1 /* 2 * Copyright (c) 2007-2017 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/skbuff.h> 22 #include <linux/in.h> 23 #include <linux/ip.h> 24 #include <linux/openvswitch.h> 25 #include <linux/netfilter_ipv6.h> 26 #include <linux/sctp.h> 27 #include <linux/tcp.h> 28 #include <linux/udp.h> 29 #include <linux/in6.h> 30 #include <linux/if_arp.h> 31 #include <linux/if_vlan.h> 32 33 #include <net/dst.h> 34 #include <net/ip.h> 35 #include <net/ipv6.h> 36 #include <net/ip6_fib.h> 37 #include <net/checksum.h> 38 #include <net/dsfield.h> 39 #include <net/mpls.h> 40 #include <net/sctp/checksum.h> 41 42 #include "datapath.h" 43 #include "flow.h" 44 #include "conntrack.h" 45 #include "vport.h" 46 47 struct deferred_action { 48 struct sk_buff *skb; 49 const struct nlattr *actions; 50 int actions_len; 51 52 /* Store pkt_key clone when creating deferred action. */ 53 struct sw_flow_key pkt_key; 54 }; 55 56 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN) 57 struct ovs_frag_data { 58 unsigned long dst; 59 struct vport *vport; 60 struct ovs_skb_cb cb; 61 __be16 inner_protocol; 62 u16 network_offset; /* valid only for MPLS */ 63 u16 vlan_tci; 64 __be16 vlan_proto; 65 unsigned int l2_len; 66 u8 mac_proto; 67 u8 l2_data[MAX_L2_LEN]; 68 }; 69 70 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage); 71 72 #define DEFERRED_ACTION_FIFO_SIZE 10 73 #define OVS_RECURSION_LIMIT 5 74 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2) 75 struct action_fifo { 76 int head; 77 int tail; 78 /* Deferred action fifo queue storage. */ 79 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; 80 }; 81 82 struct action_flow_keys { 83 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD]; 84 }; 85 86 static struct action_fifo __percpu *action_fifos; 87 static struct action_flow_keys __percpu *flow_keys; 88 static DEFINE_PER_CPU(int, exec_actions_level); 89 90 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys' 91 * space. Return NULL if out of key spaces. 92 */ 93 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_) 94 { 95 struct action_flow_keys *keys = this_cpu_ptr(flow_keys); 96 int level = this_cpu_read(exec_actions_level); 97 struct sw_flow_key *key = NULL; 98 99 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) { 100 key = &keys->key[level - 1]; 101 *key = *key_; 102 } 103 104 return key; 105 } 106 107 static void action_fifo_init(struct action_fifo *fifo) 108 { 109 fifo->head = 0; 110 fifo->tail = 0; 111 } 112 113 static bool action_fifo_is_empty(const struct action_fifo *fifo) 114 { 115 return (fifo->head == fifo->tail); 116 } 117 118 static struct deferred_action *action_fifo_get(struct action_fifo *fifo) 119 { 120 if (action_fifo_is_empty(fifo)) 121 return NULL; 122 123 return &fifo->fifo[fifo->tail++]; 124 } 125 126 static struct deferred_action *action_fifo_put(struct action_fifo *fifo) 127 { 128 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) 129 return NULL; 130 131 return &fifo->fifo[fifo->head++]; 132 } 133 134 /* Return true if fifo is not full */ 135 static struct deferred_action *add_deferred_actions(struct sk_buff *skb, 136 const struct sw_flow_key *key, 137 const struct nlattr *actions, 138 const int actions_len) 139 { 140 struct action_fifo *fifo; 141 struct deferred_action *da; 142 143 fifo = this_cpu_ptr(action_fifos); 144 da = action_fifo_put(fifo); 145 if (da) { 146 da->skb = skb; 147 da->actions = actions; 148 da->actions_len = actions_len; 149 da->pkt_key = *key; 150 } 151 152 return da; 153 } 154 155 static void invalidate_flow_key(struct sw_flow_key *key) 156 { 157 key->mac_proto |= SW_FLOW_KEY_INVALID; 158 } 159 160 static bool is_flow_key_valid(const struct sw_flow_key *key) 161 { 162 return !(key->mac_proto & SW_FLOW_KEY_INVALID); 163 } 164 165 static int clone_execute(struct datapath *dp, struct sk_buff *skb, 166 struct sw_flow_key *key, 167 u32 recirc_id, 168 const struct nlattr *actions, int len, 169 bool last, bool clone_flow_key); 170 171 static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr, 172 __be16 ethertype) 173 { 174 if (skb->ip_summed == CHECKSUM_COMPLETE) { 175 __be16 diff[] = { ~(hdr->h_proto), ethertype }; 176 177 skb->csum = ~csum_partial((char *)diff, sizeof(diff), 178 ~skb->csum); 179 } 180 181 hdr->h_proto = ethertype; 182 } 183 184 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, 185 const struct ovs_action_push_mpls *mpls) 186 { 187 struct mpls_shim_hdr *new_mpls_lse; 188 189 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */ 190 if (skb->encapsulation) 191 return -ENOTSUPP; 192 193 if (skb_cow_head(skb, MPLS_HLEN) < 0) 194 return -ENOMEM; 195 196 if (!skb->inner_protocol) { 197 skb_set_inner_network_header(skb, skb->mac_len); 198 skb_set_inner_protocol(skb, skb->protocol); 199 } 200 201 skb_push(skb, MPLS_HLEN); 202 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 203 skb->mac_len); 204 skb_reset_mac_header(skb); 205 skb_set_network_header(skb, skb->mac_len); 206 207 new_mpls_lse = mpls_hdr(skb); 208 new_mpls_lse->label_stack_entry = mpls->mpls_lse; 209 210 skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN); 211 212 if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) 213 update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype); 214 skb->protocol = mpls->mpls_ethertype; 215 216 invalidate_flow_key(key); 217 return 0; 218 } 219 220 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, 221 const __be16 ethertype) 222 { 223 int err; 224 225 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 226 if (unlikely(err)) 227 return err; 228 229 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 230 231 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 232 skb->mac_len); 233 234 __skb_pull(skb, MPLS_HLEN); 235 skb_reset_mac_header(skb); 236 skb_set_network_header(skb, skb->mac_len); 237 238 if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) { 239 struct ethhdr *hdr; 240 241 /* mpls_hdr() is used to locate the ethertype field correctly in the 242 * presence of VLAN tags. 243 */ 244 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 245 update_ethertype(skb, hdr, ethertype); 246 } 247 if (eth_p_mpls(skb->protocol)) 248 skb->protocol = ethertype; 249 250 invalidate_flow_key(key); 251 return 0; 252 } 253 254 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, 255 const __be32 *mpls_lse, const __be32 *mask) 256 { 257 struct mpls_shim_hdr *stack; 258 __be32 lse; 259 int err; 260 261 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 262 if (unlikely(err)) 263 return err; 264 265 stack = mpls_hdr(skb); 266 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask); 267 if (skb->ip_summed == CHECKSUM_COMPLETE) { 268 __be32 diff[] = { ~(stack->label_stack_entry), lse }; 269 270 skb->csum = ~csum_partial((char *)diff, sizeof(diff), 271 ~skb->csum); 272 } 273 274 stack->label_stack_entry = lse; 275 flow_key->mpls.top_lse = lse; 276 return 0; 277 } 278 279 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) 280 { 281 int err; 282 283 err = skb_vlan_pop(skb); 284 if (skb_vlan_tag_present(skb)) { 285 invalidate_flow_key(key); 286 } else { 287 key->eth.vlan.tci = 0; 288 key->eth.vlan.tpid = 0; 289 } 290 return err; 291 } 292 293 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, 294 const struct ovs_action_push_vlan *vlan) 295 { 296 if (skb_vlan_tag_present(skb)) { 297 invalidate_flow_key(key); 298 } else { 299 key->eth.vlan.tci = vlan->vlan_tci; 300 key->eth.vlan.tpid = vlan->vlan_tpid; 301 } 302 return skb_vlan_push(skb, vlan->vlan_tpid, 303 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT); 304 } 305 306 /* 'src' is already properly masked. */ 307 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) 308 { 309 u16 *dst = (u16 *)dst_; 310 const u16 *src = (const u16 *)src_; 311 const u16 *mask = (const u16 *)mask_; 312 313 OVS_SET_MASKED(dst[0], src[0], mask[0]); 314 OVS_SET_MASKED(dst[1], src[1], mask[1]); 315 OVS_SET_MASKED(dst[2], src[2], mask[2]); 316 } 317 318 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, 319 const struct ovs_key_ethernet *key, 320 const struct ovs_key_ethernet *mask) 321 { 322 int err; 323 324 err = skb_ensure_writable(skb, ETH_HLEN); 325 if (unlikely(err)) 326 return err; 327 328 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 329 330 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, 331 mask->eth_src); 332 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, 333 mask->eth_dst); 334 335 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 336 337 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); 338 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); 339 return 0; 340 } 341 342 /* pop_eth does not support VLAN packets as this action is never called 343 * for them. 344 */ 345 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key) 346 { 347 skb_pull_rcsum(skb, ETH_HLEN); 348 skb_reset_mac_header(skb); 349 skb_reset_mac_len(skb); 350 351 /* safe right before invalidate_flow_key */ 352 key->mac_proto = MAC_PROTO_NONE; 353 invalidate_flow_key(key); 354 return 0; 355 } 356 357 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key, 358 const struct ovs_action_push_eth *ethh) 359 { 360 struct ethhdr *hdr; 361 362 /* Add the new Ethernet header */ 363 if (skb_cow_head(skb, ETH_HLEN) < 0) 364 return -ENOMEM; 365 366 skb_push(skb, ETH_HLEN); 367 skb_reset_mac_header(skb); 368 skb_reset_mac_len(skb); 369 370 hdr = eth_hdr(skb); 371 ether_addr_copy(hdr->h_source, ethh->addresses.eth_src); 372 ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst); 373 hdr->h_proto = skb->protocol; 374 375 skb_postpush_rcsum(skb, hdr, ETH_HLEN); 376 377 /* safe right before invalidate_flow_key */ 378 key->mac_proto = MAC_PROTO_ETHERNET; 379 invalidate_flow_key(key); 380 return 0; 381 } 382 383 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, 384 __be32 addr, __be32 new_addr) 385 { 386 int transport_len = skb->len - skb_transport_offset(skb); 387 388 if (nh->frag_off & htons(IP_OFFSET)) 389 return; 390 391 if (nh->protocol == IPPROTO_TCP) { 392 if (likely(transport_len >= sizeof(struct tcphdr))) 393 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, 394 addr, new_addr, true); 395 } else if (nh->protocol == IPPROTO_UDP) { 396 if (likely(transport_len >= sizeof(struct udphdr))) { 397 struct udphdr *uh = udp_hdr(skb); 398 399 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 400 inet_proto_csum_replace4(&uh->check, skb, 401 addr, new_addr, true); 402 if (!uh->check) 403 uh->check = CSUM_MANGLED_0; 404 } 405 } 406 } 407 } 408 409 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, 410 __be32 *addr, __be32 new_addr) 411 { 412 update_ip_l4_checksum(skb, nh, *addr, new_addr); 413 csum_replace4(&nh->check, *addr, new_addr); 414 skb_clear_hash(skb); 415 *addr = new_addr; 416 } 417 418 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, 419 __be32 addr[4], const __be32 new_addr[4]) 420 { 421 int transport_len = skb->len - skb_transport_offset(skb); 422 423 if (l4_proto == NEXTHDR_TCP) { 424 if (likely(transport_len >= sizeof(struct tcphdr))) 425 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, 426 addr, new_addr, true); 427 } else if (l4_proto == NEXTHDR_UDP) { 428 if (likely(transport_len >= sizeof(struct udphdr))) { 429 struct udphdr *uh = udp_hdr(skb); 430 431 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 432 inet_proto_csum_replace16(&uh->check, skb, 433 addr, new_addr, true); 434 if (!uh->check) 435 uh->check = CSUM_MANGLED_0; 436 } 437 } 438 } else if (l4_proto == NEXTHDR_ICMP) { 439 if (likely(transport_len >= sizeof(struct icmp6hdr))) 440 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, 441 skb, addr, new_addr, true); 442 } 443 } 444 445 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], 446 const __be32 mask[4], __be32 masked[4]) 447 { 448 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); 449 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); 450 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); 451 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); 452 } 453 454 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, 455 __be32 addr[4], const __be32 new_addr[4], 456 bool recalculate_csum) 457 { 458 if (recalculate_csum) 459 update_ipv6_checksum(skb, l4_proto, addr, new_addr); 460 461 skb_clear_hash(skb); 462 memcpy(addr, new_addr, sizeof(__be32[4])); 463 } 464 465 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask) 466 { 467 /* Bits 21-24 are always unmasked, so this retains their values. */ 468 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16)); 469 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8)); 470 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask); 471 } 472 473 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, 474 u8 mask) 475 { 476 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); 477 478 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); 479 nh->ttl = new_ttl; 480 } 481 482 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, 483 const struct ovs_key_ipv4 *key, 484 const struct ovs_key_ipv4 *mask) 485 { 486 struct iphdr *nh; 487 __be32 new_addr; 488 int err; 489 490 err = skb_ensure_writable(skb, skb_network_offset(skb) + 491 sizeof(struct iphdr)); 492 if (unlikely(err)) 493 return err; 494 495 nh = ip_hdr(skb); 496 497 /* Setting an IP addresses is typically only a side effect of 498 * matching on them in the current userspace implementation, so it 499 * makes sense to check if the value actually changed. 500 */ 501 if (mask->ipv4_src) { 502 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); 503 504 if (unlikely(new_addr != nh->saddr)) { 505 set_ip_addr(skb, nh, &nh->saddr, new_addr); 506 flow_key->ipv4.addr.src = new_addr; 507 } 508 } 509 if (mask->ipv4_dst) { 510 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); 511 512 if (unlikely(new_addr != nh->daddr)) { 513 set_ip_addr(skb, nh, &nh->daddr, new_addr); 514 flow_key->ipv4.addr.dst = new_addr; 515 } 516 } 517 if (mask->ipv4_tos) { 518 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); 519 flow_key->ip.tos = nh->tos; 520 } 521 if (mask->ipv4_ttl) { 522 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); 523 flow_key->ip.ttl = nh->ttl; 524 } 525 526 return 0; 527 } 528 529 static bool is_ipv6_mask_nonzero(const __be32 addr[4]) 530 { 531 return !!(addr[0] | addr[1] | addr[2] | addr[3]); 532 } 533 534 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, 535 const struct ovs_key_ipv6 *key, 536 const struct ovs_key_ipv6 *mask) 537 { 538 struct ipv6hdr *nh; 539 int err; 540 541 err = skb_ensure_writable(skb, skb_network_offset(skb) + 542 sizeof(struct ipv6hdr)); 543 if (unlikely(err)) 544 return err; 545 546 nh = ipv6_hdr(skb); 547 548 /* Setting an IP addresses is typically only a side effect of 549 * matching on them in the current userspace implementation, so it 550 * makes sense to check if the value actually changed. 551 */ 552 if (is_ipv6_mask_nonzero(mask->ipv6_src)) { 553 __be32 *saddr = (__be32 *)&nh->saddr; 554 __be32 masked[4]; 555 556 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); 557 558 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { 559 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, 560 true); 561 memcpy(&flow_key->ipv6.addr.src, masked, 562 sizeof(flow_key->ipv6.addr.src)); 563 } 564 } 565 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { 566 unsigned int offset = 0; 567 int flags = IP6_FH_F_SKIP_RH; 568 bool recalc_csum = true; 569 __be32 *daddr = (__be32 *)&nh->daddr; 570 __be32 masked[4]; 571 572 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); 573 574 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { 575 if (ipv6_ext_hdr(nh->nexthdr)) 576 recalc_csum = (ipv6_find_hdr(skb, &offset, 577 NEXTHDR_ROUTING, 578 NULL, &flags) 579 != NEXTHDR_ROUTING); 580 581 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, 582 recalc_csum); 583 memcpy(&flow_key->ipv6.addr.dst, masked, 584 sizeof(flow_key->ipv6.addr.dst)); 585 } 586 } 587 if (mask->ipv6_tclass) { 588 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass); 589 flow_key->ip.tos = ipv6_get_dsfield(nh); 590 } 591 if (mask->ipv6_label) { 592 set_ipv6_fl(nh, ntohl(key->ipv6_label), 593 ntohl(mask->ipv6_label)); 594 flow_key->ipv6.label = 595 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 596 } 597 if (mask->ipv6_hlimit) { 598 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit, 599 mask->ipv6_hlimit); 600 flow_key->ip.ttl = nh->hop_limit; 601 } 602 return 0; 603 } 604 605 /* Must follow skb_ensure_writable() since that can move the skb data. */ 606 static void set_tp_port(struct sk_buff *skb, __be16 *port, 607 __be16 new_port, __sum16 *check) 608 { 609 inet_proto_csum_replace2(check, skb, *port, new_port, false); 610 *port = new_port; 611 } 612 613 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, 614 const struct ovs_key_udp *key, 615 const struct ovs_key_udp *mask) 616 { 617 struct udphdr *uh; 618 __be16 src, dst; 619 int err; 620 621 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 622 sizeof(struct udphdr)); 623 if (unlikely(err)) 624 return err; 625 626 uh = udp_hdr(skb); 627 /* Either of the masks is non-zero, so do not bother checking them. */ 628 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); 629 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); 630 631 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { 632 if (likely(src != uh->source)) { 633 set_tp_port(skb, &uh->source, src, &uh->check); 634 flow_key->tp.src = src; 635 } 636 if (likely(dst != uh->dest)) { 637 set_tp_port(skb, &uh->dest, dst, &uh->check); 638 flow_key->tp.dst = dst; 639 } 640 641 if (unlikely(!uh->check)) 642 uh->check = CSUM_MANGLED_0; 643 } else { 644 uh->source = src; 645 uh->dest = dst; 646 flow_key->tp.src = src; 647 flow_key->tp.dst = dst; 648 } 649 650 skb_clear_hash(skb); 651 652 return 0; 653 } 654 655 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, 656 const struct ovs_key_tcp *key, 657 const struct ovs_key_tcp *mask) 658 { 659 struct tcphdr *th; 660 __be16 src, dst; 661 int err; 662 663 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 664 sizeof(struct tcphdr)); 665 if (unlikely(err)) 666 return err; 667 668 th = tcp_hdr(skb); 669 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); 670 if (likely(src != th->source)) { 671 set_tp_port(skb, &th->source, src, &th->check); 672 flow_key->tp.src = src; 673 } 674 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); 675 if (likely(dst != th->dest)) { 676 set_tp_port(skb, &th->dest, dst, &th->check); 677 flow_key->tp.dst = dst; 678 } 679 skb_clear_hash(skb); 680 681 return 0; 682 } 683 684 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, 685 const struct ovs_key_sctp *key, 686 const struct ovs_key_sctp *mask) 687 { 688 unsigned int sctphoff = skb_transport_offset(skb); 689 struct sctphdr *sh; 690 __le32 old_correct_csum, new_csum, old_csum; 691 int err; 692 693 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); 694 if (unlikely(err)) 695 return err; 696 697 sh = sctp_hdr(skb); 698 old_csum = sh->checksum; 699 old_correct_csum = sctp_compute_cksum(skb, sctphoff); 700 701 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); 702 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); 703 704 new_csum = sctp_compute_cksum(skb, sctphoff); 705 706 /* Carry any checksum errors through. */ 707 sh->checksum = old_csum ^ old_correct_csum ^ new_csum; 708 709 skb_clear_hash(skb); 710 flow_key->tp.src = sh->source; 711 flow_key->tp.dst = sh->dest; 712 713 return 0; 714 } 715 716 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb) 717 { 718 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage); 719 struct vport *vport = data->vport; 720 721 if (skb_cow_head(skb, data->l2_len) < 0) { 722 kfree_skb(skb); 723 return -ENOMEM; 724 } 725 726 __skb_dst_copy(skb, data->dst); 727 *OVS_CB(skb) = data->cb; 728 skb->inner_protocol = data->inner_protocol; 729 skb->vlan_tci = data->vlan_tci; 730 skb->vlan_proto = data->vlan_proto; 731 732 /* Reconstruct the MAC header. */ 733 skb_push(skb, data->l2_len); 734 memcpy(skb->data, &data->l2_data, data->l2_len); 735 skb_postpush_rcsum(skb, skb->data, data->l2_len); 736 skb_reset_mac_header(skb); 737 738 if (eth_p_mpls(skb->protocol)) { 739 skb->inner_network_header = skb->network_header; 740 skb_set_network_header(skb, data->network_offset); 741 skb_reset_mac_len(skb); 742 } 743 744 ovs_vport_send(vport, skb, data->mac_proto); 745 return 0; 746 } 747 748 static unsigned int 749 ovs_dst_get_mtu(const struct dst_entry *dst) 750 { 751 return dst->dev->mtu; 752 } 753 754 static struct dst_ops ovs_dst_ops = { 755 .family = AF_UNSPEC, 756 .mtu = ovs_dst_get_mtu, 757 }; 758 759 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is 760 * ovs_vport_output(), which is called once per fragmented packet. 761 */ 762 static void prepare_frag(struct vport *vport, struct sk_buff *skb, 763 u16 orig_network_offset, u8 mac_proto) 764 { 765 unsigned int hlen = skb_network_offset(skb); 766 struct ovs_frag_data *data; 767 768 data = this_cpu_ptr(&ovs_frag_data_storage); 769 data->dst = skb->_skb_refdst; 770 data->vport = vport; 771 data->cb = *OVS_CB(skb); 772 data->inner_protocol = skb->inner_protocol; 773 data->network_offset = orig_network_offset; 774 data->vlan_tci = skb->vlan_tci; 775 data->vlan_proto = skb->vlan_proto; 776 data->mac_proto = mac_proto; 777 data->l2_len = hlen; 778 memcpy(&data->l2_data, skb->data, hlen); 779 780 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 781 skb_pull(skb, hlen); 782 } 783 784 static void ovs_fragment(struct net *net, struct vport *vport, 785 struct sk_buff *skb, u16 mru, 786 struct sw_flow_key *key) 787 { 788 u16 orig_network_offset = 0; 789 790 if (eth_p_mpls(skb->protocol)) { 791 orig_network_offset = skb_network_offset(skb); 792 skb->network_header = skb->inner_network_header; 793 } 794 795 if (skb_network_offset(skb) > MAX_L2_LEN) { 796 OVS_NLERR(1, "L2 header too long to fragment"); 797 goto err; 798 } 799 800 if (key->eth.type == htons(ETH_P_IP)) { 801 struct dst_entry ovs_dst; 802 unsigned long orig_dst; 803 804 prepare_frag(vport, skb, orig_network_offset, 805 ovs_key_mac_proto(key)); 806 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1, 807 DST_OBSOLETE_NONE, DST_NOCOUNT); 808 ovs_dst.dev = vport->dev; 809 810 orig_dst = skb->_skb_refdst; 811 skb_dst_set_noref(skb, &ovs_dst); 812 IPCB(skb)->frag_max_size = mru; 813 814 ip_do_fragment(net, skb->sk, skb, ovs_vport_output); 815 refdst_drop(orig_dst); 816 } else if (key->eth.type == htons(ETH_P_IPV6)) { 817 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops(); 818 unsigned long orig_dst; 819 struct rt6_info ovs_rt; 820 821 if (!v6ops) 822 goto err; 823 824 prepare_frag(vport, skb, orig_network_offset, 825 ovs_key_mac_proto(key)); 826 memset(&ovs_rt, 0, sizeof(ovs_rt)); 827 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, 828 DST_OBSOLETE_NONE, DST_NOCOUNT); 829 ovs_rt.dst.dev = vport->dev; 830 831 orig_dst = skb->_skb_refdst; 832 skb_dst_set_noref(skb, &ovs_rt.dst); 833 IP6CB(skb)->frag_max_size = mru; 834 835 v6ops->fragment(net, skb->sk, skb, ovs_vport_output); 836 refdst_drop(orig_dst); 837 } else { 838 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", 839 ovs_vport_name(vport), ntohs(key->eth.type), mru, 840 vport->dev->mtu); 841 goto err; 842 } 843 844 return; 845 err: 846 kfree_skb(skb); 847 } 848 849 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, 850 struct sw_flow_key *key) 851 { 852 struct vport *vport = ovs_vport_rcu(dp, out_port); 853 854 if (likely(vport)) { 855 u16 mru = OVS_CB(skb)->mru; 856 u32 cutlen = OVS_CB(skb)->cutlen; 857 858 if (unlikely(cutlen > 0)) { 859 if (skb->len - cutlen > ovs_mac_header_len(key)) 860 pskb_trim(skb, skb->len - cutlen); 861 else 862 pskb_trim(skb, ovs_mac_header_len(key)); 863 } 864 865 if (likely(!mru || 866 (skb->len <= mru + vport->dev->hard_header_len))) { 867 ovs_vport_send(vport, skb, ovs_key_mac_proto(key)); 868 } else if (mru <= vport->dev->mtu) { 869 struct net *net = read_pnet(&dp->net); 870 871 ovs_fragment(net, vport, skb, mru, key); 872 } else { 873 kfree_skb(skb); 874 } 875 } else { 876 kfree_skb(skb); 877 } 878 } 879 880 static int output_userspace(struct datapath *dp, struct sk_buff *skb, 881 struct sw_flow_key *key, const struct nlattr *attr, 882 const struct nlattr *actions, int actions_len, 883 uint32_t cutlen) 884 { 885 struct dp_upcall_info upcall; 886 const struct nlattr *a; 887 int rem; 888 889 memset(&upcall, 0, sizeof(upcall)); 890 upcall.cmd = OVS_PACKET_CMD_ACTION; 891 upcall.mru = OVS_CB(skb)->mru; 892 893 for (a = nla_data(attr), rem = nla_len(attr); rem > 0; 894 a = nla_next(a, &rem)) { 895 switch (nla_type(a)) { 896 case OVS_USERSPACE_ATTR_USERDATA: 897 upcall.userdata = a; 898 break; 899 900 case OVS_USERSPACE_ATTR_PID: 901 upcall.portid = nla_get_u32(a); 902 break; 903 904 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { 905 /* Get out tunnel info. */ 906 struct vport *vport; 907 908 vport = ovs_vport_rcu(dp, nla_get_u32(a)); 909 if (vport) { 910 int err; 911 912 err = dev_fill_metadata_dst(vport->dev, skb); 913 if (!err) 914 upcall.egress_tun_info = skb_tunnel_info(skb); 915 } 916 917 break; 918 } 919 920 case OVS_USERSPACE_ATTR_ACTIONS: { 921 /* Include actions. */ 922 upcall.actions = actions; 923 upcall.actions_len = actions_len; 924 break; 925 } 926 927 } /* End of switch. */ 928 } 929 930 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen); 931 } 932 933 /* When 'last' is true, sample() should always consume the 'skb'. 934 * Otherwise, sample() should keep 'skb' intact regardless what 935 * actions are executed within sample(). 936 */ 937 static int sample(struct datapath *dp, struct sk_buff *skb, 938 struct sw_flow_key *key, const struct nlattr *attr, 939 bool last) 940 { 941 struct nlattr *actions; 942 struct nlattr *sample_arg; 943 int rem = nla_len(attr); 944 const struct sample_arg *arg; 945 bool clone_flow_key; 946 947 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */ 948 sample_arg = nla_data(attr); 949 arg = nla_data(sample_arg); 950 actions = nla_next(sample_arg, &rem); 951 952 if ((arg->probability != U32_MAX) && 953 (!arg->probability || prandom_u32() > arg->probability)) { 954 if (last) 955 consume_skb(skb); 956 return 0; 957 } 958 959 clone_flow_key = !arg->exec; 960 return clone_execute(dp, skb, key, 0, actions, rem, last, 961 clone_flow_key); 962 } 963 964 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, 965 const struct nlattr *attr) 966 { 967 struct ovs_action_hash *hash_act = nla_data(attr); 968 u32 hash = 0; 969 970 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */ 971 hash = skb_get_hash(skb); 972 hash = jhash_1word(hash, hash_act->hash_basis); 973 if (!hash) 974 hash = 0x1; 975 976 key->ovs_flow_hash = hash; 977 } 978 979 static int execute_set_action(struct sk_buff *skb, 980 struct sw_flow_key *flow_key, 981 const struct nlattr *a) 982 { 983 /* Only tunnel set execution is supported without a mask. */ 984 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { 985 struct ovs_tunnel_info *tun = nla_data(a); 986 987 skb_dst_drop(skb); 988 dst_hold((struct dst_entry *)tun->tun_dst); 989 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); 990 return 0; 991 } 992 993 return -EINVAL; 994 } 995 996 /* Mask is at the midpoint of the data. */ 997 #define get_mask(a, type) ((const type)nla_data(a) + 1) 998 999 static int execute_masked_set_action(struct sk_buff *skb, 1000 struct sw_flow_key *flow_key, 1001 const struct nlattr *a) 1002 { 1003 int err = 0; 1004 1005 switch (nla_type(a)) { 1006 case OVS_KEY_ATTR_PRIORITY: 1007 OVS_SET_MASKED(skb->priority, nla_get_u32(a), 1008 *get_mask(a, u32 *)); 1009 flow_key->phy.priority = skb->priority; 1010 break; 1011 1012 case OVS_KEY_ATTR_SKB_MARK: 1013 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); 1014 flow_key->phy.skb_mark = skb->mark; 1015 break; 1016 1017 case OVS_KEY_ATTR_TUNNEL_INFO: 1018 /* Masked data not supported for tunnel. */ 1019 err = -EINVAL; 1020 break; 1021 1022 case OVS_KEY_ATTR_ETHERNET: 1023 err = set_eth_addr(skb, flow_key, nla_data(a), 1024 get_mask(a, struct ovs_key_ethernet *)); 1025 break; 1026 1027 case OVS_KEY_ATTR_IPV4: 1028 err = set_ipv4(skb, flow_key, nla_data(a), 1029 get_mask(a, struct ovs_key_ipv4 *)); 1030 break; 1031 1032 case OVS_KEY_ATTR_IPV6: 1033 err = set_ipv6(skb, flow_key, nla_data(a), 1034 get_mask(a, struct ovs_key_ipv6 *)); 1035 break; 1036 1037 case OVS_KEY_ATTR_TCP: 1038 err = set_tcp(skb, flow_key, nla_data(a), 1039 get_mask(a, struct ovs_key_tcp *)); 1040 break; 1041 1042 case OVS_KEY_ATTR_UDP: 1043 err = set_udp(skb, flow_key, nla_data(a), 1044 get_mask(a, struct ovs_key_udp *)); 1045 break; 1046 1047 case OVS_KEY_ATTR_SCTP: 1048 err = set_sctp(skb, flow_key, nla_data(a), 1049 get_mask(a, struct ovs_key_sctp *)); 1050 break; 1051 1052 case OVS_KEY_ATTR_MPLS: 1053 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, 1054 __be32 *)); 1055 break; 1056 1057 case OVS_KEY_ATTR_CT_STATE: 1058 case OVS_KEY_ATTR_CT_ZONE: 1059 case OVS_KEY_ATTR_CT_MARK: 1060 case OVS_KEY_ATTR_CT_LABELS: 1061 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4: 1062 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6: 1063 err = -EINVAL; 1064 break; 1065 } 1066 1067 return err; 1068 } 1069 1070 static int execute_recirc(struct datapath *dp, struct sk_buff *skb, 1071 struct sw_flow_key *key, 1072 const struct nlattr *a, bool last) 1073 { 1074 u32 recirc_id; 1075 1076 if (!is_flow_key_valid(key)) { 1077 int err; 1078 1079 err = ovs_flow_key_update(skb, key); 1080 if (err) 1081 return err; 1082 } 1083 BUG_ON(!is_flow_key_valid(key)); 1084 1085 recirc_id = nla_get_u32(a); 1086 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true); 1087 } 1088 1089 /* Execute a list of actions against 'skb'. */ 1090 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 1091 struct sw_flow_key *key, 1092 const struct nlattr *attr, int len) 1093 { 1094 const struct nlattr *a; 1095 int rem; 1096 1097 for (a = attr, rem = len; rem > 0; 1098 a = nla_next(a, &rem)) { 1099 int err = 0; 1100 1101 switch (nla_type(a)) { 1102 case OVS_ACTION_ATTR_OUTPUT: { 1103 int port = nla_get_u32(a); 1104 struct sk_buff *clone; 1105 1106 /* Every output action needs a separate clone 1107 * of 'skb', In case the output action is the 1108 * last action, cloning can be avoided. 1109 */ 1110 if (nla_is_last(a, rem)) { 1111 do_output(dp, skb, port, key); 1112 /* 'skb' has been used for output. 1113 */ 1114 return 0; 1115 } 1116 1117 clone = skb_clone(skb, GFP_ATOMIC); 1118 if (clone) 1119 do_output(dp, clone, port, key); 1120 OVS_CB(skb)->cutlen = 0; 1121 break; 1122 } 1123 1124 case OVS_ACTION_ATTR_TRUNC: { 1125 struct ovs_action_trunc *trunc = nla_data(a); 1126 1127 if (skb->len > trunc->max_len) 1128 OVS_CB(skb)->cutlen = skb->len - trunc->max_len; 1129 break; 1130 } 1131 1132 case OVS_ACTION_ATTR_USERSPACE: 1133 output_userspace(dp, skb, key, a, attr, 1134 len, OVS_CB(skb)->cutlen); 1135 OVS_CB(skb)->cutlen = 0; 1136 break; 1137 1138 case OVS_ACTION_ATTR_HASH: 1139 execute_hash(skb, key, a); 1140 break; 1141 1142 case OVS_ACTION_ATTR_PUSH_MPLS: 1143 err = push_mpls(skb, key, nla_data(a)); 1144 break; 1145 1146 case OVS_ACTION_ATTR_POP_MPLS: 1147 err = pop_mpls(skb, key, nla_get_be16(a)); 1148 break; 1149 1150 case OVS_ACTION_ATTR_PUSH_VLAN: 1151 err = push_vlan(skb, key, nla_data(a)); 1152 break; 1153 1154 case OVS_ACTION_ATTR_POP_VLAN: 1155 err = pop_vlan(skb, key); 1156 break; 1157 1158 case OVS_ACTION_ATTR_RECIRC: { 1159 bool last = nla_is_last(a, rem); 1160 1161 err = execute_recirc(dp, skb, key, a, last); 1162 if (last) { 1163 /* If this is the last action, the skb has 1164 * been consumed or freed. 1165 * Return immediately. 1166 */ 1167 return err; 1168 } 1169 break; 1170 } 1171 1172 case OVS_ACTION_ATTR_SET: 1173 err = execute_set_action(skb, key, nla_data(a)); 1174 break; 1175 1176 case OVS_ACTION_ATTR_SET_MASKED: 1177 case OVS_ACTION_ATTR_SET_TO_MASKED: 1178 err = execute_masked_set_action(skb, key, nla_data(a)); 1179 break; 1180 1181 case OVS_ACTION_ATTR_SAMPLE: { 1182 bool last = nla_is_last(a, rem); 1183 1184 err = sample(dp, skb, key, a, last); 1185 if (last) 1186 return err; 1187 1188 break; 1189 } 1190 1191 case OVS_ACTION_ATTR_CT: 1192 if (!is_flow_key_valid(key)) { 1193 err = ovs_flow_key_update(skb, key); 1194 if (err) 1195 return err; 1196 } 1197 1198 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, 1199 nla_data(a)); 1200 1201 /* Hide stolen IP fragments from user space. */ 1202 if (err) 1203 return err == -EINPROGRESS ? 0 : err; 1204 break; 1205 1206 case OVS_ACTION_ATTR_PUSH_ETH: 1207 err = push_eth(skb, key, nla_data(a)); 1208 break; 1209 1210 case OVS_ACTION_ATTR_POP_ETH: 1211 err = pop_eth(skb, key); 1212 break; 1213 } 1214 1215 if (unlikely(err)) { 1216 kfree_skb(skb); 1217 return err; 1218 } 1219 } 1220 1221 consume_skb(skb); 1222 return 0; 1223 } 1224 1225 /* Execute the actions on the clone of the packet. The effect of the 1226 * execution does not affect the original 'skb' nor the original 'key'. 1227 * 1228 * The execution may be deferred in case the actions can not be executed 1229 * immediately. 1230 */ 1231 static int clone_execute(struct datapath *dp, struct sk_buff *skb, 1232 struct sw_flow_key *key, u32 recirc_id, 1233 const struct nlattr *actions, int len, 1234 bool last, bool clone_flow_key) 1235 { 1236 struct deferred_action *da; 1237 struct sw_flow_key *clone; 1238 1239 skb = last ? skb : skb_clone(skb, GFP_ATOMIC); 1240 if (!skb) { 1241 /* Out of memory, skip this action. 1242 */ 1243 return 0; 1244 } 1245 1246 /* When clone_flow_key is false, the 'key' will not be change 1247 * by the actions, then the 'key' can be used directly. 1248 * Otherwise, try to clone key from the next recursion level of 1249 * 'flow_keys'. If clone is successful, execute the actions 1250 * without deferring. 1251 */ 1252 clone = clone_flow_key ? clone_key(key) : key; 1253 if (clone) { 1254 int err = 0; 1255 1256 if (actions) { /* Sample action */ 1257 if (clone_flow_key) 1258 __this_cpu_inc(exec_actions_level); 1259 1260 err = do_execute_actions(dp, skb, clone, 1261 actions, len); 1262 1263 if (clone_flow_key) 1264 __this_cpu_dec(exec_actions_level); 1265 } else { /* Recirc action */ 1266 clone->recirc_id = recirc_id; 1267 ovs_dp_process_packet(skb, clone); 1268 } 1269 return err; 1270 } 1271 1272 /* Out of 'flow_keys' space. Defer actions */ 1273 da = add_deferred_actions(skb, key, actions, len); 1274 if (da) { 1275 if (!actions) { /* Recirc action */ 1276 key = &da->pkt_key; 1277 key->recirc_id = recirc_id; 1278 } 1279 } else { 1280 /* Out of per CPU action FIFO space. Drop the 'skb' and 1281 * log an error. 1282 */ 1283 kfree_skb(skb); 1284 1285 if (net_ratelimit()) { 1286 if (actions) { /* Sample action */ 1287 pr_warn("%s: deferred action limit reached, drop sample action\n", 1288 ovs_dp_name(dp)); 1289 } else { /* Recirc action */ 1290 pr_warn("%s: deferred action limit reached, drop recirc action\n", 1291 ovs_dp_name(dp)); 1292 } 1293 } 1294 } 1295 return 0; 1296 } 1297 1298 static void process_deferred_actions(struct datapath *dp) 1299 { 1300 struct action_fifo *fifo = this_cpu_ptr(action_fifos); 1301 1302 /* Do not touch the FIFO in case there is no deferred actions. */ 1303 if (action_fifo_is_empty(fifo)) 1304 return; 1305 1306 /* Finishing executing all deferred actions. */ 1307 do { 1308 struct deferred_action *da = action_fifo_get(fifo); 1309 struct sk_buff *skb = da->skb; 1310 struct sw_flow_key *key = &da->pkt_key; 1311 const struct nlattr *actions = da->actions; 1312 int actions_len = da->actions_len; 1313 1314 if (actions) 1315 do_execute_actions(dp, skb, key, actions, actions_len); 1316 else 1317 ovs_dp_process_packet(skb, key); 1318 } while (!action_fifo_is_empty(fifo)); 1319 1320 /* Reset FIFO for the next packet. */ 1321 action_fifo_init(fifo); 1322 } 1323 1324 /* Execute a list of actions against 'skb'. */ 1325 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, 1326 const struct sw_flow_actions *acts, 1327 struct sw_flow_key *key) 1328 { 1329 int err, level; 1330 1331 level = __this_cpu_inc_return(exec_actions_level); 1332 if (unlikely(level > OVS_RECURSION_LIMIT)) { 1333 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n", 1334 ovs_dp_name(dp)); 1335 kfree_skb(skb); 1336 err = -ENETDOWN; 1337 goto out; 1338 } 1339 1340 OVS_CB(skb)->acts_origlen = acts->orig_len; 1341 err = do_execute_actions(dp, skb, key, 1342 acts->actions, acts->actions_len); 1343 1344 if (level == 1) 1345 process_deferred_actions(dp); 1346 1347 out: 1348 __this_cpu_dec(exec_actions_level); 1349 return err; 1350 } 1351 1352 int action_fifos_init(void) 1353 { 1354 action_fifos = alloc_percpu(struct action_fifo); 1355 if (!action_fifos) 1356 return -ENOMEM; 1357 1358 flow_keys = alloc_percpu(struct action_flow_keys); 1359 if (!flow_keys) { 1360 free_percpu(action_fifos); 1361 return -ENOMEM; 1362 } 1363 1364 return 0; 1365 } 1366 1367 void action_fifos_exit(void) 1368 { 1369 free_percpu(action_fifos); 1370 free_percpu(flow_keys); 1371 } 1372