1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/skbuff.h> 22 #include <linux/in.h> 23 #include <linux/ip.h> 24 #include <linux/openvswitch.h> 25 #include <linux/netfilter_ipv6.h> 26 #include <linux/sctp.h> 27 #include <linux/tcp.h> 28 #include <linux/udp.h> 29 #include <linux/in6.h> 30 #include <linux/if_arp.h> 31 #include <linux/if_vlan.h> 32 33 #include <net/dst.h> 34 #include <net/ip.h> 35 #include <net/ipv6.h> 36 #include <net/ip6_fib.h> 37 #include <net/checksum.h> 38 #include <net/dsfield.h> 39 #include <net/mpls.h> 40 #include <net/sctp/checksum.h> 41 42 #include "datapath.h" 43 #include "flow.h" 44 #include "conntrack.h" 45 #include "vport.h" 46 47 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 48 struct sw_flow_key *key, 49 const struct nlattr *attr, int len); 50 51 struct deferred_action { 52 struct sk_buff *skb; 53 const struct nlattr *actions; 54 55 /* Store pkt_key clone when creating deferred action. */ 56 struct sw_flow_key pkt_key; 57 }; 58 59 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN) 60 struct ovs_frag_data { 61 unsigned long dst; 62 struct vport *vport; 63 struct ovs_skb_cb cb; 64 __be16 inner_protocol; 65 u16 network_offset; /* valid only for MPLS */ 66 u16 vlan_tci; 67 __be16 vlan_proto; 68 unsigned int l2_len; 69 u8 mac_proto; 70 u8 l2_data[MAX_L2_LEN]; 71 }; 72 73 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage); 74 75 #define DEFERRED_ACTION_FIFO_SIZE 10 76 #define OVS_RECURSION_LIMIT 5 77 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2) 78 struct action_fifo { 79 int head; 80 int tail; 81 /* Deferred action fifo queue storage. */ 82 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; 83 }; 84 85 struct recirc_keys { 86 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD]; 87 }; 88 89 static struct action_fifo __percpu *action_fifos; 90 static struct recirc_keys __percpu *recirc_keys; 91 static DEFINE_PER_CPU(int, exec_actions_level); 92 93 static void action_fifo_init(struct action_fifo *fifo) 94 { 95 fifo->head = 0; 96 fifo->tail = 0; 97 } 98 99 static bool action_fifo_is_empty(const struct action_fifo *fifo) 100 { 101 return (fifo->head == fifo->tail); 102 } 103 104 static struct deferred_action *action_fifo_get(struct action_fifo *fifo) 105 { 106 if (action_fifo_is_empty(fifo)) 107 return NULL; 108 109 return &fifo->fifo[fifo->tail++]; 110 } 111 112 static struct deferred_action *action_fifo_put(struct action_fifo *fifo) 113 { 114 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) 115 return NULL; 116 117 return &fifo->fifo[fifo->head++]; 118 } 119 120 /* Return true if fifo is not full */ 121 static struct deferred_action *add_deferred_actions(struct sk_buff *skb, 122 const struct sw_flow_key *key, 123 const struct nlattr *attr) 124 { 125 struct action_fifo *fifo; 126 struct deferred_action *da; 127 128 fifo = this_cpu_ptr(action_fifos); 129 da = action_fifo_put(fifo); 130 if (da) { 131 da->skb = skb; 132 da->actions = attr; 133 da->pkt_key = *key; 134 } 135 136 return da; 137 } 138 139 static void invalidate_flow_key(struct sw_flow_key *key) 140 { 141 key->mac_proto |= SW_FLOW_KEY_INVALID; 142 } 143 144 static bool is_flow_key_valid(const struct sw_flow_key *key) 145 { 146 return !(key->mac_proto & SW_FLOW_KEY_INVALID); 147 } 148 149 static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr, 150 __be16 ethertype) 151 { 152 if (skb->ip_summed == CHECKSUM_COMPLETE) { 153 __be16 diff[] = { ~(hdr->h_proto), ethertype }; 154 155 skb->csum = ~csum_partial((char *)diff, sizeof(diff), 156 ~skb->csum); 157 } 158 159 hdr->h_proto = ethertype; 160 } 161 162 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, 163 const struct ovs_action_push_mpls *mpls) 164 { 165 struct mpls_shim_hdr *new_mpls_lse; 166 167 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */ 168 if (skb->encapsulation) 169 return -ENOTSUPP; 170 171 if (skb_cow_head(skb, MPLS_HLEN) < 0) 172 return -ENOMEM; 173 174 if (!skb->inner_protocol) { 175 skb_set_inner_network_header(skb, skb->mac_len); 176 skb_set_inner_protocol(skb, skb->protocol); 177 } 178 179 skb_push(skb, MPLS_HLEN); 180 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 181 skb->mac_len); 182 skb_reset_mac_header(skb); 183 skb_set_network_header(skb, skb->mac_len); 184 185 new_mpls_lse = mpls_hdr(skb); 186 new_mpls_lse->label_stack_entry = mpls->mpls_lse; 187 188 skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN); 189 190 if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) 191 update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype); 192 skb->protocol = mpls->mpls_ethertype; 193 194 invalidate_flow_key(key); 195 return 0; 196 } 197 198 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, 199 const __be16 ethertype) 200 { 201 int err; 202 203 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 204 if (unlikely(err)) 205 return err; 206 207 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 208 209 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 210 skb->mac_len); 211 212 __skb_pull(skb, MPLS_HLEN); 213 skb_reset_mac_header(skb); 214 skb_set_network_header(skb, skb->mac_len); 215 216 if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) { 217 struct ethhdr *hdr; 218 219 /* mpls_hdr() is used to locate the ethertype field correctly in the 220 * presence of VLAN tags. 221 */ 222 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 223 update_ethertype(skb, hdr, ethertype); 224 } 225 if (eth_p_mpls(skb->protocol)) 226 skb->protocol = ethertype; 227 228 invalidate_flow_key(key); 229 return 0; 230 } 231 232 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, 233 const __be32 *mpls_lse, const __be32 *mask) 234 { 235 struct mpls_shim_hdr *stack; 236 __be32 lse; 237 int err; 238 239 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 240 if (unlikely(err)) 241 return err; 242 243 stack = mpls_hdr(skb); 244 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask); 245 if (skb->ip_summed == CHECKSUM_COMPLETE) { 246 __be32 diff[] = { ~(stack->label_stack_entry), lse }; 247 248 skb->csum = ~csum_partial((char *)diff, sizeof(diff), 249 ~skb->csum); 250 } 251 252 stack->label_stack_entry = lse; 253 flow_key->mpls.top_lse = lse; 254 return 0; 255 } 256 257 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) 258 { 259 int err; 260 261 err = skb_vlan_pop(skb); 262 if (skb_vlan_tag_present(skb)) { 263 invalidate_flow_key(key); 264 } else { 265 key->eth.vlan.tci = 0; 266 key->eth.vlan.tpid = 0; 267 } 268 return err; 269 } 270 271 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, 272 const struct ovs_action_push_vlan *vlan) 273 { 274 if (skb_vlan_tag_present(skb)) { 275 invalidate_flow_key(key); 276 } else { 277 key->eth.vlan.tci = vlan->vlan_tci; 278 key->eth.vlan.tpid = vlan->vlan_tpid; 279 } 280 return skb_vlan_push(skb, vlan->vlan_tpid, 281 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT); 282 } 283 284 /* 'src' is already properly masked. */ 285 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) 286 { 287 u16 *dst = (u16 *)dst_; 288 const u16 *src = (const u16 *)src_; 289 const u16 *mask = (const u16 *)mask_; 290 291 OVS_SET_MASKED(dst[0], src[0], mask[0]); 292 OVS_SET_MASKED(dst[1], src[1], mask[1]); 293 OVS_SET_MASKED(dst[2], src[2], mask[2]); 294 } 295 296 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, 297 const struct ovs_key_ethernet *key, 298 const struct ovs_key_ethernet *mask) 299 { 300 int err; 301 302 err = skb_ensure_writable(skb, ETH_HLEN); 303 if (unlikely(err)) 304 return err; 305 306 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 307 308 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, 309 mask->eth_src); 310 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, 311 mask->eth_dst); 312 313 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 314 315 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); 316 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); 317 return 0; 318 } 319 320 /* pop_eth does not support VLAN packets as this action is never called 321 * for them. 322 */ 323 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key) 324 { 325 skb_pull_rcsum(skb, ETH_HLEN); 326 skb_reset_mac_header(skb); 327 skb_reset_mac_len(skb); 328 329 /* safe right before invalidate_flow_key */ 330 key->mac_proto = MAC_PROTO_NONE; 331 invalidate_flow_key(key); 332 return 0; 333 } 334 335 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key, 336 const struct ovs_action_push_eth *ethh) 337 { 338 struct ethhdr *hdr; 339 340 /* Add the new Ethernet header */ 341 if (skb_cow_head(skb, ETH_HLEN) < 0) 342 return -ENOMEM; 343 344 skb_push(skb, ETH_HLEN); 345 skb_reset_mac_header(skb); 346 skb_reset_mac_len(skb); 347 348 hdr = eth_hdr(skb); 349 ether_addr_copy(hdr->h_source, ethh->addresses.eth_src); 350 ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst); 351 hdr->h_proto = skb->protocol; 352 353 skb_postpush_rcsum(skb, hdr, ETH_HLEN); 354 355 /* safe right before invalidate_flow_key */ 356 key->mac_proto = MAC_PROTO_ETHERNET; 357 invalidate_flow_key(key); 358 return 0; 359 } 360 361 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, 362 __be32 addr, __be32 new_addr) 363 { 364 int transport_len = skb->len - skb_transport_offset(skb); 365 366 if (nh->frag_off & htons(IP_OFFSET)) 367 return; 368 369 if (nh->protocol == IPPROTO_TCP) { 370 if (likely(transport_len >= sizeof(struct tcphdr))) 371 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, 372 addr, new_addr, true); 373 } else if (nh->protocol == IPPROTO_UDP) { 374 if (likely(transport_len >= sizeof(struct udphdr))) { 375 struct udphdr *uh = udp_hdr(skb); 376 377 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 378 inet_proto_csum_replace4(&uh->check, skb, 379 addr, new_addr, true); 380 if (!uh->check) 381 uh->check = CSUM_MANGLED_0; 382 } 383 } 384 } 385 } 386 387 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, 388 __be32 *addr, __be32 new_addr) 389 { 390 update_ip_l4_checksum(skb, nh, *addr, new_addr); 391 csum_replace4(&nh->check, *addr, new_addr); 392 skb_clear_hash(skb); 393 *addr = new_addr; 394 } 395 396 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, 397 __be32 addr[4], const __be32 new_addr[4]) 398 { 399 int transport_len = skb->len - skb_transport_offset(skb); 400 401 if (l4_proto == NEXTHDR_TCP) { 402 if (likely(transport_len >= sizeof(struct tcphdr))) 403 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, 404 addr, new_addr, true); 405 } else if (l4_proto == NEXTHDR_UDP) { 406 if (likely(transport_len >= sizeof(struct udphdr))) { 407 struct udphdr *uh = udp_hdr(skb); 408 409 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 410 inet_proto_csum_replace16(&uh->check, skb, 411 addr, new_addr, true); 412 if (!uh->check) 413 uh->check = CSUM_MANGLED_0; 414 } 415 } 416 } else if (l4_proto == NEXTHDR_ICMP) { 417 if (likely(transport_len >= sizeof(struct icmp6hdr))) 418 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, 419 skb, addr, new_addr, true); 420 } 421 } 422 423 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], 424 const __be32 mask[4], __be32 masked[4]) 425 { 426 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); 427 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); 428 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); 429 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); 430 } 431 432 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, 433 __be32 addr[4], const __be32 new_addr[4], 434 bool recalculate_csum) 435 { 436 if (recalculate_csum) 437 update_ipv6_checksum(skb, l4_proto, addr, new_addr); 438 439 skb_clear_hash(skb); 440 memcpy(addr, new_addr, sizeof(__be32[4])); 441 } 442 443 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask) 444 { 445 /* Bits 21-24 are always unmasked, so this retains their values. */ 446 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16)); 447 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8)); 448 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask); 449 } 450 451 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, 452 u8 mask) 453 { 454 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); 455 456 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); 457 nh->ttl = new_ttl; 458 } 459 460 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, 461 const struct ovs_key_ipv4 *key, 462 const struct ovs_key_ipv4 *mask) 463 { 464 struct iphdr *nh; 465 __be32 new_addr; 466 int err; 467 468 err = skb_ensure_writable(skb, skb_network_offset(skb) + 469 sizeof(struct iphdr)); 470 if (unlikely(err)) 471 return err; 472 473 nh = ip_hdr(skb); 474 475 /* Setting an IP addresses is typically only a side effect of 476 * matching on them in the current userspace implementation, so it 477 * makes sense to check if the value actually changed. 478 */ 479 if (mask->ipv4_src) { 480 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); 481 482 if (unlikely(new_addr != nh->saddr)) { 483 set_ip_addr(skb, nh, &nh->saddr, new_addr); 484 flow_key->ipv4.addr.src = new_addr; 485 } 486 } 487 if (mask->ipv4_dst) { 488 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); 489 490 if (unlikely(new_addr != nh->daddr)) { 491 set_ip_addr(skb, nh, &nh->daddr, new_addr); 492 flow_key->ipv4.addr.dst = new_addr; 493 } 494 } 495 if (mask->ipv4_tos) { 496 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); 497 flow_key->ip.tos = nh->tos; 498 } 499 if (mask->ipv4_ttl) { 500 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); 501 flow_key->ip.ttl = nh->ttl; 502 } 503 504 return 0; 505 } 506 507 static bool is_ipv6_mask_nonzero(const __be32 addr[4]) 508 { 509 return !!(addr[0] | addr[1] | addr[2] | addr[3]); 510 } 511 512 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, 513 const struct ovs_key_ipv6 *key, 514 const struct ovs_key_ipv6 *mask) 515 { 516 struct ipv6hdr *nh; 517 int err; 518 519 err = skb_ensure_writable(skb, skb_network_offset(skb) + 520 sizeof(struct ipv6hdr)); 521 if (unlikely(err)) 522 return err; 523 524 nh = ipv6_hdr(skb); 525 526 /* Setting an IP addresses is typically only a side effect of 527 * matching on them in the current userspace implementation, so it 528 * makes sense to check if the value actually changed. 529 */ 530 if (is_ipv6_mask_nonzero(mask->ipv6_src)) { 531 __be32 *saddr = (__be32 *)&nh->saddr; 532 __be32 masked[4]; 533 534 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); 535 536 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { 537 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, 538 true); 539 memcpy(&flow_key->ipv6.addr.src, masked, 540 sizeof(flow_key->ipv6.addr.src)); 541 } 542 } 543 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { 544 unsigned int offset = 0; 545 int flags = IP6_FH_F_SKIP_RH; 546 bool recalc_csum = true; 547 __be32 *daddr = (__be32 *)&nh->daddr; 548 __be32 masked[4]; 549 550 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); 551 552 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { 553 if (ipv6_ext_hdr(nh->nexthdr)) 554 recalc_csum = (ipv6_find_hdr(skb, &offset, 555 NEXTHDR_ROUTING, 556 NULL, &flags) 557 != NEXTHDR_ROUTING); 558 559 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, 560 recalc_csum); 561 memcpy(&flow_key->ipv6.addr.dst, masked, 562 sizeof(flow_key->ipv6.addr.dst)); 563 } 564 } 565 if (mask->ipv6_tclass) { 566 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass); 567 flow_key->ip.tos = ipv6_get_dsfield(nh); 568 } 569 if (mask->ipv6_label) { 570 set_ipv6_fl(nh, ntohl(key->ipv6_label), 571 ntohl(mask->ipv6_label)); 572 flow_key->ipv6.label = 573 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 574 } 575 if (mask->ipv6_hlimit) { 576 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit, 577 mask->ipv6_hlimit); 578 flow_key->ip.ttl = nh->hop_limit; 579 } 580 return 0; 581 } 582 583 /* Must follow skb_ensure_writable() since that can move the skb data. */ 584 static void set_tp_port(struct sk_buff *skb, __be16 *port, 585 __be16 new_port, __sum16 *check) 586 { 587 inet_proto_csum_replace2(check, skb, *port, new_port, false); 588 *port = new_port; 589 } 590 591 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, 592 const struct ovs_key_udp *key, 593 const struct ovs_key_udp *mask) 594 { 595 struct udphdr *uh; 596 __be16 src, dst; 597 int err; 598 599 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 600 sizeof(struct udphdr)); 601 if (unlikely(err)) 602 return err; 603 604 uh = udp_hdr(skb); 605 /* Either of the masks is non-zero, so do not bother checking them. */ 606 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); 607 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); 608 609 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { 610 if (likely(src != uh->source)) { 611 set_tp_port(skb, &uh->source, src, &uh->check); 612 flow_key->tp.src = src; 613 } 614 if (likely(dst != uh->dest)) { 615 set_tp_port(skb, &uh->dest, dst, &uh->check); 616 flow_key->tp.dst = dst; 617 } 618 619 if (unlikely(!uh->check)) 620 uh->check = CSUM_MANGLED_0; 621 } else { 622 uh->source = src; 623 uh->dest = dst; 624 flow_key->tp.src = src; 625 flow_key->tp.dst = dst; 626 } 627 628 skb_clear_hash(skb); 629 630 return 0; 631 } 632 633 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, 634 const struct ovs_key_tcp *key, 635 const struct ovs_key_tcp *mask) 636 { 637 struct tcphdr *th; 638 __be16 src, dst; 639 int err; 640 641 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 642 sizeof(struct tcphdr)); 643 if (unlikely(err)) 644 return err; 645 646 th = tcp_hdr(skb); 647 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); 648 if (likely(src != th->source)) { 649 set_tp_port(skb, &th->source, src, &th->check); 650 flow_key->tp.src = src; 651 } 652 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); 653 if (likely(dst != th->dest)) { 654 set_tp_port(skb, &th->dest, dst, &th->check); 655 flow_key->tp.dst = dst; 656 } 657 skb_clear_hash(skb); 658 659 return 0; 660 } 661 662 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, 663 const struct ovs_key_sctp *key, 664 const struct ovs_key_sctp *mask) 665 { 666 unsigned int sctphoff = skb_transport_offset(skb); 667 struct sctphdr *sh; 668 __le32 old_correct_csum, new_csum, old_csum; 669 int err; 670 671 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); 672 if (unlikely(err)) 673 return err; 674 675 sh = sctp_hdr(skb); 676 old_csum = sh->checksum; 677 old_correct_csum = sctp_compute_cksum(skb, sctphoff); 678 679 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); 680 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); 681 682 new_csum = sctp_compute_cksum(skb, sctphoff); 683 684 /* Carry any checksum errors through. */ 685 sh->checksum = old_csum ^ old_correct_csum ^ new_csum; 686 687 skb_clear_hash(skb); 688 flow_key->tp.src = sh->source; 689 flow_key->tp.dst = sh->dest; 690 691 return 0; 692 } 693 694 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb) 695 { 696 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage); 697 struct vport *vport = data->vport; 698 699 if (skb_cow_head(skb, data->l2_len) < 0) { 700 kfree_skb(skb); 701 return -ENOMEM; 702 } 703 704 __skb_dst_copy(skb, data->dst); 705 *OVS_CB(skb) = data->cb; 706 skb->inner_protocol = data->inner_protocol; 707 skb->vlan_tci = data->vlan_tci; 708 skb->vlan_proto = data->vlan_proto; 709 710 /* Reconstruct the MAC header. */ 711 skb_push(skb, data->l2_len); 712 memcpy(skb->data, &data->l2_data, data->l2_len); 713 skb_postpush_rcsum(skb, skb->data, data->l2_len); 714 skb_reset_mac_header(skb); 715 716 if (eth_p_mpls(skb->protocol)) { 717 skb->inner_network_header = skb->network_header; 718 skb_set_network_header(skb, data->network_offset); 719 skb_reset_mac_len(skb); 720 } 721 722 ovs_vport_send(vport, skb, data->mac_proto); 723 return 0; 724 } 725 726 static unsigned int 727 ovs_dst_get_mtu(const struct dst_entry *dst) 728 { 729 return dst->dev->mtu; 730 } 731 732 static struct dst_ops ovs_dst_ops = { 733 .family = AF_UNSPEC, 734 .mtu = ovs_dst_get_mtu, 735 }; 736 737 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is 738 * ovs_vport_output(), which is called once per fragmented packet. 739 */ 740 static void prepare_frag(struct vport *vport, struct sk_buff *skb, 741 u16 orig_network_offset, u8 mac_proto) 742 { 743 unsigned int hlen = skb_network_offset(skb); 744 struct ovs_frag_data *data; 745 746 data = this_cpu_ptr(&ovs_frag_data_storage); 747 data->dst = skb->_skb_refdst; 748 data->vport = vport; 749 data->cb = *OVS_CB(skb); 750 data->inner_protocol = skb->inner_protocol; 751 data->network_offset = orig_network_offset; 752 data->vlan_tci = skb->vlan_tci; 753 data->vlan_proto = skb->vlan_proto; 754 data->mac_proto = mac_proto; 755 data->l2_len = hlen; 756 memcpy(&data->l2_data, skb->data, hlen); 757 758 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 759 skb_pull(skb, hlen); 760 } 761 762 static void ovs_fragment(struct net *net, struct vport *vport, 763 struct sk_buff *skb, u16 mru, 764 struct sw_flow_key *key) 765 { 766 u16 orig_network_offset = 0; 767 768 if (eth_p_mpls(skb->protocol)) { 769 orig_network_offset = skb_network_offset(skb); 770 skb->network_header = skb->inner_network_header; 771 } 772 773 if (skb_network_offset(skb) > MAX_L2_LEN) { 774 OVS_NLERR(1, "L2 header too long to fragment"); 775 goto err; 776 } 777 778 if (key->eth.type == htons(ETH_P_IP)) { 779 struct dst_entry ovs_dst; 780 unsigned long orig_dst; 781 782 prepare_frag(vport, skb, orig_network_offset, 783 ovs_key_mac_proto(key)); 784 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1, 785 DST_OBSOLETE_NONE, DST_NOCOUNT); 786 ovs_dst.dev = vport->dev; 787 788 orig_dst = skb->_skb_refdst; 789 skb_dst_set_noref(skb, &ovs_dst); 790 IPCB(skb)->frag_max_size = mru; 791 792 ip_do_fragment(net, skb->sk, skb, ovs_vport_output); 793 refdst_drop(orig_dst); 794 } else if (key->eth.type == htons(ETH_P_IPV6)) { 795 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops(); 796 unsigned long orig_dst; 797 struct rt6_info ovs_rt; 798 799 if (!v6ops) { 800 goto err; 801 } 802 803 prepare_frag(vport, skb, orig_network_offset, 804 ovs_key_mac_proto(key)); 805 memset(&ovs_rt, 0, sizeof(ovs_rt)); 806 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, 807 DST_OBSOLETE_NONE, DST_NOCOUNT); 808 ovs_rt.dst.dev = vport->dev; 809 810 orig_dst = skb->_skb_refdst; 811 skb_dst_set_noref(skb, &ovs_rt.dst); 812 IP6CB(skb)->frag_max_size = mru; 813 814 v6ops->fragment(net, skb->sk, skb, ovs_vport_output); 815 refdst_drop(orig_dst); 816 } else { 817 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", 818 ovs_vport_name(vport), ntohs(key->eth.type), mru, 819 vport->dev->mtu); 820 goto err; 821 } 822 823 return; 824 err: 825 kfree_skb(skb); 826 } 827 828 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, 829 struct sw_flow_key *key) 830 { 831 struct vport *vport = ovs_vport_rcu(dp, out_port); 832 833 if (likely(vport)) { 834 u16 mru = OVS_CB(skb)->mru; 835 u32 cutlen = OVS_CB(skb)->cutlen; 836 837 if (unlikely(cutlen > 0)) { 838 if (skb->len - cutlen > ovs_mac_header_len(key)) 839 pskb_trim(skb, skb->len - cutlen); 840 else 841 pskb_trim(skb, ovs_mac_header_len(key)); 842 } 843 844 if (likely(!mru || 845 (skb->len <= mru + vport->dev->hard_header_len))) { 846 ovs_vport_send(vport, skb, ovs_key_mac_proto(key)); 847 } else if (mru <= vport->dev->mtu) { 848 struct net *net = read_pnet(&dp->net); 849 850 ovs_fragment(net, vport, skb, mru, key); 851 } else { 852 kfree_skb(skb); 853 } 854 } else { 855 kfree_skb(skb); 856 } 857 } 858 859 static int output_userspace(struct datapath *dp, struct sk_buff *skb, 860 struct sw_flow_key *key, const struct nlattr *attr, 861 const struct nlattr *actions, int actions_len, 862 uint32_t cutlen) 863 { 864 struct dp_upcall_info upcall; 865 const struct nlattr *a; 866 int rem; 867 868 memset(&upcall, 0, sizeof(upcall)); 869 upcall.cmd = OVS_PACKET_CMD_ACTION; 870 upcall.mru = OVS_CB(skb)->mru; 871 872 for (a = nla_data(attr), rem = nla_len(attr); rem > 0; 873 a = nla_next(a, &rem)) { 874 switch (nla_type(a)) { 875 case OVS_USERSPACE_ATTR_USERDATA: 876 upcall.userdata = a; 877 break; 878 879 case OVS_USERSPACE_ATTR_PID: 880 upcall.portid = nla_get_u32(a); 881 break; 882 883 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { 884 /* Get out tunnel info. */ 885 struct vport *vport; 886 887 vport = ovs_vport_rcu(dp, nla_get_u32(a)); 888 if (vport) { 889 int err; 890 891 err = dev_fill_metadata_dst(vport->dev, skb); 892 if (!err) 893 upcall.egress_tun_info = skb_tunnel_info(skb); 894 } 895 896 break; 897 } 898 899 case OVS_USERSPACE_ATTR_ACTIONS: { 900 /* Include actions. */ 901 upcall.actions = actions; 902 upcall.actions_len = actions_len; 903 break; 904 } 905 906 } /* End of switch. */ 907 } 908 909 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen); 910 } 911 912 static int sample(struct datapath *dp, struct sk_buff *skb, 913 struct sw_flow_key *key, const struct nlattr *attr, 914 const struct nlattr *actions, int actions_len) 915 { 916 const struct nlattr *acts_list = NULL; 917 const struct nlattr *a; 918 int rem; 919 u32 cutlen = 0; 920 921 for (a = nla_data(attr), rem = nla_len(attr); rem > 0; 922 a = nla_next(a, &rem)) { 923 u32 probability; 924 925 switch (nla_type(a)) { 926 case OVS_SAMPLE_ATTR_PROBABILITY: 927 probability = nla_get_u32(a); 928 if (!probability || prandom_u32() > probability) 929 return 0; 930 break; 931 932 case OVS_SAMPLE_ATTR_ACTIONS: 933 acts_list = a; 934 break; 935 } 936 } 937 938 rem = nla_len(acts_list); 939 a = nla_data(acts_list); 940 941 /* Actions list is empty, do nothing */ 942 if (unlikely(!rem)) 943 return 0; 944 945 /* The only known usage of sample action is having a single user-space 946 * action, or having a truncate action followed by a single user-space 947 * action. Treat this usage as a special case. 948 * The output_userspace() should clone the skb to be sent to the 949 * user space. This skb will be consumed by its caller. 950 */ 951 if (unlikely(nla_type(a) == OVS_ACTION_ATTR_TRUNC)) { 952 struct ovs_action_trunc *trunc = nla_data(a); 953 954 if (skb->len > trunc->max_len) 955 cutlen = skb->len - trunc->max_len; 956 957 a = nla_next(a, &rem); 958 } 959 960 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE && 961 nla_is_last(a, rem))) 962 return output_userspace(dp, skb, key, a, actions, 963 actions_len, cutlen); 964 965 skb = skb_clone(skb, GFP_ATOMIC); 966 if (!skb) 967 /* Skip the sample action when out of memory. */ 968 return 0; 969 970 if (!add_deferred_actions(skb, key, a)) { 971 if (net_ratelimit()) 972 pr_warn("%s: deferred actions limit reached, dropping sample action\n", 973 ovs_dp_name(dp)); 974 975 kfree_skb(skb); 976 } 977 return 0; 978 } 979 980 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, 981 const struct nlattr *attr) 982 { 983 struct ovs_action_hash *hash_act = nla_data(attr); 984 u32 hash = 0; 985 986 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */ 987 hash = skb_get_hash(skb); 988 hash = jhash_1word(hash, hash_act->hash_basis); 989 if (!hash) 990 hash = 0x1; 991 992 key->ovs_flow_hash = hash; 993 } 994 995 static int execute_set_action(struct sk_buff *skb, 996 struct sw_flow_key *flow_key, 997 const struct nlattr *a) 998 { 999 /* Only tunnel set execution is supported without a mask. */ 1000 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { 1001 struct ovs_tunnel_info *tun = nla_data(a); 1002 1003 skb_dst_drop(skb); 1004 dst_hold((struct dst_entry *)tun->tun_dst); 1005 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); 1006 return 0; 1007 } 1008 1009 return -EINVAL; 1010 } 1011 1012 /* Mask is at the midpoint of the data. */ 1013 #define get_mask(a, type) ((const type)nla_data(a) + 1) 1014 1015 static int execute_masked_set_action(struct sk_buff *skb, 1016 struct sw_flow_key *flow_key, 1017 const struct nlattr *a) 1018 { 1019 int err = 0; 1020 1021 switch (nla_type(a)) { 1022 case OVS_KEY_ATTR_PRIORITY: 1023 OVS_SET_MASKED(skb->priority, nla_get_u32(a), 1024 *get_mask(a, u32 *)); 1025 flow_key->phy.priority = skb->priority; 1026 break; 1027 1028 case OVS_KEY_ATTR_SKB_MARK: 1029 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); 1030 flow_key->phy.skb_mark = skb->mark; 1031 break; 1032 1033 case OVS_KEY_ATTR_TUNNEL_INFO: 1034 /* Masked data not supported for tunnel. */ 1035 err = -EINVAL; 1036 break; 1037 1038 case OVS_KEY_ATTR_ETHERNET: 1039 err = set_eth_addr(skb, flow_key, nla_data(a), 1040 get_mask(a, struct ovs_key_ethernet *)); 1041 break; 1042 1043 case OVS_KEY_ATTR_IPV4: 1044 err = set_ipv4(skb, flow_key, nla_data(a), 1045 get_mask(a, struct ovs_key_ipv4 *)); 1046 break; 1047 1048 case OVS_KEY_ATTR_IPV6: 1049 err = set_ipv6(skb, flow_key, nla_data(a), 1050 get_mask(a, struct ovs_key_ipv6 *)); 1051 break; 1052 1053 case OVS_KEY_ATTR_TCP: 1054 err = set_tcp(skb, flow_key, nla_data(a), 1055 get_mask(a, struct ovs_key_tcp *)); 1056 break; 1057 1058 case OVS_KEY_ATTR_UDP: 1059 err = set_udp(skb, flow_key, nla_data(a), 1060 get_mask(a, struct ovs_key_udp *)); 1061 break; 1062 1063 case OVS_KEY_ATTR_SCTP: 1064 err = set_sctp(skb, flow_key, nla_data(a), 1065 get_mask(a, struct ovs_key_sctp *)); 1066 break; 1067 1068 case OVS_KEY_ATTR_MPLS: 1069 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, 1070 __be32 *)); 1071 break; 1072 1073 case OVS_KEY_ATTR_CT_STATE: 1074 case OVS_KEY_ATTR_CT_ZONE: 1075 case OVS_KEY_ATTR_CT_MARK: 1076 case OVS_KEY_ATTR_CT_LABELS: 1077 err = -EINVAL; 1078 break; 1079 } 1080 1081 return err; 1082 } 1083 1084 static int execute_recirc(struct datapath *dp, struct sk_buff *skb, 1085 struct sw_flow_key *key, 1086 const struct nlattr *a, int rem) 1087 { 1088 struct deferred_action *da; 1089 int level; 1090 1091 if (!is_flow_key_valid(key)) { 1092 int err; 1093 1094 err = ovs_flow_key_update(skb, key); 1095 if (err) 1096 return err; 1097 } 1098 BUG_ON(!is_flow_key_valid(key)); 1099 1100 if (!nla_is_last(a, rem)) { 1101 /* Recirc action is the not the last action 1102 * of the action list, need to clone the skb. 1103 */ 1104 skb = skb_clone(skb, GFP_ATOMIC); 1105 1106 /* Skip the recirc action when out of memory, but 1107 * continue on with the rest of the action list. 1108 */ 1109 if (!skb) 1110 return 0; 1111 } 1112 1113 level = this_cpu_read(exec_actions_level); 1114 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) { 1115 struct recirc_keys *rks = this_cpu_ptr(recirc_keys); 1116 struct sw_flow_key *recirc_key = &rks->key[level - 1]; 1117 1118 *recirc_key = *key; 1119 recirc_key->recirc_id = nla_get_u32(a); 1120 ovs_dp_process_packet(skb, recirc_key); 1121 1122 return 0; 1123 } 1124 1125 da = add_deferred_actions(skb, key, NULL); 1126 if (da) { 1127 da->pkt_key.recirc_id = nla_get_u32(a); 1128 } else { 1129 kfree_skb(skb); 1130 1131 if (net_ratelimit()) 1132 pr_warn("%s: deferred action limit reached, drop recirc action\n", 1133 ovs_dp_name(dp)); 1134 } 1135 1136 return 0; 1137 } 1138 1139 /* Execute a list of actions against 'skb'. */ 1140 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 1141 struct sw_flow_key *key, 1142 const struct nlattr *attr, int len) 1143 { 1144 /* Every output action needs a separate clone of 'skb', but the common 1145 * case is just a single output action, so that doing a clone and 1146 * then freeing the original skbuff is wasteful. So the following code 1147 * is slightly obscure just to avoid that. 1148 */ 1149 int prev_port = -1; 1150 const struct nlattr *a; 1151 int rem; 1152 1153 for (a = attr, rem = len; rem > 0; 1154 a = nla_next(a, &rem)) { 1155 int err = 0; 1156 1157 if (unlikely(prev_port != -1)) { 1158 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC); 1159 1160 if (out_skb) 1161 do_output(dp, out_skb, prev_port, key); 1162 1163 OVS_CB(skb)->cutlen = 0; 1164 prev_port = -1; 1165 } 1166 1167 switch (nla_type(a)) { 1168 case OVS_ACTION_ATTR_OUTPUT: 1169 prev_port = nla_get_u32(a); 1170 break; 1171 1172 case OVS_ACTION_ATTR_TRUNC: { 1173 struct ovs_action_trunc *trunc = nla_data(a); 1174 1175 if (skb->len > trunc->max_len) 1176 OVS_CB(skb)->cutlen = skb->len - trunc->max_len; 1177 break; 1178 } 1179 1180 case OVS_ACTION_ATTR_USERSPACE: 1181 output_userspace(dp, skb, key, a, attr, 1182 len, OVS_CB(skb)->cutlen); 1183 OVS_CB(skb)->cutlen = 0; 1184 break; 1185 1186 case OVS_ACTION_ATTR_HASH: 1187 execute_hash(skb, key, a); 1188 break; 1189 1190 case OVS_ACTION_ATTR_PUSH_MPLS: 1191 err = push_mpls(skb, key, nla_data(a)); 1192 break; 1193 1194 case OVS_ACTION_ATTR_POP_MPLS: 1195 err = pop_mpls(skb, key, nla_get_be16(a)); 1196 break; 1197 1198 case OVS_ACTION_ATTR_PUSH_VLAN: 1199 err = push_vlan(skb, key, nla_data(a)); 1200 break; 1201 1202 case OVS_ACTION_ATTR_POP_VLAN: 1203 err = pop_vlan(skb, key); 1204 break; 1205 1206 case OVS_ACTION_ATTR_RECIRC: 1207 err = execute_recirc(dp, skb, key, a, rem); 1208 if (nla_is_last(a, rem)) { 1209 /* If this is the last action, the skb has 1210 * been consumed or freed. 1211 * Return immediately. 1212 */ 1213 return err; 1214 } 1215 break; 1216 1217 case OVS_ACTION_ATTR_SET: 1218 err = execute_set_action(skb, key, nla_data(a)); 1219 break; 1220 1221 case OVS_ACTION_ATTR_SET_MASKED: 1222 case OVS_ACTION_ATTR_SET_TO_MASKED: 1223 err = execute_masked_set_action(skb, key, nla_data(a)); 1224 break; 1225 1226 case OVS_ACTION_ATTR_SAMPLE: 1227 err = sample(dp, skb, key, a, attr, len); 1228 break; 1229 1230 case OVS_ACTION_ATTR_CT: 1231 if (!is_flow_key_valid(key)) { 1232 err = ovs_flow_key_update(skb, key); 1233 if (err) 1234 return err; 1235 } 1236 1237 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, 1238 nla_data(a)); 1239 1240 /* Hide stolen IP fragments from user space. */ 1241 if (err) 1242 return err == -EINPROGRESS ? 0 : err; 1243 break; 1244 1245 case OVS_ACTION_ATTR_PUSH_ETH: 1246 err = push_eth(skb, key, nla_data(a)); 1247 break; 1248 1249 case OVS_ACTION_ATTR_POP_ETH: 1250 err = pop_eth(skb, key); 1251 break; 1252 } 1253 1254 if (unlikely(err)) { 1255 kfree_skb(skb); 1256 return err; 1257 } 1258 } 1259 1260 if (prev_port != -1) 1261 do_output(dp, skb, prev_port, key); 1262 else 1263 consume_skb(skb); 1264 1265 return 0; 1266 } 1267 1268 static void process_deferred_actions(struct datapath *dp) 1269 { 1270 struct action_fifo *fifo = this_cpu_ptr(action_fifos); 1271 1272 /* Do not touch the FIFO in case there is no deferred actions. */ 1273 if (action_fifo_is_empty(fifo)) 1274 return; 1275 1276 /* Finishing executing all deferred actions. */ 1277 do { 1278 struct deferred_action *da = action_fifo_get(fifo); 1279 struct sk_buff *skb = da->skb; 1280 struct sw_flow_key *key = &da->pkt_key; 1281 const struct nlattr *actions = da->actions; 1282 1283 if (actions) 1284 do_execute_actions(dp, skb, key, actions, 1285 nla_len(actions)); 1286 else 1287 ovs_dp_process_packet(skb, key); 1288 } while (!action_fifo_is_empty(fifo)); 1289 1290 /* Reset FIFO for the next packet. */ 1291 action_fifo_init(fifo); 1292 } 1293 1294 /* Execute a list of actions against 'skb'. */ 1295 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, 1296 const struct sw_flow_actions *acts, 1297 struct sw_flow_key *key) 1298 { 1299 int err, level; 1300 1301 level = __this_cpu_inc_return(exec_actions_level); 1302 if (unlikely(level > OVS_RECURSION_LIMIT)) { 1303 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n", 1304 ovs_dp_name(dp)); 1305 kfree_skb(skb); 1306 err = -ENETDOWN; 1307 goto out; 1308 } 1309 1310 err = do_execute_actions(dp, skb, key, 1311 acts->actions, acts->actions_len); 1312 1313 if (level == 1) 1314 process_deferred_actions(dp); 1315 1316 out: 1317 __this_cpu_dec(exec_actions_level); 1318 return err; 1319 } 1320 1321 int action_fifos_init(void) 1322 { 1323 action_fifos = alloc_percpu(struct action_fifo); 1324 if (!action_fifos) 1325 return -ENOMEM; 1326 1327 recirc_keys = alloc_percpu(struct recirc_keys); 1328 if (!recirc_keys) { 1329 free_percpu(action_fifos); 1330 return -ENOMEM; 1331 } 1332 1333 return 0; 1334 } 1335 1336 void action_fifos_exit(void) 1337 { 1338 free_percpu(action_fifos); 1339 free_percpu(recirc_keys); 1340 } 1341