xref: /openbmc/linux/net/openvswitch/actions.c (revision 4f727ece)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/netfilter_ipv6.h>
13 #include <linux/sctp.h>
14 #include <linux/tcp.h>
15 #include <linux/udp.h>
16 #include <linux/in6.h>
17 #include <linux/if_arp.h>
18 #include <linux/if_vlan.h>
19 
20 #include <net/dst.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
27 #include <net/sctp/checksum.h>
28 
29 #include "datapath.h"
30 #include "flow.h"
31 #include "conntrack.h"
32 #include "vport.h"
33 #include "flow_netlink.h"
34 
35 struct deferred_action {
36 	struct sk_buff *skb;
37 	const struct nlattr *actions;
38 	int actions_len;
39 
40 	/* Store pkt_key clone when creating deferred action. */
41 	struct sw_flow_key pkt_key;
42 };
43 
44 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
45 struct ovs_frag_data {
46 	unsigned long dst;
47 	struct vport *vport;
48 	struct ovs_skb_cb cb;
49 	__be16 inner_protocol;
50 	u16 network_offset;	/* valid only for MPLS */
51 	u16 vlan_tci;
52 	__be16 vlan_proto;
53 	unsigned int l2_len;
54 	u8 mac_proto;
55 	u8 l2_data[MAX_L2_LEN];
56 };
57 
58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
59 
60 #define DEFERRED_ACTION_FIFO_SIZE 10
61 #define OVS_RECURSION_LIMIT 5
62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
63 struct action_fifo {
64 	int head;
65 	int tail;
66 	/* Deferred action fifo queue storage. */
67 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
68 };
69 
70 struct action_flow_keys {
71 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
72 };
73 
74 static struct action_fifo __percpu *action_fifos;
75 static struct action_flow_keys __percpu *flow_keys;
76 static DEFINE_PER_CPU(int, exec_actions_level);
77 
78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
79  * space. Return NULL if out of key spaces.
80  */
81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
82 {
83 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
84 	int level = this_cpu_read(exec_actions_level);
85 	struct sw_flow_key *key = NULL;
86 
87 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
88 		key = &keys->key[level - 1];
89 		*key = *key_;
90 	}
91 
92 	return key;
93 }
94 
95 static void action_fifo_init(struct action_fifo *fifo)
96 {
97 	fifo->head = 0;
98 	fifo->tail = 0;
99 }
100 
101 static bool action_fifo_is_empty(const struct action_fifo *fifo)
102 {
103 	return (fifo->head == fifo->tail);
104 }
105 
106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
107 {
108 	if (action_fifo_is_empty(fifo))
109 		return NULL;
110 
111 	return &fifo->fifo[fifo->tail++];
112 }
113 
114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
115 {
116 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
117 		return NULL;
118 
119 	return &fifo->fifo[fifo->head++];
120 }
121 
122 /* Return true if fifo is not full */
123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
124 				    const struct sw_flow_key *key,
125 				    const struct nlattr *actions,
126 				    const int actions_len)
127 {
128 	struct action_fifo *fifo;
129 	struct deferred_action *da;
130 
131 	fifo = this_cpu_ptr(action_fifos);
132 	da = action_fifo_put(fifo);
133 	if (da) {
134 		da->skb = skb;
135 		da->actions = actions;
136 		da->actions_len = actions_len;
137 		da->pkt_key = *key;
138 	}
139 
140 	return da;
141 }
142 
143 static void invalidate_flow_key(struct sw_flow_key *key)
144 {
145 	key->mac_proto |= SW_FLOW_KEY_INVALID;
146 }
147 
148 static bool is_flow_key_valid(const struct sw_flow_key *key)
149 {
150 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
151 }
152 
153 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
154 			 struct sw_flow_key *key,
155 			 u32 recirc_id,
156 			 const struct nlattr *actions, int len,
157 			 bool last, bool clone_flow_key);
158 
159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
160 			      struct sw_flow_key *key,
161 			      const struct nlattr *attr, int len);
162 
163 static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
164 			     __be16 ethertype)
165 {
166 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
167 		__be16 diff[] = { ~(hdr->h_proto), ethertype };
168 
169 		skb->csum = ~csum_partial((char *)diff, sizeof(diff),
170 					~skb->csum);
171 	}
172 
173 	hdr->h_proto = ethertype;
174 }
175 
176 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
177 		     const struct ovs_action_push_mpls *mpls)
178 {
179 	struct mpls_shim_hdr *new_mpls_lse;
180 
181 	/* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
182 	if (skb->encapsulation)
183 		return -ENOTSUPP;
184 
185 	if (skb_cow_head(skb, MPLS_HLEN) < 0)
186 		return -ENOMEM;
187 
188 	if (!skb->inner_protocol) {
189 		skb_set_inner_network_header(skb, skb->mac_len);
190 		skb_set_inner_protocol(skb, skb->protocol);
191 	}
192 
193 	skb_push(skb, MPLS_HLEN);
194 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
195 		skb->mac_len);
196 	skb_reset_mac_header(skb);
197 	skb_set_network_header(skb, skb->mac_len);
198 
199 	new_mpls_lse = mpls_hdr(skb);
200 	new_mpls_lse->label_stack_entry = mpls->mpls_lse;
201 
202 	skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
203 
204 	if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET)
205 		update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
206 	skb->protocol = mpls->mpls_ethertype;
207 
208 	invalidate_flow_key(key);
209 	return 0;
210 }
211 
212 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
213 		    const __be16 ethertype)
214 {
215 	int err;
216 
217 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
218 	if (unlikely(err))
219 		return err;
220 
221 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
222 
223 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
224 		skb->mac_len);
225 
226 	__skb_pull(skb, MPLS_HLEN);
227 	skb_reset_mac_header(skb);
228 	skb_set_network_header(skb, skb->mac_len);
229 
230 	if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) {
231 		struct ethhdr *hdr;
232 
233 		/* mpls_hdr() is used to locate the ethertype field correctly in the
234 		 * presence of VLAN tags.
235 		 */
236 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
237 		update_ethertype(skb, hdr, ethertype);
238 	}
239 	if (eth_p_mpls(skb->protocol))
240 		skb->protocol = ethertype;
241 
242 	invalidate_flow_key(key);
243 	return 0;
244 }
245 
246 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
247 		    const __be32 *mpls_lse, const __be32 *mask)
248 {
249 	struct mpls_shim_hdr *stack;
250 	__be32 lse;
251 	int err;
252 
253 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
254 	if (unlikely(err))
255 		return err;
256 
257 	stack = mpls_hdr(skb);
258 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
259 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
260 		__be32 diff[] = { ~(stack->label_stack_entry), lse };
261 
262 		skb->csum = ~csum_partial((char *)diff, sizeof(diff),
263 					  ~skb->csum);
264 	}
265 
266 	stack->label_stack_entry = lse;
267 	flow_key->mpls.top_lse = lse;
268 	return 0;
269 }
270 
271 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
272 {
273 	int err;
274 
275 	err = skb_vlan_pop(skb);
276 	if (skb_vlan_tag_present(skb)) {
277 		invalidate_flow_key(key);
278 	} else {
279 		key->eth.vlan.tci = 0;
280 		key->eth.vlan.tpid = 0;
281 	}
282 	return err;
283 }
284 
285 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
286 		     const struct ovs_action_push_vlan *vlan)
287 {
288 	if (skb_vlan_tag_present(skb)) {
289 		invalidate_flow_key(key);
290 	} else {
291 		key->eth.vlan.tci = vlan->vlan_tci;
292 		key->eth.vlan.tpid = vlan->vlan_tpid;
293 	}
294 	return skb_vlan_push(skb, vlan->vlan_tpid,
295 			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
296 }
297 
298 /* 'src' is already properly masked. */
299 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
300 {
301 	u16 *dst = (u16 *)dst_;
302 	const u16 *src = (const u16 *)src_;
303 	const u16 *mask = (const u16 *)mask_;
304 
305 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
306 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
307 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
308 }
309 
310 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
311 			const struct ovs_key_ethernet *key,
312 			const struct ovs_key_ethernet *mask)
313 {
314 	int err;
315 
316 	err = skb_ensure_writable(skb, ETH_HLEN);
317 	if (unlikely(err))
318 		return err;
319 
320 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
321 
322 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
323 			       mask->eth_src);
324 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
325 			       mask->eth_dst);
326 
327 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
328 
329 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
330 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
331 	return 0;
332 }
333 
334 /* pop_eth does not support VLAN packets as this action is never called
335  * for them.
336  */
337 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
338 {
339 	skb_pull_rcsum(skb, ETH_HLEN);
340 	skb_reset_mac_header(skb);
341 	skb_reset_mac_len(skb);
342 
343 	/* safe right before invalidate_flow_key */
344 	key->mac_proto = MAC_PROTO_NONE;
345 	invalidate_flow_key(key);
346 	return 0;
347 }
348 
349 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
350 		    const struct ovs_action_push_eth *ethh)
351 {
352 	struct ethhdr *hdr;
353 
354 	/* Add the new Ethernet header */
355 	if (skb_cow_head(skb, ETH_HLEN) < 0)
356 		return -ENOMEM;
357 
358 	skb_push(skb, ETH_HLEN);
359 	skb_reset_mac_header(skb);
360 	skb_reset_mac_len(skb);
361 
362 	hdr = eth_hdr(skb);
363 	ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
364 	ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
365 	hdr->h_proto = skb->protocol;
366 
367 	skb_postpush_rcsum(skb, hdr, ETH_HLEN);
368 
369 	/* safe right before invalidate_flow_key */
370 	key->mac_proto = MAC_PROTO_ETHERNET;
371 	invalidate_flow_key(key);
372 	return 0;
373 }
374 
375 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
376 		    const struct nshhdr *nh)
377 {
378 	int err;
379 
380 	err = nsh_push(skb, nh);
381 	if (err)
382 		return err;
383 
384 	/* safe right before invalidate_flow_key */
385 	key->mac_proto = MAC_PROTO_NONE;
386 	invalidate_flow_key(key);
387 	return 0;
388 }
389 
390 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
391 {
392 	int err;
393 
394 	err = nsh_pop(skb);
395 	if (err)
396 		return err;
397 
398 	/* safe right before invalidate_flow_key */
399 	if (skb->protocol == htons(ETH_P_TEB))
400 		key->mac_proto = MAC_PROTO_ETHERNET;
401 	else
402 		key->mac_proto = MAC_PROTO_NONE;
403 	invalidate_flow_key(key);
404 	return 0;
405 }
406 
407 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
408 				  __be32 addr, __be32 new_addr)
409 {
410 	int transport_len = skb->len - skb_transport_offset(skb);
411 
412 	if (nh->frag_off & htons(IP_OFFSET))
413 		return;
414 
415 	if (nh->protocol == IPPROTO_TCP) {
416 		if (likely(transport_len >= sizeof(struct tcphdr)))
417 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
418 						 addr, new_addr, true);
419 	} else if (nh->protocol == IPPROTO_UDP) {
420 		if (likely(transport_len >= sizeof(struct udphdr))) {
421 			struct udphdr *uh = udp_hdr(skb);
422 
423 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
424 				inet_proto_csum_replace4(&uh->check, skb,
425 							 addr, new_addr, true);
426 				if (!uh->check)
427 					uh->check = CSUM_MANGLED_0;
428 			}
429 		}
430 	}
431 }
432 
433 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
434 			__be32 *addr, __be32 new_addr)
435 {
436 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
437 	csum_replace4(&nh->check, *addr, new_addr);
438 	skb_clear_hash(skb);
439 	*addr = new_addr;
440 }
441 
442 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
443 				 __be32 addr[4], const __be32 new_addr[4])
444 {
445 	int transport_len = skb->len - skb_transport_offset(skb);
446 
447 	if (l4_proto == NEXTHDR_TCP) {
448 		if (likely(transport_len >= sizeof(struct tcphdr)))
449 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
450 						  addr, new_addr, true);
451 	} else if (l4_proto == NEXTHDR_UDP) {
452 		if (likely(transport_len >= sizeof(struct udphdr))) {
453 			struct udphdr *uh = udp_hdr(skb);
454 
455 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
456 				inet_proto_csum_replace16(&uh->check, skb,
457 							  addr, new_addr, true);
458 				if (!uh->check)
459 					uh->check = CSUM_MANGLED_0;
460 			}
461 		}
462 	} else if (l4_proto == NEXTHDR_ICMP) {
463 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
464 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
465 						  skb, addr, new_addr, true);
466 	}
467 }
468 
469 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
470 			   const __be32 mask[4], __be32 masked[4])
471 {
472 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
473 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
474 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
475 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
476 }
477 
478 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
479 			  __be32 addr[4], const __be32 new_addr[4],
480 			  bool recalculate_csum)
481 {
482 	if (recalculate_csum)
483 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
484 
485 	skb_clear_hash(skb);
486 	memcpy(addr, new_addr, sizeof(__be32[4]));
487 }
488 
489 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
490 {
491 	/* Bits 21-24 are always unmasked, so this retains their values. */
492 	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
493 	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
494 	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
495 }
496 
497 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
498 		       u8 mask)
499 {
500 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
501 
502 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
503 	nh->ttl = new_ttl;
504 }
505 
506 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
507 		    const struct ovs_key_ipv4 *key,
508 		    const struct ovs_key_ipv4 *mask)
509 {
510 	struct iphdr *nh;
511 	__be32 new_addr;
512 	int err;
513 
514 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
515 				  sizeof(struct iphdr));
516 	if (unlikely(err))
517 		return err;
518 
519 	nh = ip_hdr(skb);
520 
521 	/* Setting an IP addresses is typically only a side effect of
522 	 * matching on them in the current userspace implementation, so it
523 	 * makes sense to check if the value actually changed.
524 	 */
525 	if (mask->ipv4_src) {
526 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
527 
528 		if (unlikely(new_addr != nh->saddr)) {
529 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
530 			flow_key->ipv4.addr.src = new_addr;
531 		}
532 	}
533 	if (mask->ipv4_dst) {
534 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
535 
536 		if (unlikely(new_addr != nh->daddr)) {
537 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
538 			flow_key->ipv4.addr.dst = new_addr;
539 		}
540 	}
541 	if (mask->ipv4_tos) {
542 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
543 		flow_key->ip.tos = nh->tos;
544 	}
545 	if (mask->ipv4_ttl) {
546 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
547 		flow_key->ip.ttl = nh->ttl;
548 	}
549 
550 	return 0;
551 }
552 
553 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
554 {
555 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
556 }
557 
558 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
559 		    const struct ovs_key_ipv6 *key,
560 		    const struct ovs_key_ipv6 *mask)
561 {
562 	struct ipv6hdr *nh;
563 	int err;
564 
565 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
566 				  sizeof(struct ipv6hdr));
567 	if (unlikely(err))
568 		return err;
569 
570 	nh = ipv6_hdr(skb);
571 
572 	/* Setting an IP addresses is typically only a side effect of
573 	 * matching on them in the current userspace implementation, so it
574 	 * makes sense to check if the value actually changed.
575 	 */
576 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
577 		__be32 *saddr = (__be32 *)&nh->saddr;
578 		__be32 masked[4];
579 
580 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
581 
582 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
583 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
584 				      true);
585 			memcpy(&flow_key->ipv6.addr.src, masked,
586 			       sizeof(flow_key->ipv6.addr.src));
587 		}
588 	}
589 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
590 		unsigned int offset = 0;
591 		int flags = IP6_FH_F_SKIP_RH;
592 		bool recalc_csum = true;
593 		__be32 *daddr = (__be32 *)&nh->daddr;
594 		__be32 masked[4];
595 
596 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
597 
598 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
599 			if (ipv6_ext_hdr(nh->nexthdr))
600 				recalc_csum = (ipv6_find_hdr(skb, &offset,
601 							     NEXTHDR_ROUTING,
602 							     NULL, &flags)
603 					       != NEXTHDR_ROUTING);
604 
605 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
606 				      recalc_csum);
607 			memcpy(&flow_key->ipv6.addr.dst, masked,
608 			       sizeof(flow_key->ipv6.addr.dst));
609 		}
610 	}
611 	if (mask->ipv6_tclass) {
612 		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
613 		flow_key->ip.tos = ipv6_get_dsfield(nh);
614 	}
615 	if (mask->ipv6_label) {
616 		set_ipv6_fl(nh, ntohl(key->ipv6_label),
617 			    ntohl(mask->ipv6_label));
618 		flow_key->ipv6.label =
619 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
620 	}
621 	if (mask->ipv6_hlimit) {
622 		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
623 			       mask->ipv6_hlimit);
624 		flow_key->ip.ttl = nh->hop_limit;
625 	}
626 	return 0;
627 }
628 
629 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
630 		   const struct nlattr *a)
631 {
632 	struct nshhdr *nh;
633 	size_t length;
634 	int err;
635 	u8 flags;
636 	u8 ttl;
637 	int i;
638 
639 	struct ovs_key_nsh key;
640 	struct ovs_key_nsh mask;
641 
642 	err = nsh_key_from_nlattr(a, &key, &mask);
643 	if (err)
644 		return err;
645 
646 	/* Make sure the NSH base header is there */
647 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
648 		return -ENOMEM;
649 
650 	nh = nsh_hdr(skb);
651 	length = nsh_hdr_len(nh);
652 
653 	/* Make sure the whole NSH header is there */
654 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
655 				       length);
656 	if (unlikely(err))
657 		return err;
658 
659 	nh = nsh_hdr(skb);
660 	skb_postpull_rcsum(skb, nh, length);
661 	flags = nsh_get_flags(nh);
662 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
663 	flow_key->nsh.base.flags = flags;
664 	ttl = nsh_get_ttl(nh);
665 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
666 	flow_key->nsh.base.ttl = ttl;
667 	nsh_set_flags_and_ttl(nh, flags, ttl);
668 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
669 				  mask.base.path_hdr);
670 	flow_key->nsh.base.path_hdr = nh->path_hdr;
671 	switch (nh->mdtype) {
672 	case NSH_M_TYPE1:
673 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
674 			nh->md1.context[i] =
675 			    OVS_MASKED(nh->md1.context[i], key.context[i],
676 				       mask.context[i]);
677 		}
678 		memcpy(flow_key->nsh.context, nh->md1.context,
679 		       sizeof(nh->md1.context));
680 		break;
681 	case NSH_M_TYPE2:
682 		memset(flow_key->nsh.context, 0,
683 		       sizeof(flow_key->nsh.context));
684 		break;
685 	default:
686 		return -EINVAL;
687 	}
688 	skb_postpush_rcsum(skb, nh, length);
689 	return 0;
690 }
691 
692 /* Must follow skb_ensure_writable() since that can move the skb data. */
693 static void set_tp_port(struct sk_buff *skb, __be16 *port,
694 			__be16 new_port, __sum16 *check)
695 {
696 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
697 	*port = new_port;
698 }
699 
700 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
701 		   const struct ovs_key_udp *key,
702 		   const struct ovs_key_udp *mask)
703 {
704 	struct udphdr *uh;
705 	__be16 src, dst;
706 	int err;
707 
708 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
709 				  sizeof(struct udphdr));
710 	if (unlikely(err))
711 		return err;
712 
713 	uh = udp_hdr(skb);
714 	/* Either of the masks is non-zero, so do not bother checking them. */
715 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
716 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
717 
718 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
719 		if (likely(src != uh->source)) {
720 			set_tp_port(skb, &uh->source, src, &uh->check);
721 			flow_key->tp.src = src;
722 		}
723 		if (likely(dst != uh->dest)) {
724 			set_tp_port(skb, &uh->dest, dst, &uh->check);
725 			flow_key->tp.dst = dst;
726 		}
727 
728 		if (unlikely(!uh->check))
729 			uh->check = CSUM_MANGLED_0;
730 	} else {
731 		uh->source = src;
732 		uh->dest = dst;
733 		flow_key->tp.src = src;
734 		flow_key->tp.dst = dst;
735 	}
736 
737 	skb_clear_hash(skb);
738 
739 	return 0;
740 }
741 
742 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
743 		   const struct ovs_key_tcp *key,
744 		   const struct ovs_key_tcp *mask)
745 {
746 	struct tcphdr *th;
747 	__be16 src, dst;
748 	int err;
749 
750 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
751 				  sizeof(struct tcphdr));
752 	if (unlikely(err))
753 		return err;
754 
755 	th = tcp_hdr(skb);
756 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
757 	if (likely(src != th->source)) {
758 		set_tp_port(skb, &th->source, src, &th->check);
759 		flow_key->tp.src = src;
760 	}
761 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
762 	if (likely(dst != th->dest)) {
763 		set_tp_port(skb, &th->dest, dst, &th->check);
764 		flow_key->tp.dst = dst;
765 	}
766 	skb_clear_hash(skb);
767 
768 	return 0;
769 }
770 
771 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
772 		    const struct ovs_key_sctp *key,
773 		    const struct ovs_key_sctp *mask)
774 {
775 	unsigned int sctphoff = skb_transport_offset(skb);
776 	struct sctphdr *sh;
777 	__le32 old_correct_csum, new_csum, old_csum;
778 	int err;
779 
780 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
781 	if (unlikely(err))
782 		return err;
783 
784 	sh = sctp_hdr(skb);
785 	old_csum = sh->checksum;
786 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
787 
788 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
789 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
790 
791 	new_csum = sctp_compute_cksum(skb, sctphoff);
792 
793 	/* Carry any checksum errors through. */
794 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
795 
796 	skb_clear_hash(skb);
797 	flow_key->tp.src = sh->source;
798 	flow_key->tp.dst = sh->dest;
799 
800 	return 0;
801 }
802 
803 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
804 {
805 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
806 	struct vport *vport = data->vport;
807 
808 	if (skb_cow_head(skb, data->l2_len) < 0) {
809 		kfree_skb(skb);
810 		return -ENOMEM;
811 	}
812 
813 	__skb_dst_copy(skb, data->dst);
814 	*OVS_CB(skb) = data->cb;
815 	skb->inner_protocol = data->inner_protocol;
816 	if (data->vlan_tci & VLAN_CFI_MASK)
817 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
818 	else
819 		__vlan_hwaccel_clear_tag(skb);
820 
821 	/* Reconstruct the MAC header.  */
822 	skb_push(skb, data->l2_len);
823 	memcpy(skb->data, &data->l2_data, data->l2_len);
824 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
825 	skb_reset_mac_header(skb);
826 
827 	if (eth_p_mpls(skb->protocol)) {
828 		skb->inner_network_header = skb->network_header;
829 		skb_set_network_header(skb, data->network_offset);
830 		skb_reset_mac_len(skb);
831 	}
832 
833 	ovs_vport_send(vport, skb, data->mac_proto);
834 	return 0;
835 }
836 
837 static unsigned int
838 ovs_dst_get_mtu(const struct dst_entry *dst)
839 {
840 	return dst->dev->mtu;
841 }
842 
843 static struct dst_ops ovs_dst_ops = {
844 	.family = AF_UNSPEC,
845 	.mtu = ovs_dst_get_mtu,
846 };
847 
848 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
849  * ovs_vport_output(), which is called once per fragmented packet.
850  */
851 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
852 			 u16 orig_network_offset, u8 mac_proto)
853 {
854 	unsigned int hlen = skb_network_offset(skb);
855 	struct ovs_frag_data *data;
856 
857 	data = this_cpu_ptr(&ovs_frag_data_storage);
858 	data->dst = skb->_skb_refdst;
859 	data->vport = vport;
860 	data->cb = *OVS_CB(skb);
861 	data->inner_protocol = skb->inner_protocol;
862 	data->network_offset = orig_network_offset;
863 	if (skb_vlan_tag_present(skb))
864 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
865 	else
866 		data->vlan_tci = 0;
867 	data->vlan_proto = skb->vlan_proto;
868 	data->mac_proto = mac_proto;
869 	data->l2_len = hlen;
870 	memcpy(&data->l2_data, skb->data, hlen);
871 
872 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
873 	skb_pull(skb, hlen);
874 }
875 
876 static void ovs_fragment(struct net *net, struct vport *vport,
877 			 struct sk_buff *skb, u16 mru,
878 			 struct sw_flow_key *key)
879 {
880 	u16 orig_network_offset = 0;
881 
882 	if (eth_p_mpls(skb->protocol)) {
883 		orig_network_offset = skb_network_offset(skb);
884 		skb->network_header = skb->inner_network_header;
885 	}
886 
887 	if (skb_network_offset(skb) > MAX_L2_LEN) {
888 		OVS_NLERR(1, "L2 header too long to fragment");
889 		goto err;
890 	}
891 
892 	if (key->eth.type == htons(ETH_P_IP)) {
893 		struct dst_entry ovs_dst;
894 		unsigned long orig_dst;
895 
896 		prepare_frag(vport, skb, orig_network_offset,
897 			     ovs_key_mac_proto(key));
898 		dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
899 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
900 		ovs_dst.dev = vport->dev;
901 
902 		orig_dst = skb->_skb_refdst;
903 		skb_dst_set_noref(skb, &ovs_dst);
904 		IPCB(skb)->frag_max_size = mru;
905 
906 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
907 		refdst_drop(orig_dst);
908 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
909 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
910 		unsigned long orig_dst;
911 		struct rt6_info ovs_rt;
912 
913 		if (!v6ops)
914 			goto err;
915 
916 		prepare_frag(vport, skb, orig_network_offset,
917 			     ovs_key_mac_proto(key));
918 		memset(&ovs_rt, 0, sizeof(ovs_rt));
919 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
920 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
921 		ovs_rt.dst.dev = vport->dev;
922 
923 		orig_dst = skb->_skb_refdst;
924 		skb_dst_set_noref(skb, &ovs_rt.dst);
925 		IP6CB(skb)->frag_max_size = mru;
926 
927 		v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
928 		refdst_drop(orig_dst);
929 	} else {
930 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
931 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
932 			  vport->dev->mtu);
933 		goto err;
934 	}
935 
936 	return;
937 err:
938 	kfree_skb(skb);
939 }
940 
941 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
942 		      struct sw_flow_key *key)
943 {
944 	struct vport *vport = ovs_vport_rcu(dp, out_port);
945 
946 	if (likely(vport)) {
947 		u16 mru = OVS_CB(skb)->mru;
948 		u32 cutlen = OVS_CB(skb)->cutlen;
949 
950 		if (unlikely(cutlen > 0)) {
951 			if (skb->len - cutlen > ovs_mac_header_len(key))
952 				pskb_trim(skb, skb->len - cutlen);
953 			else
954 				pskb_trim(skb, ovs_mac_header_len(key));
955 		}
956 
957 		if (likely(!mru ||
958 		           (skb->len <= mru + vport->dev->hard_header_len))) {
959 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
960 		} else if (mru <= vport->dev->mtu) {
961 			struct net *net = read_pnet(&dp->net);
962 
963 			ovs_fragment(net, vport, skb, mru, key);
964 		} else {
965 			kfree_skb(skb);
966 		}
967 	} else {
968 		kfree_skb(skb);
969 	}
970 }
971 
972 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
973 			    struct sw_flow_key *key, const struct nlattr *attr,
974 			    const struct nlattr *actions, int actions_len,
975 			    uint32_t cutlen)
976 {
977 	struct dp_upcall_info upcall;
978 	const struct nlattr *a;
979 	int rem;
980 
981 	memset(&upcall, 0, sizeof(upcall));
982 	upcall.cmd = OVS_PACKET_CMD_ACTION;
983 	upcall.mru = OVS_CB(skb)->mru;
984 
985 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
986 		 a = nla_next(a, &rem)) {
987 		switch (nla_type(a)) {
988 		case OVS_USERSPACE_ATTR_USERDATA:
989 			upcall.userdata = a;
990 			break;
991 
992 		case OVS_USERSPACE_ATTR_PID:
993 			upcall.portid = nla_get_u32(a);
994 			break;
995 
996 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
997 			/* Get out tunnel info. */
998 			struct vport *vport;
999 
1000 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
1001 			if (vport) {
1002 				int err;
1003 
1004 				err = dev_fill_metadata_dst(vport->dev, skb);
1005 				if (!err)
1006 					upcall.egress_tun_info = skb_tunnel_info(skb);
1007 			}
1008 
1009 			break;
1010 		}
1011 
1012 		case OVS_USERSPACE_ATTR_ACTIONS: {
1013 			/* Include actions. */
1014 			upcall.actions = actions;
1015 			upcall.actions_len = actions_len;
1016 			break;
1017 		}
1018 
1019 		} /* End of switch. */
1020 	}
1021 
1022 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1023 }
1024 
1025 /* When 'last' is true, sample() should always consume the 'skb'.
1026  * Otherwise, sample() should keep 'skb' intact regardless what
1027  * actions are executed within sample().
1028  */
1029 static int sample(struct datapath *dp, struct sk_buff *skb,
1030 		  struct sw_flow_key *key, const struct nlattr *attr,
1031 		  bool last)
1032 {
1033 	struct nlattr *actions;
1034 	struct nlattr *sample_arg;
1035 	int rem = nla_len(attr);
1036 	const struct sample_arg *arg;
1037 	bool clone_flow_key;
1038 
1039 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1040 	sample_arg = nla_data(attr);
1041 	arg = nla_data(sample_arg);
1042 	actions = nla_next(sample_arg, &rem);
1043 
1044 	if ((arg->probability != U32_MAX) &&
1045 	    (!arg->probability || prandom_u32() > arg->probability)) {
1046 		if (last)
1047 			consume_skb(skb);
1048 		return 0;
1049 	}
1050 
1051 	clone_flow_key = !arg->exec;
1052 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1053 			     clone_flow_key);
1054 }
1055 
1056 /* When 'last' is true, clone() should always consume the 'skb'.
1057  * Otherwise, clone() should keep 'skb' intact regardless what
1058  * actions are executed within clone().
1059  */
1060 static int clone(struct datapath *dp, struct sk_buff *skb,
1061 		 struct sw_flow_key *key, const struct nlattr *attr,
1062 		 bool last)
1063 {
1064 	struct nlattr *actions;
1065 	struct nlattr *clone_arg;
1066 	int rem = nla_len(attr);
1067 	bool dont_clone_flow_key;
1068 
1069 	/* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1070 	clone_arg = nla_data(attr);
1071 	dont_clone_flow_key = nla_get_u32(clone_arg);
1072 	actions = nla_next(clone_arg, &rem);
1073 
1074 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1075 			     !dont_clone_flow_key);
1076 }
1077 
1078 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1079 			 const struct nlattr *attr)
1080 {
1081 	struct ovs_action_hash *hash_act = nla_data(attr);
1082 	u32 hash = 0;
1083 
1084 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1085 	hash = skb_get_hash(skb);
1086 	hash = jhash_1word(hash, hash_act->hash_basis);
1087 	if (!hash)
1088 		hash = 0x1;
1089 
1090 	key->ovs_flow_hash = hash;
1091 }
1092 
1093 static int execute_set_action(struct sk_buff *skb,
1094 			      struct sw_flow_key *flow_key,
1095 			      const struct nlattr *a)
1096 {
1097 	/* Only tunnel set execution is supported without a mask. */
1098 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1099 		struct ovs_tunnel_info *tun = nla_data(a);
1100 
1101 		skb_dst_drop(skb);
1102 		dst_hold((struct dst_entry *)tun->tun_dst);
1103 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1104 		return 0;
1105 	}
1106 
1107 	return -EINVAL;
1108 }
1109 
1110 /* Mask is at the midpoint of the data. */
1111 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1112 
1113 static int execute_masked_set_action(struct sk_buff *skb,
1114 				     struct sw_flow_key *flow_key,
1115 				     const struct nlattr *a)
1116 {
1117 	int err = 0;
1118 
1119 	switch (nla_type(a)) {
1120 	case OVS_KEY_ATTR_PRIORITY:
1121 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1122 			       *get_mask(a, u32 *));
1123 		flow_key->phy.priority = skb->priority;
1124 		break;
1125 
1126 	case OVS_KEY_ATTR_SKB_MARK:
1127 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1128 		flow_key->phy.skb_mark = skb->mark;
1129 		break;
1130 
1131 	case OVS_KEY_ATTR_TUNNEL_INFO:
1132 		/* Masked data not supported for tunnel. */
1133 		err = -EINVAL;
1134 		break;
1135 
1136 	case OVS_KEY_ATTR_ETHERNET:
1137 		err = set_eth_addr(skb, flow_key, nla_data(a),
1138 				   get_mask(a, struct ovs_key_ethernet *));
1139 		break;
1140 
1141 	case OVS_KEY_ATTR_NSH:
1142 		err = set_nsh(skb, flow_key, a);
1143 		break;
1144 
1145 	case OVS_KEY_ATTR_IPV4:
1146 		err = set_ipv4(skb, flow_key, nla_data(a),
1147 			       get_mask(a, struct ovs_key_ipv4 *));
1148 		break;
1149 
1150 	case OVS_KEY_ATTR_IPV6:
1151 		err = set_ipv6(skb, flow_key, nla_data(a),
1152 			       get_mask(a, struct ovs_key_ipv6 *));
1153 		break;
1154 
1155 	case OVS_KEY_ATTR_TCP:
1156 		err = set_tcp(skb, flow_key, nla_data(a),
1157 			      get_mask(a, struct ovs_key_tcp *));
1158 		break;
1159 
1160 	case OVS_KEY_ATTR_UDP:
1161 		err = set_udp(skb, flow_key, nla_data(a),
1162 			      get_mask(a, struct ovs_key_udp *));
1163 		break;
1164 
1165 	case OVS_KEY_ATTR_SCTP:
1166 		err = set_sctp(skb, flow_key, nla_data(a),
1167 			       get_mask(a, struct ovs_key_sctp *));
1168 		break;
1169 
1170 	case OVS_KEY_ATTR_MPLS:
1171 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1172 								    __be32 *));
1173 		break;
1174 
1175 	case OVS_KEY_ATTR_CT_STATE:
1176 	case OVS_KEY_ATTR_CT_ZONE:
1177 	case OVS_KEY_ATTR_CT_MARK:
1178 	case OVS_KEY_ATTR_CT_LABELS:
1179 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1180 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1181 		err = -EINVAL;
1182 		break;
1183 	}
1184 
1185 	return err;
1186 }
1187 
1188 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1189 			  struct sw_flow_key *key,
1190 			  const struct nlattr *a, bool last)
1191 {
1192 	u32 recirc_id;
1193 
1194 	if (!is_flow_key_valid(key)) {
1195 		int err;
1196 
1197 		err = ovs_flow_key_update(skb, key);
1198 		if (err)
1199 			return err;
1200 	}
1201 	BUG_ON(!is_flow_key_valid(key));
1202 
1203 	recirc_id = nla_get_u32(a);
1204 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1205 }
1206 
1207 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1208 				 struct sw_flow_key *key,
1209 				 const struct nlattr *attr, bool last)
1210 {
1211 	const struct nlattr *actions, *cpl_arg;
1212 	const struct check_pkt_len_arg *arg;
1213 	int rem = nla_len(attr);
1214 	bool clone_flow_key;
1215 
1216 	/* The first netlink attribute in 'attr' is always
1217 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1218 	 */
1219 	cpl_arg = nla_data(attr);
1220 	arg = nla_data(cpl_arg);
1221 
1222 	if (skb->len <= arg->pkt_len) {
1223 		/* Second netlink attribute in 'attr' is always
1224 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1225 		 */
1226 		actions = nla_next(cpl_arg, &rem);
1227 		clone_flow_key = !arg->exec_for_lesser_equal;
1228 	} else {
1229 		/* Third netlink attribute in 'attr' is always
1230 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1231 		 */
1232 		actions = nla_next(cpl_arg, &rem);
1233 		actions = nla_next(actions, &rem);
1234 		clone_flow_key = !arg->exec_for_greater;
1235 	}
1236 
1237 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1238 			     nla_len(actions), last, clone_flow_key);
1239 }
1240 
1241 /* Execute a list of actions against 'skb'. */
1242 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1243 			      struct sw_flow_key *key,
1244 			      const struct nlattr *attr, int len)
1245 {
1246 	const struct nlattr *a;
1247 	int rem;
1248 
1249 	for (a = attr, rem = len; rem > 0;
1250 	     a = nla_next(a, &rem)) {
1251 		int err = 0;
1252 
1253 		switch (nla_type(a)) {
1254 		case OVS_ACTION_ATTR_OUTPUT: {
1255 			int port = nla_get_u32(a);
1256 			struct sk_buff *clone;
1257 
1258 			/* Every output action needs a separate clone
1259 			 * of 'skb', In case the output action is the
1260 			 * last action, cloning can be avoided.
1261 			 */
1262 			if (nla_is_last(a, rem)) {
1263 				do_output(dp, skb, port, key);
1264 				/* 'skb' has been used for output.
1265 				 */
1266 				return 0;
1267 			}
1268 
1269 			clone = skb_clone(skb, GFP_ATOMIC);
1270 			if (clone)
1271 				do_output(dp, clone, port, key);
1272 			OVS_CB(skb)->cutlen = 0;
1273 			break;
1274 		}
1275 
1276 		case OVS_ACTION_ATTR_TRUNC: {
1277 			struct ovs_action_trunc *trunc = nla_data(a);
1278 
1279 			if (skb->len > trunc->max_len)
1280 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1281 			break;
1282 		}
1283 
1284 		case OVS_ACTION_ATTR_USERSPACE:
1285 			output_userspace(dp, skb, key, a, attr,
1286 						     len, OVS_CB(skb)->cutlen);
1287 			OVS_CB(skb)->cutlen = 0;
1288 			break;
1289 
1290 		case OVS_ACTION_ATTR_HASH:
1291 			execute_hash(skb, key, a);
1292 			break;
1293 
1294 		case OVS_ACTION_ATTR_PUSH_MPLS:
1295 			err = push_mpls(skb, key, nla_data(a));
1296 			break;
1297 
1298 		case OVS_ACTION_ATTR_POP_MPLS:
1299 			err = pop_mpls(skb, key, nla_get_be16(a));
1300 			break;
1301 
1302 		case OVS_ACTION_ATTR_PUSH_VLAN:
1303 			err = push_vlan(skb, key, nla_data(a));
1304 			break;
1305 
1306 		case OVS_ACTION_ATTR_POP_VLAN:
1307 			err = pop_vlan(skb, key);
1308 			break;
1309 
1310 		case OVS_ACTION_ATTR_RECIRC: {
1311 			bool last = nla_is_last(a, rem);
1312 
1313 			err = execute_recirc(dp, skb, key, a, last);
1314 			if (last) {
1315 				/* If this is the last action, the skb has
1316 				 * been consumed or freed.
1317 				 * Return immediately.
1318 				 */
1319 				return err;
1320 			}
1321 			break;
1322 		}
1323 
1324 		case OVS_ACTION_ATTR_SET:
1325 			err = execute_set_action(skb, key, nla_data(a));
1326 			break;
1327 
1328 		case OVS_ACTION_ATTR_SET_MASKED:
1329 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1330 			err = execute_masked_set_action(skb, key, nla_data(a));
1331 			break;
1332 
1333 		case OVS_ACTION_ATTR_SAMPLE: {
1334 			bool last = nla_is_last(a, rem);
1335 
1336 			err = sample(dp, skb, key, a, last);
1337 			if (last)
1338 				return err;
1339 
1340 			break;
1341 		}
1342 
1343 		case OVS_ACTION_ATTR_CT:
1344 			if (!is_flow_key_valid(key)) {
1345 				err = ovs_flow_key_update(skb, key);
1346 				if (err)
1347 					return err;
1348 			}
1349 
1350 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1351 					     nla_data(a));
1352 
1353 			/* Hide stolen IP fragments from user space. */
1354 			if (err)
1355 				return err == -EINPROGRESS ? 0 : err;
1356 			break;
1357 
1358 		case OVS_ACTION_ATTR_CT_CLEAR:
1359 			err = ovs_ct_clear(skb, key);
1360 			break;
1361 
1362 		case OVS_ACTION_ATTR_PUSH_ETH:
1363 			err = push_eth(skb, key, nla_data(a));
1364 			break;
1365 
1366 		case OVS_ACTION_ATTR_POP_ETH:
1367 			err = pop_eth(skb, key);
1368 			break;
1369 
1370 		case OVS_ACTION_ATTR_PUSH_NSH: {
1371 			u8 buffer[NSH_HDR_MAX_LEN];
1372 			struct nshhdr *nh = (struct nshhdr *)buffer;
1373 
1374 			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1375 						  NSH_HDR_MAX_LEN);
1376 			if (unlikely(err))
1377 				break;
1378 			err = push_nsh(skb, key, nh);
1379 			break;
1380 		}
1381 
1382 		case OVS_ACTION_ATTR_POP_NSH:
1383 			err = pop_nsh(skb, key);
1384 			break;
1385 
1386 		case OVS_ACTION_ATTR_METER:
1387 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1388 				consume_skb(skb);
1389 				return 0;
1390 			}
1391 			break;
1392 
1393 		case OVS_ACTION_ATTR_CLONE: {
1394 			bool last = nla_is_last(a, rem);
1395 
1396 			err = clone(dp, skb, key, a, last);
1397 			if (last)
1398 				return err;
1399 
1400 			break;
1401 		}
1402 
1403 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1404 			bool last = nla_is_last(a, rem);
1405 
1406 			err = execute_check_pkt_len(dp, skb, key, a, last);
1407 			if (last)
1408 				return err;
1409 
1410 			break;
1411 		}
1412 		}
1413 
1414 		if (unlikely(err)) {
1415 			kfree_skb(skb);
1416 			return err;
1417 		}
1418 	}
1419 
1420 	consume_skb(skb);
1421 	return 0;
1422 }
1423 
1424 /* Execute the actions on the clone of the packet. The effect of the
1425  * execution does not affect the original 'skb' nor the original 'key'.
1426  *
1427  * The execution may be deferred in case the actions can not be executed
1428  * immediately.
1429  */
1430 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1431 			 struct sw_flow_key *key, u32 recirc_id,
1432 			 const struct nlattr *actions, int len,
1433 			 bool last, bool clone_flow_key)
1434 {
1435 	struct deferred_action *da;
1436 	struct sw_flow_key *clone;
1437 
1438 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1439 	if (!skb) {
1440 		/* Out of memory, skip this action.
1441 		 */
1442 		return 0;
1443 	}
1444 
1445 	/* When clone_flow_key is false, the 'key' will not be change
1446 	 * by the actions, then the 'key' can be used directly.
1447 	 * Otherwise, try to clone key from the next recursion level of
1448 	 * 'flow_keys'. If clone is successful, execute the actions
1449 	 * without deferring.
1450 	 */
1451 	clone = clone_flow_key ? clone_key(key) : key;
1452 	if (clone) {
1453 		int err = 0;
1454 
1455 		if (actions) { /* Sample action */
1456 			if (clone_flow_key)
1457 				__this_cpu_inc(exec_actions_level);
1458 
1459 			err = do_execute_actions(dp, skb, clone,
1460 						 actions, len);
1461 
1462 			if (clone_flow_key)
1463 				__this_cpu_dec(exec_actions_level);
1464 		} else { /* Recirc action */
1465 			clone->recirc_id = recirc_id;
1466 			ovs_dp_process_packet(skb, clone);
1467 		}
1468 		return err;
1469 	}
1470 
1471 	/* Out of 'flow_keys' space. Defer actions */
1472 	da = add_deferred_actions(skb, key, actions, len);
1473 	if (da) {
1474 		if (!actions) { /* Recirc action */
1475 			key = &da->pkt_key;
1476 			key->recirc_id = recirc_id;
1477 		}
1478 	} else {
1479 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1480 		 * log an error.
1481 		 */
1482 		kfree_skb(skb);
1483 
1484 		if (net_ratelimit()) {
1485 			if (actions) { /* Sample action */
1486 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1487 					ovs_dp_name(dp));
1488 			} else {  /* Recirc action */
1489 				pr_warn("%s: deferred action limit reached, drop recirc action\n",
1490 					ovs_dp_name(dp));
1491 			}
1492 		}
1493 	}
1494 	return 0;
1495 }
1496 
1497 static void process_deferred_actions(struct datapath *dp)
1498 {
1499 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1500 
1501 	/* Do not touch the FIFO in case there is no deferred actions. */
1502 	if (action_fifo_is_empty(fifo))
1503 		return;
1504 
1505 	/* Finishing executing all deferred actions. */
1506 	do {
1507 		struct deferred_action *da = action_fifo_get(fifo);
1508 		struct sk_buff *skb = da->skb;
1509 		struct sw_flow_key *key = &da->pkt_key;
1510 		const struct nlattr *actions = da->actions;
1511 		int actions_len = da->actions_len;
1512 
1513 		if (actions)
1514 			do_execute_actions(dp, skb, key, actions, actions_len);
1515 		else
1516 			ovs_dp_process_packet(skb, key);
1517 	} while (!action_fifo_is_empty(fifo));
1518 
1519 	/* Reset FIFO for the next packet.  */
1520 	action_fifo_init(fifo);
1521 }
1522 
1523 /* Execute a list of actions against 'skb'. */
1524 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1525 			const struct sw_flow_actions *acts,
1526 			struct sw_flow_key *key)
1527 {
1528 	int err, level;
1529 
1530 	level = __this_cpu_inc_return(exec_actions_level);
1531 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1532 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1533 				     ovs_dp_name(dp));
1534 		kfree_skb(skb);
1535 		err = -ENETDOWN;
1536 		goto out;
1537 	}
1538 
1539 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1540 	err = do_execute_actions(dp, skb, key,
1541 				 acts->actions, acts->actions_len);
1542 
1543 	if (level == 1)
1544 		process_deferred_actions(dp);
1545 
1546 out:
1547 	__this_cpu_dec(exec_actions_level);
1548 	return err;
1549 }
1550 
1551 int action_fifos_init(void)
1552 {
1553 	action_fifos = alloc_percpu(struct action_fifo);
1554 	if (!action_fifos)
1555 		return -ENOMEM;
1556 
1557 	flow_keys = alloc_percpu(struct action_flow_keys);
1558 	if (!flow_keys) {
1559 		free_percpu(action_fifos);
1560 		return -ENOMEM;
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 void action_fifos_exit(void)
1567 {
1568 	free_percpu(action_fifos);
1569 	free_percpu(flow_keys);
1570 }
1571