1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/skbuff.h> 22 #include <linux/in.h> 23 #include <linux/ip.h> 24 #include <linux/openvswitch.h> 25 #include <linux/sctp.h> 26 #include <linux/tcp.h> 27 #include <linux/udp.h> 28 #include <linux/in6.h> 29 #include <linux/if_arp.h> 30 #include <linux/if_vlan.h> 31 32 #include <net/ip.h> 33 #include <net/ipv6.h> 34 #include <net/checksum.h> 35 #include <net/dsfield.h> 36 #include <net/mpls.h> 37 #include <net/sctp/checksum.h> 38 39 #include "datapath.h" 40 #include "flow.h" 41 #include "vport.h" 42 43 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 44 struct sw_flow_key *key, 45 const struct nlattr *attr, int len); 46 47 struct deferred_action { 48 struct sk_buff *skb; 49 const struct nlattr *actions; 50 51 /* Store pkt_key clone when creating deferred action. */ 52 struct sw_flow_key pkt_key; 53 }; 54 55 #define DEFERRED_ACTION_FIFO_SIZE 10 56 struct action_fifo { 57 int head; 58 int tail; 59 /* Deferred action fifo queue storage. */ 60 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; 61 }; 62 63 static struct action_fifo __percpu *action_fifos; 64 static DEFINE_PER_CPU(int, exec_actions_level); 65 66 static void action_fifo_init(struct action_fifo *fifo) 67 { 68 fifo->head = 0; 69 fifo->tail = 0; 70 } 71 72 static bool action_fifo_is_empty(const struct action_fifo *fifo) 73 { 74 return (fifo->head == fifo->tail); 75 } 76 77 static struct deferred_action *action_fifo_get(struct action_fifo *fifo) 78 { 79 if (action_fifo_is_empty(fifo)) 80 return NULL; 81 82 return &fifo->fifo[fifo->tail++]; 83 } 84 85 static struct deferred_action *action_fifo_put(struct action_fifo *fifo) 86 { 87 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) 88 return NULL; 89 90 return &fifo->fifo[fifo->head++]; 91 } 92 93 /* Return true if fifo is not full */ 94 static struct deferred_action *add_deferred_actions(struct sk_buff *skb, 95 const struct sw_flow_key *key, 96 const struct nlattr *attr) 97 { 98 struct action_fifo *fifo; 99 struct deferred_action *da; 100 101 fifo = this_cpu_ptr(action_fifos); 102 da = action_fifo_put(fifo); 103 if (da) { 104 da->skb = skb; 105 da->actions = attr; 106 da->pkt_key = *key; 107 } 108 109 return da; 110 } 111 112 static void invalidate_flow_key(struct sw_flow_key *key) 113 { 114 key->eth.type = htons(0); 115 } 116 117 static bool is_flow_key_valid(const struct sw_flow_key *key) 118 { 119 return !!key->eth.type; 120 } 121 122 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, 123 const struct ovs_action_push_mpls *mpls) 124 { 125 __be32 *new_mpls_lse; 126 struct ethhdr *hdr; 127 128 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */ 129 if (skb->encapsulation) 130 return -ENOTSUPP; 131 132 if (skb_cow_head(skb, MPLS_HLEN) < 0) 133 return -ENOMEM; 134 135 skb_push(skb, MPLS_HLEN); 136 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 137 skb->mac_len); 138 skb_reset_mac_header(skb); 139 140 new_mpls_lse = (__be32 *)skb_mpls_header(skb); 141 *new_mpls_lse = mpls->mpls_lse; 142 143 if (skb->ip_summed == CHECKSUM_COMPLETE) 144 skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse, 145 MPLS_HLEN, 0)); 146 147 hdr = eth_hdr(skb); 148 hdr->h_proto = mpls->mpls_ethertype; 149 150 skb_set_inner_protocol(skb, skb->protocol); 151 skb->protocol = mpls->mpls_ethertype; 152 153 invalidate_flow_key(key); 154 return 0; 155 } 156 157 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, 158 const __be16 ethertype) 159 { 160 struct ethhdr *hdr; 161 int err; 162 163 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 164 if (unlikely(err)) 165 return err; 166 167 skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN); 168 169 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 170 skb->mac_len); 171 172 __skb_pull(skb, MPLS_HLEN); 173 skb_reset_mac_header(skb); 174 175 /* skb_mpls_header() is used to locate the ethertype 176 * field correctly in the presence of VLAN tags. 177 */ 178 hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN); 179 hdr->h_proto = ethertype; 180 if (eth_p_mpls(skb->protocol)) 181 skb->protocol = ethertype; 182 183 invalidate_flow_key(key); 184 return 0; 185 } 186 187 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *key, 188 const __be32 *mpls_lse) 189 { 190 __be32 *stack; 191 int err; 192 193 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 194 if (unlikely(err)) 195 return err; 196 197 stack = (__be32 *)skb_mpls_header(skb); 198 if (skb->ip_summed == CHECKSUM_COMPLETE) { 199 __be32 diff[] = { ~(*stack), *mpls_lse }; 200 skb->csum = ~csum_partial((char *)diff, sizeof(diff), 201 ~skb->csum); 202 } 203 204 *stack = *mpls_lse; 205 key->mpls.top_lse = *mpls_lse; 206 return 0; 207 } 208 209 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) 210 { 211 int err; 212 213 err = skb_vlan_pop(skb); 214 if (vlan_tx_tag_present(skb)) 215 invalidate_flow_key(key); 216 else 217 key->eth.tci = 0; 218 return err; 219 } 220 221 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, 222 const struct ovs_action_push_vlan *vlan) 223 { 224 if (vlan_tx_tag_present(skb)) 225 invalidate_flow_key(key); 226 else 227 key->eth.tci = vlan->vlan_tci; 228 return skb_vlan_push(skb, vlan->vlan_tpid, 229 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT); 230 } 231 232 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *key, 233 const struct ovs_key_ethernet *eth_key) 234 { 235 int err; 236 err = skb_ensure_writable(skb, ETH_HLEN); 237 if (unlikely(err)) 238 return err; 239 240 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 241 242 ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src); 243 ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst); 244 245 ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 246 247 ether_addr_copy(key->eth.src, eth_key->eth_src); 248 ether_addr_copy(key->eth.dst, eth_key->eth_dst); 249 return 0; 250 } 251 252 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, 253 __be32 *addr, __be32 new_addr) 254 { 255 int transport_len = skb->len - skb_transport_offset(skb); 256 257 if (nh->protocol == IPPROTO_TCP) { 258 if (likely(transport_len >= sizeof(struct tcphdr))) 259 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, 260 *addr, new_addr, 1); 261 } else if (nh->protocol == IPPROTO_UDP) { 262 if (likely(transport_len >= sizeof(struct udphdr))) { 263 struct udphdr *uh = udp_hdr(skb); 264 265 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 266 inet_proto_csum_replace4(&uh->check, skb, 267 *addr, new_addr, 1); 268 if (!uh->check) 269 uh->check = CSUM_MANGLED_0; 270 } 271 } 272 } 273 274 csum_replace4(&nh->check, *addr, new_addr); 275 skb_clear_hash(skb); 276 *addr = new_addr; 277 } 278 279 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, 280 __be32 addr[4], const __be32 new_addr[4]) 281 { 282 int transport_len = skb->len - skb_transport_offset(skb); 283 284 if (l4_proto == NEXTHDR_TCP) { 285 if (likely(transport_len >= sizeof(struct tcphdr))) 286 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, 287 addr, new_addr, 1); 288 } else if (l4_proto == NEXTHDR_UDP) { 289 if (likely(transport_len >= sizeof(struct udphdr))) { 290 struct udphdr *uh = udp_hdr(skb); 291 292 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 293 inet_proto_csum_replace16(&uh->check, skb, 294 addr, new_addr, 1); 295 if (!uh->check) 296 uh->check = CSUM_MANGLED_0; 297 } 298 } 299 } else if (l4_proto == NEXTHDR_ICMP) { 300 if (likely(transport_len >= sizeof(struct icmp6hdr))) 301 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, 302 skb, addr, new_addr, 1); 303 } 304 } 305 306 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, 307 __be32 addr[4], const __be32 new_addr[4], 308 bool recalculate_csum) 309 { 310 if (recalculate_csum) 311 update_ipv6_checksum(skb, l4_proto, addr, new_addr); 312 313 skb_clear_hash(skb); 314 memcpy(addr, new_addr, sizeof(__be32[4])); 315 } 316 317 static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc) 318 { 319 nh->priority = tc >> 4; 320 nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4); 321 } 322 323 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl) 324 { 325 nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16; 326 nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8; 327 nh->flow_lbl[2] = fl & 0x000000FF; 328 } 329 330 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl) 331 { 332 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); 333 nh->ttl = new_ttl; 334 } 335 336 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *key, 337 const struct ovs_key_ipv4 *ipv4_key) 338 { 339 struct iphdr *nh; 340 int err; 341 342 err = skb_ensure_writable(skb, skb_network_offset(skb) + 343 sizeof(struct iphdr)); 344 if (unlikely(err)) 345 return err; 346 347 nh = ip_hdr(skb); 348 349 if (ipv4_key->ipv4_src != nh->saddr) { 350 set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src); 351 key->ipv4.addr.src = ipv4_key->ipv4_src; 352 } 353 354 if (ipv4_key->ipv4_dst != nh->daddr) { 355 set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst); 356 key->ipv4.addr.dst = ipv4_key->ipv4_dst; 357 } 358 359 if (ipv4_key->ipv4_tos != nh->tos) { 360 ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos); 361 key->ip.tos = nh->tos; 362 } 363 364 if (ipv4_key->ipv4_ttl != nh->ttl) { 365 set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl); 366 key->ip.ttl = ipv4_key->ipv4_ttl; 367 } 368 369 return 0; 370 } 371 372 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *key, 373 const struct ovs_key_ipv6 *ipv6_key) 374 { 375 struct ipv6hdr *nh; 376 int err; 377 __be32 *saddr; 378 __be32 *daddr; 379 380 err = skb_ensure_writable(skb, skb_network_offset(skb) + 381 sizeof(struct ipv6hdr)); 382 if (unlikely(err)) 383 return err; 384 385 nh = ipv6_hdr(skb); 386 saddr = (__be32 *)&nh->saddr; 387 daddr = (__be32 *)&nh->daddr; 388 389 if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src))) { 390 set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr, 391 ipv6_key->ipv6_src, true); 392 memcpy(&key->ipv6.addr.src, ipv6_key->ipv6_src, 393 sizeof(ipv6_key->ipv6_src)); 394 } 395 396 if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) { 397 unsigned int offset = 0; 398 int flags = IP6_FH_F_SKIP_RH; 399 bool recalc_csum = true; 400 401 if (ipv6_ext_hdr(nh->nexthdr)) 402 recalc_csum = ipv6_find_hdr(skb, &offset, 403 NEXTHDR_ROUTING, NULL, 404 &flags) != NEXTHDR_ROUTING; 405 406 set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr, 407 ipv6_key->ipv6_dst, recalc_csum); 408 memcpy(&key->ipv6.addr.dst, ipv6_key->ipv6_dst, 409 sizeof(ipv6_key->ipv6_dst)); 410 } 411 412 set_ipv6_tc(nh, ipv6_key->ipv6_tclass); 413 key->ip.tos = ipv6_get_dsfield(nh); 414 415 set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label)); 416 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 417 418 nh->hop_limit = ipv6_key->ipv6_hlimit; 419 key->ip.ttl = ipv6_key->ipv6_hlimit; 420 return 0; 421 } 422 423 /* Must follow skb_ensure_writable() since that can move the skb data. */ 424 static void set_tp_port(struct sk_buff *skb, __be16 *port, 425 __be16 new_port, __sum16 *check) 426 { 427 inet_proto_csum_replace2(check, skb, *port, new_port, 0); 428 *port = new_port; 429 skb_clear_hash(skb); 430 } 431 432 static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port) 433 { 434 struct udphdr *uh = udp_hdr(skb); 435 436 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { 437 set_tp_port(skb, port, new_port, &uh->check); 438 439 if (!uh->check) 440 uh->check = CSUM_MANGLED_0; 441 } else { 442 *port = new_port; 443 skb_clear_hash(skb); 444 } 445 } 446 447 static int set_udp(struct sk_buff *skb, struct sw_flow_key *key, 448 const struct ovs_key_udp *udp_port_key) 449 { 450 struct udphdr *uh; 451 int err; 452 453 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 454 sizeof(struct udphdr)); 455 if (unlikely(err)) 456 return err; 457 458 uh = udp_hdr(skb); 459 if (udp_port_key->udp_src != uh->source) { 460 set_udp_port(skb, &uh->source, udp_port_key->udp_src); 461 key->tp.src = udp_port_key->udp_src; 462 } 463 464 if (udp_port_key->udp_dst != uh->dest) { 465 set_udp_port(skb, &uh->dest, udp_port_key->udp_dst); 466 key->tp.dst = udp_port_key->udp_dst; 467 } 468 469 return 0; 470 } 471 472 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *key, 473 const struct ovs_key_tcp *tcp_port_key) 474 { 475 struct tcphdr *th; 476 int err; 477 478 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 479 sizeof(struct tcphdr)); 480 if (unlikely(err)) 481 return err; 482 483 th = tcp_hdr(skb); 484 if (tcp_port_key->tcp_src != th->source) { 485 set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check); 486 key->tp.src = tcp_port_key->tcp_src; 487 } 488 489 if (tcp_port_key->tcp_dst != th->dest) { 490 set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check); 491 key->tp.dst = tcp_port_key->tcp_dst; 492 } 493 494 return 0; 495 } 496 497 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *key, 498 const struct ovs_key_sctp *sctp_port_key) 499 { 500 struct sctphdr *sh; 501 int err; 502 unsigned int sctphoff = skb_transport_offset(skb); 503 504 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); 505 if (unlikely(err)) 506 return err; 507 508 sh = sctp_hdr(skb); 509 if (sctp_port_key->sctp_src != sh->source || 510 sctp_port_key->sctp_dst != sh->dest) { 511 __le32 old_correct_csum, new_csum, old_csum; 512 513 old_csum = sh->checksum; 514 old_correct_csum = sctp_compute_cksum(skb, sctphoff); 515 516 sh->source = sctp_port_key->sctp_src; 517 sh->dest = sctp_port_key->sctp_dst; 518 519 new_csum = sctp_compute_cksum(skb, sctphoff); 520 521 /* Carry any checksum errors through. */ 522 sh->checksum = old_csum ^ old_correct_csum ^ new_csum; 523 524 skb_clear_hash(skb); 525 key->tp.src = sctp_port_key->sctp_src; 526 key->tp.dst = sctp_port_key->sctp_dst; 527 } 528 529 return 0; 530 } 531 532 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port) 533 { 534 struct vport *vport = ovs_vport_rcu(dp, out_port); 535 536 if (likely(vport)) 537 ovs_vport_send(vport, skb); 538 else 539 kfree_skb(skb); 540 } 541 542 static int output_userspace(struct datapath *dp, struct sk_buff *skb, 543 struct sw_flow_key *key, const struct nlattr *attr) 544 { 545 struct ovs_tunnel_info info; 546 struct dp_upcall_info upcall; 547 const struct nlattr *a; 548 int rem; 549 550 upcall.cmd = OVS_PACKET_CMD_ACTION; 551 upcall.userdata = NULL; 552 upcall.portid = 0; 553 upcall.egress_tun_info = NULL; 554 555 for (a = nla_data(attr), rem = nla_len(attr); rem > 0; 556 a = nla_next(a, &rem)) { 557 switch (nla_type(a)) { 558 case OVS_USERSPACE_ATTR_USERDATA: 559 upcall.userdata = a; 560 break; 561 562 case OVS_USERSPACE_ATTR_PID: 563 upcall.portid = nla_get_u32(a); 564 break; 565 566 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { 567 /* Get out tunnel info. */ 568 struct vport *vport; 569 570 vport = ovs_vport_rcu(dp, nla_get_u32(a)); 571 if (vport) { 572 int err; 573 574 err = ovs_vport_get_egress_tun_info(vport, skb, 575 &info); 576 if (!err) 577 upcall.egress_tun_info = &info; 578 } 579 break; 580 } 581 582 } /* End of switch. */ 583 } 584 585 return ovs_dp_upcall(dp, skb, key, &upcall); 586 } 587 588 static int sample(struct datapath *dp, struct sk_buff *skb, 589 struct sw_flow_key *key, const struct nlattr *attr) 590 { 591 const struct nlattr *acts_list = NULL; 592 const struct nlattr *a; 593 int rem; 594 595 for (a = nla_data(attr), rem = nla_len(attr); rem > 0; 596 a = nla_next(a, &rem)) { 597 switch (nla_type(a)) { 598 case OVS_SAMPLE_ATTR_PROBABILITY: 599 if (prandom_u32() >= nla_get_u32(a)) 600 return 0; 601 break; 602 603 case OVS_SAMPLE_ATTR_ACTIONS: 604 acts_list = a; 605 break; 606 } 607 } 608 609 rem = nla_len(acts_list); 610 a = nla_data(acts_list); 611 612 /* Actions list is empty, do nothing */ 613 if (unlikely(!rem)) 614 return 0; 615 616 /* The only known usage of sample action is having a single user-space 617 * action. Treat this usage as a special case. 618 * The output_userspace() should clone the skb to be sent to the 619 * user space. This skb will be consumed by its caller. 620 */ 621 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE && 622 nla_is_last(a, rem))) 623 return output_userspace(dp, skb, key, a); 624 625 skb = skb_clone(skb, GFP_ATOMIC); 626 if (!skb) 627 /* Skip the sample action when out of memory. */ 628 return 0; 629 630 if (!add_deferred_actions(skb, key, a)) { 631 if (net_ratelimit()) 632 pr_warn("%s: deferred actions limit reached, dropping sample action\n", 633 ovs_dp_name(dp)); 634 635 kfree_skb(skb); 636 } 637 return 0; 638 } 639 640 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, 641 const struct nlattr *attr) 642 { 643 struct ovs_action_hash *hash_act = nla_data(attr); 644 u32 hash = 0; 645 646 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */ 647 hash = skb_get_hash(skb); 648 hash = jhash_1word(hash, hash_act->hash_basis); 649 if (!hash) 650 hash = 0x1; 651 652 key->ovs_flow_hash = hash; 653 } 654 655 static int execute_set_action(struct sk_buff *skb, struct sw_flow_key *key, 656 const struct nlattr *nested_attr) 657 { 658 int err = 0; 659 660 switch (nla_type(nested_attr)) { 661 case OVS_KEY_ATTR_PRIORITY: 662 skb->priority = nla_get_u32(nested_attr); 663 key->phy.priority = skb->priority; 664 break; 665 666 case OVS_KEY_ATTR_SKB_MARK: 667 skb->mark = nla_get_u32(nested_attr); 668 key->phy.skb_mark = skb->mark; 669 break; 670 671 case OVS_KEY_ATTR_TUNNEL_INFO: 672 OVS_CB(skb)->egress_tun_info = nla_data(nested_attr); 673 break; 674 675 case OVS_KEY_ATTR_ETHERNET: 676 err = set_eth_addr(skb, key, nla_data(nested_attr)); 677 break; 678 679 case OVS_KEY_ATTR_IPV4: 680 err = set_ipv4(skb, key, nla_data(nested_attr)); 681 break; 682 683 case OVS_KEY_ATTR_IPV6: 684 err = set_ipv6(skb, key, nla_data(nested_attr)); 685 break; 686 687 case OVS_KEY_ATTR_TCP: 688 err = set_tcp(skb, key, nla_data(nested_attr)); 689 break; 690 691 case OVS_KEY_ATTR_UDP: 692 err = set_udp(skb, key, nla_data(nested_attr)); 693 break; 694 695 case OVS_KEY_ATTR_SCTP: 696 err = set_sctp(skb, key, nla_data(nested_attr)); 697 break; 698 699 case OVS_KEY_ATTR_MPLS: 700 err = set_mpls(skb, key, nla_data(nested_attr)); 701 break; 702 } 703 704 return err; 705 } 706 707 static int execute_recirc(struct datapath *dp, struct sk_buff *skb, 708 struct sw_flow_key *key, 709 const struct nlattr *a, int rem) 710 { 711 struct deferred_action *da; 712 713 if (!is_flow_key_valid(key)) { 714 int err; 715 716 err = ovs_flow_key_update(skb, key); 717 if (err) 718 return err; 719 } 720 BUG_ON(!is_flow_key_valid(key)); 721 722 if (!nla_is_last(a, rem)) { 723 /* Recirc action is the not the last action 724 * of the action list, need to clone the skb. 725 */ 726 skb = skb_clone(skb, GFP_ATOMIC); 727 728 /* Skip the recirc action when out of memory, but 729 * continue on with the rest of the action list. 730 */ 731 if (!skb) 732 return 0; 733 } 734 735 da = add_deferred_actions(skb, key, NULL); 736 if (da) { 737 da->pkt_key.recirc_id = nla_get_u32(a); 738 } else { 739 kfree_skb(skb); 740 741 if (net_ratelimit()) 742 pr_warn("%s: deferred action limit reached, drop recirc action\n", 743 ovs_dp_name(dp)); 744 } 745 746 return 0; 747 } 748 749 /* Execute a list of actions against 'skb'. */ 750 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 751 struct sw_flow_key *key, 752 const struct nlattr *attr, int len) 753 { 754 /* Every output action needs a separate clone of 'skb', but the common 755 * case is just a single output action, so that doing a clone and 756 * then freeing the original skbuff is wasteful. So the following code 757 * is slightly obscure just to avoid that. 758 */ 759 int prev_port = -1; 760 const struct nlattr *a; 761 int rem; 762 763 for (a = attr, rem = len; rem > 0; 764 a = nla_next(a, &rem)) { 765 int err = 0; 766 767 if (unlikely(prev_port != -1)) { 768 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC); 769 770 if (out_skb) 771 do_output(dp, out_skb, prev_port); 772 773 prev_port = -1; 774 } 775 776 switch (nla_type(a)) { 777 case OVS_ACTION_ATTR_OUTPUT: 778 prev_port = nla_get_u32(a); 779 break; 780 781 case OVS_ACTION_ATTR_USERSPACE: 782 output_userspace(dp, skb, key, a); 783 break; 784 785 case OVS_ACTION_ATTR_HASH: 786 execute_hash(skb, key, a); 787 break; 788 789 case OVS_ACTION_ATTR_PUSH_MPLS: 790 err = push_mpls(skb, key, nla_data(a)); 791 break; 792 793 case OVS_ACTION_ATTR_POP_MPLS: 794 err = pop_mpls(skb, key, nla_get_be16(a)); 795 break; 796 797 case OVS_ACTION_ATTR_PUSH_VLAN: 798 err = push_vlan(skb, key, nla_data(a)); 799 break; 800 801 case OVS_ACTION_ATTR_POP_VLAN: 802 err = pop_vlan(skb, key); 803 break; 804 805 case OVS_ACTION_ATTR_RECIRC: 806 err = execute_recirc(dp, skb, key, a, rem); 807 if (nla_is_last(a, rem)) { 808 /* If this is the last action, the skb has 809 * been consumed or freed. 810 * Return immediately. 811 */ 812 return err; 813 } 814 break; 815 816 case OVS_ACTION_ATTR_SET: 817 err = execute_set_action(skb, key, nla_data(a)); 818 break; 819 820 case OVS_ACTION_ATTR_SAMPLE: 821 err = sample(dp, skb, key, a); 822 break; 823 } 824 825 if (unlikely(err)) { 826 kfree_skb(skb); 827 return err; 828 } 829 } 830 831 if (prev_port != -1) 832 do_output(dp, skb, prev_port); 833 else 834 consume_skb(skb); 835 836 return 0; 837 } 838 839 static void process_deferred_actions(struct datapath *dp) 840 { 841 struct action_fifo *fifo = this_cpu_ptr(action_fifos); 842 843 /* Do not touch the FIFO in case there is no deferred actions. */ 844 if (action_fifo_is_empty(fifo)) 845 return; 846 847 /* Finishing executing all deferred actions. */ 848 do { 849 struct deferred_action *da = action_fifo_get(fifo); 850 struct sk_buff *skb = da->skb; 851 struct sw_flow_key *key = &da->pkt_key; 852 const struct nlattr *actions = da->actions; 853 854 if (actions) 855 do_execute_actions(dp, skb, key, actions, 856 nla_len(actions)); 857 else 858 ovs_dp_process_packet(skb, key); 859 } while (!action_fifo_is_empty(fifo)); 860 861 /* Reset FIFO for the next packet. */ 862 action_fifo_init(fifo); 863 } 864 865 /* Execute a list of actions against 'skb'. */ 866 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, 867 const struct sw_flow_actions *acts, 868 struct sw_flow_key *key) 869 { 870 int level = this_cpu_read(exec_actions_level); 871 int err; 872 873 this_cpu_inc(exec_actions_level); 874 OVS_CB(skb)->egress_tun_info = NULL; 875 err = do_execute_actions(dp, skb, key, 876 acts->actions, acts->actions_len); 877 878 if (!level) 879 process_deferred_actions(dp); 880 881 this_cpu_dec(exec_actions_level); 882 return err; 883 } 884 885 int action_fifos_init(void) 886 { 887 action_fifos = alloc_percpu(struct action_fifo); 888 if (!action_fifos) 889 return -ENOMEM; 890 891 return 0; 892 } 893 894 void action_fifos_exit(void) 895 { 896 free_percpu(action_fifos); 897 } 898