xref: /openbmc/linux/net/openvswitch/actions.c (revision 2f123b9a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/netfilter_ipv6.h>
13 #include <linux/sctp.h>
14 #include <linux/tcp.h>
15 #include <linux/udp.h>
16 #include <linux/in6.h>
17 #include <linux/if_arp.h>
18 #include <linux/if_vlan.h>
19 
20 #include <net/dst.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
27 #include <net/sctp/checksum.h>
28 
29 #include "datapath.h"
30 #include "flow.h"
31 #include "conntrack.h"
32 #include "vport.h"
33 #include "flow_netlink.h"
34 
35 struct deferred_action {
36 	struct sk_buff *skb;
37 	const struct nlattr *actions;
38 	int actions_len;
39 
40 	/* Store pkt_key clone when creating deferred action. */
41 	struct sw_flow_key pkt_key;
42 };
43 
44 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
45 struct ovs_frag_data {
46 	unsigned long dst;
47 	struct vport *vport;
48 	struct ovs_skb_cb cb;
49 	__be16 inner_protocol;
50 	u16 network_offset;	/* valid only for MPLS */
51 	u16 vlan_tci;
52 	__be16 vlan_proto;
53 	unsigned int l2_len;
54 	u8 mac_proto;
55 	u8 l2_data[MAX_L2_LEN];
56 };
57 
58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
59 
60 #define DEFERRED_ACTION_FIFO_SIZE 10
61 #define OVS_RECURSION_LIMIT 5
62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
63 struct action_fifo {
64 	int head;
65 	int tail;
66 	/* Deferred action fifo queue storage. */
67 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
68 };
69 
70 struct action_flow_keys {
71 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
72 };
73 
74 static struct action_fifo __percpu *action_fifos;
75 static struct action_flow_keys __percpu *flow_keys;
76 static DEFINE_PER_CPU(int, exec_actions_level);
77 
78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
79  * space. Return NULL if out of key spaces.
80  */
81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
82 {
83 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
84 	int level = this_cpu_read(exec_actions_level);
85 	struct sw_flow_key *key = NULL;
86 
87 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
88 		key = &keys->key[level - 1];
89 		*key = *key_;
90 	}
91 
92 	return key;
93 }
94 
95 static void action_fifo_init(struct action_fifo *fifo)
96 {
97 	fifo->head = 0;
98 	fifo->tail = 0;
99 }
100 
101 static bool action_fifo_is_empty(const struct action_fifo *fifo)
102 {
103 	return (fifo->head == fifo->tail);
104 }
105 
106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
107 {
108 	if (action_fifo_is_empty(fifo))
109 		return NULL;
110 
111 	return &fifo->fifo[fifo->tail++];
112 }
113 
114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
115 {
116 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
117 		return NULL;
118 
119 	return &fifo->fifo[fifo->head++];
120 }
121 
122 /* Return true if fifo is not full */
123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
124 				    const struct sw_flow_key *key,
125 				    const struct nlattr *actions,
126 				    const int actions_len)
127 {
128 	struct action_fifo *fifo;
129 	struct deferred_action *da;
130 
131 	fifo = this_cpu_ptr(action_fifos);
132 	da = action_fifo_put(fifo);
133 	if (da) {
134 		da->skb = skb;
135 		da->actions = actions;
136 		da->actions_len = actions_len;
137 		da->pkt_key = *key;
138 	}
139 
140 	return da;
141 }
142 
143 static void invalidate_flow_key(struct sw_flow_key *key)
144 {
145 	key->mac_proto |= SW_FLOW_KEY_INVALID;
146 }
147 
148 static bool is_flow_key_valid(const struct sw_flow_key *key)
149 {
150 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
151 }
152 
153 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
154 			 struct sw_flow_key *key,
155 			 u32 recirc_id,
156 			 const struct nlattr *actions, int len,
157 			 bool last, bool clone_flow_key);
158 
159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
160 			      struct sw_flow_key *key,
161 			      const struct nlattr *attr, int len);
162 
163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
164 		     const struct ovs_action_push_mpls *mpls)
165 {
166 	int err;
167 
168 	err = skb_mpls_push(skb, mpls->mpls_lse, mpls->mpls_ethertype,
169 			    skb->mac_len,
170 			    ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
171 	if (err)
172 		return err;
173 
174 	invalidate_flow_key(key);
175 	return 0;
176 }
177 
178 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
179 		    const __be16 ethertype)
180 {
181 	int err;
182 
183 	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
184 			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
185 	if (err)
186 		return err;
187 
188 	invalidate_flow_key(key);
189 	return 0;
190 }
191 
192 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
193 		    const __be32 *mpls_lse, const __be32 *mask)
194 {
195 	struct mpls_shim_hdr *stack;
196 	__be32 lse;
197 	int err;
198 
199 	stack = mpls_hdr(skb);
200 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
201 	err = skb_mpls_update_lse(skb, lse);
202 	if (err)
203 		return err;
204 
205 	flow_key->mpls.lse[0] = lse;
206 	return 0;
207 }
208 
209 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
210 {
211 	int err;
212 
213 	err = skb_vlan_pop(skb);
214 	if (skb_vlan_tag_present(skb)) {
215 		invalidate_flow_key(key);
216 	} else {
217 		key->eth.vlan.tci = 0;
218 		key->eth.vlan.tpid = 0;
219 	}
220 	return err;
221 }
222 
223 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
224 		     const struct ovs_action_push_vlan *vlan)
225 {
226 	if (skb_vlan_tag_present(skb)) {
227 		invalidate_flow_key(key);
228 	} else {
229 		key->eth.vlan.tci = vlan->vlan_tci;
230 		key->eth.vlan.tpid = vlan->vlan_tpid;
231 	}
232 	return skb_vlan_push(skb, vlan->vlan_tpid,
233 			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
234 }
235 
236 /* 'src' is already properly masked. */
237 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
238 {
239 	u16 *dst = (u16 *)dst_;
240 	const u16 *src = (const u16 *)src_;
241 	const u16 *mask = (const u16 *)mask_;
242 
243 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
244 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
245 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
246 }
247 
248 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
249 			const struct ovs_key_ethernet *key,
250 			const struct ovs_key_ethernet *mask)
251 {
252 	int err;
253 
254 	err = skb_ensure_writable(skb, ETH_HLEN);
255 	if (unlikely(err))
256 		return err;
257 
258 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
259 
260 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
261 			       mask->eth_src);
262 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
263 			       mask->eth_dst);
264 
265 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
266 
267 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
268 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
269 	return 0;
270 }
271 
272 /* pop_eth does not support VLAN packets as this action is never called
273  * for them.
274  */
275 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
276 {
277 	skb_pull_rcsum(skb, ETH_HLEN);
278 	skb_reset_mac_header(skb);
279 	skb_reset_mac_len(skb);
280 
281 	/* safe right before invalidate_flow_key */
282 	key->mac_proto = MAC_PROTO_NONE;
283 	invalidate_flow_key(key);
284 	return 0;
285 }
286 
287 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
288 		    const struct ovs_action_push_eth *ethh)
289 {
290 	struct ethhdr *hdr;
291 
292 	/* Add the new Ethernet header */
293 	if (skb_cow_head(skb, ETH_HLEN) < 0)
294 		return -ENOMEM;
295 
296 	skb_push(skb, ETH_HLEN);
297 	skb_reset_mac_header(skb);
298 	skb_reset_mac_len(skb);
299 
300 	hdr = eth_hdr(skb);
301 	ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
302 	ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
303 	hdr->h_proto = skb->protocol;
304 
305 	skb_postpush_rcsum(skb, hdr, ETH_HLEN);
306 
307 	/* safe right before invalidate_flow_key */
308 	key->mac_proto = MAC_PROTO_ETHERNET;
309 	invalidate_flow_key(key);
310 	return 0;
311 }
312 
313 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
314 		    const struct nshhdr *nh)
315 {
316 	int err;
317 
318 	err = nsh_push(skb, nh);
319 	if (err)
320 		return err;
321 
322 	/* safe right before invalidate_flow_key */
323 	key->mac_proto = MAC_PROTO_NONE;
324 	invalidate_flow_key(key);
325 	return 0;
326 }
327 
328 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
329 {
330 	int err;
331 
332 	err = nsh_pop(skb);
333 	if (err)
334 		return err;
335 
336 	/* safe right before invalidate_flow_key */
337 	if (skb->protocol == htons(ETH_P_TEB))
338 		key->mac_proto = MAC_PROTO_ETHERNET;
339 	else
340 		key->mac_proto = MAC_PROTO_NONE;
341 	invalidate_flow_key(key);
342 	return 0;
343 }
344 
345 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
346 				  __be32 addr, __be32 new_addr)
347 {
348 	int transport_len = skb->len - skb_transport_offset(skb);
349 
350 	if (nh->frag_off & htons(IP_OFFSET))
351 		return;
352 
353 	if (nh->protocol == IPPROTO_TCP) {
354 		if (likely(transport_len >= sizeof(struct tcphdr)))
355 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
356 						 addr, new_addr, true);
357 	} else if (nh->protocol == IPPROTO_UDP) {
358 		if (likely(transport_len >= sizeof(struct udphdr))) {
359 			struct udphdr *uh = udp_hdr(skb);
360 
361 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
362 				inet_proto_csum_replace4(&uh->check, skb,
363 							 addr, new_addr, true);
364 				if (!uh->check)
365 					uh->check = CSUM_MANGLED_0;
366 			}
367 		}
368 	}
369 }
370 
371 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
372 			__be32 *addr, __be32 new_addr)
373 {
374 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
375 	csum_replace4(&nh->check, *addr, new_addr);
376 	skb_clear_hash(skb);
377 	*addr = new_addr;
378 }
379 
380 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
381 				 __be32 addr[4], const __be32 new_addr[4])
382 {
383 	int transport_len = skb->len - skb_transport_offset(skb);
384 
385 	if (l4_proto == NEXTHDR_TCP) {
386 		if (likely(transport_len >= sizeof(struct tcphdr)))
387 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
388 						  addr, new_addr, true);
389 	} else if (l4_proto == NEXTHDR_UDP) {
390 		if (likely(transport_len >= sizeof(struct udphdr))) {
391 			struct udphdr *uh = udp_hdr(skb);
392 
393 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
394 				inet_proto_csum_replace16(&uh->check, skb,
395 							  addr, new_addr, true);
396 				if (!uh->check)
397 					uh->check = CSUM_MANGLED_0;
398 			}
399 		}
400 	} else if (l4_proto == NEXTHDR_ICMP) {
401 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
402 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
403 						  skb, addr, new_addr, true);
404 	}
405 }
406 
407 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
408 			   const __be32 mask[4], __be32 masked[4])
409 {
410 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
411 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
412 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
413 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
414 }
415 
416 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
417 			  __be32 addr[4], const __be32 new_addr[4],
418 			  bool recalculate_csum)
419 {
420 	if (recalculate_csum)
421 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
422 
423 	skb_clear_hash(skb);
424 	memcpy(addr, new_addr, sizeof(__be32[4]));
425 }
426 
427 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
428 {
429 	/* Bits 21-24 are always unmasked, so this retains their values. */
430 	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
431 	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
432 	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
433 }
434 
435 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
436 		       u8 mask)
437 {
438 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
439 
440 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
441 	nh->ttl = new_ttl;
442 }
443 
444 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
445 		    const struct ovs_key_ipv4 *key,
446 		    const struct ovs_key_ipv4 *mask)
447 {
448 	struct iphdr *nh;
449 	__be32 new_addr;
450 	int err;
451 
452 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
453 				  sizeof(struct iphdr));
454 	if (unlikely(err))
455 		return err;
456 
457 	nh = ip_hdr(skb);
458 
459 	/* Setting an IP addresses is typically only a side effect of
460 	 * matching on them in the current userspace implementation, so it
461 	 * makes sense to check if the value actually changed.
462 	 */
463 	if (mask->ipv4_src) {
464 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
465 
466 		if (unlikely(new_addr != nh->saddr)) {
467 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
468 			flow_key->ipv4.addr.src = new_addr;
469 		}
470 	}
471 	if (mask->ipv4_dst) {
472 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
473 
474 		if (unlikely(new_addr != nh->daddr)) {
475 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
476 			flow_key->ipv4.addr.dst = new_addr;
477 		}
478 	}
479 	if (mask->ipv4_tos) {
480 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
481 		flow_key->ip.tos = nh->tos;
482 	}
483 	if (mask->ipv4_ttl) {
484 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
485 		flow_key->ip.ttl = nh->ttl;
486 	}
487 
488 	return 0;
489 }
490 
491 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
492 {
493 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
494 }
495 
496 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
497 		    const struct ovs_key_ipv6 *key,
498 		    const struct ovs_key_ipv6 *mask)
499 {
500 	struct ipv6hdr *nh;
501 	int err;
502 
503 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
504 				  sizeof(struct ipv6hdr));
505 	if (unlikely(err))
506 		return err;
507 
508 	nh = ipv6_hdr(skb);
509 
510 	/* Setting an IP addresses is typically only a side effect of
511 	 * matching on them in the current userspace implementation, so it
512 	 * makes sense to check if the value actually changed.
513 	 */
514 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
515 		__be32 *saddr = (__be32 *)&nh->saddr;
516 		__be32 masked[4];
517 
518 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
519 
520 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
521 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
522 				      true);
523 			memcpy(&flow_key->ipv6.addr.src, masked,
524 			       sizeof(flow_key->ipv6.addr.src));
525 		}
526 	}
527 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
528 		unsigned int offset = 0;
529 		int flags = IP6_FH_F_SKIP_RH;
530 		bool recalc_csum = true;
531 		__be32 *daddr = (__be32 *)&nh->daddr;
532 		__be32 masked[4];
533 
534 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
535 
536 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
537 			if (ipv6_ext_hdr(nh->nexthdr))
538 				recalc_csum = (ipv6_find_hdr(skb, &offset,
539 							     NEXTHDR_ROUTING,
540 							     NULL, &flags)
541 					       != NEXTHDR_ROUTING);
542 
543 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
544 				      recalc_csum);
545 			memcpy(&flow_key->ipv6.addr.dst, masked,
546 			       sizeof(flow_key->ipv6.addr.dst));
547 		}
548 	}
549 	if (mask->ipv6_tclass) {
550 		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
551 		flow_key->ip.tos = ipv6_get_dsfield(nh);
552 	}
553 	if (mask->ipv6_label) {
554 		set_ipv6_fl(nh, ntohl(key->ipv6_label),
555 			    ntohl(mask->ipv6_label));
556 		flow_key->ipv6.label =
557 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
558 	}
559 	if (mask->ipv6_hlimit) {
560 		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
561 			       mask->ipv6_hlimit);
562 		flow_key->ip.ttl = nh->hop_limit;
563 	}
564 	return 0;
565 }
566 
567 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
568 		   const struct nlattr *a)
569 {
570 	struct nshhdr *nh;
571 	size_t length;
572 	int err;
573 	u8 flags;
574 	u8 ttl;
575 	int i;
576 
577 	struct ovs_key_nsh key;
578 	struct ovs_key_nsh mask;
579 
580 	err = nsh_key_from_nlattr(a, &key, &mask);
581 	if (err)
582 		return err;
583 
584 	/* Make sure the NSH base header is there */
585 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
586 		return -ENOMEM;
587 
588 	nh = nsh_hdr(skb);
589 	length = nsh_hdr_len(nh);
590 
591 	/* Make sure the whole NSH header is there */
592 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
593 				       length);
594 	if (unlikely(err))
595 		return err;
596 
597 	nh = nsh_hdr(skb);
598 	skb_postpull_rcsum(skb, nh, length);
599 	flags = nsh_get_flags(nh);
600 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
601 	flow_key->nsh.base.flags = flags;
602 	ttl = nsh_get_ttl(nh);
603 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
604 	flow_key->nsh.base.ttl = ttl;
605 	nsh_set_flags_and_ttl(nh, flags, ttl);
606 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
607 				  mask.base.path_hdr);
608 	flow_key->nsh.base.path_hdr = nh->path_hdr;
609 	switch (nh->mdtype) {
610 	case NSH_M_TYPE1:
611 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
612 			nh->md1.context[i] =
613 			    OVS_MASKED(nh->md1.context[i], key.context[i],
614 				       mask.context[i]);
615 		}
616 		memcpy(flow_key->nsh.context, nh->md1.context,
617 		       sizeof(nh->md1.context));
618 		break;
619 	case NSH_M_TYPE2:
620 		memset(flow_key->nsh.context, 0,
621 		       sizeof(flow_key->nsh.context));
622 		break;
623 	default:
624 		return -EINVAL;
625 	}
626 	skb_postpush_rcsum(skb, nh, length);
627 	return 0;
628 }
629 
630 /* Must follow skb_ensure_writable() since that can move the skb data. */
631 static void set_tp_port(struct sk_buff *skb, __be16 *port,
632 			__be16 new_port, __sum16 *check)
633 {
634 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
635 	*port = new_port;
636 }
637 
638 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
639 		   const struct ovs_key_udp *key,
640 		   const struct ovs_key_udp *mask)
641 {
642 	struct udphdr *uh;
643 	__be16 src, dst;
644 	int err;
645 
646 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
647 				  sizeof(struct udphdr));
648 	if (unlikely(err))
649 		return err;
650 
651 	uh = udp_hdr(skb);
652 	/* Either of the masks is non-zero, so do not bother checking them. */
653 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
654 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
655 
656 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
657 		if (likely(src != uh->source)) {
658 			set_tp_port(skb, &uh->source, src, &uh->check);
659 			flow_key->tp.src = src;
660 		}
661 		if (likely(dst != uh->dest)) {
662 			set_tp_port(skb, &uh->dest, dst, &uh->check);
663 			flow_key->tp.dst = dst;
664 		}
665 
666 		if (unlikely(!uh->check))
667 			uh->check = CSUM_MANGLED_0;
668 	} else {
669 		uh->source = src;
670 		uh->dest = dst;
671 		flow_key->tp.src = src;
672 		flow_key->tp.dst = dst;
673 	}
674 
675 	skb_clear_hash(skb);
676 
677 	return 0;
678 }
679 
680 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
681 		   const struct ovs_key_tcp *key,
682 		   const struct ovs_key_tcp *mask)
683 {
684 	struct tcphdr *th;
685 	__be16 src, dst;
686 	int err;
687 
688 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
689 				  sizeof(struct tcphdr));
690 	if (unlikely(err))
691 		return err;
692 
693 	th = tcp_hdr(skb);
694 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
695 	if (likely(src != th->source)) {
696 		set_tp_port(skb, &th->source, src, &th->check);
697 		flow_key->tp.src = src;
698 	}
699 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
700 	if (likely(dst != th->dest)) {
701 		set_tp_port(skb, &th->dest, dst, &th->check);
702 		flow_key->tp.dst = dst;
703 	}
704 	skb_clear_hash(skb);
705 
706 	return 0;
707 }
708 
709 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
710 		    const struct ovs_key_sctp *key,
711 		    const struct ovs_key_sctp *mask)
712 {
713 	unsigned int sctphoff = skb_transport_offset(skb);
714 	struct sctphdr *sh;
715 	__le32 old_correct_csum, new_csum, old_csum;
716 	int err;
717 
718 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
719 	if (unlikely(err))
720 		return err;
721 
722 	sh = sctp_hdr(skb);
723 	old_csum = sh->checksum;
724 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
725 
726 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
727 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
728 
729 	new_csum = sctp_compute_cksum(skb, sctphoff);
730 
731 	/* Carry any checksum errors through. */
732 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
733 
734 	skb_clear_hash(skb);
735 	flow_key->tp.src = sh->source;
736 	flow_key->tp.dst = sh->dest;
737 
738 	return 0;
739 }
740 
741 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
742 {
743 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
744 	struct vport *vport = data->vport;
745 
746 	if (skb_cow_head(skb, data->l2_len) < 0) {
747 		kfree_skb(skb);
748 		return -ENOMEM;
749 	}
750 
751 	__skb_dst_copy(skb, data->dst);
752 	*OVS_CB(skb) = data->cb;
753 	skb->inner_protocol = data->inner_protocol;
754 	if (data->vlan_tci & VLAN_CFI_MASK)
755 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
756 	else
757 		__vlan_hwaccel_clear_tag(skb);
758 
759 	/* Reconstruct the MAC header.  */
760 	skb_push(skb, data->l2_len);
761 	memcpy(skb->data, &data->l2_data, data->l2_len);
762 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
763 	skb_reset_mac_header(skb);
764 
765 	if (eth_p_mpls(skb->protocol)) {
766 		skb->inner_network_header = skb->network_header;
767 		skb_set_network_header(skb, data->network_offset);
768 		skb_reset_mac_len(skb);
769 	}
770 
771 	ovs_vport_send(vport, skb, data->mac_proto);
772 	return 0;
773 }
774 
775 static unsigned int
776 ovs_dst_get_mtu(const struct dst_entry *dst)
777 {
778 	return dst->dev->mtu;
779 }
780 
781 static struct dst_ops ovs_dst_ops = {
782 	.family = AF_UNSPEC,
783 	.mtu = ovs_dst_get_mtu,
784 };
785 
786 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
787  * ovs_vport_output(), which is called once per fragmented packet.
788  */
789 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
790 			 u16 orig_network_offset, u8 mac_proto)
791 {
792 	unsigned int hlen = skb_network_offset(skb);
793 	struct ovs_frag_data *data;
794 
795 	data = this_cpu_ptr(&ovs_frag_data_storage);
796 	data->dst = skb->_skb_refdst;
797 	data->vport = vport;
798 	data->cb = *OVS_CB(skb);
799 	data->inner_protocol = skb->inner_protocol;
800 	data->network_offset = orig_network_offset;
801 	if (skb_vlan_tag_present(skb))
802 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
803 	else
804 		data->vlan_tci = 0;
805 	data->vlan_proto = skb->vlan_proto;
806 	data->mac_proto = mac_proto;
807 	data->l2_len = hlen;
808 	memcpy(&data->l2_data, skb->data, hlen);
809 
810 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
811 	skb_pull(skb, hlen);
812 }
813 
814 static void ovs_fragment(struct net *net, struct vport *vport,
815 			 struct sk_buff *skb, u16 mru,
816 			 struct sw_flow_key *key)
817 {
818 	u16 orig_network_offset = 0;
819 
820 	if (eth_p_mpls(skb->protocol)) {
821 		orig_network_offset = skb_network_offset(skb);
822 		skb->network_header = skb->inner_network_header;
823 	}
824 
825 	if (skb_network_offset(skb) > MAX_L2_LEN) {
826 		OVS_NLERR(1, "L2 header too long to fragment");
827 		goto err;
828 	}
829 
830 	if (key->eth.type == htons(ETH_P_IP)) {
831 		struct dst_entry ovs_dst;
832 		unsigned long orig_dst;
833 
834 		prepare_frag(vport, skb, orig_network_offset,
835 			     ovs_key_mac_proto(key));
836 		dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
837 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
838 		ovs_dst.dev = vport->dev;
839 
840 		orig_dst = skb->_skb_refdst;
841 		skb_dst_set_noref(skb, &ovs_dst);
842 		IPCB(skb)->frag_max_size = mru;
843 
844 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
845 		refdst_drop(orig_dst);
846 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
847 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
848 		unsigned long orig_dst;
849 		struct rt6_info ovs_rt;
850 
851 		if (!v6ops)
852 			goto err;
853 
854 		prepare_frag(vport, skb, orig_network_offset,
855 			     ovs_key_mac_proto(key));
856 		memset(&ovs_rt, 0, sizeof(ovs_rt));
857 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
858 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
859 		ovs_rt.dst.dev = vport->dev;
860 
861 		orig_dst = skb->_skb_refdst;
862 		skb_dst_set_noref(skb, &ovs_rt.dst);
863 		IP6CB(skb)->frag_max_size = mru;
864 
865 		v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
866 		refdst_drop(orig_dst);
867 	} else {
868 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
869 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
870 			  vport->dev->mtu);
871 		goto err;
872 	}
873 
874 	return;
875 err:
876 	kfree_skb(skb);
877 }
878 
879 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
880 		      struct sw_flow_key *key)
881 {
882 	struct vport *vport = ovs_vport_rcu(dp, out_port);
883 
884 	if (likely(vport)) {
885 		u16 mru = OVS_CB(skb)->mru;
886 		u32 cutlen = OVS_CB(skb)->cutlen;
887 
888 		if (unlikely(cutlen > 0)) {
889 			if (skb->len - cutlen > ovs_mac_header_len(key))
890 				pskb_trim(skb, skb->len - cutlen);
891 			else
892 				pskb_trim(skb, ovs_mac_header_len(key));
893 		}
894 
895 		if (likely(!mru ||
896 		           (skb->len <= mru + vport->dev->hard_header_len))) {
897 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
898 		} else if (mru <= vport->dev->mtu) {
899 			struct net *net = read_pnet(&dp->net);
900 
901 			ovs_fragment(net, vport, skb, mru, key);
902 		} else {
903 			kfree_skb(skb);
904 		}
905 	} else {
906 		kfree_skb(skb);
907 	}
908 }
909 
910 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
911 			    struct sw_flow_key *key, const struct nlattr *attr,
912 			    const struct nlattr *actions, int actions_len,
913 			    uint32_t cutlen)
914 {
915 	struct dp_upcall_info upcall;
916 	const struct nlattr *a;
917 	int rem;
918 
919 	memset(&upcall, 0, sizeof(upcall));
920 	upcall.cmd = OVS_PACKET_CMD_ACTION;
921 	upcall.mru = OVS_CB(skb)->mru;
922 
923 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
924 		 a = nla_next(a, &rem)) {
925 		switch (nla_type(a)) {
926 		case OVS_USERSPACE_ATTR_USERDATA:
927 			upcall.userdata = a;
928 			break;
929 
930 		case OVS_USERSPACE_ATTR_PID:
931 			upcall.portid = nla_get_u32(a);
932 			break;
933 
934 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
935 			/* Get out tunnel info. */
936 			struct vport *vport;
937 
938 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
939 			if (vport) {
940 				int err;
941 
942 				err = dev_fill_metadata_dst(vport->dev, skb);
943 				if (!err)
944 					upcall.egress_tun_info = skb_tunnel_info(skb);
945 			}
946 
947 			break;
948 		}
949 
950 		case OVS_USERSPACE_ATTR_ACTIONS: {
951 			/* Include actions. */
952 			upcall.actions = actions;
953 			upcall.actions_len = actions_len;
954 			break;
955 		}
956 
957 		} /* End of switch. */
958 	}
959 
960 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
961 }
962 
963 /* When 'last' is true, sample() should always consume the 'skb'.
964  * Otherwise, sample() should keep 'skb' intact regardless what
965  * actions are executed within sample().
966  */
967 static int sample(struct datapath *dp, struct sk_buff *skb,
968 		  struct sw_flow_key *key, const struct nlattr *attr,
969 		  bool last)
970 {
971 	struct nlattr *actions;
972 	struct nlattr *sample_arg;
973 	int rem = nla_len(attr);
974 	const struct sample_arg *arg;
975 	bool clone_flow_key;
976 
977 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
978 	sample_arg = nla_data(attr);
979 	arg = nla_data(sample_arg);
980 	actions = nla_next(sample_arg, &rem);
981 
982 	if ((arg->probability != U32_MAX) &&
983 	    (!arg->probability || prandom_u32() > arg->probability)) {
984 		if (last)
985 			consume_skb(skb);
986 		return 0;
987 	}
988 
989 	clone_flow_key = !arg->exec;
990 	return clone_execute(dp, skb, key, 0, actions, rem, last,
991 			     clone_flow_key);
992 }
993 
994 /* When 'last' is true, clone() should always consume the 'skb'.
995  * Otherwise, clone() should keep 'skb' intact regardless what
996  * actions are executed within clone().
997  */
998 static int clone(struct datapath *dp, struct sk_buff *skb,
999 		 struct sw_flow_key *key, const struct nlattr *attr,
1000 		 bool last)
1001 {
1002 	struct nlattr *actions;
1003 	struct nlattr *clone_arg;
1004 	int rem = nla_len(attr);
1005 	bool dont_clone_flow_key;
1006 
1007 	/* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1008 	clone_arg = nla_data(attr);
1009 	dont_clone_flow_key = nla_get_u32(clone_arg);
1010 	actions = nla_next(clone_arg, &rem);
1011 
1012 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1013 			     !dont_clone_flow_key);
1014 }
1015 
1016 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1017 			 const struct nlattr *attr)
1018 {
1019 	struct ovs_action_hash *hash_act = nla_data(attr);
1020 	u32 hash = 0;
1021 
1022 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1023 	hash = skb_get_hash(skb);
1024 	hash = jhash_1word(hash, hash_act->hash_basis);
1025 	if (!hash)
1026 		hash = 0x1;
1027 
1028 	key->ovs_flow_hash = hash;
1029 }
1030 
1031 static int execute_set_action(struct sk_buff *skb,
1032 			      struct sw_flow_key *flow_key,
1033 			      const struct nlattr *a)
1034 {
1035 	/* Only tunnel set execution is supported without a mask. */
1036 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1037 		struct ovs_tunnel_info *tun = nla_data(a);
1038 
1039 		skb_dst_drop(skb);
1040 		dst_hold((struct dst_entry *)tun->tun_dst);
1041 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1042 		return 0;
1043 	}
1044 
1045 	return -EINVAL;
1046 }
1047 
1048 /* Mask is at the midpoint of the data. */
1049 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1050 
1051 static int execute_masked_set_action(struct sk_buff *skb,
1052 				     struct sw_flow_key *flow_key,
1053 				     const struct nlattr *a)
1054 {
1055 	int err = 0;
1056 
1057 	switch (nla_type(a)) {
1058 	case OVS_KEY_ATTR_PRIORITY:
1059 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1060 			       *get_mask(a, u32 *));
1061 		flow_key->phy.priority = skb->priority;
1062 		break;
1063 
1064 	case OVS_KEY_ATTR_SKB_MARK:
1065 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1066 		flow_key->phy.skb_mark = skb->mark;
1067 		break;
1068 
1069 	case OVS_KEY_ATTR_TUNNEL_INFO:
1070 		/* Masked data not supported for tunnel. */
1071 		err = -EINVAL;
1072 		break;
1073 
1074 	case OVS_KEY_ATTR_ETHERNET:
1075 		err = set_eth_addr(skb, flow_key, nla_data(a),
1076 				   get_mask(a, struct ovs_key_ethernet *));
1077 		break;
1078 
1079 	case OVS_KEY_ATTR_NSH:
1080 		err = set_nsh(skb, flow_key, a);
1081 		break;
1082 
1083 	case OVS_KEY_ATTR_IPV4:
1084 		err = set_ipv4(skb, flow_key, nla_data(a),
1085 			       get_mask(a, struct ovs_key_ipv4 *));
1086 		break;
1087 
1088 	case OVS_KEY_ATTR_IPV6:
1089 		err = set_ipv6(skb, flow_key, nla_data(a),
1090 			       get_mask(a, struct ovs_key_ipv6 *));
1091 		break;
1092 
1093 	case OVS_KEY_ATTR_TCP:
1094 		err = set_tcp(skb, flow_key, nla_data(a),
1095 			      get_mask(a, struct ovs_key_tcp *));
1096 		break;
1097 
1098 	case OVS_KEY_ATTR_UDP:
1099 		err = set_udp(skb, flow_key, nla_data(a),
1100 			      get_mask(a, struct ovs_key_udp *));
1101 		break;
1102 
1103 	case OVS_KEY_ATTR_SCTP:
1104 		err = set_sctp(skb, flow_key, nla_data(a),
1105 			       get_mask(a, struct ovs_key_sctp *));
1106 		break;
1107 
1108 	case OVS_KEY_ATTR_MPLS:
1109 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1110 								    __be32 *));
1111 		break;
1112 
1113 	case OVS_KEY_ATTR_CT_STATE:
1114 	case OVS_KEY_ATTR_CT_ZONE:
1115 	case OVS_KEY_ATTR_CT_MARK:
1116 	case OVS_KEY_ATTR_CT_LABELS:
1117 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1118 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1119 		err = -EINVAL;
1120 		break;
1121 	}
1122 
1123 	return err;
1124 }
1125 
1126 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1127 			  struct sw_flow_key *key,
1128 			  const struct nlattr *a, bool last)
1129 {
1130 	u32 recirc_id;
1131 
1132 	if (!is_flow_key_valid(key)) {
1133 		int err;
1134 
1135 		err = ovs_flow_key_update(skb, key);
1136 		if (err)
1137 			return err;
1138 	}
1139 	BUG_ON(!is_flow_key_valid(key));
1140 
1141 	recirc_id = nla_get_u32(a);
1142 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1143 }
1144 
1145 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1146 				 struct sw_flow_key *key,
1147 				 const struct nlattr *attr, bool last)
1148 {
1149 	const struct nlattr *actions, *cpl_arg;
1150 	const struct check_pkt_len_arg *arg;
1151 	int rem = nla_len(attr);
1152 	bool clone_flow_key;
1153 
1154 	/* The first netlink attribute in 'attr' is always
1155 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1156 	 */
1157 	cpl_arg = nla_data(attr);
1158 	arg = nla_data(cpl_arg);
1159 
1160 	if (skb->len <= arg->pkt_len) {
1161 		/* Second netlink attribute in 'attr' is always
1162 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1163 		 */
1164 		actions = nla_next(cpl_arg, &rem);
1165 		clone_flow_key = !arg->exec_for_lesser_equal;
1166 	} else {
1167 		/* Third netlink attribute in 'attr' is always
1168 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1169 		 */
1170 		actions = nla_next(cpl_arg, &rem);
1171 		actions = nla_next(actions, &rem);
1172 		clone_flow_key = !arg->exec_for_greater;
1173 	}
1174 
1175 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1176 			     nla_len(actions), last, clone_flow_key);
1177 }
1178 
1179 /* Execute a list of actions against 'skb'. */
1180 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1181 			      struct sw_flow_key *key,
1182 			      const struct nlattr *attr, int len)
1183 {
1184 	const struct nlattr *a;
1185 	int rem;
1186 
1187 	for (a = attr, rem = len; rem > 0;
1188 	     a = nla_next(a, &rem)) {
1189 		int err = 0;
1190 
1191 		switch (nla_type(a)) {
1192 		case OVS_ACTION_ATTR_OUTPUT: {
1193 			int port = nla_get_u32(a);
1194 			struct sk_buff *clone;
1195 
1196 			/* Every output action needs a separate clone
1197 			 * of 'skb', In case the output action is the
1198 			 * last action, cloning can be avoided.
1199 			 */
1200 			if (nla_is_last(a, rem)) {
1201 				do_output(dp, skb, port, key);
1202 				/* 'skb' has been used for output.
1203 				 */
1204 				return 0;
1205 			}
1206 
1207 			clone = skb_clone(skb, GFP_ATOMIC);
1208 			if (clone)
1209 				do_output(dp, clone, port, key);
1210 			OVS_CB(skb)->cutlen = 0;
1211 			break;
1212 		}
1213 
1214 		case OVS_ACTION_ATTR_TRUNC: {
1215 			struct ovs_action_trunc *trunc = nla_data(a);
1216 
1217 			if (skb->len > trunc->max_len)
1218 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1219 			break;
1220 		}
1221 
1222 		case OVS_ACTION_ATTR_USERSPACE:
1223 			output_userspace(dp, skb, key, a, attr,
1224 						     len, OVS_CB(skb)->cutlen);
1225 			OVS_CB(skb)->cutlen = 0;
1226 			break;
1227 
1228 		case OVS_ACTION_ATTR_HASH:
1229 			execute_hash(skb, key, a);
1230 			break;
1231 
1232 		case OVS_ACTION_ATTR_PUSH_MPLS:
1233 			err = push_mpls(skb, key, nla_data(a));
1234 			break;
1235 
1236 		case OVS_ACTION_ATTR_POP_MPLS:
1237 			err = pop_mpls(skb, key, nla_get_be16(a));
1238 			break;
1239 
1240 		case OVS_ACTION_ATTR_PUSH_VLAN:
1241 			err = push_vlan(skb, key, nla_data(a));
1242 			break;
1243 
1244 		case OVS_ACTION_ATTR_POP_VLAN:
1245 			err = pop_vlan(skb, key);
1246 			break;
1247 
1248 		case OVS_ACTION_ATTR_RECIRC: {
1249 			bool last = nla_is_last(a, rem);
1250 
1251 			err = execute_recirc(dp, skb, key, a, last);
1252 			if (last) {
1253 				/* If this is the last action, the skb has
1254 				 * been consumed or freed.
1255 				 * Return immediately.
1256 				 */
1257 				return err;
1258 			}
1259 			break;
1260 		}
1261 
1262 		case OVS_ACTION_ATTR_SET:
1263 			err = execute_set_action(skb, key, nla_data(a));
1264 			break;
1265 
1266 		case OVS_ACTION_ATTR_SET_MASKED:
1267 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1268 			err = execute_masked_set_action(skb, key, nla_data(a));
1269 			break;
1270 
1271 		case OVS_ACTION_ATTR_SAMPLE: {
1272 			bool last = nla_is_last(a, rem);
1273 
1274 			err = sample(dp, skb, key, a, last);
1275 			if (last)
1276 				return err;
1277 
1278 			break;
1279 		}
1280 
1281 		case OVS_ACTION_ATTR_CT:
1282 			if (!is_flow_key_valid(key)) {
1283 				err = ovs_flow_key_update(skb, key);
1284 				if (err)
1285 					return err;
1286 			}
1287 
1288 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1289 					     nla_data(a));
1290 
1291 			/* Hide stolen IP fragments from user space. */
1292 			if (err)
1293 				return err == -EINPROGRESS ? 0 : err;
1294 			break;
1295 
1296 		case OVS_ACTION_ATTR_CT_CLEAR:
1297 			err = ovs_ct_clear(skb, key);
1298 			break;
1299 
1300 		case OVS_ACTION_ATTR_PUSH_ETH:
1301 			err = push_eth(skb, key, nla_data(a));
1302 			break;
1303 
1304 		case OVS_ACTION_ATTR_POP_ETH:
1305 			err = pop_eth(skb, key);
1306 			break;
1307 
1308 		case OVS_ACTION_ATTR_PUSH_NSH: {
1309 			u8 buffer[NSH_HDR_MAX_LEN];
1310 			struct nshhdr *nh = (struct nshhdr *)buffer;
1311 
1312 			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1313 						  NSH_HDR_MAX_LEN);
1314 			if (unlikely(err))
1315 				break;
1316 			err = push_nsh(skb, key, nh);
1317 			break;
1318 		}
1319 
1320 		case OVS_ACTION_ATTR_POP_NSH:
1321 			err = pop_nsh(skb, key);
1322 			break;
1323 
1324 		case OVS_ACTION_ATTR_METER:
1325 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1326 				consume_skb(skb);
1327 				return 0;
1328 			}
1329 			break;
1330 
1331 		case OVS_ACTION_ATTR_CLONE: {
1332 			bool last = nla_is_last(a, rem);
1333 
1334 			err = clone(dp, skb, key, a, last);
1335 			if (last)
1336 				return err;
1337 
1338 			break;
1339 		}
1340 
1341 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1342 			bool last = nla_is_last(a, rem);
1343 
1344 			err = execute_check_pkt_len(dp, skb, key, a, last);
1345 			if (last)
1346 				return err;
1347 
1348 			break;
1349 		}
1350 		}
1351 
1352 		if (unlikely(err)) {
1353 			kfree_skb(skb);
1354 			return err;
1355 		}
1356 	}
1357 
1358 	consume_skb(skb);
1359 	return 0;
1360 }
1361 
1362 /* Execute the actions on the clone of the packet. The effect of the
1363  * execution does not affect the original 'skb' nor the original 'key'.
1364  *
1365  * The execution may be deferred in case the actions can not be executed
1366  * immediately.
1367  */
1368 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1369 			 struct sw_flow_key *key, u32 recirc_id,
1370 			 const struct nlattr *actions, int len,
1371 			 bool last, bool clone_flow_key)
1372 {
1373 	struct deferred_action *da;
1374 	struct sw_flow_key *clone;
1375 
1376 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1377 	if (!skb) {
1378 		/* Out of memory, skip this action.
1379 		 */
1380 		return 0;
1381 	}
1382 
1383 	/* When clone_flow_key is false, the 'key' will not be change
1384 	 * by the actions, then the 'key' can be used directly.
1385 	 * Otherwise, try to clone key from the next recursion level of
1386 	 * 'flow_keys'. If clone is successful, execute the actions
1387 	 * without deferring.
1388 	 */
1389 	clone = clone_flow_key ? clone_key(key) : key;
1390 	if (clone) {
1391 		int err = 0;
1392 
1393 		if (actions) { /* Sample action */
1394 			if (clone_flow_key)
1395 				__this_cpu_inc(exec_actions_level);
1396 
1397 			err = do_execute_actions(dp, skb, clone,
1398 						 actions, len);
1399 
1400 			if (clone_flow_key)
1401 				__this_cpu_dec(exec_actions_level);
1402 		} else { /* Recirc action */
1403 			clone->recirc_id = recirc_id;
1404 			ovs_dp_process_packet(skb, clone);
1405 		}
1406 		return err;
1407 	}
1408 
1409 	/* Out of 'flow_keys' space. Defer actions */
1410 	da = add_deferred_actions(skb, key, actions, len);
1411 	if (da) {
1412 		if (!actions) { /* Recirc action */
1413 			key = &da->pkt_key;
1414 			key->recirc_id = recirc_id;
1415 		}
1416 	} else {
1417 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1418 		 * log an error.
1419 		 */
1420 		kfree_skb(skb);
1421 
1422 		if (net_ratelimit()) {
1423 			if (actions) { /* Sample action */
1424 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1425 					ovs_dp_name(dp));
1426 			} else {  /* Recirc action */
1427 				pr_warn("%s: deferred action limit reached, drop recirc action\n",
1428 					ovs_dp_name(dp));
1429 			}
1430 		}
1431 	}
1432 	return 0;
1433 }
1434 
1435 static void process_deferred_actions(struct datapath *dp)
1436 {
1437 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1438 
1439 	/* Do not touch the FIFO in case there is no deferred actions. */
1440 	if (action_fifo_is_empty(fifo))
1441 		return;
1442 
1443 	/* Finishing executing all deferred actions. */
1444 	do {
1445 		struct deferred_action *da = action_fifo_get(fifo);
1446 		struct sk_buff *skb = da->skb;
1447 		struct sw_flow_key *key = &da->pkt_key;
1448 		const struct nlattr *actions = da->actions;
1449 		int actions_len = da->actions_len;
1450 
1451 		if (actions)
1452 			do_execute_actions(dp, skb, key, actions, actions_len);
1453 		else
1454 			ovs_dp_process_packet(skb, key);
1455 	} while (!action_fifo_is_empty(fifo));
1456 
1457 	/* Reset FIFO for the next packet.  */
1458 	action_fifo_init(fifo);
1459 }
1460 
1461 /* Execute a list of actions against 'skb'. */
1462 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1463 			const struct sw_flow_actions *acts,
1464 			struct sw_flow_key *key)
1465 {
1466 	int err, level;
1467 
1468 	level = __this_cpu_inc_return(exec_actions_level);
1469 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1470 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1471 				     ovs_dp_name(dp));
1472 		kfree_skb(skb);
1473 		err = -ENETDOWN;
1474 		goto out;
1475 	}
1476 
1477 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1478 	err = do_execute_actions(dp, skb, key,
1479 				 acts->actions, acts->actions_len);
1480 
1481 	if (level == 1)
1482 		process_deferred_actions(dp);
1483 
1484 out:
1485 	__this_cpu_dec(exec_actions_level);
1486 	return err;
1487 }
1488 
1489 int action_fifos_init(void)
1490 {
1491 	action_fifos = alloc_percpu(struct action_fifo);
1492 	if (!action_fifos)
1493 		return -ENOMEM;
1494 
1495 	flow_keys = alloc_percpu(struct action_flow_keys);
1496 	if (!flow_keys) {
1497 		free_percpu(action_fifos);
1498 		return -ENOMEM;
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 void action_fifos_exit(void)
1505 {
1506 	free_percpu(action_fifos);
1507 	free_percpu(flow_keys);
1508 }
1509