xref: /openbmc/linux/net/openvswitch/actions.c (revision 8684014d)
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31 
32 #include <net/ip.h>
33 #include <net/ipv6.h>
34 #include <net/checksum.h>
35 #include <net/dsfield.h>
36 #include <net/mpls.h>
37 #include <net/sctp/checksum.h>
38 
39 #include "datapath.h"
40 #include "flow.h"
41 #include "vport.h"
42 
43 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
44 			      struct sw_flow_key *key,
45 			      const struct nlattr *attr, int len);
46 
47 struct deferred_action {
48 	struct sk_buff *skb;
49 	const struct nlattr *actions;
50 
51 	/* Store pkt_key clone when creating deferred action. */
52 	struct sw_flow_key pkt_key;
53 };
54 
55 #define DEFERRED_ACTION_FIFO_SIZE 10
56 struct action_fifo {
57 	int head;
58 	int tail;
59 	/* Deferred action fifo queue storage. */
60 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
61 };
62 
63 static struct action_fifo __percpu *action_fifos;
64 static DEFINE_PER_CPU(int, exec_actions_level);
65 
66 static void action_fifo_init(struct action_fifo *fifo)
67 {
68 	fifo->head = 0;
69 	fifo->tail = 0;
70 }
71 
72 static bool action_fifo_is_empty(const struct action_fifo *fifo)
73 {
74 	return (fifo->head == fifo->tail);
75 }
76 
77 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
78 {
79 	if (action_fifo_is_empty(fifo))
80 		return NULL;
81 
82 	return &fifo->fifo[fifo->tail++];
83 }
84 
85 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
86 {
87 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
88 		return NULL;
89 
90 	return &fifo->fifo[fifo->head++];
91 }
92 
93 /* Return true if fifo is not full */
94 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
95 						    const struct sw_flow_key *key,
96 						    const struct nlattr *attr)
97 {
98 	struct action_fifo *fifo;
99 	struct deferred_action *da;
100 
101 	fifo = this_cpu_ptr(action_fifos);
102 	da = action_fifo_put(fifo);
103 	if (da) {
104 		da->skb = skb;
105 		da->actions = attr;
106 		da->pkt_key = *key;
107 	}
108 
109 	return da;
110 }
111 
112 static void invalidate_flow_key(struct sw_flow_key *key)
113 {
114 	key->eth.type = htons(0);
115 }
116 
117 static bool is_flow_key_valid(const struct sw_flow_key *key)
118 {
119 	return !!key->eth.type;
120 }
121 
122 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
123 		     const struct ovs_action_push_mpls *mpls)
124 {
125 	__be32 *new_mpls_lse;
126 	struct ethhdr *hdr;
127 
128 	/* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
129 	if (skb->encapsulation)
130 		return -ENOTSUPP;
131 
132 	if (skb_cow_head(skb, MPLS_HLEN) < 0)
133 		return -ENOMEM;
134 
135 	skb_push(skb, MPLS_HLEN);
136 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
137 		skb->mac_len);
138 	skb_reset_mac_header(skb);
139 
140 	new_mpls_lse = (__be32 *)skb_mpls_header(skb);
141 	*new_mpls_lse = mpls->mpls_lse;
142 
143 	if (skb->ip_summed == CHECKSUM_COMPLETE)
144 		skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
145 							     MPLS_HLEN, 0));
146 
147 	hdr = eth_hdr(skb);
148 	hdr->h_proto = mpls->mpls_ethertype;
149 
150 	skb_set_inner_protocol(skb, skb->protocol);
151 	skb->protocol = mpls->mpls_ethertype;
152 
153 	invalidate_flow_key(key);
154 	return 0;
155 }
156 
157 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
158 		    const __be16 ethertype)
159 {
160 	struct ethhdr *hdr;
161 	int err;
162 
163 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
164 	if (unlikely(err))
165 		return err;
166 
167 	skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
168 
169 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
170 		skb->mac_len);
171 
172 	__skb_pull(skb, MPLS_HLEN);
173 	skb_reset_mac_header(skb);
174 
175 	/* skb_mpls_header() is used to locate the ethertype
176 	 * field correctly in the presence of VLAN tags.
177 	 */
178 	hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
179 	hdr->h_proto = ethertype;
180 	if (eth_p_mpls(skb->protocol))
181 		skb->protocol = ethertype;
182 
183 	invalidate_flow_key(key);
184 	return 0;
185 }
186 
187 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *key,
188 		    const __be32 *mpls_lse)
189 {
190 	__be32 *stack;
191 	int err;
192 
193 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
194 	if (unlikely(err))
195 		return err;
196 
197 	stack = (__be32 *)skb_mpls_header(skb);
198 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
199 		__be32 diff[] = { ~(*stack), *mpls_lse };
200 		skb->csum = ~csum_partial((char *)diff, sizeof(diff),
201 					  ~skb->csum);
202 	}
203 
204 	*stack = *mpls_lse;
205 	key->mpls.top_lse = *mpls_lse;
206 	return 0;
207 }
208 
209 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
210 {
211 	int err;
212 
213 	err = skb_vlan_pop(skb);
214 	if (vlan_tx_tag_present(skb))
215 		invalidate_flow_key(key);
216 	else
217 		key->eth.tci = 0;
218 	return err;
219 }
220 
221 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
222 		     const struct ovs_action_push_vlan *vlan)
223 {
224 	if (vlan_tx_tag_present(skb))
225 		invalidate_flow_key(key);
226 	else
227 		key->eth.tci = vlan->vlan_tci;
228 	return skb_vlan_push(skb, vlan->vlan_tpid,
229 			     ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
230 }
231 
232 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *key,
233 			const struct ovs_key_ethernet *eth_key)
234 {
235 	int err;
236 	err = skb_ensure_writable(skb, ETH_HLEN);
237 	if (unlikely(err))
238 		return err;
239 
240 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
241 
242 	ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src);
243 	ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst);
244 
245 	ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
246 
247 	ether_addr_copy(key->eth.src, eth_key->eth_src);
248 	ether_addr_copy(key->eth.dst, eth_key->eth_dst);
249 	return 0;
250 }
251 
252 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
253 			__be32 *addr, __be32 new_addr)
254 {
255 	int transport_len = skb->len - skb_transport_offset(skb);
256 
257 	if (nh->protocol == IPPROTO_TCP) {
258 		if (likely(transport_len >= sizeof(struct tcphdr)))
259 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
260 						 *addr, new_addr, 1);
261 	} else if (nh->protocol == IPPROTO_UDP) {
262 		if (likely(transport_len >= sizeof(struct udphdr))) {
263 			struct udphdr *uh = udp_hdr(skb);
264 
265 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
266 				inet_proto_csum_replace4(&uh->check, skb,
267 							 *addr, new_addr, 1);
268 				if (!uh->check)
269 					uh->check = CSUM_MANGLED_0;
270 			}
271 		}
272 	}
273 
274 	csum_replace4(&nh->check, *addr, new_addr);
275 	skb_clear_hash(skb);
276 	*addr = new_addr;
277 }
278 
279 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
280 				 __be32 addr[4], const __be32 new_addr[4])
281 {
282 	int transport_len = skb->len - skb_transport_offset(skb);
283 
284 	if (l4_proto == NEXTHDR_TCP) {
285 		if (likely(transport_len >= sizeof(struct tcphdr)))
286 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
287 						  addr, new_addr, 1);
288 	} else if (l4_proto == NEXTHDR_UDP) {
289 		if (likely(transport_len >= sizeof(struct udphdr))) {
290 			struct udphdr *uh = udp_hdr(skb);
291 
292 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
293 				inet_proto_csum_replace16(&uh->check, skb,
294 							  addr, new_addr, 1);
295 				if (!uh->check)
296 					uh->check = CSUM_MANGLED_0;
297 			}
298 		}
299 	} else if (l4_proto == NEXTHDR_ICMP) {
300 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
301 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
302 						  skb, addr, new_addr, 1);
303 	}
304 }
305 
306 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
307 			  __be32 addr[4], const __be32 new_addr[4],
308 			  bool recalculate_csum)
309 {
310 	if (recalculate_csum)
311 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
312 
313 	skb_clear_hash(skb);
314 	memcpy(addr, new_addr, sizeof(__be32[4]));
315 }
316 
317 static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc)
318 {
319 	nh->priority = tc >> 4;
320 	nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4);
321 }
322 
323 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl)
324 {
325 	nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16;
326 	nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8;
327 	nh->flow_lbl[2] = fl & 0x000000FF;
328 }
329 
330 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl)
331 {
332 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
333 	nh->ttl = new_ttl;
334 }
335 
336 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *key,
337 		    const struct ovs_key_ipv4 *ipv4_key)
338 {
339 	struct iphdr *nh;
340 	int err;
341 
342 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
343 				  sizeof(struct iphdr));
344 	if (unlikely(err))
345 		return err;
346 
347 	nh = ip_hdr(skb);
348 
349 	if (ipv4_key->ipv4_src != nh->saddr) {
350 		set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src);
351 		key->ipv4.addr.src = ipv4_key->ipv4_src;
352 	}
353 
354 	if (ipv4_key->ipv4_dst != nh->daddr) {
355 		set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst);
356 		key->ipv4.addr.dst = ipv4_key->ipv4_dst;
357 	}
358 
359 	if (ipv4_key->ipv4_tos != nh->tos) {
360 		ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos);
361 		key->ip.tos = nh->tos;
362 	}
363 
364 	if (ipv4_key->ipv4_ttl != nh->ttl) {
365 		set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl);
366 		key->ip.ttl = ipv4_key->ipv4_ttl;
367 	}
368 
369 	return 0;
370 }
371 
372 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *key,
373 		    const struct ovs_key_ipv6 *ipv6_key)
374 {
375 	struct ipv6hdr *nh;
376 	int err;
377 	__be32 *saddr;
378 	__be32 *daddr;
379 
380 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
381 				  sizeof(struct ipv6hdr));
382 	if (unlikely(err))
383 		return err;
384 
385 	nh = ipv6_hdr(skb);
386 	saddr = (__be32 *)&nh->saddr;
387 	daddr = (__be32 *)&nh->daddr;
388 
389 	if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src))) {
390 		set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr,
391 			      ipv6_key->ipv6_src, true);
392 		memcpy(&key->ipv6.addr.src, ipv6_key->ipv6_src,
393 		       sizeof(ipv6_key->ipv6_src));
394 	}
395 
396 	if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) {
397 		unsigned int offset = 0;
398 		int flags = IP6_FH_F_SKIP_RH;
399 		bool recalc_csum = true;
400 
401 		if (ipv6_ext_hdr(nh->nexthdr))
402 			recalc_csum = ipv6_find_hdr(skb, &offset,
403 						    NEXTHDR_ROUTING, NULL,
404 						    &flags) != NEXTHDR_ROUTING;
405 
406 		set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr,
407 			      ipv6_key->ipv6_dst, recalc_csum);
408 		memcpy(&key->ipv6.addr.dst, ipv6_key->ipv6_dst,
409 		       sizeof(ipv6_key->ipv6_dst));
410 	}
411 
412 	set_ipv6_tc(nh, ipv6_key->ipv6_tclass);
413 	key->ip.tos = ipv6_get_dsfield(nh);
414 
415 	set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label));
416 	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
417 
418 	nh->hop_limit = ipv6_key->ipv6_hlimit;
419 	key->ip.ttl = ipv6_key->ipv6_hlimit;
420 	return 0;
421 }
422 
423 /* Must follow skb_ensure_writable() since that can move the skb data. */
424 static void set_tp_port(struct sk_buff *skb, __be16 *port,
425 			 __be16 new_port, __sum16 *check)
426 {
427 	inet_proto_csum_replace2(check, skb, *port, new_port, 0);
428 	*port = new_port;
429 	skb_clear_hash(skb);
430 }
431 
432 static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port)
433 {
434 	struct udphdr *uh = udp_hdr(skb);
435 
436 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
437 		set_tp_port(skb, port, new_port, &uh->check);
438 
439 		if (!uh->check)
440 			uh->check = CSUM_MANGLED_0;
441 	} else {
442 		*port = new_port;
443 		skb_clear_hash(skb);
444 	}
445 }
446 
447 static int set_udp(struct sk_buff *skb, struct sw_flow_key *key,
448 		   const struct ovs_key_udp *udp_port_key)
449 {
450 	struct udphdr *uh;
451 	int err;
452 
453 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
454 				  sizeof(struct udphdr));
455 	if (unlikely(err))
456 		return err;
457 
458 	uh = udp_hdr(skb);
459 	if (udp_port_key->udp_src != uh->source) {
460 		set_udp_port(skb, &uh->source, udp_port_key->udp_src);
461 		key->tp.src = udp_port_key->udp_src;
462 	}
463 
464 	if (udp_port_key->udp_dst != uh->dest) {
465 		set_udp_port(skb, &uh->dest, udp_port_key->udp_dst);
466 		key->tp.dst = udp_port_key->udp_dst;
467 	}
468 
469 	return 0;
470 }
471 
472 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *key,
473 		   const struct ovs_key_tcp *tcp_port_key)
474 {
475 	struct tcphdr *th;
476 	int err;
477 
478 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
479 				  sizeof(struct tcphdr));
480 	if (unlikely(err))
481 		return err;
482 
483 	th = tcp_hdr(skb);
484 	if (tcp_port_key->tcp_src != th->source) {
485 		set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check);
486 		key->tp.src = tcp_port_key->tcp_src;
487 	}
488 
489 	if (tcp_port_key->tcp_dst != th->dest) {
490 		set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check);
491 		key->tp.dst = tcp_port_key->tcp_dst;
492 	}
493 
494 	return 0;
495 }
496 
497 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *key,
498 		    const struct ovs_key_sctp *sctp_port_key)
499 {
500 	struct sctphdr *sh;
501 	int err;
502 	unsigned int sctphoff = skb_transport_offset(skb);
503 
504 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
505 	if (unlikely(err))
506 		return err;
507 
508 	sh = sctp_hdr(skb);
509 	if (sctp_port_key->sctp_src != sh->source ||
510 	    sctp_port_key->sctp_dst != sh->dest) {
511 		__le32 old_correct_csum, new_csum, old_csum;
512 
513 		old_csum = sh->checksum;
514 		old_correct_csum = sctp_compute_cksum(skb, sctphoff);
515 
516 		sh->source = sctp_port_key->sctp_src;
517 		sh->dest = sctp_port_key->sctp_dst;
518 
519 		new_csum = sctp_compute_cksum(skb, sctphoff);
520 
521 		/* Carry any checksum errors through. */
522 		sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
523 
524 		skb_clear_hash(skb);
525 		key->tp.src = sctp_port_key->sctp_src;
526 		key->tp.dst = sctp_port_key->sctp_dst;
527 	}
528 
529 	return 0;
530 }
531 
532 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
533 {
534 	struct vport *vport = ovs_vport_rcu(dp, out_port);
535 
536 	if (likely(vport))
537 		ovs_vport_send(vport, skb);
538 	else
539 		kfree_skb(skb);
540 }
541 
542 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
543 			    struct sw_flow_key *key, const struct nlattr *attr)
544 {
545 	struct ovs_tunnel_info info;
546 	struct dp_upcall_info upcall;
547 	const struct nlattr *a;
548 	int rem;
549 
550 	upcall.cmd = OVS_PACKET_CMD_ACTION;
551 	upcall.userdata = NULL;
552 	upcall.portid = 0;
553 	upcall.egress_tun_info = NULL;
554 
555 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
556 		 a = nla_next(a, &rem)) {
557 		switch (nla_type(a)) {
558 		case OVS_USERSPACE_ATTR_USERDATA:
559 			upcall.userdata = a;
560 			break;
561 
562 		case OVS_USERSPACE_ATTR_PID:
563 			upcall.portid = nla_get_u32(a);
564 			break;
565 
566 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
567 			/* Get out tunnel info. */
568 			struct vport *vport;
569 
570 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
571 			if (vport) {
572 				int err;
573 
574 				err = ovs_vport_get_egress_tun_info(vport, skb,
575 								    &info);
576 				if (!err)
577 					upcall.egress_tun_info = &info;
578 			}
579 			break;
580 		}
581 
582 		} /* End of switch. */
583 	}
584 
585 	return ovs_dp_upcall(dp, skb, key, &upcall);
586 }
587 
588 static int sample(struct datapath *dp, struct sk_buff *skb,
589 		  struct sw_flow_key *key, const struct nlattr *attr)
590 {
591 	const struct nlattr *acts_list = NULL;
592 	const struct nlattr *a;
593 	int rem;
594 
595 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
596 		 a = nla_next(a, &rem)) {
597 		switch (nla_type(a)) {
598 		case OVS_SAMPLE_ATTR_PROBABILITY:
599 			if (prandom_u32() >= nla_get_u32(a))
600 				return 0;
601 			break;
602 
603 		case OVS_SAMPLE_ATTR_ACTIONS:
604 			acts_list = a;
605 			break;
606 		}
607 	}
608 
609 	rem = nla_len(acts_list);
610 	a = nla_data(acts_list);
611 
612 	/* Actions list is empty, do nothing */
613 	if (unlikely(!rem))
614 		return 0;
615 
616 	/* The only known usage of sample action is having a single user-space
617 	 * action. Treat this usage as a special case.
618 	 * The output_userspace() should clone the skb to be sent to the
619 	 * user space. This skb will be consumed by its caller.
620 	 */
621 	if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
622 		   nla_is_last(a, rem)))
623 		return output_userspace(dp, skb, key, a);
624 
625 	skb = skb_clone(skb, GFP_ATOMIC);
626 	if (!skb)
627 		/* Skip the sample action when out of memory. */
628 		return 0;
629 
630 	if (!add_deferred_actions(skb, key, a)) {
631 		if (net_ratelimit())
632 			pr_warn("%s: deferred actions limit reached, dropping sample action\n",
633 				ovs_dp_name(dp));
634 
635 		kfree_skb(skb);
636 	}
637 	return 0;
638 }
639 
640 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
641 			 const struct nlattr *attr)
642 {
643 	struct ovs_action_hash *hash_act = nla_data(attr);
644 	u32 hash = 0;
645 
646 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
647 	hash = skb_get_hash(skb);
648 	hash = jhash_1word(hash, hash_act->hash_basis);
649 	if (!hash)
650 		hash = 0x1;
651 
652 	key->ovs_flow_hash = hash;
653 }
654 
655 static int execute_set_action(struct sk_buff *skb, struct sw_flow_key *key,
656 			      const struct nlattr *nested_attr)
657 {
658 	int err = 0;
659 
660 	switch (nla_type(nested_attr)) {
661 	case OVS_KEY_ATTR_PRIORITY:
662 		skb->priority = nla_get_u32(nested_attr);
663 		key->phy.priority = skb->priority;
664 		break;
665 
666 	case OVS_KEY_ATTR_SKB_MARK:
667 		skb->mark = nla_get_u32(nested_attr);
668 		key->phy.skb_mark = skb->mark;
669 		break;
670 
671 	case OVS_KEY_ATTR_TUNNEL_INFO:
672 		OVS_CB(skb)->egress_tun_info = nla_data(nested_attr);
673 		break;
674 
675 	case OVS_KEY_ATTR_ETHERNET:
676 		err = set_eth_addr(skb, key, nla_data(nested_attr));
677 		break;
678 
679 	case OVS_KEY_ATTR_IPV4:
680 		err = set_ipv4(skb, key, nla_data(nested_attr));
681 		break;
682 
683 	case OVS_KEY_ATTR_IPV6:
684 		err = set_ipv6(skb, key, nla_data(nested_attr));
685 		break;
686 
687 	case OVS_KEY_ATTR_TCP:
688 		err = set_tcp(skb, key, nla_data(nested_attr));
689 		break;
690 
691 	case OVS_KEY_ATTR_UDP:
692 		err = set_udp(skb, key, nla_data(nested_attr));
693 		break;
694 
695 	case OVS_KEY_ATTR_SCTP:
696 		err = set_sctp(skb, key, nla_data(nested_attr));
697 		break;
698 
699 	case OVS_KEY_ATTR_MPLS:
700 		err = set_mpls(skb, key, nla_data(nested_attr));
701 		break;
702 	}
703 
704 	return err;
705 }
706 
707 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
708 			  struct sw_flow_key *key,
709 			  const struct nlattr *a, int rem)
710 {
711 	struct deferred_action *da;
712 
713 	if (!is_flow_key_valid(key)) {
714 		int err;
715 
716 		err = ovs_flow_key_update(skb, key);
717 		if (err)
718 			return err;
719 	}
720 	BUG_ON(!is_flow_key_valid(key));
721 
722 	if (!nla_is_last(a, rem)) {
723 		/* Recirc action is the not the last action
724 		 * of the action list, need to clone the skb.
725 		 */
726 		skb = skb_clone(skb, GFP_ATOMIC);
727 
728 		/* Skip the recirc action when out of memory, but
729 		 * continue on with the rest of the action list.
730 		 */
731 		if (!skb)
732 			return 0;
733 	}
734 
735 	da = add_deferred_actions(skb, key, NULL);
736 	if (da) {
737 		da->pkt_key.recirc_id = nla_get_u32(a);
738 	} else {
739 		kfree_skb(skb);
740 
741 		if (net_ratelimit())
742 			pr_warn("%s: deferred action limit reached, drop recirc action\n",
743 				ovs_dp_name(dp));
744 	}
745 
746 	return 0;
747 }
748 
749 /* Execute a list of actions against 'skb'. */
750 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
751 			      struct sw_flow_key *key,
752 			      const struct nlattr *attr, int len)
753 {
754 	/* Every output action needs a separate clone of 'skb', but the common
755 	 * case is just a single output action, so that doing a clone and
756 	 * then freeing the original skbuff is wasteful.  So the following code
757 	 * is slightly obscure just to avoid that.
758 	 */
759 	int prev_port = -1;
760 	const struct nlattr *a;
761 	int rem;
762 
763 	for (a = attr, rem = len; rem > 0;
764 	     a = nla_next(a, &rem)) {
765 		int err = 0;
766 
767 		if (unlikely(prev_port != -1)) {
768 			struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
769 
770 			if (out_skb)
771 				do_output(dp, out_skb, prev_port);
772 
773 			prev_port = -1;
774 		}
775 
776 		switch (nla_type(a)) {
777 		case OVS_ACTION_ATTR_OUTPUT:
778 			prev_port = nla_get_u32(a);
779 			break;
780 
781 		case OVS_ACTION_ATTR_USERSPACE:
782 			output_userspace(dp, skb, key, a);
783 			break;
784 
785 		case OVS_ACTION_ATTR_HASH:
786 			execute_hash(skb, key, a);
787 			break;
788 
789 		case OVS_ACTION_ATTR_PUSH_MPLS:
790 			err = push_mpls(skb, key, nla_data(a));
791 			break;
792 
793 		case OVS_ACTION_ATTR_POP_MPLS:
794 			err = pop_mpls(skb, key, nla_get_be16(a));
795 			break;
796 
797 		case OVS_ACTION_ATTR_PUSH_VLAN:
798 			err = push_vlan(skb, key, nla_data(a));
799 			break;
800 
801 		case OVS_ACTION_ATTR_POP_VLAN:
802 			err = pop_vlan(skb, key);
803 			break;
804 
805 		case OVS_ACTION_ATTR_RECIRC:
806 			err = execute_recirc(dp, skb, key, a, rem);
807 			if (nla_is_last(a, rem)) {
808 				/* If this is the last action, the skb has
809 				 * been consumed or freed.
810 				 * Return immediately.
811 				 */
812 				return err;
813 			}
814 			break;
815 
816 		case OVS_ACTION_ATTR_SET:
817 			err = execute_set_action(skb, key, nla_data(a));
818 			break;
819 
820 		case OVS_ACTION_ATTR_SAMPLE:
821 			err = sample(dp, skb, key, a);
822 			break;
823 		}
824 
825 		if (unlikely(err)) {
826 			kfree_skb(skb);
827 			return err;
828 		}
829 	}
830 
831 	if (prev_port != -1)
832 		do_output(dp, skb, prev_port);
833 	else
834 		consume_skb(skb);
835 
836 	return 0;
837 }
838 
839 static void process_deferred_actions(struct datapath *dp)
840 {
841 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
842 
843 	/* Do not touch the FIFO in case there is no deferred actions. */
844 	if (action_fifo_is_empty(fifo))
845 		return;
846 
847 	/* Finishing executing all deferred actions. */
848 	do {
849 		struct deferred_action *da = action_fifo_get(fifo);
850 		struct sk_buff *skb = da->skb;
851 		struct sw_flow_key *key = &da->pkt_key;
852 		const struct nlattr *actions = da->actions;
853 
854 		if (actions)
855 			do_execute_actions(dp, skb, key, actions,
856 					   nla_len(actions));
857 		else
858 			ovs_dp_process_packet(skb, key);
859 	} while (!action_fifo_is_empty(fifo));
860 
861 	/* Reset FIFO for the next packet.  */
862 	action_fifo_init(fifo);
863 }
864 
865 /* Execute a list of actions against 'skb'. */
866 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
867 			const struct sw_flow_actions *acts,
868 			struct sw_flow_key *key)
869 {
870 	int level = this_cpu_read(exec_actions_level);
871 	int err;
872 
873 	this_cpu_inc(exec_actions_level);
874 	OVS_CB(skb)->egress_tun_info = NULL;
875 	err = do_execute_actions(dp, skb, key,
876 				 acts->actions, acts->actions_len);
877 
878 	if (!level)
879 		process_deferred_actions(dp);
880 
881 	this_cpu_dec(exec_actions_level);
882 	return err;
883 }
884 
885 int action_fifos_init(void)
886 {
887 	action_fifos = alloc_percpu(struct action_fifo);
888 	if (!action_fifos)
889 		return -ENOMEM;
890 
891 	return 0;
892 }
893 
894 void action_fifos_exit(void)
895 {
896 	free_percpu(action_fifos);
897 }
898