xref: /openbmc/linux/net/openvswitch/actions.c (revision 3e26a691)
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/netfilter_ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/in6.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_vlan.h>
32 
33 #include <net/dst.h>
34 #include <net/ip.h>
35 #include <net/ipv6.h>
36 #include <net/ip6_fib.h>
37 #include <net/checksum.h>
38 #include <net/dsfield.h>
39 #include <net/mpls.h>
40 #include <net/sctp/checksum.h>
41 
42 #include "datapath.h"
43 #include "flow.h"
44 #include "conntrack.h"
45 #include "vport.h"
46 
47 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
48 			      struct sw_flow_key *key,
49 			      const struct nlattr *attr, int len);
50 
51 struct deferred_action {
52 	struct sk_buff *skb;
53 	const struct nlattr *actions;
54 
55 	/* Store pkt_key clone when creating deferred action. */
56 	struct sw_flow_key pkt_key;
57 };
58 
59 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
60 struct ovs_frag_data {
61 	unsigned long dst;
62 	struct vport *vport;
63 	struct ovs_skb_cb cb;
64 	__be16 inner_protocol;
65 	__u16 vlan_tci;
66 	__be16 vlan_proto;
67 	unsigned int l2_len;
68 	u8 l2_data[MAX_L2_LEN];
69 };
70 
71 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
72 
73 #define DEFERRED_ACTION_FIFO_SIZE 10
74 struct action_fifo {
75 	int head;
76 	int tail;
77 	/* Deferred action fifo queue storage. */
78 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
79 };
80 
81 static struct action_fifo __percpu *action_fifos;
82 static DEFINE_PER_CPU(int, exec_actions_level);
83 
84 static void action_fifo_init(struct action_fifo *fifo)
85 {
86 	fifo->head = 0;
87 	fifo->tail = 0;
88 }
89 
90 static bool action_fifo_is_empty(const struct action_fifo *fifo)
91 {
92 	return (fifo->head == fifo->tail);
93 }
94 
95 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
96 {
97 	if (action_fifo_is_empty(fifo))
98 		return NULL;
99 
100 	return &fifo->fifo[fifo->tail++];
101 }
102 
103 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
104 {
105 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
106 		return NULL;
107 
108 	return &fifo->fifo[fifo->head++];
109 }
110 
111 /* Return true if fifo is not full */
112 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
113 						    const struct sw_flow_key *key,
114 						    const struct nlattr *attr)
115 {
116 	struct action_fifo *fifo;
117 	struct deferred_action *da;
118 
119 	fifo = this_cpu_ptr(action_fifos);
120 	da = action_fifo_put(fifo);
121 	if (da) {
122 		da->skb = skb;
123 		da->actions = attr;
124 		da->pkt_key = *key;
125 	}
126 
127 	return da;
128 }
129 
130 static void invalidate_flow_key(struct sw_flow_key *key)
131 {
132 	key->eth.type = htons(0);
133 }
134 
135 static bool is_flow_key_valid(const struct sw_flow_key *key)
136 {
137 	return !!key->eth.type;
138 }
139 
140 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
141 		     const struct ovs_action_push_mpls *mpls)
142 {
143 	__be32 *new_mpls_lse;
144 	struct ethhdr *hdr;
145 
146 	/* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
147 	if (skb->encapsulation)
148 		return -ENOTSUPP;
149 
150 	if (skb_cow_head(skb, MPLS_HLEN) < 0)
151 		return -ENOMEM;
152 
153 	skb_push(skb, MPLS_HLEN);
154 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
155 		skb->mac_len);
156 	skb_reset_mac_header(skb);
157 
158 	new_mpls_lse = (__be32 *)skb_mpls_header(skb);
159 	*new_mpls_lse = mpls->mpls_lse;
160 
161 	skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
162 
163 	hdr = eth_hdr(skb);
164 	hdr->h_proto = mpls->mpls_ethertype;
165 
166 	if (!skb->inner_protocol)
167 		skb_set_inner_protocol(skb, skb->protocol);
168 	skb->protocol = mpls->mpls_ethertype;
169 
170 	invalidate_flow_key(key);
171 	return 0;
172 }
173 
174 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
175 		    const __be16 ethertype)
176 {
177 	struct ethhdr *hdr;
178 	int err;
179 
180 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
181 	if (unlikely(err))
182 		return err;
183 
184 	skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
185 
186 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
187 		skb->mac_len);
188 
189 	__skb_pull(skb, MPLS_HLEN);
190 	skb_reset_mac_header(skb);
191 
192 	/* skb_mpls_header() is used to locate the ethertype
193 	 * field correctly in the presence of VLAN tags.
194 	 */
195 	hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
196 	hdr->h_proto = ethertype;
197 	if (eth_p_mpls(skb->protocol))
198 		skb->protocol = ethertype;
199 
200 	invalidate_flow_key(key);
201 	return 0;
202 }
203 
204 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
205 		    const __be32 *mpls_lse, const __be32 *mask)
206 {
207 	__be32 *stack;
208 	__be32 lse;
209 	int err;
210 
211 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
212 	if (unlikely(err))
213 		return err;
214 
215 	stack = (__be32 *)skb_mpls_header(skb);
216 	lse = OVS_MASKED(*stack, *mpls_lse, *mask);
217 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
218 		__be32 diff[] = { ~(*stack), lse };
219 
220 		skb->csum = ~csum_partial((char *)diff, sizeof(diff),
221 					  ~skb->csum);
222 	}
223 
224 	*stack = lse;
225 	flow_key->mpls.top_lse = lse;
226 	return 0;
227 }
228 
229 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
230 {
231 	int err;
232 
233 	err = skb_vlan_pop(skb);
234 	if (skb_vlan_tag_present(skb))
235 		invalidate_flow_key(key);
236 	else
237 		key->eth.tci = 0;
238 	return err;
239 }
240 
241 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
242 		     const struct ovs_action_push_vlan *vlan)
243 {
244 	if (skb_vlan_tag_present(skb))
245 		invalidate_flow_key(key);
246 	else
247 		key->eth.tci = vlan->vlan_tci;
248 	return skb_vlan_push(skb, vlan->vlan_tpid,
249 			     ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
250 }
251 
252 /* 'src' is already properly masked. */
253 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
254 {
255 	u16 *dst = (u16 *)dst_;
256 	const u16 *src = (const u16 *)src_;
257 	const u16 *mask = (const u16 *)mask_;
258 
259 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
260 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
261 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
262 }
263 
264 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
265 			const struct ovs_key_ethernet *key,
266 			const struct ovs_key_ethernet *mask)
267 {
268 	int err;
269 
270 	err = skb_ensure_writable(skb, ETH_HLEN);
271 	if (unlikely(err))
272 		return err;
273 
274 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
275 
276 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
277 			       mask->eth_src);
278 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
279 			       mask->eth_dst);
280 
281 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
282 
283 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
284 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
285 	return 0;
286 }
287 
288 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
289 				  __be32 addr, __be32 new_addr)
290 {
291 	int transport_len = skb->len - skb_transport_offset(skb);
292 
293 	if (nh->frag_off & htons(IP_OFFSET))
294 		return;
295 
296 	if (nh->protocol == IPPROTO_TCP) {
297 		if (likely(transport_len >= sizeof(struct tcphdr)))
298 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
299 						 addr, new_addr, true);
300 	} else if (nh->protocol == IPPROTO_UDP) {
301 		if (likely(transport_len >= sizeof(struct udphdr))) {
302 			struct udphdr *uh = udp_hdr(skb);
303 
304 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
305 				inet_proto_csum_replace4(&uh->check, skb,
306 							 addr, new_addr, true);
307 				if (!uh->check)
308 					uh->check = CSUM_MANGLED_0;
309 			}
310 		}
311 	}
312 }
313 
314 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
315 			__be32 *addr, __be32 new_addr)
316 {
317 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
318 	csum_replace4(&nh->check, *addr, new_addr);
319 	skb_clear_hash(skb);
320 	*addr = new_addr;
321 }
322 
323 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
324 				 __be32 addr[4], const __be32 new_addr[4])
325 {
326 	int transport_len = skb->len - skb_transport_offset(skb);
327 
328 	if (l4_proto == NEXTHDR_TCP) {
329 		if (likely(transport_len >= sizeof(struct tcphdr)))
330 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
331 						  addr, new_addr, true);
332 	} else if (l4_proto == NEXTHDR_UDP) {
333 		if (likely(transport_len >= sizeof(struct udphdr))) {
334 			struct udphdr *uh = udp_hdr(skb);
335 
336 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
337 				inet_proto_csum_replace16(&uh->check, skb,
338 							  addr, new_addr, true);
339 				if (!uh->check)
340 					uh->check = CSUM_MANGLED_0;
341 			}
342 		}
343 	} else if (l4_proto == NEXTHDR_ICMP) {
344 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
345 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
346 						  skb, addr, new_addr, true);
347 	}
348 }
349 
350 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
351 			   const __be32 mask[4], __be32 masked[4])
352 {
353 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
354 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
355 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
356 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
357 }
358 
359 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
360 			  __be32 addr[4], const __be32 new_addr[4],
361 			  bool recalculate_csum)
362 {
363 	if (recalculate_csum)
364 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
365 
366 	skb_clear_hash(skb);
367 	memcpy(addr, new_addr, sizeof(__be32[4]));
368 }
369 
370 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
371 {
372 	/* Bits 21-24 are always unmasked, so this retains their values. */
373 	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
374 	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
375 	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
376 }
377 
378 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
379 		       u8 mask)
380 {
381 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
382 
383 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
384 	nh->ttl = new_ttl;
385 }
386 
387 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
388 		    const struct ovs_key_ipv4 *key,
389 		    const struct ovs_key_ipv4 *mask)
390 {
391 	struct iphdr *nh;
392 	__be32 new_addr;
393 	int err;
394 
395 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
396 				  sizeof(struct iphdr));
397 	if (unlikely(err))
398 		return err;
399 
400 	nh = ip_hdr(skb);
401 
402 	/* Setting an IP addresses is typically only a side effect of
403 	 * matching on them in the current userspace implementation, so it
404 	 * makes sense to check if the value actually changed.
405 	 */
406 	if (mask->ipv4_src) {
407 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
408 
409 		if (unlikely(new_addr != nh->saddr)) {
410 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
411 			flow_key->ipv4.addr.src = new_addr;
412 		}
413 	}
414 	if (mask->ipv4_dst) {
415 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
416 
417 		if (unlikely(new_addr != nh->daddr)) {
418 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
419 			flow_key->ipv4.addr.dst = new_addr;
420 		}
421 	}
422 	if (mask->ipv4_tos) {
423 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
424 		flow_key->ip.tos = nh->tos;
425 	}
426 	if (mask->ipv4_ttl) {
427 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
428 		flow_key->ip.ttl = nh->ttl;
429 	}
430 
431 	return 0;
432 }
433 
434 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
435 {
436 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
437 }
438 
439 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
440 		    const struct ovs_key_ipv6 *key,
441 		    const struct ovs_key_ipv6 *mask)
442 {
443 	struct ipv6hdr *nh;
444 	int err;
445 
446 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
447 				  sizeof(struct ipv6hdr));
448 	if (unlikely(err))
449 		return err;
450 
451 	nh = ipv6_hdr(skb);
452 
453 	/* Setting an IP addresses is typically only a side effect of
454 	 * matching on them in the current userspace implementation, so it
455 	 * makes sense to check if the value actually changed.
456 	 */
457 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
458 		__be32 *saddr = (__be32 *)&nh->saddr;
459 		__be32 masked[4];
460 
461 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
462 
463 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
464 			set_ipv6_addr(skb, key->ipv6_proto, saddr, masked,
465 				      true);
466 			memcpy(&flow_key->ipv6.addr.src, masked,
467 			       sizeof(flow_key->ipv6.addr.src));
468 		}
469 	}
470 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
471 		unsigned int offset = 0;
472 		int flags = IP6_FH_F_SKIP_RH;
473 		bool recalc_csum = true;
474 		__be32 *daddr = (__be32 *)&nh->daddr;
475 		__be32 masked[4];
476 
477 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
478 
479 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
480 			if (ipv6_ext_hdr(nh->nexthdr))
481 				recalc_csum = (ipv6_find_hdr(skb, &offset,
482 							     NEXTHDR_ROUTING,
483 							     NULL, &flags)
484 					       != NEXTHDR_ROUTING);
485 
486 			set_ipv6_addr(skb, key->ipv6_proto, daddr, masked,
487 				      recalc_csum);
488 			memcpy(&flow_key->ipv6.addr.dst, masked,
489 			       sizeof(flow_key->ipv6.addr.dst));
490 		}
491 	}
492 	if (mask->ipv6_tclass) {
493 		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
494 		flow_key->ip.tos = ipv6_get_dsfield(nh);
495 	}
496 	if (mask->ipv6_label) {
497 		set_ipv6_fl(nh, ntohl(key->ipv6_label),
498 			    ntohl(mask->ipv6_label));
499 		flow_key->ipv6.label =
500 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
501 	}
502 	if (mask->ipv6_hlimit) {
503 		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
504 			       mask->ipv6_hlimit);
505 		flow_key->ip.ttl = nh->hop_limit;
506 	}
507 	return 0;
508 }
509 
510 /* Must follow skb_ensure_writable() since that can move the skb data. */
511 static void set_tp_port(struct sk_buff *skb, __be16 *port,
512 			__be16 new_port, __sum16 *check)
513 {
514 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
515 	*port = new_port;
516 }
517 
518 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
519 		   const struct ovs_key_udp *key,
520 		   const struct ovs_key_udp *mask)
521 {
522 	struct udphdr *uh;
523 	__be16 src, dst;
524 	int err;
525 
526 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
527 				  sizeof(struct udphdr));
528 	if (unlikely(err))
529 		return err;
530 
531 	uh = udp_hdr(skb);
532 	/* Either of the masks is non-zero, so do not bother checking them. */
533 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
534 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
535 
536 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
537 		if (likely(src != uh->source)) {
538 			set_tp_port(skb, &uh->source, src, &uh->check);
539 			flow_key->tp.src = src;
540 		}
541 		if (likely(dst != uh->dest)) {
542 			set_tp_port(skb, &uh->dest, dst, &uh->check);
543 			flow_key->tp.dst = dst;
544 		}
545 
546 		if (unlikely(!uh->check))
547 			uh->check = CSUM_MANGLED_0;
548 	} else {
549 		uh->source = src;
550 		uh->dest = dst;
551 		flow_key->tp.src = src;
552 		flow_key->tp.dst = dst;
553 	}
554 
555 	skb_clear_hash(skb);
556 
557 	return 0;
558 }
559 
560 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
561 		   const struct ovs_key_tcp *key,
562 		   const struct ovs_key_tcp *mask)
563 {
564 	struct tcphdr *th;
565 	__be16 src, dst;
566 	int err;
567 
568 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
569 				  sizeof(struct tcphdr));
570 	if (unlikely(err))
571 		return err;
572 
573 	th = tcp_hdr(skb);
574 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
575 	if (likely(src != th->source)) {
576 		set_tp_port(skb, &th->source, src, &th->check);
577 		flow_key->tp.src = src;
578 	}
579 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
580 	if (likely(dst != th->dest)) {
581 		set_tp_port(skb, &th->dest, dst, &th->check);
582 		flow_key->tp.dst = dst;
583 	}
584 	skb_clear_hash(skb);
585 
586 	return 0;
587 }
588 
589 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
590 		    const struct ovs_key_sctp *key,
591 		    const struct ovs_key_sctp *mask)
592 {
593 	unsigned int sctphoff = skb_transport_offset(skb);
594 	struct sctphdr *sh;
595 	__le32 old_correct_csum, new_csum, old_csum;
596 	int err;
597 
598 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
599 	if (unlikely(err))
600 		return err;
601 
602 	sh = sctp_hdr(skb);
603 	old_csum = sh->checksum;
604 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
605 
606 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
607 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
608 
609 	new_csum = sctp_compute_cksum(skb, sctphoff);
610 
611 	/* Carry any checksum errors through. */
612 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
613 
614 	skb_clear_hash(skb);
615 	flow_key->tp.src = sh->source;
616 	flow_key->tp.dst = sh->dest;
617 
618 	return 0;
619 }
620 
621 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
622 {
623 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
624 	struct vport *vport = data->vport;
625 
626 	if (skb_cow_head(skb, data->l2_len) < 0) {
627 		kfree_skb(skb);
628 		return -ENOMEM;
629 	}
630 
631 	__skb_dst_copy(skb, data->dst);
632 	*OVS_CB(skb) = data->cb;
633 	skb->inner_protocol = data->inner_protocol;
634 	skb->vlan_tci = data->vlan_tci;
635 	skb->vlan_proto = data->vlan_proto;
636 
637 	/* Reconstruct the MAC header.  */
638 	skb_push(skb, data->l2_len);
639 	memcpy(skb->data, &data->l2_data, data->l2_len);
640 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
641 	skb_reset_mac_header(skb);
642 
643 	ovs_vport_send(vport, skb);
644 	return 0;
645 }
646 
647 static unsigned int
648 ovs_dst_get_mtu(const struct dst_entry *dst)
649 {
650 	return dst->dev->mtu;
651 }
652 
653 static struct dst_ops ovs_dst_ops = {
654 	.family = AF_UNSPEC,
655 	.mtu = ovs_dst_get_mtu,
656 };
657 
658 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
659  * ovs_vport_output(), which is called once per fragmented packet.
660  */
661 static void prepare_frag(struct vport *vport, struct sk_buff *skb)
662 {
663 	unsigned int hlen = skb_network_offset(skb);
664 	struct ovs_frag_data *data;
665 
666 	data = this_cpu_ptr(&ovs_frag_data_storage);
667 	data->dst = skb->_skb_refdst;
668 	data->vport = vport;
669 	data->cb = *OVS_CB(skb);
670 	data->inner_protocol = skb->inner_protocol;
671 	data->vlan_tci = skb->vlan_tci;
672 	data->vlan_proto = skb->vlan_proto;
673 	data->l2_len = hlen;
674 	memcpy(&data->l2_data, skb->data, hlen);
675 
676 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
677 	skb_pull(skb, hlen);
678 }
679 
680 static void ovs_fragment(struct net *net, struct vport *vport,
681 			 struct sk_buff *skb, u16 mru, __be16 ethertype)
682 {
683 	if (skb_network_offset(skb) > MAX_L2_LEN) {
684 		OVS_NLERR(1, "L2 header too long to fragment");
685 		goto err;
686 	}
687 
688 	if (ethertype == htons(ETH_P_IP)) {
689 		struct dst_entry ovs_dst;
690 		unsigned long orig_dst;
691 
692 		prepare_frag(vport, skb);
693 		dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
694 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
695 		ovs_dst.dev = vport->dev;
696 
697 		orig_dst = skb->_skb_refdst;
698 		skb_dst_set_noref(skb, &ovs_dst);
699 		IPCB(skb)->frag_max_size = mru;
700 
701 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
702 		refdst_drop(orig_dst);
703 	} else if (ethertype == htons(ETH_P_IPV6)) {
704 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
705 		unsigned long orig_dst;
706 		struct rt6_info ovs_rt;
707 
708 		if (!v6ops) {
709 			goto err;
710 		}
711 
712 		prepare_frag(vport, skb);
713 		memset(&ovs_rt, 0, sizeof(ovs_rt));
714 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
715 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
716 		ovs_rt.dst.dev = vport->dev;
717 
718 		orig_dst = skb->_skb_refdst;
719 		skb_dst_set_noref(skb, &ovs_rt.dst);
720 		IP6CB(skb)->frag_max_size = mru;
721 
722 		v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
723 		refdst_drop(orig_dst);
724 	} else {
725 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
726 			  ovs_vport_name(vport), ntohs(ethertype), mru,
727 			  vport->dev->mtu);
728 		goto err;
729 	}
730 
731 	return;
732 err:
733 	kfree_skb(skb);
734 }
735 
736 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
737 		      struct sw_flow_key *key)
738 {
739 	struct vport *vport = ovs_vport_rcu(dp, out_port);
740 
741 	if (likely(vport)) {
742 		u16 mru = OVS_CB(skb)->mru;
743 
744 		if (likely(!mru || (skb->len <= mru + ETH_HLEN))) {
745 			ovs_vport_send(vport, skb);
746 		} else if (mru <= vport->dev->mtu) {
747 			struct net *net = read_pnet(&dp->net);
748 			__be16 ethertype = key->eth.type;
749 
750 			if (!is_flow_key_valid(key)) {
751 				if (eth_p_mpls(skb->protocol))
752 					ethertype = skb->inner_protocol;
753 				else
754 					ethertype = vlan_get_protocol(skb);
755 			}
756 
757 			ovs_fragment(net, vport, skb, mru, ethertype);
758 		} else {
759 			kfree_skb(skb);
760 		}
761 	} else {
762 		kfree_skb(skb);
763 	}
764 }
765 
766 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
767 			    struct sw_flow_key *key, const struct nlattr *attr,
768 			    const struct nlattr *actions, int actions_len)
769 {
770 	struct dp_upcall_info upcall;
771 	const struct nlattr *a;
772 	int rem;
773 
774 	memset(&upcall, 0, sizeof(upcall));
775 	upcall.cmd = OVS_PACKET_CMD_ACTION;
776 	upcall.mru = OVS_CB(skb)->mru;
777 
778 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
779 		 a = nla_next(a, &rem)) {
780 		switch (nla_type(a)) {
781 		case OVS_USERSPACE_ATTR_USERDATA:
782 			upcall.userdata = a;
783 			break;
784 
785 		case OVS_USERSPACE_ATTR_PID:
786 			upcall.portid = nla_get_u32(a);
787 			break;
788 
789 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
790 			/* Get out tunnel info. */
791 			struct vport *vport;
792 
793 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
794 			if (vport) {
795 				int err;
796 
797 				err = dev_fill_metadata_dst(vport->dev, skb);
798 				if (!err)
799 					upcall.egress_tun_info = skb_tunnel_info(skb);
800 			}
801 
802 			break;
803 		}
804 
805 		case OVS_USERSPACE_ATTR_ACTIONS: {
806 			/* Include actions. */
807 			upcall.actions = actions;
808 			upcall.actions_len = actions_len;
809 			break;
810 		}
811 
812 		} /* End of switch. */
813 	}
814 
815 	return ovs_dp_upcall(dp, skb, key, &upcall);
816 }
817 
818 static int sample(struct datapath *dp, struct sk_buff *skb,
819 		  struct sw_flow_key *key, const struct nlattr *attr,
820 		  const struct nlattr *actions, int actions_len)
821 {
822 	const struct nlattr *acts_list = NULL;
823 	const struct nlattr *a;
824 	int rem;
825 
826 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
827 		 a = nla_next(a, &rem)) {
828 		u32 probability;
829 
830 		switch (nla_type(a)) {
831 		case OVS_SAMPLE_ATTR_PROBABILITY:
832 			probability = nla_get_u32(a);
833 			if (!probability || prandom_u32() > probability)
834 				return 0;
835 			break;
836 
837 		case OVS_SAMPLE_ATTR_ACTIONS:
838 			acts_list = a;
839 			break;
840 		}
841 	}
842 
843 	rem = nla_len(acts_list);
844 	a = nla_data(acts_list);
845 
846 	/* Actions list is empty, do nothing */
847 	if (unlikely(!rem))
848 		return 0;
849 
850 	/* The only known usage of sample action is having a single user-space
851 	 * action. Treat this usage as a special case.
852 	 * The output_userspace() should clone the skb to be sent to the
853 	 * user space. This skb will be consumed by its caller.
854 	 */
855 	if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
856 		   nla_is_last(a, rem)))
857 		return output_userspace(dp, skb, key, a, actions, actions_len);
858 
859 	skb = skb_clone(skb, GFP_ATOMIC);
860 	if (!skb)
861 		/* Skip the sample action when out of memory. */
862 		return 0;
863 
864 	if (!add_deferred_actions(skb, key, a)) {
865 		if (net_ratelimit())
866 			pr_warn("%s: deferred actions limit reached, dropping sample action\n",
867 				ovs_dp_name(dp));
868 
869 		kfree_skb(skb);
870 	}
871 	return 0;
872 }
873 
874 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
875 			 const struct nlattr *attr)
876 {
877 	struct ovs_action_hash *hash_act = nla_data(attr);
878 	u32 hash = 0;
879 
880 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
881 	hash = skb_get_hash(skb);
882 	hash = jhash_1word(hash, hash_act->hash_basis);
883 	if (!hash)
884 		hash = 0x1;
885 
886 	key->ovs_flow_hash = hash;
887 }
888 
889 static int execute_set_action(struct sk_buff *skb,
890 			      struct sw_flow_key *flow_key,
891 			      const struct nlattr *a)
892 {
893 	/* Only tunnel set execution is supported without a mask. */
894 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
895 		struct ovs_tunnel_info *tun = nla_data(a);
896 
897 		skb_dst_drop(skb);
898 		dst_hold((struct dst_entry *)tun->tun_dst);
899 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
900 		return 0;
901 	}
902 
903 	return -EINVAL;
904 }
905 
906 /* Mask is at the midpoint of the data. */
907 #define get_mask(a, type) ((const type)nla_data(a) + 1)
908 
909 static int execute_masked_set_action(struct sk_buff *skb,
910 				     struct sw_flow_key *flow_key,
911 				     const struct nlattr *a)
912 {
913 	int err = 0;
914 
915 	switch (nla_type(a)) {
916 	case OVS_KEY_ATTR_PRIORITY:
917 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
918 			       *get_mask(a, u32 *));
919 		flow_key->phy.priority = skb->priority;
920 		break;
921 
922 	case OVS_KEY_ATTR_SKB_MARK:
923 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
924 		flow_key->phy.skb_mark = skb->mark;
925 		break;
926 
927 	case OVS_KEY_ATTR_TUNNEL_INFO:
928 		/* Masked data not supported for tunnel. */
929 		err = -EINVAL;
930 		break;
931 
932 	case OVS_KEY_ATTR_ETHERNET:
933 		err = set_eth_addr(skb, flow_key, nla_data(a),
934 				   get_mask(a, struct ovs_key_ethernet *));
935 		break;
936 
937 	case OVS_KEY_ATTR_IPV4:
938 		err = set_ipv4(skb, flow_key, nla_data(a),
939 			       get_mask(a, struct ovs_key_ipv4 *));
940 		break;
941 
942 	case OVS_KEY_ATTR_IPV6:
943 		err = set_ipv6(skb, flow_key, nla_data(a),
944 			       get_mask(a, struct ovs_key_ipv6 *));
945 		break;
946 
947 	case OVS_KEY_ATTR_TCP:
948 		err = set_tcp(skb, flow_key, nla_data(a),
949 			      get_mask(a, struct ovs_key_tcp *));
950 		break;
951 
952 	case OVS_KEY_ATTR_UDP:
953 		err = set_udp(skb, flow_key, nla_data(a),
954 			      get_mask(a, struct ovs_key_udp *));
955 		break;
956 
957 	case OVS_KEY_ATTR_SCTP:
958 		err = set_sctp(skb, flow_key, nla_data(a),
959 			       get_mask(a, struct ovs_key_sctp *));
960 		break;
961 
962 	case OVS_KEY_ATTR_MPLS:
963 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
964 								    __be32 *));
965 		break;
966 
967 	case OVS_KEY_ATTR_CT_STATE:
968 	case OVS_KEY_ATTR_CT_ZONE:
969 	case OVS_KEY_ATTR_CT_MARK:
970 	case OVS_KEY_ATTR_CT_LABELS:
971 		err = -EINVAL;
972 		break;
973 	}
974 
975 	return err;
976 }
977 
978 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
979 			  struct sw_flow_key *key,
980 			  const struct nlattr *a, int rem)
981 {
982 	struct deferred_action *da;
983 
984 	if (!is_flow_key_valid(key)) {
985 		int err;
986 
987 		err = ovs_flow_key_update(skb, key);
988 		if (err)
989 			return err;
990 	}
991 	BUG_ON(!is_flow_key_valid(key));
992 
993 	if (!nla_is_last(a, rem)) {
994 		/* Recirc action is the not the last action
995 		 * of the action list, need to clone the skb.
996 		 */
997 		skb = skb_clone(skb, GFP_ATOMIC);
998 
999 		/* Skip the recirc action when out of memory, but
1000 		 * continue on with the rest of the action list.
1001 		 */
1002 		if (!skb)
1003 			return 0;
1004 	}
1005 
1006 	da = add_deferred_actions(skb, key, NULL);
1007 	if (da) {
1008 		da->pkt_key.recirc_id = nla_get_u32(a);
1009 	} else {
1010 		kfree_skb(skb);
1011 
1012 		if (net_ratelimit())
1013 			pr_warn("%s: deferred action limit reached, drop recirc action\n",
1014 				ovs_dp_name(dp));
1015 	}
1016 
1017 	return 0;
1018 }
1019 
1020 /* Execute a list of actions against 'skb'. */
1021 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1022 			      struct sw_flow_key *key,
1023 			      const struct nlattr *attr, int len)
1024 {
1025 	/* Every output action needs a separate clone of 'skb', but the common
1026 	 * case is just a single output action, so that doing a clone and
1027 	 * then freeing the original skbuff is wasteful.  So the following code
1028 	 * is slightly obscure just to avoid that.
1029 	 */
1030 	int prev_port = -1;
1031 	const struct nlattr *a;
1032 	int rem;
1033 
1034 	for (a = attr, rem = len; rem > 0;
1035 	     a = nla_next(a, &rem)) {
1036 		int err = 0;
1037 
1038 		if (unlikely(prev_port != -1)) {
1039 			struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
1040 
1041 			if (out_skb)
1042 				do_output(dp, out_skb, prev_port, key);
1043 
1044 			prev_port = -1;
1045 		}
1046 
1047 		switch (nla_type(a)) {
1048 		case OVS_ACTION_ATTR_OUTPUT:
1049 			prev_port = nla_get_u32(a);
1050 			break;
1051 
1052 		case OVS_ACTION_ATTR_USERSPACE:
1053 			output_userspace(dp, skb, key, a, attr, len);
1054 			break;
1055 
1056 		case OVS_ACTION_ATTR_HASH:
1057 			execute_hash(skb, key, a);
1058 			break;
1059 
1060 		case OVS_ACTION_ATTR_PUSH_MPLS:
1061 			err = push_mpls(skb, key, nla_data(a));
1062 			break;
1063 
1064 		case OVS_ACTION_ATTR_POP_MPLS:
1065 			err = pop_mpls(skb, key, nla_get_be16(a));
1066 			break;
1067 
1068 		case OVS_ACTION_ATTR_PUSH_VLAN:
1069 			err = push_vlan(skb, key, nla_data(a));
1070 			break;
1071 
1072 		case OVS_ACTION_ATTR_POP_VLAN:
1073 			err = pop_vlan(skb, key);
1074 			break;
1075 
1076 		case OVS_ACTION_ATTR_RECIRC:
1077 			err = execute_recirc(dp, skb, key, a, rem);
1078 			if (nla_is_last(a, rem)) {
1079 				/* If this is the last action, the skb has
1080 				 * been consumed or freed.
1081 				 * Return immediately.
1082 				 */
1083 				return err;
1084 			}
1085 			break;
1086 
1087 		case OVS_ACTION_ATTR_SET:
1088 			err = execute_set_action(skb, key, nla_data(a));
1089 			break;
1090 
1091 		case OVS_ACTION_ATTR_SET_MASKED:
1092 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1093 			err = execute_masked_set_action(skb, key, nla_data(a));
1094 			break;
1095 
1096 		case OVS_ACTION_ATTR_SAMPLE:
1097 			err = sample(dp, skb, key, a, attr, len);
1098 			break;
1099 
1100 		case OVS_ACTION_ATTR_CT:
1101 			if (!is_flow_key_valid(key)) {
1102 				err = ovs_flow_key_update(skb, key);
1103 				if (err)
1104 					return err;
1105 			}
1106 
1107 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1108 					     nla_data(a));
1109 
1110 			/* Hide stolen IP fragments from user space. */
1111 			if (err)
1112 				return err == -EINPROGRESS ? 0 : err;
1113 			break;
1114 		}
1115 
1116 		if (unlikely(err)) {
1117 			kfree_skb(skb);
1118 			return err;
1119 		}
1120 	}
1121 
1122 	if (prev_port != -1)
1123 		do_output(dp, skb, prev_port, key);
1124 	else
1125 		consume_skb(skb);
1126 
1127 	return 0;
1128 }
1129 
1130 static void process_deferred_actions(struct datapath *dp)
1131 {
1132 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1133 
1134 	/* Do not touch the FIFO in case there is no deferred actions. */
1135 	if (action_fifo_is_empty(fifo))
1136 		return;
1137 
1138 	/* Finishing executing all deferred actions. */
1139 	do {
1140 		struct deferred_action *da = action_fifo_get(fifo);
1141 		struct sk_buff *skb = da->skb;
1142 		struct sw_flow_key *key = &da->pkt_key;
1143 		const struct nlattr *actions = da->actions;
1144 
1145 		if (actions)
1146 			do_execute_actions(dp, skb, key, actions,
1147 					   nla_len(actions));
1148 		else
1149 			ovs_dp_process_packet(skb, key);
1150 	} while (!action_fifo_is_empty(fifo));
1151 
1152 	/* Reset FIFO for the next packet.  */
1153 	action_fifo_init(fifo);
1154 }
1155 
1156 /* Execute a list of actions against 'skb'. */
1157 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1158 			const struct sw_flow_actions *acts,
1159 			struct sw_flow_key *key)
1160 {
1161 	static const int ovs_recursion_limit = 5;
1162 	int err, level;
1163 
1164 	level = __this_cpu_inc_return(exec_actions_level);
1165 	if (unlikely(level > ovs_recursion_limit)) {
1166 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1167 				     ovs_dp_name(dp));
1168 		kfree_skb(skb);
1169 		err = -ENETDOWN;
1170 		goto out;
1171 	}
1172 
1173 	err = do_execute_actions(dp, skb, key,
1174 				 acts->actions, acts->actions_len);
1175 
1176 	if (level == 1)
1177 		process_deferred_actions(dp);
1178 
1179 out:
1180 	__this_cpu_dec(exec_actions_level);
1181 	return err;
1182 }
1183 
1184 int action_fifos_init(void)
1185 {
1186 	action_fifos = alloc_percpu(struct action_fifo);
1187 	if (!action_fifos)
1188 		return -ENOMEM;
1189 
1190 	return 0;
1191 }
1192 
1193 void action_fifos_exit(void)
1194 {
1195 	free_percpu(action_fifos);
1196 }
1197