *addr, __be32 new_addr) 371 { 372 update_ip_l4_checksum(skb, nh, *addr, new_addr); 373 csum_replace4(&nh->check, *addr, new_addr); 374 skb_clear_hash(skb); 375 *addr = new_addr; 376 } 377 378 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, 379 __be32 addr[4], const __be32 new_addr[4]) 380 { 381 int transport_len = skb->len - skb_transport_offset(skb); 382 383 if (l4_proto == NEXTHDR_TCP) { 384 if (likely(transport_len >= sizeof(struct tcphdr))) 385 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, 386 addr, new_addr, true); 387 } else if (l4_proto == NEXTHDR_UDP) { 388 if (likely(transport_len >= sizeof(struct udphdr))) { 389 struct udphdr *uh = udp_hdr(skb); 390 391 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 392 inet_proto_csum_replace16(&uh->check, skb, 393 addr, new_addr, true); 394 if (!uh->check) 395 uh->check = CSUM_MANGLED_0; 396 } 397 } 398 } else if (l4_proto == NEXTHDR_ICMP) { 399 if (likely(transport_len >= sizeof(struct icmp6hdr))) 400 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, 401 skb, addr, new_addr, true); 402 } 403 } 404 405 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], 406 const __be32 mask[4], __be32 masked[4]) 407 { 408 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); 409 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); 410 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); 411 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); 412 } 413 414 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, 415 __be32 addr[4], const __be32 new_addr[4], 416 bool recalculate_csum) 417 { 418 if (recalculate_csum) 419 update_ipv6_checksum(skb, l4_proto, addr, new_addr); 420 421 skb_clear_hash(skb); 422 memcpy(addr, new_addr, sizeof(__be32[4])); 423 } 424 425 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask) 426 { 427 /* Bits 21-24 are always unmasked, so this retains their values. */ 428 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16)); 429 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8)); 430 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask); 431 } 432 433 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, 434 u8 mask) 435 { 436 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); 437 438 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); 439 nh->ttl = new_ttl; 440 } 441 442 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, 443 const struct ovs_key_ipv4 *key, 444 const struct ovs_key_ipv4 *mask) 445 { 446 struct iphdr *nh; 447 __be32 new_addr; 448 int err; 449 450 err = skb_ensure_writable(skb, skb_network_offset(skb) + 451 sizeof(struct iphdr)); 452 if (unlikely(err)) 453 return err; 454 455 nh = ip_hdr(skb); 456 457 /* Setting an IP addresses is typically only a side effect of 458 * matching on them in the current userspace implementation, so it 459 * makes sense to check if the value actually changed. 460 */ 461 if (mask->ipv4_src) { 462 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); 463 464 if (unlikely(new_addr != nh->saddr)) { 465 set_ip_addr(skb, nh, &nh->saddr, new_addr); 466 flow_key->ipv4.addr.src = new_addr; 467 } 468 } 469 if (mask->ipv4_dst) { 470 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); 471 472 if (unlikely(new_addr != nh->daddr)) { 473 set_ip_addr(skb, nh, &nh->daddr, new_addr); 474 flow_key->ipv4.addr.dst = new_addr; 475 } 476 } 477 if (mask->ipv4_tos) { 478 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); 479 flow_key->ip.tos = nh->tos; 480 } 481 if (mask->ipv4_ttl) { 482 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); 483 flow_key->ip.ttl = nh->ttl; 484 } 485 486 return 0; 487 } 488 489 static bool is_ipv6_mask_nonzero(const __be32 addr[4]) 490 { 491 return !!(addr[0] | addr[1] | addr[2] | addr[3]); 492 } 493 494 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, 495 const struct ovs_key_ipv6 *key, 496 const struct ovs_key_ipv6 *mask) 497 { 498 struct ipv6hdr *nh; 499 int err; 500 501 err = skb_ensure_writable(skb, skb_network_offset(skb) + 502 sizeof(struct ipv6hdr)); 503 if (unlikely(err)) 504 return err; 505 506 nh = ipv6_hdr(skb); 507 508 /* Setting an IP addresses is typically only a side effect of 509 * matching on them in the current userspace implementation, so it 510 * makes sense to check if the value actually changed. 511 */ 512 if (is_ipv6_mask_nonzero(mask->ipv6_src)) { 513 __be32 *saddr = (__be32 *)&nh->saddr; 514 __be32 masked[4]; 515 516 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); 517 518 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { 519 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, 520 true); 521 memcpy(&flow_key->ipv6.addr.src, masked, 522 sizeof(flow_key->ipv6.addr.src)); 523 } 524 } 525 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { 526 unsigned int offset = 0; 527 int flags = IP6_FH_F_SKIP_RH; 528 bool recalc_csum = true; 529 __be32 *daddr = (__be32 *)&nh->daddr; 530 __be32 masked[4]; 531 532 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); 533 534 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { 535 if (ipv6_ext_hdr(nh->nexthdr)) 536 recalc_csum = (ipv6_find_hdr(skb, &offset, 537 NEXTHDR_ROUTING, 538 NULL, &flags) 539 != NEXTHDR_ROUTING); 540 541 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, 542 recalc_csum); 543 memcpy(&flow_key->ipv6.addr.dst, masked, 544 sizeof(flow_key->ipv6.addr.dst)); 545 } 546 } 547 if (mask->ipv6_tclass) { 548 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass); 549 flow_key->ip.tos = ipv6_get_dsfield(nh); 550 } 551 if (mask->ipv6_label) { 552 set_ipv6_fl(nh, ntohl(key->ipv6_label), 553 ntohl(mask->ipv6_label)); 554 flow_key->ipv6.label = 555 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 556 } 557 if (mask->ipv6_hlimit) { 558 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit, 559 mask->ipv6_hlimit); 560 flow_key->ip.ttl = nh->hop_limit; 561 } 562 return 0; 563 } 564 565 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key, 566 const struct nlattr *a) 567 { 568 struct nshhdr *nh; 569 size_t length; 570 int err; 571 u8 flags; 572 u8 ttl; 573 int i; 574 575 struct ovs_key_nsh key; 576 struct ovs_key_nsh mask; 577 578 err = nsh_key_from_nlattr(a, &key, &mask); 579 if (err) 580 return err; 581 582 /* Make sure the NSH base header is there */ 583 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN)) 584 return -ENOMEM; 585 586 nh = nsh_hdr(skb); 587 length = nsh_hdr_len(nh); 588 589 /* Make sure the whole NSH header is there */ 590 err = skb_ensure_writable(skb, skb_network_offset(skb) + 591 length); 592 if (unlikely(err)) 593 return err; 594 595 nh = nsh_hdr(skb); 596 skb_postpull_rcsum(skb, nh, length); 597 flags = nsh_get_flags(nh); 598 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags); 599 flow_key->nsh.base.flags = flags; 600 ttl = nsh_get_ttl(nh); 601 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl); 602 flow_key->nsh.base.ttl = ttl; 603 nsh_set_flags_and_ttl(nh, flags, ttl); 604 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr, 605 mask.base.path_hdr); 606 flow_key->nsh.base.path_hdr = nh->path_hdr; 607 switch (nh->mdtype) { 608 case NSH_M_TYPE1: 609 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) { 610 nh->md1.context[i] = 611 OVS_MASKED(nh->md1.context[i], key.context[i], 612 mask.context[i]); 613 } 614 memcpy(flow_key->nsh.context, nh->md1.context, 615 sizeof(nh->md1.context)); 616 break; 617 case NSH_M_TYPE2: 618 memset(flow_key->nsh.context, 0, 619 sizeof(flow_key->nsh.context)); 620 break; 621 default: 622 return -EINVAL; 623 } 624 skb_postpush_rcsum(skb, nh, length); 625 return 0; 626 } 627 628 /* Must follow skb_ensure_writable() since that can move the skb data. */ 629 static void set_tp_port(struct sk_buff *skb, __be16 *port, 630 __be16 new_port, __sum16 *check) 631 { 632 inet_proto_csum_replace2(check, skb, *port, new_port, false); 633 *port = new_port; 634 } 635 636 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, 637 const struct ovs_key_udp *key, 638 const struct ovs_key_udp *mask) 639 { 640 struct udphdr *uh; 641 __be16 src, dst; 642 int err; 643 644 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 645 sizeof(struct udphdr)); 646 if (unlikely(err)) 647 return err; 648 649 uh = udp_hdr(skb); 650 /* Either of the masks is non-zero, so do not bother checking them. */ 651 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); 652 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); 653 654 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { 655 if (likely(src != uh->source)) { 656 set_tp_port(skb, &uh->source, src, &uh->check); 657 flow_key->tp.src = src; 658 } 659 if (likely(dst != uh->dest)) { 660 set_tp_port(skb, &uh->dest, dst, &uh->check); 661 flow_key->tp.dst = dst; 662 } 663 664 if (unlikely(!uh->check)) 665 uh->check = CSUM_MANGLED_0; 666 } else { 667 uh->source = src; 668 uh->dest = dst; 669 flow_key->tp.src = src; 670 flow_key->tp.dst = dst; 671 } 672 673 skb_clear_hash(skb); 674 675 return 0; 676 } 677 678 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, 679 const struct ovs_key_tcp *key, 680 const struct ovs_key_tcp *mask) 681 { 682 struct tcphdr *th; 683 __be16 src, dst; 684 int err; 685 686 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 687 sizeof(struct tcphdr)); 688 if (unlikely(err)) 689 return err; 690 691 th = tcp_hdr(skb); 692 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); 693 if (likely(src != th->source)) { 694 set_tp_port(skb, &th->source, src, &th->check); 695 flow_key->tp.src = src; 696 } 697 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); 698 if (likely(dst != th->dest)) { 699 set_tp_port(skb, &th->dest, dst, &th->check); 700 flow_key->tp.dst = dst; 701 } 702 skb_clear_hash(skb); 703 704 return 0; 705 } 706 707 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, 708 const struct ovs_key_sctp *key, 709 const struct ovs_key_sctp *mask) 710 { 711 unsigned int sctphoff = skb_transport_offset(skb); 712 struct sctphdr *sh; 713 __le32 old_correct_csum, new_csum, old_csum; 714 int err; 715 716 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); 717 if (unlikely(err)) 718 return err; 719 720 sh = sctp_hdr(skb); 721 old_csum = sh->checksum; 722 old_correct_csum = sctp_compute_cksum(skb, sctphoff); 723 724 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); 725 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); 726 727 new_csum = sctp_compute_cksum(skb, sctphoff); 728 729 /* Carry any checksum errors through. */ 730 sh->checksum = old_csum ^ old_correct_csum ^ new_csum; 731 732 skb_clear_hash(skb); 733 flow_key->tp.src = sh->source; 734 flow_key->tp.dst = sh->dest; 735 736 return 0; 737 } 738 739 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb) 740 { 741 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage); 742 struct vport *vport = data->vport; 743 744 if (skb_cow_head(skb, data->l2_len) < 0) { 745 kfree_skb(skb); 746 return -ENOMEM; 747 } 748 749 __skb_dst_copy(skb, data->dst); 750 *OVS_CB(skb) = data->cb; 751 skb->inner_protocol = data->inner_protocol; 752 if (data->vlan_tci & VLAN_CFI_MASK) 753 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK); 754 else 755 __vlan_hwaccel_clear_tag(skb); 756 757 /* Reconstruct the MAC header. */ 758 skb_push(skb, data->l2_len); 759 memcpy(skb->data, &data->l2_data, data->l2_len); 760 skb_postpush_rcsum(skb, skb->data, data->l2_len); 761 skb_reset_mac_header(skb); 762 763 if (eth_p_mpls(skb->protocol)) { 764 skb->inner_network_header = skb->network_header; 765 skb_set_network_header(skb, data->network_offset); 766 skb_reset_mac_len(skb); 767 } 768 769 ovs_vport_send(vport, skb, data->mac_proto); 770 return 0; 771 } 772 773 static unsigned int 774 ovs_dst_get_mtu(const struct dst_entry *dst) 775 { 776 return dst->dev->mtu; 777 } 778 779 static struct dst_ops ovs_dst_ops = { 780 .family = AF_UNSPEC, 781 .mtu = ovs_dst_get_mtu, 782 }; 783 784 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is 785 * ovs_vport_output(), which is called once per fragmented packet. 786 */ 787 static void prepare_frag(struct vport *vport, struct sk_buff *skb, 788 u16 orig_network_offset, u8 mac_proto) 789 { 790 unsigned int hlen = skb_network_offset(skb); 791 struct ovs_frag_data *data; 792 793 data = this_cpu_ptr(&ovs_frag_data_storage); 794 data->dst = skb->_skb_refdst; 795 data->vport = vport; 796 data->cb = *OVS_CB(skb); 797 data->inner_protocol = skb->inner_protocol; 798 data->network_offset = orig_network_offset; 799 if (skb_vlan_tag_present(skb)) 800 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK; 801 else 802 data->vlan_tci = 0; 803 data->vlan_proto = skb->vlan_proto; 804 data->mac_proto = mac_proto; 805 data->l2_len = hlen; 806 memcpy(&data->l2_data, skb->data, hlen); 807 808 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 809 skb_pull(skb, hlen); 810 } 811 812 static void ovs_fragment(struct net *net, struct vport *vport, 813 struct sk_buff *skb, u16 mru, 814 struct sw_flow_key *key) 815 { 816 u16 orig_network_offset = 0; 817 818 if (eth_p_mpls(skb->protocol)) { 819 orig_network_offset = skb_network_offset(skb); 820 skb->network_header = skb->inner_network_header; 821 } 822 823 if (skb_network_offset(skb) > MAX_L2_LEN) { 824 OVS_NLERR(1, "L2 header too long to fragment"); 825 goto err; 826 } 827 828 if (key->eth.type == htons(ETH_P_IP)) { 829 struct dst_entry ovs_dst; 830 unsigned long orig_dst; 831 832 prepare_frag(vport, skb, orig_network_offset, 833 ovs_key_mac_proto(key)); 834 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1, 835 DST_OBSOLETE_NONE, DST_NOCOUNT); 836 ovs_dst.dev = vport->dev; 837 838 orig_dst = skb->_skb_refdst; 839 skb_dst_set_noref(skb, &ovs_dst); 840 IPCB(skb)->frag_max_size = mru; 841 842 ip_do_fragment(net, skb->sk, skb, ovs_vport_output); 843 refdst_drop(orig_dst); 844 } else if (key->eth.type == htons(ETH_P_IPV6)) { 845 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops(); 846 unsigned long orig_dst; 847 struct rt6_info ovs_rt; 848 849 if (!v6ops) 850 goto err; 851 852 prepare_frag(vport, skb, orig_network_offset, 853 ovs_key_mac_proto(key)); 854 memset(&ovs_rt, 0, sizeof(ovs_rt)); 855 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, 856 DST_OBSOLETE_NONE, DST_NOCOUNT); 857 ovs_rt.dst.dev = vport->dev; 858 859 orig_dst = skb->_skb_refdst; 860 skb_dst_set_noref(skb, &ovs_rt.dst); 861 IP6CB(skb)->frag_max_size = mru; 862 863 v6ops->fragment(net, skb->sk, skb, ovs_vport_output); 864 refdst_drop(orig_dst); 865 } else { 866 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", 867 ovs_vport_name(vport), ntohs(key->eth.type), mru, 868 vport->dev->mtu); 869 goto err; 870 } 871 872 return; 873 err: 874 kfree_skb(skb); 875 } 876 877 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, 878 struct sw_flow_key *key) 879 { 880 struct vport *vport = ovs_vport_rcu(dp, out_port); 881 882 if (likely(vport)) { 883 u16 mru = OVS_CB(skb)->mru; 884 u32 cutlen = OVS_CB(skb)->cutlen; 885 886 if (unlikely(cutlen > 0)) { 887 if (skb->len - cutlen > ovs_mac_header_len(key)) 888 pskb_trim(skb, skb->len - cutlen); 889 else 890 pskb_trim(skb, ovs_mac_header_len(key)); 891 } 892 893 if (likely(!mru || 894 (skb->len <= mru + vport->dev->hard_header_len))) { 895 ovs_vport_send(vport, skb, ovs_key_mac_proto(key)); 896 } else if (mru <= vport->dev->mtu) { 897 struct net *net = read_pnet(&dp->net); 898 899 ovs_fragment(net, vport, skb, mru, key); 900 } else { 901 kfree_skb(skb); 902 } 903 } else { 904 kfree_skb(skb); 905 } 906 } 907 908 static int output_userspace(struct datapath *dp, struct sk_buff *skb, 909 struct sw_flow_key *key, const struct nlattr *attr, 910 const struct nlattr *actions, int actions_len, 911 uint32_t cutlen) 912 { 913 struct dp_upcall_info upcall; 914 const struct nlattr *a; 915 int rem; 916 917 memset(&upcall, 0, sizeof(upcall)); 918 upcall.cmd = OVS_PACKET_CMD_ACTION; 919 upcall.mru = OVS_CB(skb)->mru; 920 921 for (a = nla_data(attr), rem = nla_len(attr); rem > 0; 922 a = nla_next(a, &rem)) { 923 switch (nla_type(a)) { 924 case OVS_USERSPACE_ATTR_USERDATA: 925 upcall.userdata = a; 926 break; 927 928 case OVS_USERSPACE_ATTR_PID: 929 upcall.portid = nla_get_u32(a); 930 break; 931 932 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { 933 /* Get out tunnel info. */ 934 struct vport *vport; 935 936 vport = ovs_vport_rcu(dp, nla_get_u32(a)); 937 if (vport) { 938 int err; 939 940 err = dev_fill_metadata_dst(vport->dev, skb); 941 if (!err) 942 upcall.egress_tun_info = skb_tunnel_info(skb); 943 } 944 945 break; 946 } 947 948 case OVS_USERSPACE_ATTR_ACTIONS: { 949 /* Include actions. */ 950 upcall.actions = actions; 951 upcall.actions_len = actions_len; 952 break; 953 } 954 955 } /* End of switch. */ 956 } 957 958 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen); 959 } 960 961 /* When 'last' is true, sample() should always consume the 'skb'. 962 * Otherwise, sample() should keep 'skb' intact regardless what 963 * actions are executed within sample(). 964 */ 965 static int sample(struct datapath *dp, struct sk_buff *skb, 966 struct sw_flow_key *key, const struct nlattr *attr, 967 bool last) 968 { 969 struct nlattr *actions; 970 struct nlattr *sample_arg; 971 int rem = nla_len(attr); 972 const struct sample_arg *arg; 973 bool clone_flow_key; 974 975 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */ 976 sample_arg = nla_data(attr); 977 arg = nla_data(sample_arg); 978 actions = nla_next(sample_arg, &rem); 979 980 if ((arg->probability != U32_MAX) && 981 (!arg->probability || prandom_u32() > arg->probability)) { 982 if (last) 983 consume_skb(skb); 984 return 0; 985 } 986 987 clone_flow_key = !arg->exec; 988 return clone_execute(dp, skb, key, 0, actions, rem, last, 989 clone_flow_key); 990 } 991 992 /* When 'last' is true, clone() should always consume the 'skb'. 993 * Otherwise, clone() should keep 'skb' intact regardless what 994 * actions are executed within clone(). 995 */ 996 static int clone(struct datapath *dp, struct sk_buff *skb, 997 struct sw_flow_key *key, const struct nlattr *attr, 998 bool last) 999 { 1000 struct nlattr *actions; 1001 struct nlattr *clone_arg; 1002 int rem = nla_len(attr); 1003 bool dont_clone_flow_key; 1004 1005 /* The first action is always 'OVS_CLONE_ATTR_ARG'. */ 1006 clone_arg = nla_data(attr); 1007 dont_clone_flow_key = nla_get_u32(clone_arg); 1008 actions = nla_next(clone_arg, &rem); 1009 1010 return clone_execute(dp, skb, key, 0, actions, rem, last, 1011 !dont_clone_flow_key); 1012 } 1013 1014 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, 1015 const struct nlattr *attr) 1016 { 1017 struct ovs_action_hash *hash_act = nla_data(attr); 1018 u32 hash = 0; 1019 1020 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */ 1021 hash = skb_get_hash(skb); 1022 hash = jhash_1word(hash, hash_act->hash_basis); 1023 if (!hash) 1024 hash = 0x1; 1025 1026 key->ovs_flow_hash = hash; 1027 } 1028 1029 static int execute_set_action(struct sk_buff *skb, 1030 struct sw_flow_key *flow_key, 1031 const struct nlattr *a) 1032 { 1033 /* Only tunnel set execution is supported without a mask. */ 1034 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { 1035 struct ovs_tunnel_info *tun = nla_data(a); 1036 1037 skb_dst_drop(skb); 1038 dst_hold((struct dst_entry *)tun->tun_dst); 1039 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); 1040 return 0; 1041 } 1042 1043 return -EINVAL; 1044 } 1045 1046 /* Mask is at the midpoint of the data. */ 1047 #define get_mask(a, type) ((const type)nla_data(a) + 1) 1048 1049 static int execute_masked_set_action(struct sk_buff *skb, 1050 struct sw_flow_key *flow_key, 1051 const struct nlattr *a) 1052 { 1053 int err = 0; 1054 1055 switch (nla_type(a)) { 1056 case OVS_KEY_ATTR_PRIORITY: 1057 OVS_SET_MASKED(skb->priority, nla_get_u32(a), 1058 *get_mask(a, u32 *)); 1059 flow_key->phy.priority = skb->priority; 1060 break; 1061 1062 case OVS_KEY_ATTR_SKB_MARK: 1063 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); 1064 flow_key->phy.skb_mark = skb->mark; 1065 break; 1066 1067 case OVS_KEY_ATTR_TUNNEL_INFO: 1068 /* Masked data not supported for tunnel. */ 1069 err = -EINVAL; 1070 break; 1071 1072 case OVS_KEY_ATTR_ETHERNET: 1073 err = set_eth_addr(skb, flow_key, nla_data(a), 1074 get_mask(a, struct ovs_key_ethernet *)); 1075 break; 1076 1077 case OVS_KEY_ATTR_NSH: 1078 err = set_nsh(skb, flow_key, a); 1079 break; 1080 1081 case OVS_KEY_ATTR_IPV4: 1082 err = set_ipv4(skb, flow_key, nla_data(a), 1083 get_mask(a, struct ovs_key_ipv4 *)); 1084 break; 1085 1086 case OVS_KEY_ATTR_IPV6: 1087 err = set_ipv6(skb, flow_key, nla_data(a), 1088 get_mask(a, struct ovs_key_ipv6 *)); 1089 break; 1090 1091 case OVS_KEY_ATTR_TCP: 1092 err = set_tcp(skb, flow_key, nla_data(a), 1093 get_mask(a, struct ovs_key_tcp *)); 1094 break; 1095 1096 case OVS_KEY_ATTR_UDP: 1097 err = set_udp(skb, flow_key, nla_data(a), 1098 get_mask(a, struct ovs_key_udp *)); 1099 break; 1100 1101 case OVS_KEY_ATTR_SCTP: 1102 err = set_sctp(skb, flow_key, nla_data(a), 1103 get_mask(a, struct ovs_key_sctp *)); 1104 break; 1105 1106 case OVS_KEY_ATTR_MPLS: 1107 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, 1108 __be32 *)); 1109 break; 1110 1111 case OVS_KEY_ATTR_CT_STATE: 1112 case OVS_KEY_ATTR_CT_ZONE: 1113 case OVS_KEY_ATTR_CT_MARK: 1114 case OVS_KEY_ATTR_CT_LABELS: 1115 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4: 1116 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6: 1117 err = -EINVAL; 1118 break; 1119 } 1120 1121 return err; 1122 } 1123 1124 static int execute_recirc(struct datapath *dp, struct sk_buff *skb, 1125 struct sw_flow_key *key, 1126 const struct nlattr *a, bool last) 1127 { 1128 u32 recirc_id; 1129 1130 if (!is_flow_key_valid(key)) { 1131 int err; 1132 1133 err = ovs_flow_key_update(skb, key); 1134 if (err) 1135 return err; 1136 } 1137 BUG_ON(!is_flow_key_valid(key)); 1138 1139 recirc_id = nla_get_u32(a); 1140 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true); 1141 } 1142 1143 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb, 1144 struct sw_flow_key *key, 1145 const struct nlattr *attr, bool last) 1146 { 1147 const struct nlattr *actions, *cpl_arg; 1148 const struct check_pkt_len_arg *arg; 1149 int rem = nla_len(attr); 1150 bool clone_flow_key; 1151 1152 /* The first netlink attribute in 'attr' is always 1153 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'. 1154 */ 1155 cpl_arg = nla_data(attr); 1156 arg = nla_data(cpl_arg); 1157 1158 if (skb->len <= arg->pkt_len) { 1159 /* Second netlink attribute in 'attr' is always 1160 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'. 1161 */ 1162 actions = nla_next(cpl_arg, &rem); 1163 clone_flow_key = !arg->exec_for_lesser_equal; 1164 } else { 1165 /* Third netlink attribute in 'attr' is always 1166 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'. 1167 */ 1168 actions = nla_next(cpl_arg, &rem); 1169 actions = nla_next(actions, &rem); 1170 clone_flow_key = !arg->exec_for_greater; 1171 } 1172 1173 return clone_execute(dp, skb, key, 0, nla_data(actions), 1174 nla_len(actions), last, clone_flow_key); 1175 } 1176 1177 /* Execute a list of actions against 'skb'. */ 1178 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 1179 struct sw_flow_key *key, 1180 const struct nlattr *attr, int len) 1181 { 1182 const struct nlattr *a; 1183 int rem; 1184 1185 for (a = attr, rem = len; rem > 0; 1186 a = nla_next(a, &rem)) { 1187 int err = 0; 1188 1189 switch (nla_type(a)) { 1190 case OVS_ACTION_ATTR_OUTPUT: { 1191 int port = nla_get_u32(a); 1192 struct sk_buff *clone; 1193 1194 /* Every output action needs a separate clone 1195 * of 'skb', In case the output action is the 1196 * last action, cloning can be avoided. 1197 */ 1198 if (nla_is_last(a, rem)) { 1199 do_output(dp, skb, port, key); 1200 /* 'skb' has been used for output. 1201 */ 1202 return 0; 1203 } 1204 1205 clone = skb_clone(skb, GFP_ATOMIC); 1206 if (clone) 1207 do_output(dp, clone, port, key); 1208 OVS_CB(skb)->cutlen = 0; 1209 break; 1210 } 1211 1212 case OVS_ACTION_ATTR_TRUNC: { 1213 struct ovs_action_trunc *trunc = nla_data(a); 1214 1215 if (skb->len > trunc->max_len) 1216 OVS_CB(skb)->cutlen = skb->len - trunc->max_len; 1217 break; 1218 } 1219 1220 case OVS_ACTION_ATTR_USERSPACE: 1221 output_userspace(dp, skb, key, a, attr, 1222 len, OVS_CB(skb)->cutlen); 1223 OVS_CB(skb)->cutlen = 0; 1224 break; 1225 1226 case OVS_ACTION_ATTR_HASH: 1227 execute_hash(skb, key, a); 1228 break; 1229 1230 case OVS_ACTION_ATTR_PUSH_MPLS: 1231 err = push_mpls(skb, key, nla_data(a)); 1232 break; 1233 1234 case OVS_ACTION_ATTR_POP_MPLS: 1235 err = pop_mpls(skb, key, nla_get_be16(a)); 1236 break; 1237 1238 case OVS_ACTION_ATTR_PUSH_VLAN: 1239 err = push_vlan(skb, key, nla_data(a)); 1240 break; 1241 1242 case OVS_ACTION_ATTR_POP_VLAN: 1243 err = pop_vlan(skb, key); 1244 break; 1245 1246 case OVS_ACTION_ATTR_RECIRC: { 1247 bool last = nla_is_last(a, rem); 1248 1249 err = execute_recirc(dp, skb, key, a, last); 1250 if (last) { 1251 /* If this is the last action, the skb has 1252 * been consumed or freed. 1253 * Return immediately. 1254 */ 1255 return err; 1256 } 1257 break; 1258 } 1259 1260 case OVS_ACTION_ATTR_SET: 1261 err = execute_set_action(skb, key, nla_data(a)); 1262 break; 1263 1264 case OVS_ACTION_ATTR_SET_MASKED: 1265 case OVS_ACTION_ATTR_SET_TO_MASKED: 1266 err = execute_masked_set_action(skb, key, nla_data(a)); 1267 break; 1268 1269 case OVS_ACTION_ATTR_SAMPLE: { 1270 bool last = nla_is_last(a, rem); 1271 1272 err = sample(dp, skb, key, a, last); 1273 if (last) 1274 return err; 1275 1276 break; 1277 } 1278 1279 case OVS_ACTION_ATTR_CT: 1280 if (!is_flow_key_valid(key)) { 1281 err = ovs_flow_key_update(skb, key); 1282 if (err) 1283 return err; 1284 } 1285 1286 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, 1287 nla_data(a)); 1288 1289 /* Hide stolen IP fragments from user space. */ 1290 if (err) 1291 return err == -EINPROGRESS ? 0 : err; 1292 break; 1293 1294 case OVS_ACTION_ATTR_CT_CLEAR: 1295 err = ovs_ct_clear(skb, key); 1296 break; 1297 1298 case OVS_ACTION_ATTR_PUSH_ETH: 1299 err = push_eth(skb, key, nla_data(a)); 1300 break; 1301 1302 case OVS_ACTION_ATTR_POP_ETH: 1303 err = pop_eth(skb, key); 1304 break; 1305 1306 case OVS_ACTION_ATTR_PUSH_NSH: { 1307 u8 buffer[NSH_HDR_MAX_LEN]; 1308 struct nshhdr *nh = (struct nshhdr *)buffer; 1309 1310 err = nsh_hdr_from_nlattr(nla_data(a), nh, 1311 NSH_HDR_MAX_LEN); 1312 if (unlikely(err)) 1313 break; 1314 err = push_nsh(skb, key, nh); 1315 break; 1316 } 1317 1318 case OVS_ACTION_ATTR_POP_NSH: 1319 err = pop_nsh(skb, key); 1320 break; 1321 1322 case OVS_ACTION_ATTR_METER: 1323 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) { 1324 consume_skb(skb); 1325 return 0; 1326 } 1327 break; 1328 1329 case OVS_ACTION_ATTR_CLONE: { 1330 bool last = nla_is_last(a, rem); 1331 1332 err = clone(dp, skb, key, a, last); 1333 if (last) 1334 return err; 1335 1336 break; 1337 } 1338 1339 case OVS_ACTION_ATTR_CHECK_PKT_LEN: { 1340 bool last = nla_is_last(a, rem); 1341 1342 err = execute_check_pkt_len(dp, skb, key, a, last); 1343 if (last) 1344 return err; 1345 1346 break; 1347 } 1348 } 1349 1350 if (unlikely(err)) { 1351 kfree_skb(skb); 1352 return err; 1353 } 1354 } 1355 1356 consume_skb(skb); 1357 return 0; 1358 } 1359 1360 /* Execute the actions on the clone of the packet. The effect of the 1361 * execution does not affect the original 'skb' nor the original 'key'. 1362 * 1363 * The execution may be deferred in case the actions can not be executed 1364 * immediately. 1365 */ 1366 static int clone_execute(struct datapath *dp, struct sk_buff *skb, 1367 struct sw_flow_key *key, u32 recirc_id, 1368 const struct nlattr *actions, int len, 1369 bool last, bool clone_flow_key) 1370 { 1371 struct deferred_action *da; 1372 struct sw_flow_key *clone; 1373 1374 skb = last ? skb : skb_clone(skb, GFP_ATOMIC); 1375 if (!skb) { 1376 /* Out of memory, skip this action. 1377 */ 1378 return 0; 1379 } 1380 1381 /* When clone_flow_key is false, the 'key' will not be change 1382 * by the actions, then the 'key' can be used directly. 1383 * Otherwise, try to clone key from the next recursion level of 1384 * 'flow_keys'. If clone is successful, execute the actions 1385 * without deferring. 1386 */ 1387 clone = clone_flow_key ? clone_key(key) : key; 1388 if (clone) { 1389 int err = 0; 1390 1391 if (actions) { /* Sample action */ 1392 if (clone_flow_key) 1393 __this_cpu_inc(exec_actions_level); 1394 1395 err = do_execute_actions(dp, skb, clone, 1396 actions, len); 1397 1398 if (clone_flow_key) 1399 __this_cpu_dec(exec_actions_level); 1400 } else { /* Recirc action */ 1401 clone->recirc_id = recirc_id; 1402 ovs_dp_process_packet(skb, clone); 1403 } 1404 return err; 1405 } 1406 1407 /* Out of 'flow_keys' space. Defer actions */ 1408 da = add_deferred_actions(skb, key, actions, len); 1409 if (da) { 1410 if (!actions) { /* Recirc action */ 1411 key = &da->pkt_key; 1412 key->recirc_id = recirc_id; 1413 } 1414 } else { 1415 /* Out of per CPU action FIFO space. Drop the 'skb' and 1416 * log an error. 1417 */ 1418 kfree_skb(skb); 1419 1420 if (net_ratelimit()) { 1421 if (actions) { /* Sample action */ 1422 pr_warn("%s: deferred action limit reached, drop sample action\n", 1423 ovs_dp_name(dp)); 1424 } else { /* Recirc action */ 1425 pr_warn("%s: deferred action limit reached, drop recirc action\n", 1426 ovs_dp_name(dp)); 1427 } 1428 } 1429 } 1430 return 0; 1431 } 1432 1433 static void process_deferred_actions(struct datapath *dp) 1434 { 1435 struct action_fifo *fifo = this_cpu_ptr(action_fifos); 1436 1437 /* Do not touch the FIFO in case there is no deferred actions. */ 1438 if (action_fifo_is_empty(fifo)) 1439 return; 1440 1441 /* Finishing executing all deferred actions. */ 1442 do { 1443 struct deferred_action *da = action_fifo_get(fifo); 1444 struct sk_buff *skb = da->skb; 1445 struct sw_flow_key *key = &da->pkt_key; 1446 const struct nlattr *actions = da->actions; 1447 int actions_len = da->actions_len; 1448 1449 if (actions) 1450 do_execute_actions(dp, skb, key, actions, actions_len); 1451 else 1452 ovs_dp_process_packet(skb, key); 1453 } while (!action_fifo_is_empty(fifo)); 1454 1455 /* Reset FIFO for the next packet. */ 1456 action_fifo_init(fifo); 1457 } 1458 1459 /* Execute a list of actions against 'skb'. */ 1460 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, 1461 const struct sw_flow_actions *acts, 1462 struct sw_flow_key *key) 1463 { 1464 int err, level; 1465 1466 level = __this_cpu_inc_return(exec_actions_level); 1467 if (unlikely(level > OVS_RECURSION_LIMIT)) { 1468 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n", 1469 ovs_dp_name(dp)); 1470 kfree_skb(skb); 1471 err = -ENETDOWN; 1472 goto out; 1473 } 1474 1475 OVS_CB(skb)->acts_origlen = acts->orig_len; 1476 err = do_execute_actions(dp, skb, key, 1477 acts->actions, acts->actions_len); 1478 1479 if (level == 1) 1480 process_deferred_actions(dp); 1481 1482 out: 1483 __this_cpu_dec(exec_actions_level); 1484 return err; 1485 } 1486 1487 int action_fifos_init(void) 1488 { 1489 action_fifos = alloc_percpu(struct action_fifo); 1490 if (!action_fifos) 1491 return -ENOMEM; 1492 1493 flow_keys = alloc_percpu(struct action_flow_keys); 1494 if (!flow_keys) { 1495 free_percpu(action_fifos); 1496 return -ENOMEM; 1497 } 1498 1499 return 0; 1500 } 1501 1502 void action_fifos_exit(void) 1503 { 1504 free_percpu(action_fifos); 1505 free_percpu(flow_keys); 1506 } 1507