1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2007-2017 Nicira, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/skbuff.h> 9 #include <linux/in.h> 10 #include <linux/ip.h> 11 #include <linux/openvswitch.h> 12 #include <linux/netfilter_ipv6.h> 13 #include <linux/sctp.h> 14 #include <linux/tcp.h> 15 #include <linux/udp.h> 16 #include <linux/in6.h> 17 #include <linux/if_arp.h> 18 #include <linux/if_vlan.h> 19 20 #include <net/dst.h> 21 #include <net/ip.h> 22 #include <net/ipv6.h> 23 #include <net/ip6_fib.h> 24 #include <net/checksum.h> 25 #include <net/dsfield.h> 26 #include <net/mpls.h> 27 #include <net/sctp/checksum.h> 28 29 #include "datapath.h" 30 #include "flow.h" 31 #include "conntrack.h" 32 #include "vport.h" 33 #include "flow_netlink.h" 34 35 struct deferred_action { 36 struct sk_buff *skb; 37 const struct nlattr *actions; 38 int actions_len; 39 40 /* Store pkt_key clone when creating deferred action. */ 41 struct sw_flow_key pkt_key; 42 }; 43 44 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN) 45 struct ovs_frag_data { 46 unsigned long dst; 47 struct vport *vport; 48 struct ovs_skb_cb cb; 49 __be16 inner_protocol; 50 u16 network_offset; /* valid only for MPLS */ 51 u16 vlan_tci; 52 __be16 vlan_proto; 53 unsigned int l2_len; 54 u8 mac_proto; 55 u8 l2_data[MAX_L2_LEN]; 56 }; 57 58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage); 59 60 #define DEFERRED_ACTION_FIFO_SIZE 10 61 #define OVS_RECURSION_LIMIT 5 62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2) 63 struct action_fifo { 64 int head; 65 int tail; 66 /* Deferred action fifo queue storage. */ 67 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; 68 }; 69 70 struct action_flow_keys { 71 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD]; 72 }; 73 74 static struct action_fifo __percpu *action_fifos; 75 static struct action_flow_keys __percpu *flow_keys; 76 static DEFINE_PER_CPU(int, exec_actions_level); 77 78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys' 79 * space. Return NULL if out of key spaces. 80 */ 81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_) 82 { 83 struct action_flow_keys *keys = this_cpu_ptr(flow_keys); 84 int level = this_cpu_read(exec_actions_level); 85 struct sw_flow_key *key = NULL; 86 87 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) { 88 key = &keys->key[level - 1]; 89 *key = *key_; 90 } 91 92 return key; 93 } 94 95 static void action_fifo_init(struct action_fifo *fifo) 96 { 97 fifo->head = 0; 98 fifo->tail = 0; 99 } 100 101 static bool action_fifo_is_empty(const struct action_fifo *fifo) 102 { 103 return (fifo->head == fifo->tail); 104 } 105 106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo) 107 { 108 if (action_fifo_is_empty(fifo)) 109 return NULL; 110 111 return &fifo->fifo[fifo->tail++]; 112 } 113 114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo) 115 { 116 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) 117 return NULL; 118 119 return &fifo->fifo[fifo->head++]; 120 } 121 122 /* Return true if fifo is not full */ 123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb, 124 const struct sw_flow_key *key, 125 const struct nlattr *actions, 126 const int actions_len) 127 { 128 struct action_fifo *fifo; 129 struct deferred_action *da; 130 131 fifo = this_cpu_ptr(action_fifos); 132 da = action_fifo_put(fifo); 133 if (da) { 134 da->skb = skb; 135 da->actions = actions; 136 da->actions_len = actions_len; 137 da->pkt_key = *key; 138 } 139 140 return da; 141 } 142 143 static void invalidate_flow_key(struct sw_flow_key *key) 144 { 145 key->mac_proto |= SW_FLOW_KEY_INVALID; 146 } 147 148 static bool is_flow_key_valid(const struct sw_flow_key *key) 149 { 150 return !(key->mac_proto & SW_FLOW_KEY_INVALID); 151 } 152 153 static int clone_execute(struct datapath *dp, struct sk_buff *skb, 154 struct sw_flow_key *key, 155 u32 recirc_id, 156 const struct nlattr *actions, int len, 157 bool last, bool clone_flow_key); 158 159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 160 struct sw_flow_key *key, 161 const struct nlattr *attr, int len); 162 163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, 164 const struct ovs_action_push_mpls *mpls) 165 { 166 int err; 167 168 err = skb_mpls_push(skb, mpls->mpls_lse, mpls->mpls_ethertype, 169 skb->mac_len, 170 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET); 171 if (err) 172 return err; 173 174 invalidate_flow_key(key); 175 return 0; 176 } 177 178 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, 179 const __be16 ethertype) 180 { 181 int err; 182 183 err = skb_mpls_pop(skb, ethertype, skb->mac_len, 184 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET); 185 if (err) 186 return err; 187 188 invalidate_flow_key(key); 189 return 0; 190 } 191 192 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, 193 const __be32 *mpls_lse, const __be32 *mask) 194 { 195 struct mpls_shim_hdr *stack; 196 __be32 lse; 197 int err; 198 199 stack = mpls_hdr(skb); 200 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask); 201 err = skb_mpls_update_lse(skb, lse); 202 if (err) 203 return err; 204 205 flow_key->mpls.lse[0] = lse; 206 return 0; 207 } 208 209 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) 210 { 211 int err; 212 213 err = skb_vlan_pop(skb); 214 if (skb_vlan_tag_present(skb)) { 215 invalidate_flow_key(key); 216 } else { 217 key->eth.vlan.tci = 0; 218 key->eth.vlan.tpid = 0; 219 } 220 return err; 221 } 222 223 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, 224 const struct ovs_action_push_vlan *vlan) 225 { 226 if (skb_vlan_tag_present(skb)) { 227 invalidate_flow_key(key); 228 } else { 229 key->eth.vlan.tci = vlan->vlan_tci; 230 key->eth.vlan.tpid = vlan->vlan_tpid; 231 } 232 return skb_vlan_push(skb, vlan->vlan_tpid, 233 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK); 234 } 235 236 /* 'src' is already properly masked. */ 237 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) 238 { 239 u16 *dst = (u16 *)dst_; 240 const u16 *src = (const u16 *)src_; 241 const u16 *mask = (const u16 *)mask_; 242 243 OVS_SET_MASKED(dst[0], src[0], mask[0]); 244 OVS_SET_MASKED(dst[1], src[1], mask[1]); 245 OVS_SET_MASKED(dst[2], src[2], mask[2]); 246 } 247 248 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, 249 const struct ovs_key_ethernet *key, 250 const struct ovs_key_ethernet *mask) 251 { 252 int err; 253 254 err = skb_ensure_writable(skb, ETH_HLEN); 255 if (unlikely(err)) 256 return err; 257 258 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 259 260 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, 261 mask->eth_src); 262 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, 263 mask->eth_dst); 264 265 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 266 267 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); 268 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); 269 return 0; 270 } 271 272 /* pop_eth does not support VLAN packets as this action is never called 273 * for them. 274 */ 275 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key) 276 { 277 skb_pull_rcsum(skb, ETH_HLEN); 278 skb_reset_mac_header(skb); 279 skb_reset_mac_len(skb); 280 281 /* safe right before invalidate_flow_key */ 282 key->mac_proto = MAC_PROTO_NONE; 283 invalidate_flow_key(key); 284 return 0; 285 } 286 287 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key, 288 const struct ovs_action_push_eth *ethh) 289 { 290 struct ethhdr *hdr; 291 292 /* Add the new Ethernet header */ 293 if (skb_cow_head(skb, ETH_HLEN) < 0) 294 return -ENOMEM; 295 296 skb_push(skb, ETH_HLEN); 297 skb_reset_mac_header(skb); 298 skb_reset_mac_len(skb); 299 300 hdr = eth_hdr(skb); 301 ether_addr_copy(hdr->h_source, ethh->addresses.eth_src); 302 ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst); 303 hdr->h_proto = skb->protocol; 304 305 skb_postpush_rcsum(skb, hdr, ETH_HLEN); 306 307 /* safe right before invalidate_flow_key */ 308 key->mac_proto = MAC_PROTO_ETHERNET; 309 invalidate_flow_key(key); 310 return 0; 311 } 312 313 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key, 314 const struct nshhdr *nh) 315 { 316 int err; 317 318 err = nsh_push(skb, nh); 319 if (err) 320 return err; 321 322 /* safe right before invalidate_flow_key */ 323 key->mac_proto = MAC_PROTO_NONE; 324 invalidate_flow_key(key); 325 return 0; 326 } 327 328 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key) 329 { 330 int err; 331 332 err = nsh_pop(skb); 333 if (err) 334 return err; 335 336 /* safe right before invalidate_flow_key */ 337 if (skb->protocol == htons(ETH_P_TEB)) 338 key->mac_proto = MAC_PROTO_ETHERNET; 339 else 340 key->mac_proto = MAC_PROTO_NONE; 341 invalidate_flow_key(key); 342 return 0; 343 } 344 345 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, 346 __be32 addr, __be32 new_addr) 347 { 348 int transport_len = skb->len - skb_transport_offset(skb); 349 350 if (nh->frag_off & htons(IP_OFFSET)) 351 return; 352 353 if (nh->protocol == IPPROTO_TCP) { 354 if (likely(transport_len >= sizeof(struct tcphdr))) 355 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, 356 addr, new_addr, true); 357 } else if (nh->protocol == IPPROTO_UDP) { 358 if (likely(transport_len >= sizeof(struct udphdr))) { 359 struct udphdr *uh = udp_hdr(skb); 360 361 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 362 inet_proto_csum_replace4(&uh->check, skb, 363 addr, new_addr, true); 364 if (!uh->check) 365 uh->check = CSUM_MANGLED_0; 366 } 367 } 368 } 369 } 370 371 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, 372 __be32 *addr, __be32 new_addr) 373 { 374 update_ip_l4_checksum(skb, nh, *addr, new_addr); 375 csum_replace4(&nh->check, *addr, new_addr); 376 skb_clear_hash(skb); 377 *addr = new_addr; 378 } 379 380 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, 381 __be32 addr[4], const __be32 new_addr[4]) 382 { 383 int transport_len = skb->len - skb_transport_offset(skb); 384 385 if (l4_proto == NEXTHDR_TCP) { 386 if (likely(transport_len >= sizeof(struct tcphdr))) 387 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, 388 addr, new_addr, true); 389 } else if (l4_proto == NEXTHDR_UDP) { 390 if (likely(transport_len >= sizeof(struct udphdr))) { 391 struct udphdr *uh = udp_hdr(skb); 392 393 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 394 inet_proto_csum_replace16(&uh->check, skb, 395 addr, new_addr, true); 396 if (!uh->check) 397 uh->check = CSUM_MANGLED_0; 398 } 399 } 400 } else if (l4_proto == NEXTHDR_ICMP) { 401 if (likely(transport_len >= sizeof(struct icmp6hdr))) 402 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, 403 skb, addr, new_addr, true); 404 } 405 } 406 407 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], 408 const __be32 mask[4], __be32 masked[4]) 409 { 410 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); 411 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); 412 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); 413 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); 414 } 415 416 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, 417 __be32 addr[4], const __be32 new_addr[4], 418 bool recalculate_csum) 419 { 420 if (recalculate_csum) 421 update_ipv6_checksum(skb, l4_proto, addr, new_addr); 422 423 skb_clear_hash(skb); 424 memcpy(addr, new_addr, sizeof(__be32[4])); 425 } 426 427 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask) 428 { 429 /* Bits 21-24 are always unmasked, so this retains their values. */ 430 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16)); 431 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8)); 432 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask); 433 } 434 435 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, 436 u8 mask) 437 { 438 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); 439 440 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); 441 nh->ttl = new_ttl; 442 } 443 444 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, 445 const struct ovs_key_ipv4 *key, 446 const struct ovs_key_ipv4 *mask) 447 { 448 struct iphdr *nh; 449 __be32 new_addr; 450 int err; 451 452 err = skb_ensure_writable(skb, skb_network_offset(skb) + 453 sizeof(struct iphdr)); 454 if (unlikely(err)) 455 return err; 456 457 nh = ip_hdr(skb); 458 459 /* Setting an IP addresses is typically only a side effect of 460 * matching on them in the current userspace implementation, so it 461 * makes sense to check if the value actually changed. 462 */ 463 if (mask->ipv4_src) { 464 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); 465 466 if (unlikely(new_addr != nh->saddr)) { 467 set_ip_addr(skb, nh, &nh->saddr, new_addr); 468 flow_key->ipv4.addr.src = new_addr; 469 } 470 } 471 if (mask->ipv4_dst) { 472 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); 473 474 if (unlikely(new_addr != nh->daddr)) { 475 set_ip_addr(skb, nh, &nh->daddr, new_addr); 476 flow_key->ipv4.addr.dst = new_addr; 477 } 478 } 479 if (mask->ipv4_tos) { 480 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); 481 flow_key->ip.tos = nh->tos; 482 } 483 if (mask->ipv4_ttl) { 484 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); 485 flow_key->ip.ttl = nh->ttl; 486 } 487 488 return 0; 489 } 490 491 static bool is_ipv6_mask_nonzero(const __be32 addr[4]) 492 { 493 return !!(addr[0] | addr[1] | addr[2] | addr[3]); 494 } 495 496 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, 497 const struct ovs_key_ipv6 *key, 498 const struct ovs_key_ipv6 *mask) 499 { 500 struct ipv6hdr *nh; 501 int err; 502 503 err = skb_ensure_writable(skb, skb_network_offset(skb) + 504 sizeof(struct ipv6hdr)); 505 if (unlikely(err)) 506 return err; 507 508 nh = ipv6_hdr(skb); 509 510 /* Setting an IP addresses is typically only a side effect of 511 * matching on them in the current userspace implementation, so it 512 * makes sense to check if the value actually changed. 513 */ 514 if (is_ipv6_mask_nonzero(mask->ipv6_src)) { 515 __be32 *saddr = (__be32 *)&nh->saddr; 516 __be32 masked[4]; 517 518 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); 519 520 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { 521 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, 522 true); 523 memcpy(&flow_key->ipv6.addr.src, masked, 524 sizeof(flow_key->ipv6.addr.src)); 525 } 526 } 527 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { 528 unsigned int offset = 0; 529 int flags = IP6_FH_F_SKIP_RH; 530 bool recalc_csum = true; 531 __be32 *daddr = (__be32 *)&nh->daddr; 532 __be32 masked[4]; 533 534 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); 535 536 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { 537 if (ipv6_ext_hdr(nh->nexthdr)) 538 recalc_csum = (ipv6_find_hdr(skb, &offset, 539 NEXTHDR_ROUTING, 540 NULL, &flags) 541 != NEXTHDR_ROUTING); 542 543 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, 544 recalc_csum); 545 memcpy(&flow_key->ipv6.addr.dst, masked, 546 sizeof(flow_key->ipv6.addr.dst)); 547 } 548 } 549 if (mask->ipv6_tclass) { 550 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass); 551 flow_key->ip.tos = ipv6_get_dsfield(nh); 552 } 553 if (mask->ipv6_label) { 554 set_ipv6_fl(nh, ntohl(key->ipv6_label), 555 ntohl(mask->ipv6_label)); 556 flow_key->ipv6.label = 557 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 558 } 559 if (mask->ipv6_hlimit) { 560 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit, 561 mask->ipv6_hlimit); 562 flow_key->ip.ttl = nh->hop_limit; 563 } 564 return 0; 565 } 566 567 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key, 568 const struct nlattr *a) 569 { 570 struct nshhdr *nh; 571 size_t length; 572 int err; 573 u8 flags; 574 u8 ttl; 575 int i; 576 577 struct ovs_key_nsh key; 578 struct ovs_key_nsh mask; 579 580 err = nsh_key_from_nlattr(a, &key, &mask); 581 if (err) 582 return err; 583 584 /* Make sure the NSH base header is there */ 585 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN)) 586 return -ENOMEM; 587 588 nh = nsh_hdr(skb); 589 length = nsh_hdr_len(nh); 590 591 /* Make sure the whole NSH header is there */ 592 err = skb_ensure_writable(skb, skb_network_offset(skb) + 593 length); 594 if (unlikely(err)) 595 return err; 596 597 nh = nsh_hdr(skb); 598 skb_postpull_rcsum(skb, nh, length); 599 flags = nsh_get_flags(nh); 600 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags); 601 flow_key->nsh.base.flags = flags; 602 ttl = nsh_get_ttl(nh); 603 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl); 604 flow_key->nsh.base.ttl = ttl; 605 nsh_set_flags_and_ttl(nh, flags, ttl); 606 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr, 607 mask.base.path_hdr); 608 flow_key->nsh.base.path_hdr = nh->path_hdr; 609 switch (nh->mdtype) { 610 case NSH_M_TYPE1: 611 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) { 612 nh->md1.context[i] = 613 OVS_MASKED(nh->md1.context[i], key.context[i], 614 mask.context[i]); 615 } 616 memcpy(flow_key->nsh.context, nh->md1.context, 617 sizeof(nh->md1.context)); 618 break; 619 case NSH_M_TYPE2: 620 memset(flow_key->nsh.context, 0, 621 sizeof(flow_key->nsh.context)); 622 break; 623 default: 624 return -EINVAL; 625 } 626 skb_postpush_rcsum(skb, nh, length); 627 return 0; 628 } 629 630 /* Must follow skb_ensure_writable() since that can move the skb data. */ 631 static void set_tp_port(struct sk_buff *skb, __be16 *port, 632 __be16 new_port, __sum16 *check) 633 { 634 inet_proto_csum_replace2(check, skb, *port, new_port, false); 635 *port = new_port; 636 } 637 638 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, 639 const struct ovs_key_udp *key, 640 const struct ovs_key_udp *mask) 641 { 642 struct udphdr *uh; 643 __be16 src, dst; 644 int err; 645 646 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 647 sizeof(struct udphdr)); 648 if (unlikely(err)) 649 return err; 650 651 uh = udp_hdr(skb); 652 /* Either of the masks is non-zero, so do not bother checking them. */ 653 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); 654 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); 655 656 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { 657 if (likely(src != uh->source)) { 658 set_tp_port(skb, &uh->source, src, &uh->check); 659 flow_key->tp.src = src; 660 } 661 if (likely(dst != uh->dest)) { 662 set_tp_port(skb, &uh->dest, dst, &uh->check); 663 flow_key->tp.dst = dst; 664 } 665 666 if (unlikely(!uh->check)) 667 uh->check = CSUM_MANGLED_0; 668 } else { 669 uh->source = src; 670 uh->dest = dst; 671 flow_key->tp.src = src; 672 flow_key->tp.dst = dst; 673 } 674 675 skb_clear_hash(skb); 676 677 return 0; 678 } 679 680 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, 681 const struct ovs_key_tcp *key, 682 const struct ovs_key_tcp *mask) 683 { 684 struct tcphdr *th; 685 __be16 src, dst; 686 int err; 687 688 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 689 sizeof(struct tcphdr)); 690 if (unlikely(err)) 691 return err; 692 693 th = tcp_hdr(skb); 694 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); 695 if (likely(src != th->source)) { 696 set_tp_port(skb, &th->source, src, &th->check); 697 flow_key->tp.src = src; 698 } 699 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); 700 if (likely(dst != th->dest)) { 701 set_tp_port(skb, &th->dest, dst, &th->check); 702 flow_key->tp.dst = dst; 703 } 704 skb_clear_hash(skb); 705 706 return 0; 707 } 708 709 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, 710 const struct ovs_key_sctp *key, 711 const struct ovs_key_sctp *mask) 712 { 713 unsigned int sctphoff = skb_transport_offset(skb); 714 struct sctphdr *sh; 715 __le32 old_correct_csum, new_csum, old_csum; 716 int err; 717 718 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); 719 if (unlikely(err)) 720 return err; 721 722 sh = sctp_hdr(skb); 723 old_csum = sh->checksum; 724 old_correct_csum = sctp_compute_cksum(skb, sctphoff); 725 726 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); 727 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); 728 729 new_csum = sctp_compute_cksum(skb, sctphoff); 730 731 /* Carry any checksum errors through. */ 732 sh->checksum = old_csum ^ old_correct_csum ^ new_csum; 733 734 skb_clear_hash(skb); 735 flow_key->tp.src = sh->source; 736 flow_key->tp.dst = sh->dest; 737 738 return 0; 739 } 740 741 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb) 742 { 743 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage); 744 struct vport *vport = data->vport; 745 746 if (skb_cow_head(skb, data->l2_len) < 0) { 747 kfree_skb(skb); 748 return -ENOMEM; 749 } 750 751 __skb_dst_copy(skb, data->dst); 752 *OVS_CB(skb) = data->cb; 753 skb->inner_protocol = data->inner_protocol; 754 if (data->vlan_tci & VLAN_CFI_MASK) 755 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK); 756 else 757 __vlan_hwaccel_clear_tag(skb); 758 759 /* Reconstruct the MAC header. */ 760 skb_push(skb, data->l2_len); 761 memcpy(skb->data, &data->l2_data, data->l2_len); 762 skb_postpush_rcsum(skb, skb->data, data->l2_len); 763 skb_reset_mac_header(skb); 764 765 if (eth_p_mpls(skb->protocol)) { 766 skb->inner_network_header = skb->network_header; 767 skb_set_network_header(skb, data->network_offset); 768 skb_reset_mac_len(skb); 769 } 770 771 ovs_vport_send(vport, skb, data->mac_proto); 772 return 0; 773 } 774 775 static unsigned int 776 ovs_dst_get_mtu(const struct dst_entry *dst) 777 { 778 return dst->dev->mtu; 779 } 780 781 static struct dst_ops ovs_dst_ops = { 782 .family = AF_UNSPEC, 783 .mtu = ovs_dst_get_mtu, 784 }; 785 786 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is 787 * ovs_vport_output(), which is called once per fragmented packet. 788 */ 789 static void prepare_frag(struct vport *vport, struct sk_buff *skb, 790 u16 orig_network_offset, u8 mac_proto) 791 { 792 unsigned int hlen = skb_network_offset(skb); 793 struct ovs_frag_data *data; 794 795 data = this_cpu_ptr(&ovs_frag_data_storage); 796 data->dst = skb->_skb_refdst; 797 data->vport = vport; 798 data->cb = *OVS_CB(skb); 799 data->inner_protocol = skb->inner_protocol; 800 data->network_offset = orig_network_offset; 801 if (skb_vlan_tag_present(skb)) 802 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK; 803 else 804 data->vlan_tci = 0; 805 data->vlan_proto = skb->vlan_proto; 806 data->mac_proto = mac_proto; 807 data->l2_len = hlen; 808 memcpy(&data->l2_data, skb->data, hlen); 809 810 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 811 skb_pull(skb, hlen); 812 } 813 814 static void ovs_fragment(struct net *net, struct vport *vport, 815 struct sk_buff *skb, u16 mru, 816 struct sw_flow_key *key) 817 { 818 u16 orig_network_offset = 0; 819 820 if (eth_p_mpls(skb->protocol)) { 821 orig_network_offset = skb_network_offset(skb); 822 skb->network_header = skb->inner_network_header; 823 } 824 825 if (skb_network_offset(skb) > MAX_L2_LEN) { 826 OVS_NLERR(1, "L2 header too long to fragment"); 827 goto err; 828 } 829 830 if (key->eth.type == htons(ETH_P_IP)) { 831 struct dst_entry ovs_dst; 832 unsigned long orig_dst; 833 834 prepare_frag(vport, skb, orig_network_offset, 835 ovs_key_mac_proto(key)); 836 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1, 837 DST_OBSOLETE_NONE, DST_NOCOUNT); 838 ovs_dst.dev = vport->dev; 839 840 orig_dst = skb->_skb_refdst; 841 skb_dst_set_noref(skb, &ovs_dst); 842 IPCB(skb)->frag_max_size = mru; 843 844 ip_do_fragment(net, skb->sk, skb, ovs_vport_output); 845 refdst_drop(orig_dst); 846 } else if (key->eth.type == htons(ETH_P_IPV6)) { 847 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops(); 848 unsigned long orig_dst; 849 struct rt6_info ovs_rt; 850 851 if (!v6ops) 852 goto err; 853 854 prepare_frag(vport, skb, orig_network_offset, 855 ovs_key_mac_proto(key)); 856 memset(&ovs_rt, 0, sizeof(ovs_rt)); 857 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, 858 DST_OBSOLETE_NONE, DST_NOCOUNT); 859 ovs_rt.dst.dev = vport->dev; 860 861 orig_dst = skb->_skb_refdst; 862 skb_dst_set_noref(skb, &ovs_rt.dst); 863 IP6CB(skb)->frag_max_size = mru; 864 865 v6ops->fragment(net, skb->sk, skb, ovs_vport_output); 866 refdst_drop(orig_dst); 867 } else { 868 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", 869 ovs_vport_name(vport), ntohs(key->eth.type), mru, 870 vport->dev->mtu); 871 goto err; 872 } 873 874 return; 875 err: 876 kfree_skb(skb); 877 } 878 879 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, 880 struct sw_flow_key *key) 881 { 882 struct vport *vport = ovs_vport_rcu(dp, out_port); 883 884 if (likely(vport)) { 885 u16 mru = OVS_CB(skb)->mru; 886 u32 cutlen = OVS_CB(skb)->cutlen; 887 888 if (unlikely(cutlen > 0)) { 889 if (skb->len - cutlen > ovs_mac_header_len(key)) 890 pskb_trim(skb, skb->len - cutlen); 891 else 892 pskb_trim(skb, ovs_mac_header_len(key)); 893 } 894 895 if (likely(!mru || 896 (skb->len <= mru + vport->dev->hard_header_len))) { 897 ovs_vport_send(vport, skb, ovs_key_mac_proto(key)); 898 } else if (mru <= vport->dev->mtu) { 899 struct net *net = read_pnet(&dp->net); 900 901 ovs_fragment(net, vport, skb, mru, key); 902 } else { 903 kfree_skb(skb); 904 } 905 } else { 906 kfree_skb(skb); 907 } 908 } 909 910 static int output_userspace(struct datapath *dp, struct sk_buff *skb, 911 struct sw_flow_key *key, const struct nlattr *attr, 912 const struct nlattr *actions, int actions_len, 913 uint32_t cutlen) 914 { 915 struct dp_upcall_info upcall; 916 const struct nlattr *a; 917 int rem; 918 919 memset(&upcall, 0, sizeof(upcall)); 920 upcall.cmd = OVS_PACKET_CMD_ACTION; 921 upcall.mru = OVS_CB(skb)->mru; 922 923 for (a = nla_data(attr), rem = nla_len(attr); rem > 0; 924 a = nla_next(a, &rem)) { 925 switch (nla_type(a)) { 926 case OVS_USERSPACE_ATTR_USERDATA: 927 upcall.userdata = a; 928 break; 929 930 case OVS_USERSPACE_ATTR_PID: 931 upcall.portid = nla_get_u32(a); 932 break; 933 934 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { 935 /* Get out tunnel info. */ 936 struct vport *vport; 937 938 vport = ovs_vport_rcu(dp, nla_get_u32(a)); 939 if (vport) { 940 int err; 941 942 err = dev_fill_metadata_dst(vport->dev, skb); 943 if (!err) 944 upcall.egress_tun_info = skb_tunnel_info(skb); 945 } 946 947 break; 948 } 949 950 case OVS_USERSPACE_ATTR_ACTIONS: { 951 /* Include actions. */ 952 upcall.actions = actions; 953 upcall.actions_len = actions_len; 954 break; 955 } 956 957 } /* End of switch. */ 958 } 959 960 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen); 961 } 962 963 /* When 'last' is true, sample() should always consume the 'skb'. 964 * Otherwise, sample() should keep 'skb' intact regardless what 965 * actions are executed within sample(). 966 */ 967 static int sample(struct datapath *dp, struct sk_buff *skb, 968 struct sw_flow_key *key, const struct nlattr *attr, 969 bool last) 970 { 971 struct nlattr *actions; 972 struct nlattr *sample_arg; 973 int rem = nla_len(attr); 974 const struct sample_arg *arg; 975 bool clone_flow_key; 976 977 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */ 978 sample_arg = nla_data(attr); 979 arg = nla_data(sample_arg); 980 actions = nla_next(sample_arg, &rem); 981 982 if ((arg->probability != U32_MAX) && 983 (!arg->probability || prandom_u32() > arg->probability)) { 984 if (last) 985 consume_skb(skb); 986 return 0; 987 } 988 989 clone_flow_key = !arg->exec; 990 return clone_execute(dp, skb, key, 0, actions, rem, last, 991 clone_flow_key); 992 } 993 994 /* When 'last' is true, clone() should always consume the 'skb'. 995 * Otherwise, clone() should keep 'skb' intact regardless what 996 * actions are executed within clone(). 997 */ 998 static int clone(struct datapath *dp, struct sk_buff *skb, 999 struct sw_flow_key *key, const struct nlattr *attr, 1000 bool last) 1001 { 1002 struct nlattr *actions; 1003 struct nlattr *clone_arg; 1004 int rem = nla_len(attr); 1005 bool dont_clone_flow_key; 1006 1007 /* The first action is always 'OVS_CLONE_ATTR_ARG'. */ 1008 clone_arg = nla_data(attr); 1009 dont_clone_flow_key = nla_get_u32(clone_arg); 1010 actions = nla_next(clone_arg, &rem); 1011 1012 return clone_execute(dp, skb, key, 0, actions, rem, last, 1013 !dont_clone_flow_key); 1014 } 1015 1016 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, 1017 const struct nlattr *attr) 1018 { 1019 struct ovs_action_hash *hash_act = nla_data(attr); 1020 u32 hash = 0; 1021 1022 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */ 1023 hash = skb_get_hash(skb); 1024 hash = jhash_1word(hash, hash_act->hash_basis); 1025 if (!hash) 1026 hash = 0x1; 1027 1028 key->ovs_flow_hash = hash; 1029 } 1030 1031 static int execute_set_action(struct sk_buff *skb, 1032 struct sw_flow_key *flow_key, 1033 const struct nlattr *a) 1034 { 1035 /* Only tunnel set execution is supported without a mask. */ 1036 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { 1037 struct ovs_tunnel_info *tun = nla_data(a); 1038 1039 skb_dst_drop(skb); 1040 dst_hold((struct dst_entry *)tun->tun_dst); 1041 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); 1042 return 0; 1043 } 1044 1045 return -EINVAL; 1046 } 1047 1048 /* Mask is at the midpoint of the data. */ 1049 #define get_mask(a, type) ((const type)nla_data(a) + 1) 1050 1051 static int execute_masked_set_action(struct sk_buff *skb, 1052 struct sw_flow_key *flow_key, 1053 const struct nlattr *a) 1054 { 1055 int err = 0; 1056 1057 switch (nla_type(a)) { 1058 case OVS_KEY_ATTR_PRIORITY: 1059 OVS_SET_MASKED(skb->priority, nla_get_u32(a), 1060 *get_mask(a, u32 *)); 1061 flow_key->phy.priority = skb->priority; 1062 break; 1063 1064 case OVS_KEY_ATTR_SKB_MARK: 1065 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); 1066 flow_key->phy.skb_mark = skb->mark; 1067 break; 1068 1069 case OVS_KEY_ATTR_TUNNEL_INFO: 1070 /* Masked data not supported for tunnel. */ 1071 err = -EINVAL; 1072 break; 1073 1074 case OVS_KEY_ATTR_ETHERNET: 1075 err = set_eth_addr(skb, flow_key, nla_data(a), 1076 get_mask(a, struct ovs_key_ethernet *)); 1077 break; 1078 1079 case OVS_KEY_ATTR_NSH: 1080 err = set_nsh(skb, flow_key, a); 1081 break; 1082 1083 case OVS_KEY_ATTR_IPV4: 1084 err = set_ipv4(skb, flow_key, nla_data(a), 1085 get_mask(a, struct ovs_key_ipv4 *)); 1086 break; 1087 1088 case OVS_KEY_ATTR_IPV6: 1089 err = set_ipv6(skb, flow_key, nla_data(a), 1090 get_mask(a, struct ovs_key_ipv6 *)); 1091 break; 1092 1093 case OVS_KEY_ATTR_TCP: 1094 err = set_tcp(skb, flow_key, nla_data(a), 1095 get_mask(a, struct ovs_key_tcp *)); 1096 break; 1097 1098 case OVS_KEY_ATTR_UDP: 1099 err = set_udp(skb, flow_key, nla_data(a), 1100 get_mask(a, struct ovs_key_udp *)); 1101 break; 1102 1103 case OVS_KEY_ATTR_SCTP: 1104 err = set_sctp(skb, flow_key, nla_data(a), 1105 get_mask(a, struct ovs_key_sctp *)); 1106 break; 1107 1108 case OVS_KEY_ATTR_MPLS: 1109 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, 1110 __be32 *)); 1111 break; 1112 1113 case OVS_KEY_ATTR_CT_STATE: 1114 case OVS_KEY_ATTR_CT_ZONE: 1115 case OVS_KEY_ATTR_CT_MARK: 1116 case OVS_KEY_ATTR_CT_LABELS: 1117 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4: 1118 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6: 1119 err = -EINVAL; 1120 break; 1121 } 1122 1123 return err; 1124 } 1125 1126 static int execute_recirc(struct datapath *dp, struct sk_buff *skb, 1127 struct sw_flow_key *key, 1128 const struct nlattr *a, bool last) 1129 { 1130 u32 recirc_id; 1131 1132 if (!is_flow_key_valid(key)) { 1133 int err; 1134 1135 err = ovs_flow_key_update(skb, key); 1136 if (err) 1137 return err; 1138 } 1139 BUG_ON(!is_flow_key_valid(key)); 1140 1141 recirc_id = nla_get_u32(a); 1142 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true); 1143 } 1144 1145 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb, 1146 struct sw_flow_key *key, 1147 const struct nlattr *attr, bool last) 1148 { 1149 const struct nlattr *actions, *cpl_arg; 1150 const struct check_pkt_len_arg *arg; 1151 int rem = nla_len(attr); 1152 bool clone_flow_key; 1153 1154 /* The first netlink attribute in 'attr' is always 1155 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'. 1156 */ 1157 cpl_arg = nla_data(attr); 1158 arg = nla_data(cpl_arg); 1159 1160 if (skb->len <= arg->pkt_len) { 1161 /* Second netlink attribute in 'attr' is always 1162 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'. 1163 */ 1164 actions = nla_next(cpl_arg, &rem); 1165 clone_flow_key = !arg->exec_for_lesser_equal; 1166 } else { 1167 /* Third netlink attribute in 'attr' is always 1168 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'. 1169 */ 1170 actions = nla_next(cpl_arg, &rem); 1171 actions = nla_next(actions, &rem); 1172 clone_flow_key = !arg->exec_for_greater; 1173 } 1174 1175 return clone_execute(dp, skb, key, 0, nla_data(actions), 1176 nla_len(actions), last, clone_flow_key); 1177 } 1178 1179 /* Execute a list of actions against 'skb'. */ 1180 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 1181 struct sw_flow_key *key, 1182 const struct nlattr *attr, int len) 1183 { 1184 const struct nlattr *a; 1185 int rem; 1186 1187 for (a = attr, rem = len; rem > 0; 1188 a = nla_next(a, &rem)) { 1189 int err = 0; 1190 1191 switch (nla_type(a)) { 1192 case OVS_ACTION_ATTR_OUTPUT: { 1193 int port = nla_get_u32(a); 1194 struct sk_buff *clone; 1195 1196 /* Every output action needs a separate clone 1197 * of 'skb', In case the output action is the 1198 * last action, cloning can be avoided. 1199 */ 1200 if (nla_is_last(a, rem)) { 1201 do_output(dp, skb, port, key); 1202 /* 'skb' has been used for output. 1203 */ 1204 return 0; 1205 } 1206 1207 clone = skb_clone(skb, GFP_ATOMIC); 1208 if (clone) 1209 do_output(dp, clone, port, key); 1210 OVS_CB(skb)->cutlen = 0; 1211 break; 1212 } 1213 1214 case OVS_ACTION_ATTR_TRUNC: { 1215 struct ovs_action_trunc *trunc = nla_data(a); 1216 1217 if (skb->len > trunc->max_len) 1218 OVS_CB(skb)->cutlen = skb->len - trunc->max_len; 1219 break; 1220 } 1221 1222 case OVS_ACTION_ATTR_USERSPACE: 1223 output_userspace(dp, skb, key, a, attr, 1224 len, OVS_CB(skb)->cutlen); 1225 OVS_CB(skb)->cutlen = 0; 1226 break; 1227 1228 case OVS_ACTION_ATTR_HASH: 1229 execute_hash(skb, key, a); 1230 break; 1231 1232 case OVS_ACTION_ATTR_PUSH_MPLS: 1233 err = push_mpls(skb, key, nla_data(a)); 1234 break; 1235 1236 case OVS_ACTION_ATTR_POP_MPLS: 1237 err = pop_mpls(skb, key, nla_get_be16(a)); 1238 break; 1239 1240 case OVS_ACTION_ATTR_PUSH_VLAN: 1241 err = push_vlan(skb, key, nla_data(a)); 1242 break; 1243 1244 case OVS_ACTION_ATTR_POP_VLAN: 1245 err = pop_vlan(skb, key); 1246 break; 1247 1248 case OVS_ACTION_ATTR_RECIRC: { 1249 bool last = nla_is_last(a, rem); 1250 1251 err = execute_recirc(dp, skb, key, a, last); 1252 if (last) { 1253 /* If this is the last action, the skb has 1254 * been consumed or freed. 1255 * Return immediately. 1256 */ 1257 return err; 1258 } 1259 break; 1260 } 1261 1262 case OVS_ACTION_ATTR_SET: 1263 err = execute_set_action(skb, key, nla_data(a)); 1264 break; 1265 1266 case OVS_ACTION_ATTR_SET_MASKED: 1267 case OVS_ACTION_ATTR_SET_TO_MASKED: 1268 err = execute_masked_set_action(skb, key, nla_data(a)); 1269 break; 1270 1271 case OVS_ACTION_ATTR_SAMPLE: { 1272 bool last = nla_is_last(a, rem); 1273 1274 err = sample(dp, skb, key, a, last); 1275 if (last) 1276 return err; 1277 1278 break; 1279 } 1280 1281 case OVS_ACTION_ATTR_CT: 1282 if (!is_flow_key_valid(key)) { 1283 err = ovs_flow_key_update(skb, key); 1284 if (err) 1285 return err; 1286 } 1287 1288 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, 1289 nla_data(a)); 1290 1291 /* Hide stolen IP fragments from user space. */ 1292 if (err) 1293 return err == -EINPROGRESS ? 0 : err; 1294 break; 1295 1296 case OVS_ACTION_ATTR_CT_CLEAR: 1297 err = ovs_ct_clear(skb, key); 1298 break; 1299 1300 case OVS_ACTION_ATTR_PUSH_ETH: 1301 err = push_eth(skb, key, nla_data(a)); 1302 break; 1303 1304 case OVS_ACTION_ATTR_POP_ETH: 1305 err = pop_eth(skb, key); 1306 break; 1307 1308 case OVS_ACTION_ATTR_PUSH_NSH: { 1309 u8 buffer[NSH_HDR_MAX_LEN]; 1310 struct nshhdr *nh = (struct nshhdr *)buffer; 1311 1312 err = nsh_hdr_from_nlattr(nla_data(a), nh, 1313 NSH_HDR_MAX_LEN); 1314 if (unlikely(err)) 1315 break; 1316 err = push_nsh(skb, key, nh); 1317 break; 1318 } 1319 1320 case OVS_ACTION_ATTR_POP_NSH: 1321 err = pop_nsh(skb, key); 1322 break; 1323 1324 case OVS_ACTION_ATTR_METER: 1325 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) { 1326 consume_skb(skb); 1327 return 0; 1328 } 1329 break; 1330 1331 case OVS_ACTION_ATTR_CLONE: { 1332 bool last = nla_is_last(a, rem); 1333 1334 err = clone(dp, skb, key, a, last); 1335 if (last) 1336 return err; 1337 1338 break; 1339 } 1340 1341 case OVS_ACTION_ATTR_CHECK_PKT_LEN: { 1342 bool last = nla_is_last(a, rem); 1343 1344 err = execute_check_pkt_len(dp, skb, key, a, last); 1345 if (last) 1346 return err; 1347 1348 break; 1349 } 1350 } 1351 1352 if (unlikely(err)) { 1353 kfree_skb(skb); 1354 return err; 1355 } 1356 } 1357 1358 consume_skb(skb); 1359 return 0; 1360 } 1361 1362 /* Execute the actions on the clone of the packet. The effect of the 1363 * execution does not affect the original 'skb' nor the original 'key'. 1364 * 1365 * The execution may be deferred in case the actions can not be executed 1366 * immediately. 1367 */ 1368 static int clone_execute(struct datapath *dp, struct sk_buff *skb, 1369 struct sw_flow_key *key, u32 recirc_id, 1370 const struct nlattr *actions, int len, 1371 bool last, bool clone_flow_key) 1372 { 1373 struct deferred_action *da; 1374 struct sw_flow_key *clone; 1375 1376 skb = last ? skb : skb_clone(skb, GFP_ATOMIC); 1377 if (!skb) { 1378 /* Out of memory, skip this action. 1379 */ 1380 return 0; 1381 } 1382 1383 /* When clone_flow_key is false, the 'key' will not be change 1384 * by the actions, then the 'key' can be used directly. 1385 * Otherwise, try to clone key from the next recursion level of 1386 * 'flow_keys'. If clone is successful, execute the actions 1387 * without deferring. 1388 */ 1389 clone = clone_flow_key ? clone_key(key) : key; 1390 if (clone) { 1391 int err = 0; 1392 1393 if (actions) { /* Sample action */ 1394 if (clone_flow_key) 1395 __this_cpu_inc(exec_actions_level); 1396 1397 err = do_execute_actions(dp, skb, clone, 1398 actions, len); 1399 1400 if (clone_flow_key) 1401 __this_cpu_dec(exec_actions_level); 1402 } else { /* Recirc action */ 1403 clone->recirc_id = recirc_id; 1404 ovs_dp_process_packet(skb, clone); 1405 } 1406 return err; 1407 } 1408 1409 /* Out of 'flow_keys' space. Defer actions */ 1410 da = add_deferred_actions(skb, key, actions, len); 1411 if (da) { 1412 if (!actions) { /* Recirc action */ 1413 key = &da->pkt_key; 1414 key->recirc_id = recirc_id; 1415 } 1416 } else { 1417 /* Out of per CPU action FIFO space. Drop the 'skb' and 1418 * log an error. 1419 */ 1420 kfree_skb(skb); 1421 1422 if (net_ratelimit()) { 1423 if (actions) { /* Sample action */ 1424 pr_warn("%s: deferred action limit reached, drop sample action\n", 1425 ovs_dp_name(dp)); 1426 } else { /* Recirc action */ 1427 pr_warn("%s: deferred action limit reached, drop recirc action\n", 1428 ovs_dp_name(dp)); 1429 } 1430 } 1431 } 1432 return 0; 1433 } 1434 1435 static void process_deferred_actions(struct datapath *dp) 1436 { 1437 struct action_fifo *fifo = this_cpu_ptr(action_fifos); 1438 1439 /* Do not touch the FIFO in case there is no deferred actions. */ 1440 if (action_fifo_is_empty(fifo)) 1441 return; 1442 1443 /* Finishing executing all deferred actions. */ 1444 do { 1445 struct deferred_action *da = action_fifo_get(fifo); 1446 struct sk_buff *skb = da->skb; 1447 struct sw_flow_key *key = &da->pkt_key; 1448 const struct nlattr *actions = da->actions; 1449 int actions_len = da->actions_len; 1450 1451 if (actions) 1452 do_execute_actions(dp, skb, key, actions, actions_len); 1453 else 1454 ovs_dp_process_packet(skb, key); 1455 } while (!action_fifo_is_empty(fifo)); 1456 1457 /* Reset FIFO for the next packet. */ 1458 action_fifo_init(fifo); 1459 } 1460 1461 /* Execute a list of actions against 'skb'. */ 1462 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, 1463 const struct sw_flow_actions *acts, 1464 struct sw_flow_key *key) 1465 { 1466 int err, level; 1467 1468 level = __this_cpu_inc_return(exec_actions_level); 1469 if (unlikely(level > OVS_RECURSION_LIMIT)) { 1470 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n", 1471 ovs_dp_name(dp)); 1472 kfree_skb(skb); 1473 err = -ENETDOWN; 1474 goto out; 1475 } 1476 1477 OVS_CB(skb)->acts_origlen = acts->orig_len; 1478 err = do_execute_actions(dp, skb, key, 1479 acts->actions, acts->actions_len); 1480 1481 if (level == 1) 1482 process_deferred_actions(dp); 1483 1484 out: 1485 __this_cpu_dec(exec_actions_level); 1486 return err; 1487 } 1488 1489 int action_fifos_init(void) 1490 { 1491 action_fifos = alloc_percpu(struct action_fifo); 1492 if (!action_fifos) 1493 return -ENOMEM; 1494 1495 flow_keys = alloc_percpu(struct action_flow_keys); 1496 if (!flow_keys) { 1497 free_percpu(action_fifos); 1498 return -ENOMEM; 1499 } 1500 1501 return 0; 1502 } 1503 1504 void action_fifos_exit(void) 1505 { 1506 free_percpu(action_fifos); 1507 free_percpu(flow_keys); 1508 } 1509