1 /* 2 * Copyright (c) 2007-2017 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/skbuff.h> 22 #include <linux/in.h> 23 #include <linux/ip.h> 24 #include <linux/openvswitch.h> 25 #include <linux/netfilter_ipv6.h> 26 #include <linux/sctp.h> 27 #include <linux/tcp.h> 28 #include <linux/udp.h> 29 #include <linux/in6.h> 30 #include <linux/if_arp.h> 31 #include <linux/if_vlan.h> 32 33 #include <net/dst.h> 34 #include <net/ip.h> 35 #include <net/ipv6.h> 36 #include <net/ip6_fib.h> 37 #include <net/checksum.h> 38 #include <net/dsfield.h> 39 #include <net/mpls.h> 40 #include <net/sctp/checksum.h> 41 42 #include "datapath.h" 43 #include "flow.h" 44 #include "conntrack.h" 45 #include "vport.h" 46 #include "flow_netlink.h" 47 48 struct deferred_action { 49 struct sk_buff *skb; 50 const struct nlattr *actions; 51 int actions_len; 52 53 /* Store pkt_key clone when creating deferred action. */ 54 struct sw_flow_key pkt_key; 55 }; 56 57 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN) 58 struct ovs_frag_data { 59 unsigned long dst; 60 struct vport *vport; 61 struct ovs_skb_cb cb; 62 __be16 inner_protocol; 63 u16 network_offset; /* valid only for MPLS */ 64 u16 vlan_tci; 65 __be16 vlan_proto; 66 unsigned int l2_len; 67 u8 mac_proto; 68 u8 l2_data[MAX_L2_LEN]; 69 }; 70 71 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage); 72 73 #define DEFERRED_ACTION_FIFO_SIZE 10 74 #define OVS_RECURSION_LIMIT 5 75 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2) 76 struct action_fifo { 77 int head; 78 int tail; 79 /* Deferred action fifo queue storage. */ 80 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; 81 }; 82 83 struct action_flow_keys { 84 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD]; 85 }; 86 87 static struct action_fifo __percpu *action_fifos; 88 static struct action_flow_keys __percpu *flow_keys; 89 static DEFINE_PER_CPU(int, exec_actions_level); 90 91 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys' 92 * space. Return NULL if out of key spaces. 93 */ 94 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_) 95 { 96 struct action_flow_keys *keys = this_cpu_ptr(flow_keys); 97 int level = this_cpu_read(exec_actions_level); 98 struct sw_flow_key *key = NULL; 99 100 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) { 101 key = &keys->key[level - 1]; 102 *key = *key_; 103 } 104 105 return key; 106 } 107 108 static void action_fifo_init(struct action_fifo *fifo) 109 { 110 fifo->head = 0; 111 fifo->tail = 0; 112 } 113 114 static bool action_fifo_is_empty(const struct action_fifo *fifo) 115 { 116 return (fifo->head == fifo->tail); 117 } 118 119 static struct deferred_action *action_fifo_get(struct action_fifo *fifo) 120 { 121 if (action_fifo_is_empty(fifo)) 122 return NULL; 123 124 return &fifo->fifo[fifo->tail++]; 125 } 126 127 static struct deferred_action *action_fifo_put(struct action_fifo *fifo) 128 { 129 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) 130 return NULL; 131 132 return &fifo->fifo[fifo->head++]; 133 } 134 135 /* Return true if fifo is not full */ 136 static struct deferred_action *add_deferred_actions(struct sk_buff *skb, 137 const struct sw_flow_key *key, 138 const struct nlattr *actions, 139 const int actions_len) 140 { 141 struct action_fifo *fifo; 142 struct deferred_action *da; 143 144 fifo = this_cpu_ptr(action_fifos); 145 da = action_fifo_put(fifo); 146 if (da) { 147 da->skb = skb; 148 da->actions = actions; 149 da->actions_len = actions_len; 150 da->pkt_key = *key; 151 } 152 153 return da; 154 } 155 156 static void invalidate_flow_key(struct sw_flow_key *key) 157 { 158 key->mac_proto |= SW_FLOW_KEY_INVALID; 159 } 160 161 static bool is_flow_key_valid(const struct sw_flow_key *key) 162 { 163 return !(key->mac_proto & SW_FLOW_KEY_INVALID); 164 } 165 166 static int clone_execute(struct datapath *dp, struct sk_buff *skb, 167 struct sw_flow_key *key, 168 u32 recirc_id, 169 const struct nlattr *actions, int len, 170 bool last, bool clone_flow_key); 171 172 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 173 struct sw_flow_key *key, 174 const struct nlattr *attr, int len); 175 176 static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr, 177 __be16 ethertype) 178 { 179 if (skb->ip_summed == CHECKSUM_COMPLETE) { 180 __be16 diff[] = { ~(hdr->h_proto), ethertype }; 181 182 skb->csum = ~csum_partial((char *)diff, sizeof(diff), 183 ~skb->csum); 184 } 185 186 hdr->h_proto = ethertype; 187 } 188 189 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, 190 const struct ovs_action_push_mpls *mpls) 191 { 192 struct mpls_shim_hdr *new_mpls_lse; 193 194 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */ 195 if (skb->encapsulation) 196 return -ENOTSUPP; 197 198 if (skb_cow_head(skb, MPLS_HLEN) < 0) 199 return -ENOMEM; 200 201 if (!skb->inner_protocol) { 202 skb_set_inner_network_header(skb, skb->mac_len); 203 skb_set_inner_protocol(skb, skb->protocol); 204 } 205 206 skb_push(skb, MPLS_HLEN); 207 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 208 skb->mac_len); 209 skb_reset_mac_header(skb); 210 skb_set_network_header(skb, skb->mac_len); 211 212 new_mpls_lse = mpls_hdr(skb); 213 new_mpls_lse->label_stack_entry = mpls->mpls_lse; 214 215 skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN); 216 217 if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) 218 update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype); 219 skb->protocol = mpls->mpls_ethertype; 220 221 invalidate_flow_key(key); 222 return 0; 223 } 224 225 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, 226 const __be16 ethertype) 227 { 228 int err; 229 230 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 231 if (unlikely(err)) 232 return err; 233 234 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 235 236 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 237 skb->mac_len); 238 239 __skb_pull(skb, MPLS_HLEN); 240 skb_reset_mac_header(skb); 241 skb_set_network_header(skb, skb->mac_len); 242 243 if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) { 244 struct ethhdr *hdr; 245 246 /* mpls_hdr() is used to locate the ethertype field correctly in the 247 * presence of VLAN tags. 248 */ 249 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 250 update_ethertype(skb, hdr, ethertype); 251 } 252 if (eth_p_mpls(skb->protocol)) 253 skb->protocol = ethertype; 254 255 invalidate_flow_key(key); 256 return 0; 257 } 258 259 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, 260 const __be32 *mpls_lse, const __be32 *mask) 261 { 262 struct mpls_shim_hdr *stack; 263 __be32 lse; 264 int err; 265 266 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 267 if (unlikely(err)) 268 return err; 269 270 stack = mpls_hdr(skb); 271 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask); 272 if (skb->ip_summed == CHECKSUM_COMPLETE) { 273 __be32 diff[] = { ~(stack->label_stack_entry), lse }; 274 275 skb->csum = ~csum_partial((char *)diff, sizeof(diff), 276 ~skb->csum); 277 } 278 279 stack->label_stack_entry = lse; 280 flow_key->mpls.top_lse = lse; 281 return 0; 282 } 283 284 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) 285 { 286 int err; 287 288 err = skb_vlan_pop(skb); 289 if (skb_vlan_tag_present(skb)) { 290 invalidate_flow_key(key); 291 } else { 292 key->eth.vlan.tci = 0; 293 key->eth.vlan.tpid = 0; 294 } 295 return err; 296 } 297 298 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, 299 const struct ovs_action_push_vlan *vlan) 300 { 301 if (skb_vlan_tag_present(skb)) { 302 invalidate_flow_key(key); 303 } else { 304 key->eth.vlan.tci = vlan->vlan_tci; 305 key->eth.vlan.tpid = vlan->vlan_tpid; 306 } 307 return skb_vlan_push(skb, vlan->vlan_tpid, 308 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK); 309 } 310 311 /* 'src' is already properly masked. */ 312 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) 313 { 314 u16 *dst = (u16 *)dst_; 315 const u16 *src = (const u16 *)src_; 316 const u16 *mask = (const u16 *)mask_; 317 318 OVS_SET_MASKED(dst[0], src[0], mask[0]); 319 OVS_SET_MASKED(dst[1], src[1], mask[1]); 320 OVS_SET_MASKED(dst[2], src[2], mask[2]); 321 } 322 323 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, 324 const struct ovs_key_ethernet *key, 325 const struct ovs_key_ethernet *mask) 326 { 327 int err; 328 329 err = skb_ensure_writable(skb, ETH_HLEN); 330 if (unlikely(err)) 331 return err; 332 333 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 334 335 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, 336 mask->eth_src); 337 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, 338 mask->eth_dst); 339 340 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 341 342 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); 343 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); 344 return 0; 345 } 346 347 /* pop_eth does not support VLAN packets as this action is never called 348 * for them. 349 */ 350 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key) 351 { 352 skb_pull_rcsum(skb, ETH_HLEN); 353 skb_reset_mac_header(skb); 354 skb_reset_mac_len(skb); 355 356 /* safe right before invalidate_flow_key */ 357 key->mac_proto = MAC_PROTO_NONE; 358 invalidate_flow_key(key); 359 return 0; 360 } 361 362 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key, 363 const struct ovs_action_push_eth *ethh) 364 { 365 struct ethhdr *hdr; 366 367 /* Add the new Ethernet header */ 368 if (skb_cow_head(skb, ETH_HLEN) < 0) 369 return -ENOMEM; 370 371 skb_push(skb, ETH_HLEN); 372 skb_reset_mac_header(skb); 373 skb_reset_mac_len(skb); 374 375 hdr = eth_hdr(skb); 376 ether_addr_copy(hdr->h_source, ethh->addresses.eth_src); 377 ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst); 378 hdr->h_proto = skb->protocol; 379 380 skb_postpush_rcsum(skb, hdr, ETH_HLEN); 381 382 /* safe right before invalidate_flow_key */ 383 key->mac_proto = MAC_PROTO_ETHERNET; 384 invalidate_flow_key(key); 385 return 0; 386 } 387 388 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key, 389 const struct nshhdr *nh) 390 { 391 int err; 392 393 err = nsh_push(skb, nh); 394 if (err) 395 return err; 396 397 /* safe right before invalidate_flow_key */ 398 key->mac_proto = MAC_PROTO_NONE; 399 invalidate_flow_key(key); 400 return 0; 401 } 402 403 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key) 404 { 405 int err; 406 407 err = nsh_pop(skb); 408 if (err) 409 return err; 410 411 /* safe right before invalidate_flow_key */ 412 if (skb->protocol == htons(ETH_P_TEB)) 413 key->mac_proto = MAC_PROTO_ETHERNET; 414 else 415 key->mac_proto = MAC_PROTO_NONE; 416 invalidate_flow_key(key); 417 return 0; 418 } 419 420 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, 421 __be32 addr, __be32 new_addr) 422 { 423 int transport_len = skb->len - skb_transport_offset(skb); 424 425 if (nh->frag_off & htons(IP_OFFSET)) 426 return; 427 428 if (nh->protocol == IPPROTO_TCP) { 429 if (likely(transport_len >= sizeof(struct tcphdr))) 430 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, 431 addr, new_addr, true); 432 } else if (nh->protocol == IPPROTO_UDP) { 433 if (likely(transport_len >= sizeof(struct udphdr))) { 434 struct udphdr *uh = udp_hdr(skb); 435 436 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 437 inet_proto_csum_replace4(&uh->check, skb, 438 addr, new_addr, true); 439 if (!uh->check) 440 uh->check = CSUM_MANGLED_0; 441 } 442 } 443 } 444 } 445 446 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, 447 __be32 *addr, __be32 new_addr) 448 { 449 update_ip_l4_checksum(skb, nh, *addr, new_addr); 450 csum_replace4(&nh->check, *addr, new_addr); 451 skb_clear_hash(skb); 452 *addr = new_addr; 453 } 454 455 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, 456 __be32 addr[4], const __be32 new_addr[4]) 457 { 458 int transport_len = skb->len - skb_transport_offset(skb); 459 460 if (l4_proto == NEXTHDR_TCP) { 461 if (likely(transport_len >= sizeof(struct tcphdr))) 462 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, 463 addr, new_addr, true); 464 } else if (l4_proto == NEXTHDR_UDP) { 465 if (likely(transport_len >= sizeof(struct udphdr))) { 466 struct udphdr *uh = udp_hdr(skb); 467 468 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 469 inet_proto_csum_replace16(&uh->check, skb, 470 addr, new_addr, true); 471 if (!uh->check) 472 uh->check = CSUM_MANGLED_0; 473 } 474 } 475 } else if (l4_proto == NEXTHDR_ICMP) { 476 if (likely(transport_len >= sizeof(struct icmp6hdr))) 477 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, 478 skb, addr, new_addr, true); 479 } 480 } 481 482 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], 483 const __be32 mask[4], __be32 masked[4]) 484 { 485 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); 486 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); 487 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); 488 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); 489 } 490 491 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, 492 __be32 addr[4], const __be32 new_addr[4], 493 bool recalculate_csum) 494 { 495 if (recalculate_csum) 496 update_ipv6_checksum(skb, l4_proto, addr, new_addr); 497 498 skb_clear_hash(skb); 499 memcpy(addr, new_addr, sizeof(__be32[4])); 500 } 501 502 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask) 503 { 504 /* Bits 21-24 are always unmasked, so this retains their values. */ 505 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16)); 506 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8)); 507 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask); 508 } 509 510 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, 511 u8 mask) 512 { 513 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); 514 515 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); 516 nh->ttl = new_ttl; 517 } 518 519 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, 520 const struct ovs_key_ipv4 *key, 521 const struct ovs_key_ipv4 *mask) 522 { 523 struct iphdr *nh; 524 __be32 new_addr; 525 int err; 526 527 err = skb_ensure_writable(skb, skb_network_offset(skb) + 528 sizeof(struct iphdr)); 529 if (unlikely(err)) 530 return err; 531 532 nh = ip_hdr(skb); 533 534 /* Setting an IP addresses is typically only a side effect of 535 * matching on them in the current userspace implementation, so it 536 * makes sense to check if the value actually changed. 537 */ 538 if (mask->ipv4_src) { 539 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); 540 541 if (unlikely(new_addr != nh->saddr)) { 542 set_ip_addr(skb, nh, &nh->saddr, new_addr); 543 flow_key->ipv4.addr.src = new_addr; 544 } 545 } 546 if (mask->ipv4_dst) { 547 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); 548 549 if (unlikely(new_addr != nh->daddr)) { 550 set_ip_addr(skb, nh, &nh->daddr, new_addr); 551 flow_key->ipv4.addr.dst = new_addr; 552 } 553 } 554 if (mask->ipv4_tos) { 555 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); 556 flow_key->ip.tos = nh->tos; 557 } 558 if (mask->ipv4_ttl) { 559 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); 560 flow_key->ip.ttl = nh->ttl; 561 } 562 563 return 0; 564 } 565 566 static bool is_ipv6_mask_nonzero(const __be32 addr[4]) 567 { 568 return !!(addr[0] | addr[1] | addr[2] | addr[3]); 569 } 570 571 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, 572 const struct ovs_key_ipv6 *key, 573 const struct ovs_key_ipv6 *mask) 574 { 575 struct ipv6hdr *nh; 576 int err; 577 578 err = skb_ensure_writable(skb, skb_network_offset(skb) + 579 sizeof(struct ipv6hdr)); 580 if (unlikely(err)) 581 return err; 582 583 nh = ipv6_hdr(skb); 584 585 /* Setting an IP addresses is typically only a side effect of 586 * matching on them in the current userspace implementation, so it 587 * makes sense to check if the value actually changed. 588 */ 589 if (is_ipv6_mask_nonzero(mask->ipv6_src)) { 590 __be32 *saddr = (__be32 *)&nh->saddr; 591 __be32 masked[4]; 592 593 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); 594 595 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { 596 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, 597 true); 598 memcpy(&flow_key->ipv6.addr.src, masked, 599 sizeof(flow_key->ipv6.addr.src)); 600 } 601 } 602 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { 603 unsigned int offset = 0; 604 int flags = IP6_FH_F_SKIP_RH; 605 bool recalc_csum = true; 606 __be32 *daddr = (__be32 *)&nh->daddr; 607 __be32 masked[4]; 608 609 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); 610 611 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { 612 if (ipv6_ext_hdr(nh->nexthdr)) 613 recalc_csum = (ipv6_find_hdr(skb, &offset, 614 NEXTHDR_ROUTING, 615 NULL, &flags) 616 != NEXTHDR_ROUTING); 617 618 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, 619 recalc_csum); 620 memcpy(&flow_key->ipv6.addr.dst, masked, 621 sizeof(flow_key->ipv6.addr.dst)); 622 } 623 } 624 if (mask->ipv6_tclass) { 625 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass); 626 flow_key->ip.tos = ipv6_get_dsfield(nh); 627 } 628 if (mask->ipv6_label) { 629 set_ipv6_fl(nh, ntohl(key->ipv6_label), 630 ntohl(mask->ipv6_label)); 631 flow_key->ipv6.label = 632 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 633 } 634 if (mask->ipv6_hlimit) { 635 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit, 636 mask->ipv6_hlimit); 637 flow_key->ip.ttl = nh->hop_limit; 638 } 639 return 0; 640 } 641 642 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key, 643 const struct nlattr *a) 644 { 645 struct nshhdr *nh; 646 size_t length; 647 int err; 648 u8 flags; 649 u8 ttl; 650 int i; 651 652 struct ovs_key_nsh key; 653 struct ovs_key_nsh mask; 654 655 err = nsh_key_from_nlattr(a, &key, &mask); 656 if (err) 657 return err; 658 659 /* Make sure the NSH base header is there */ 660 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN)) 661 return -ENOMEM; 662 663 nh = nsh_hdr(skb); 664 length = nsh_hdr_len(nh); 665 666 /* Make sure the whole NSH header is there */ 667 err = skb_ensure_writable(skb, skb_network_offset(skb) + 668 length); 669 if (unlikely(err)) 670 return err; 671 672 nh = nsh_hdr(skb); 673 skb_postpull_rcsum(skb, nh, length); 674 flags = nsh_get_flags(nh); 675 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags); 676 flow_key->nsh.base.flags = flags; 677 ttl = nsh_get_ttl(nh); 678 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl); 679 flow_key->nsh.base.ttl = ttl; 680 nsh_set_flags_and_ttl(nh, flags, ttl); 681 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr, 682 mask.base.path_hdr); 683 flow_key->nsh.base.path_hdr = nh->path_hdr; 684 switch (nh->mdtype) { 685 case NSH_M_TYPE1: 686 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) { 687 nh->md1.context[i] = 688 OVS_MASKED(nh->md1.context[i], key.context[i], 689 mask.context[i]); 690 } 691 memcpy(flow_key->nsh.context, nh->md1.context, 692 sizeof(nh->md1.context)); 693 break; 694 case NSH_M_TYPE2: 695 memset(flow_key->nsh.context, 0, 696 sizeof(flow_key->nsh.context)); 697 break; 698 default: 699 return -EINVAL; 700 } 701 skb_postpush_rcsum(skb, nh, length); 702 return 0; 703 } 704 705 /* Must follow skb_ensure_writable() since that can move the skb data. */ 706 static void set_tp_port(struct sk_buff *skb, __be16 *port, 707 __be16 new_port, __sum16 *check) 708 { 709 inet_proto_csum_replace2(check, skb, *port, new_port, false); 710 *port = new_port; 711 } 712 713 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, 714 const struct ovs_key_udp *key, 715 const struct ovs_key_udp *mask) 716 { 717 struct udphdr *uh; 718 __be16 src, dst; 719 int err; 720 721 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 722 sizeof(struct udphdr)); 723 if (unlikely(err)) 724 return err; 725 726 uh = udp_hdr(skb); 727 /* Either of the masks is non-zero, so do not bother checking them. */ 728 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); 729 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); 730 731 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { 732 if (likely(src != uh->source)) { 733 set_tp_port(skb, &uh->source, src, &uh->check); 734 flow_key->tp.src = src; 735 } 736 if (likely(dst != uh->dest)) { 737 set_tp_port(skb, &uh->dest, dst, &uh->check); 738 flow_key->tp.dst = dst; 739 } 740 741 if (unlikely(!uh->check)) 742 uh->check = CSUM_MANGLED_0; 743 } else { 744 uh->source = src; 745 uh->dest = dst; 746 flow_key->tp.src = src; 747 flow_key->tp.dst = dst; 748 } 749 750 skb_clear_hash(skb); 751 752 return 0; 753 } 754 755 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, 756 const struct ovs_key_tcp *key, 757 const struct ovs_key_tcp *mask) 758 { 759 struct tcphdr *th; 760 __be16 src, dst; 761 int err; 762 763 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 764 sizeof(struct tcphdr)); 765 if (unlikely(err)) 766 return err; 767 768 th = tcp_hdr(skb); 769 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); 770 if (likely(src != th->source)) { 771 set_tp_port(skb, &th->source, src, &th->check); 772 flow_key->tp.src = src; 773 } 774 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); 775 if (likely(dst != th->dest)) { 776 set_tp_port(skb, &th->dest, dst, &th->check); 777 flow_key->tp.dst = dst; 778 } 779 skb_clear_hash(skb); 780 781 return 0; 782 } 783 784 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, 785 const struct ovs_key_sctp *key, 786 const struct ovs_key_sctp *mask) 787 { 788 unsigned int sctphoff = skb_transport_offset(skb); 789 struct sctphdr *sh; 790 __le32 old_correct_csum, new_csum, old_csum; 791 int err; 792 793 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); 794 if (unlikely(err)) 795 return err; 796 797 sh = sctp_hdr(skb); 798 old_csum = sh->checksum; 799 old_correct_csum = sctp_compute_cksum(skb, sctphoff); 800 801 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); 802 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); 803 804 new_csum = sctp_compute_cksum(skb, sctphoff); 805 806 /* Carry any checksum errors through. */ 807 sh->checksum = old_csum ^ old_correct_csum ^ new_csum; 808 809 skb_clear_hash(skb); 810 flow_key->tp.src = sh->source; 811 flow_key->tp.dst = sh->dest; 812 813 return 0; 814 } 815 816 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb) 817 { 818 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage); 819 struct vport *vport = data->vport; 820 821 if (skb_cow_head(skb, data->l2_len) < 0) { 822 kfree_skb(skb); 823 return -ENOMEM; 824 } 825 826 __skb_dst_copy(skb, data->dst); 827 *OVS_CB(skb) = data->cb; 828 skb->inner_protocol = data->inner_protocol; 829 if (data->vlan_tci & VLAN_CFI_MASK) 830 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK); 831 else 832 __vlan_hwaccel_clear_tag(skb); 833 834 /* Reconstruct the MAC header. */ 835 skb_push(skb, data->l2_len); 836 memcpy(skb->data, &data->l2_data, data->l2_len); 837 skb_postpush_rcsum(skb, skb->data, data->l2_len); 838 skb_reset_mac_header(skb); 839 840 if (eth_p_mpls(skb->protocol)) { 841 skb->inner_network_header = skb->network_header; 842 skb_set_network_header(skb, data->network_offset); 843 skb_reset_mac_len(skb); 844 } 845 846 ovs_vport_send(vport, skb, data->mac_proto); 847 return 0; 848 } 849 850 static unsigned int 851 ovs_dst_get_mtu(const struct dst_entry *dst) 852 { 853 return dst->dev->mtu; 854 } 855 856 static struct dst_ops ovs_dst_ops = { 857 .family = AF_UNSPEC, 858 .mtu = ovs_dst_get_mtu, 859 }; 860 861 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is 862 * ovs_vport_output(), which is called once per fragmented packet. 863 */ 864 static void prepare_frag(struct vport *vport, struct sk_buff *skb, 865 u16 orig_network_offset, u8 mac_proto) 866 { 867 unsigned int hlen = skb_network_offset(skb); 868 struct ovs_frag_data *data; 869 870 data = this_cpu_ptr(&ovs_frag_data_storage); 871 data->dst = skb->_skb_refdst; 872 data->vport = vport; 873 data->cb = *OVS_CB(skb); 874 data->inner_protocol = skb->inner_protocol; 875 data->network_offset = orig_network_offset; 876 if (skb_vlan_tag_present(skb)) 877 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK; 878 else 879 data->vlan_tci = 0; 880 data->vlan_proto = skb->vlan_proto; 881 data->mac_proto = mac_proto; 882 data->l2_len = hlen; 883 memcpy(&data->l2_data, skb->data, hlen); 884 885 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 886 skb_pull(skb, hlen); 887 } 888 889 static void ovs_fragment(struct net *net, struct vport *vport, 890 struct sk_buff *skb, u16 mru, 891 struct sw_flow_key *key) 892 { 893 u16 orig_network_offset = 0; 894 895 if (eth_p_mpls(skb->protocol)) { 896 orig_network_offset = skb_network_offset(skb); 897 skb->network_header = skb->inner_network_header; 898 } 899 900 if (skb_network_offset(skb) > MAX_L2_LEN) { 901 OVS_NLERR(1, "L2 header too long to fragment"); 902 goto err; 903 } 904 905 if (key->eth.type == htons(ETH_P_IP)) { 906 struct dst_entry ovs_dst; 907 unsigned long orig_dst; 908 909 prepare_frag(vport, skb, orig_network_offset, 910 ovs_key_mac_proto(key)); 911 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1, 912 DST_OBSOLETE_NONE, DST_NOCOUNT); 913 ovs_dst.dev = vport->dev; 914 915 orig_dst = skb->_skb_refdst; 916 skb_dst_set_noref(skb, &ovs_dst); 917 IPCB(skb)->frag_max_size = mru; 918 919 ip_do_fragment(net, skb->sk, skb, ovs_vport_output); 920 refdst_drop(orig_dst); 921 } else if (key->eth.type == htons(ETH_P_IPV6)) { 922 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops(); 923 unsigned long orig_dst; 924 struct rt6_info ovs_rt; 925 926 if (!v6ops) 927 goto err; 928 929 prepare_frag(vport, skb, orig_network_offset, 930 ovs_key_mac_proto(key)); 931 memset(&ovs_rt, 0, sizeof(ovs_rt)); 932 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, 933 DST_OBSOLETE_NONE, DST_NOCOUNT); 934 ovs_rt.dst.dev = vport->dev; 935 936 orig_dst = skb->_skb_refdst; 937 skb_dst_set_noref(skb, &ovs_rt.dst); 938 IP6CB(skb)->frag_max_size = mru; 939 940 v6ops->fragment(net, skb->sk, skb, ovs_vport_output); 941 refdst_drop(orig_dst); 942 } else { 943 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", 944 ovs_vport_name(vport), ntohs(key->eth.type), mru, 945 vport->dev->mtu); 946 goto err; 947 } 948 949 return; 950 err: 951 kfree_skb(skb); 952 } 953 954 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, 955 struct sw_flow_key *key) 956 { 957 struct vport *vport = ovs_vport_rcu(dp, out_port); 958 959 if (likely(vport)) { 960 u16 mru = OVS_CB(skb)->mru; 961 u32 cutlen = OVS_CB(skb)->cutlen; 962 963 if (unlikely(cutlen > 0)) { 964 if (skb->len - cutlen > ovs_mac_header_len(key)) 965 pskb_trim(skb, skb->len - cutlen); 966 else 967 pskb_trim(skb, ovs_mac_header_len(key)); 968 } 969 970 if (likely(!mru || 971 (skb->len <= mru + vport->dev->hard_header_len))) { 972 ovs_vport_send(vport, skb, ovs_key_mac_proto(key)); 973 } else if (mru <= vport->dev->mtu) { 974 struct net *net = read_pnet(&dp->net); 975 976 ovs_fragment(net, vport, skb, mru, key); 977 } else { 978 kfree_skb(skb); 979 } 980 } else { 981 kfree_skb(skb); 982 } 983 } 984 985 static int output_userspace(struct datapath *dp, struct sk_buff *skb, 986 struct sw_flow_key *key, const struct nlattr *attr, 987 const struct nlattr *actions, int actions_len, 988 uint32_t cutlen) 989 { 990 struct dp_upcall_info upcall; 991 const struct nlattr *a; 992 int rem; 993 994 memset(&upcall, 0, sizeof(upcall)); 995 upcall.cmd = OVS_PACKET_CMD_ACTION; 996 upcall.mru = OVS_CB(skb)->mru; 997 998 for (a = nla_data(attr), rem = nla_len(attr); rem > 0; 999 a = nla_next(a, &rem)) { 1000 switch (nla_type(a)) { 1001 case OVS_USERSPACE_ATTR_USERDATA: 1002 upcall.userdata = a; 1003 break; 1004 1005 case OVS_USERSPACE_ATTR_PID: 1006 upcall.portid = nla_get_u32(a); 1007 break; 1008 1009 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { 1010 /* Get out tunnel info. */ 1011 struct vport *vport; 1012 1013 vport = ovs_vport_rcu(dp, nla_get_u32(a)); 1014 if (vport) { 1015 int err; 1016 1017 err = dev_fill_metadata_dst(vport->dev, skb); 1018 if (!err) 1019 upcall.egress_tun_info = skb_tunnel_info(skb); 1020 } 1021 1022 break; 1023 } 1024 1025 case OVS_USERSPACE_ATTR_ACTIONS: { 1026 /* Include actions. */ 1027 upcall.actions = actions; 1028 upcall.actions_len = actions_len; 1029 break; 1030 } 1031 1032 } /* End of switch. */ 1033 } 1034 1035 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen); 1036 } 1037 1038 /* When 'last' is true, sample() should always consume the 'skb'. 1039 * Otherwise, sample() should keep 'skb' intact regardless what 1040 * actions are executed within sample(). 1041 */ 1042 static int sample(struct datapath *dp, struct sk_buff *skb, 1043 struct sw_flow_key *key, const struct nlattr *attr, 1044 bool last) 1045 { 1046 struct nlattr *actions; 1047 struct nlattr *sample_arg; 1048 int rem = nla_len(attr); 1049 const struct sample_arg *arg; 1050 bool clone_flow_key; 1051 1052 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */ 1053 sample_arg = nla_data(attr); 1054 arg = nla_data(sample_arg); 1055 actions = nla_next(sample_arg, &rem); 1056 1057 if ((arg->probability != U32_MAX) && 1058 (!arg->probability || prandom_u32() > arg->probability)) { 1059 if (last) 1060 consume_skb(skb); 1061 return 0; 1062 } 1063 1064 clone_flow_key = !arg->exec; 1065 return clone_execute(dp, skb, key, 0, actions, rem, last, 1066 clone_flow_key); 1067 } 1068 1069 /* When 'last' is true, clone() should always consume the 'skb'. 1070 * Otherwise, clone() should keep 'skb' intact regardless what 1071 * actions are executed within clone(). 1072 */ 1073 static int clone(struct datapath *dp, struct sk_buff *skb, 1074 struct sw_flow_key *key, const struct nlattr *attr, 1075 bool last) 1076 { 1077 struct nlattr *actions; 1078 struct nlattr *clone_arg; 1079 int rem = nla_len(attr); 1080 bool dont_clone_flow_key; 1081 1082 /* The first action is always 'OVS_CLONE_ATTR_ARG'. */ 1083 clone_arg = nla_data(attr); 1084 dont_clone_flow_key = nla_get_u32(clone_arg); 1085 actions = nla_next(clone_arg, &rem); 1086 1087 return clone_execute(dp, skb, key, 0, actions, rem, last, 1088 !dont_clone_flow_key); 1089 } 1090 1091 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, 1092 const struct nlattr *attr) 1093 { 1094 struct ovs_action_hash *hash_act = nla_data(attr); 1095 u32 hash = 0; 1096 1097 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */ 1098 hash = skb_get_hash(skb); 1099 hash = jhash_1word(hash, hash_act->hash_basis); 1100 if (!hash) 1101 hash = 0x1; 1102 1103 key->ovs_flow_hash = hash; 1104 } 1105 1106 static int execute_set_action(struct sk_buff *skb, 1107 struct sw_flow_key *flow_key, 1108 const struct nlattr *a) 1109 { 1110 /* Only tunnel set execution is supported without a mask. */ 1111 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { 1112 struct ovs_tunnel_info *tun = nla_data(a); 1113 1114 skb_dst_drop(skb); 1115 dst_hold((struct dst_entry *)tun->tun_dst); 1116 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); 1117 return 0; 1118 } 1119 1120 return -EINVAL; 1121 } 1122 1123 /* Mask is at the midpoint of the data. */ 1124 #define get_mask(a, type) ((const type)nla_data(a) + 1) 1125 1126 static int execute_masked_set_action(struct sk_buff *skb, 1127 struct sw_flow_key *flow_key, 1128 const struct nlattr *a) 1129 { 1130 int err = 0; 1131 1132 switch (nla_type(a)) { 1133 case OVS_KEY_ATTR_PRIORITY: 1134 OVS_SET_MASKED(skb->priority, nla_get_u32(a), 1135 *get_mask(a, u32 *)); 1136 flow_key->phy.priority = skb->priority; 1137 break; 1138 1139 case OVS_KEY_ATTR_SKB_MARK: 1140 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); 1141 flow_key->phy.skb_mark = skb->mark; 1142 break; 1143 1144 case OVS_KEY_ATTR_TUNNEL_INFO: 1145 /* Masked data not supported for tunnel. */ 1146 err = -EINVAL; 1147 break; 1148 1149 case OVS_KEY_ATTR_ETHERNET: 1150 err = set_eth_addr(skb, flow_key, nla_data(a), 1151 get_mask(a, struct ovs_key_ethernet *)); 1152 break; 1153 1154 case OVS_KEY_ATTR_NSH: 1155 err = set_nsh(skb, flow_key, a); 1156 break; 1157 1158 case OVS_KEY_ATTR_IPV4: 1159 err = set_ipv4(skb, flow_key, nla_data(a), 1160 get_mask(a, struct ovs_key_ipv4 *)); 1161 break; 1162 1163 case OVS_KEY_ATTR_IPV6: 1164 err = set_ipv6(skb, flow_key, nla_data(a), 1165 get_mask(a, struct ovs_key_ipv6 *)); 1166 break; 1167 1168 case OVS_KEY_ATTR_TCP: 1169 err = set_tcp(skb, flow_key, nla_data(a), 1170 get_mask(a, struct ovs_key_tcp *)); 1171 break; 1172 1173 case OVS_KEY_ATTR_UDP: 1174 err = set_udp(skb, flow_key, nla_data(a), 1175 get_mask(a, struct ovs_key_udp *)); 1176 break; 1177 1178 case OVS_KEY_ATTR_SCTP: 1179 err = set_sctp(skb, flow_key, nla_data(a), 1180 get_mask(a, struct ovs_key_sctp *)); 1181 break; 1182 1183 case OVS_KEY_ATTR_MPLS: 1184 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, 1185 __be32 *)); 1186 break; 1187 1188 case OVS_KEY_ATTR_CT_STATE: 1189 case OVS_KEY_ATTR_CT_ZONE: 1190 case OVS_KEY_ATTR_CT_MARK: 1191 case OVS_KEY_ATTR_CT_LABELS: 1192 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4: 1193 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6: 1194 err = -EINVAL; 1195 break; 1196 } 1197 1198 return err; 1199 } 1200 1201 static int execute_recirc(struct datapath *dp, struct sk_buff *skb, 1202 struct sw_flow_key *key, 1203 const struct nlattr *a, bool last) 1204 { 1205 u32 recirc_id; 1206 1207 if (!is_flow_key_valid(key)) { 1208 int err; 1209 1210 err = ovs_flow_key_update(skb, key); 1211 if (err) 1212 return err; 1213 } 1214 BUG_ON(!is_flow_key_valid(key)); 1215 1216 recirc_id = nla_get_u32(a); 1217 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true); 1218 } 1219 1220 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb, 1221 struct sw_flow_key *key, 1222 const struct nlattr *attr, bool last) 1223 { 1224 const struct nlattr *actions, *cpl_arg; 1225 const struct check_pkt_len_arg *arg; 1226 int rem = nla_len(attr); 1227 bool clone_flow_key; 1228 1229 /* The first netlink attribute in 'attr' is always 1230 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'. 1231 */ 1232 cpl_arg = nla_data(attr); 1233 arg = nla_data(cpl_arg); 1234 1235 if (skb->len <= arg->pkt_len) { 1236 /* Second netlink attribute in 'attr' is always 1237 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'. 1238 */ 1239 actions = nla_next(cpl_arg, &rem); 1240 clone_flow_key = !arg->exec_for_lesser_equal; 1241 } else { 1242 /* Third netlink attribute in 'attr' is always 1243 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'. 1244 */ 1245 actions = nla_next(cpl_arg, &rem); 1246 actions = nla_next(actions, &rem); 1247 clone_flow_key = !arg->exec_for_greater; 1248 } 1249 1250 return clone_execute(dp, skb, key, 0, nla_data(actions), 1251 nla_len(actions), last, clone_flow_key); 1252 } 1253 1254 /* Execute a list of actions against 'skb'. */ 1255 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 1256 struct sw_flow_key *key, 1257 const struct nlattr *attr, int len) 1258 { 1259 const struct nlattr *a; 1260 int rem; 1261 1262 for (a = attr, rem = len; rem > 0; 1263 a = nla_next(a, &rem)) { 1264 int err = 0; 1265 1266 switch (nla_type(a)) { 1267 case OVS_ACTION_ATTR_OUTPUT: { 1268 int port = nla_get_u32(a); 1269 struct sk_buff *clone; 1270 1271 /* Every output action needs a separate clone 1272 * of 'skb', In case the output action is the 1273 * last action, cloning can be avoided. 1274 */ 1275 if (nla_is_last(a, rem)) { 1276 do_output(dp, skb, port, key); 1277 /* 'skb' has been used for output. 1278 */ 1279 return 0; 1280 } 1281 1282 clone = skb_clone(skb, GFP_ATOMIC); 1283 if (clone) 1284 do_output(dp, clone, port, key); 1285 OVS_CB(skb)->cutlen = 0; 1286 break; 1287 } 1288 1289 case OVS_ACTION_ATTR_TRUNC: { 1290 struct ovs_action_trunc *trunc = nla_data(a); 1291 1292 if (skb->len > trunc->max_len) 1293 OVS_CB(skb)->cutlen = skb->len - trunc->max_len; 1294 break; 1295 } 1296 1297 case OVS_ACTION_ATTR_USERSPACE: 1298 output_userspace(dp, skb, key, a, attr, 1299 len, OVS_CB(skb)->cutlen); 1300 OVS_CB(skb)->cutlen = 0; 1301 break; 1302 1303 case OVS_ACTION_ATTR_HASH: 1304 execute_hash(skb, key, a); 1305 break; 1306 1307 case OVS_ACTION_ATTR_PUSH_MPLS: 1308 err = push_mpls(skb, key, nla_data(a)); 1309 break; 1310 1311 case OVS_ACTION_ATTR_POP_MPLS: 1312 err = pop_mpls(skb, key, nla_get_be16(a)); 1313 break; 1314 1315 case OVS_ACTION_ATTR_PUSH_VLAN: 1316 err = push_vlan(skb, key, nla_data(a)); 1317 break; 1318 1319 case OVS_ACTION_ATTR_POP_VLAN: 1320 err = pop_vlan(skb, key); 1321 break; 1322 1323 case OVS_ACTION_ATTR_RECIRC: { 1324 bool last = nla_is_last(a, rem); 1325 1326 err = execute_recirc(dp, skb, key, a, last); 1327 if (last) { 1328 /* If this is the last action, the skb has 1329 * been consumed or freed. 1330 * Return immediately. 1331 */ 1332 return err; 1333 } 1334 break; 1335 } 1336 1337 case OVS_ACTION_ATTR_SET: 1338 err = execute_set_action(skb, key, nla_data(a)); 1339 break; 1340 1341 case OVS_ACTION_ATTR_SET_MASKED: 1342 case OVS_ACTION_ATTR_SET_TO_MASKED: 1343 err = execute_masked_set_action(skb, key, nla_data(a)); 1344 break; 1345 1346 case OVS_ACTION_ATTR_SAMPLE: { 1347 bool last = nla_is_last(a, rem); 1348 1349 err = sample(dp, skb, key, a, last); 1350 if (last) 1351 return err; 1352 1353 break; 1354 } 1355 1356 case OVS_ACTION_ATTR_CT: 1357 if (!is_flow_key_valid(key)) { 1358 err = ovs_flow_key_update(skb, key); 1359 if (err) 1360 return err; 1361 } 1362 1363 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, 1364 nla_data(a)); 1365 1366 /* Hide stolen IP fragments from user space. */ 1367 if (err) 1368 return err == -EINPROGRESS ? 0 : err; 1369 break; 1370 1371 case OVS_ACTION_ATTR_CT_CLEAR: 1372 err = ovs_ct_clear(skb, key); 1373 break; 1374 1375 case OVS_ACTION_ATTR_PUSH_ETH: 1376 err = push_eth(skb, key, nla_data(a)); 1377 break; 1378 1379 case OVS_ACTION_ATTR_POP_ETH: 1380 err = pop_eth(skb, key); 1381 break; 1382 1383 case OVS_ACTION_ATTR_PUSH_NSH: { 1384 u8 buffer[NSH_HDR_MAX_LEN]; 1385 struct nshhdr *nh = (struct nshhdr *)buffer; 1386 1387 err = nsh_hdr_from_nlattr(nla_data(a), nh, 1388 NSH_HDR_MAX_LEN); 1389 if (unlikely(err)) 1390 break; 1391 err = push_nsh(skb, key, nh); 1392 break; 1393 } 1394 1395 case OVS_ACTION_ATTR_POP_NSH: 1396 err = pop_nsh(skb, key); 1397 break; 1398 1399 case OVS_ACTION_ATTR_METER: 1400 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) { 1401 consume_skb(skb); 1402 return 0; 1403 } 1404 break; 1405 1406 case OVS_ACTION_ATTR_CLONE: { 1407 bool last = nla_is_last(a, rem); 1408 1409 err = clone(dp, skb, key, a, last); 1410 if (last) 1411 return err; 1412 1413 break; 1414 } 1415 1416 case OVS_ACTION_ATTR_CHECK_PKT_LEN: { 1417 bool last = nla_is_last(a, rem); 1418 1419 err = execute_check_pkt_len(dp, skb, key, a, last); 1420 if (last) 1421 return err; 1422 1423 break; 1424 } 1425 } 1426 1427 if (unlikely(err)) { 1428 kfree_skb(skb); 1429 return err; 1430 } 1431 } 1432 1433 consume_skb(skb); 1434 return 0; 1435 } 1436 1437 /* Execute the actions on the clone of the packet. The effect of the 1438 * execution does not affect the original 'skb' nor the original 'key'. 1439 * 1440 * The execution may be deferred in case the actions can not be executed 1441 * immediately. 1442 */ 1443 static int clone_execute(struct datapath *dp, struct sk_buff *skb, 1444 struct sw_flow_key *key, u32 recirc_id, 1445 const struct nlattr *actions, int len, 1446 bool last, bool clone_flow_key) 1447 { 1448 struct deferred_action *da; 1449 struct sw_flow_key *clone; 1450 1451 skb = last ? skb : skb_clone(skb, GFP_ATOMIC); 1452 if (!skb) { 1453 /* Out of memory, skip this action. 1454 */ 1455 return 0; 1456 } 1457 1458 /* When clone_flow_key is false, the 'key' will not be change 1459 * by the actions, then the 'key' can be used directly. 1460 * Otherwise, try to clone key from the next recursion level of 1461 * 'flow_keys'. If clone is successful, execute the actions 1462 * without deferring. 1463 */ 1464 clone = clone_flow_key ? clone_key(key) : key; 1465 if (clone) { 1466 int err = 0; 1467 1468 if (actions) { /* Sample action */ 1469 if (clone_flow_key) 1470 __this_cpu_inc(exec_actions_level); 1471 1472 err = do_execute_actions(dp, skb, clone, 1473 actions, len); 1474 1475 if (clone_flow_key) 1476 __this_cpu_dec(exec_actions_level); 1477 } else { /* Recirc action */ 1478 clone->recirc_id = recirc_id; 1479 ovs_dp_process_packet(skb, clone); 1480 } 1481 return err; 1482 } 1483 1484 /* Out of 'flow_keys' space. Defer actions */ 1485 da = add_deferred_actions(skb, key, actions, len); 1486 if (da) { 1487 if (!actions) { /* Recirc action */ 1488 key = &da->pkt_key; 1489 key->recirc_id = recirc_id; 1490 } 1491 } else { 1492 /* Out of per CPU action FIFO space. Drop the 'skb' and 1493 * log an error. 1494 */ 1495 kfree_skb(skb); 1496 1497 if (net_ratelimit()) { 1498 if (actions) { /* Sample action */ 1499 pr_warn("%s: deferred action limit reached, drop sample action\n", 1500 ovs_dp_name(dp)); 1501 } else { /* Recirc action */ 1502 pr_warn("%s: deferred action limit reached, drop recirc action\n", 1503 ovs_dp_name(dp)); 1504 } 1505 } 1506 } 1507 return 0; 1508 } 1509 1510 static void process_deferred_actions(struct datapath *dp) 1511 { 1512 struct action_fifo *fifo = this_cpu_ptr(action_fifos); 1513 1514 /* Do not touch the FIFO in case there is no deferred actions. */ 1515 if (action_fifo_is_empty(fifo)) 1516 return; 1517 1518 /* Finishing executing all deferred actions. */ 1519 do { 1520 struct deferred_action *da = action_fifo_get(fifo); 1521 struct sk_buff *skb = da->skb; 1522 struct sw_flow_key *key = &da->pkt_key; 1523 const struct nlattr *actions = da->actions; 1524 int actions_len = da->actions_len; 1525 1526 if (actions) 1527 do_execute_actions(dp, skb, key, actions, actions_len); 1528 else 1529 ovs_dp_process_packet(skb, key); 1530 } while (!action_fifo_is_empty(fifo)); 1531 1532 /* Reset FIFO for the next packet. */ 1533 action_fifo_init(fifo); 1534 } 1535 1536 /* Execute a list of actions against 'skb'. */ 1537 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, 1538 const struct sw_flow_actions *acts, 1539 struct sw_flow_key *key) 1540 { 1541 int err, level; 1542 1543 level = __this_cpu_inc_return(exec_actions_level); 1544 if (unlikely(level > OVS_RECURSION_LIMIT)) { 1545 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n", 1546 ovs_dp_name(dp)); 1547 kfree_skb(skb); 1548 err = -ENETDOWN; 1549 goto out; 1550 } 1551 1552 OVS_CB(skb)->acts_origlen = acts->orig_len; 1553 err = do_execute_actions(dp, skb, key, 1554 acts->actions, acts->actions_len); 1555 1556 if (level == 1) 1557 process_deferred_actions(dp); 1558 1559 out: 1560 __this_cpu_dec(exec_actions_level); 1561 return err; 1562 } 1563 1564 int action_fifos_init(void) 1565 { 1566 action_fifos = alloc_percpu(struct action_fifo); 1567 if (!action_fifos) 1568 return -ENOMEM; 1569 1570 flow_keys = alloc_percpu(struct action_flow_keys); 1571 if (!flow_keys) { 1572 free_percpu(action_fifos); 1573 return -ENOMEM; 1574 } 1575 1576 return 0; 1577 } 1578 1579 void action_fifos_exit(void) 1580 { 1581 free_percpu(action_fifos); 1582 free_percpu(flow_keys); 1583 } 1584