1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Copyright Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk) 5 * Copyright Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk) 6 * Copyright Darryl Miles G7LED (dlm@g7led.demon.co.uk) 7 */ 8 #include <linux/module.h> 9 #include <linux/moduleparam.h> 10 #include <linux/capability.h> 11 #include <linux/errno.h> 12 #include <linux/types.h> 13 #include <linux/socket.h> 14 #include <linux/in.h> 15 #include <linux/slab.h> 16 #include <linux/kernel.h> 17 #include <linux/sched/signal.h> 18 #include <linux/timer.h> 19 #include <linux/string.h> 20 #include <linux/sockios.h> 21 #include <linux/net.h> 22 #include <linux/stat.h> 23 #include <net/ax25.h> 24 #include <linux/inet.h> 25 #include <linux/netdevice.h> 26 #include <linux/if_arp.h> 27 #include <linux/skbuff.h> 28 #include <net/net_namespace.h> 29 #include <net/sock.h> 30 #include <linux/uaccess.h> 31 #include <linux/fcntl.h> 32 #include <linux/termios.h> /* For TIOCINQ/OUTQ */ 33 #include <linux/mm.h> 34 #include <linux/interrupt.h> 35 #include <linux/notifier.h> 36 #include <net/netrom.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <net/ip.h> 40 #include <net/tcp_states.h> 41 #include <net/arp.h> 42 #include <linux/init.h> 43 44 static int nr_ndevs = 4; 45 46 int sysctl_netrom_default_path_quality = NR_DEFAULT_QUAL; 47 int sysctl_netrom_obsolescence_count_initialiser = NR_DEFAULT_OBS; 48 int sysctl_netrom_network_ttl_initialiser = NR_DEFAULT_TTL; 49 int sysctl_netrom_transport_timeout = NR_DEFAULT_T1; 50 int sysctl_netrom_transport_maximum_tries = NR_DEFAULT_N2; 51 int sysctl_netrom_transport_acknowledge_delay = NR_DEFAULT_T2; 52 int sysctl_netrom_transport_busy_delay = NR_DEFAULT_T4; 53 int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW; 54 int sysctl_netrom_transport_no_activity_timeout = NR_DEFAULT_IDLE; 55 int sysctl_netrom_routing_control = NR_DEFAULT_ROUTING; 56 int sysctl_netrom_link_fails_count = NR_DEFAULT_FAILS; 57 int sysctl_netrom_reset_circuit = NR_DEFAULT_RESET; 58 59 static unsigned short circuit = 0x101; 60 61 static HLIST_HEAD(nr_list); 62 static DEFINE_SPINLOCK(nr_list_lock); 63 64 static const struct proto_ops nr_proto_ops; 65 66 /* 67 * NETROM network devices are virtual network devices encapsulating NETROM 68 * frames into AX.25 which will be sent through an AX.25 device, so form a 69 * special "super class" of normal net devices; split their locks off into a 70 * separate class since they always nest. 71 */ 72 static struct lock_class_key nr_netdev_xmit_lock_key; 73 static struct lock_class_key nr_netdev_addr_lock_key; 74 75 static void nr_set_lockdep_one(struct net_device *dev, 76 struct netdev_queue *txq, 77 void *_unused) 78 { 79 lockdep_set_class(&txq->_xmit_lock, &nr_netdev_xmit_lock_key); 80 } 81 82 static void nr_set_lockdep_key(struct net_device *dev) 83 { 84 lockdep_set_class(&dev->addr_list_lock, &nr_netdev_addr_lock_key); 85 netdev_for_each_tx_queue(dev, nr_set_lockdep_one, NULL); 86 } 87 88 /* 89 * Socket removal during an interrupt is now safe. 90 */ 91 static void nr_remove_socket(struct sock *sk) 92 { 93 spin_lock_bh(&nr_list_lock); 94 sk_del_node_init(sk); 95 spin_unlock_bh(&nr_list_lock); 96 } 97 98 /* 99 * Kill all bound sockets on a dropped device. 100 */ 101 static void nr_kill_by_device(struct net_device *dev) 102 { 103 struct sock *s; 104 105 spin_lock_bh(&nr_list_lock); 106 sk_for_each(s, &nr_list) 107 if (nr_sk(s)->device == dev) 108 nr_disconnect(s, ENETUNREACH); 109 spin_unlock_bh(&nr_list_lock); 110 } 111 112 /* 113 * Handle device status changes. 114 */ 115 static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 116 { 117 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 118 119 if (!net_eq(dev_net(dev), &init_net)) 120 return NOTIFY_DONE; 121 122 if (event != NETDEV_DOWN) 123 return NOTIFY_DONE; 124 125 nr_kill_by_device(dev); 126 nr_rt_device_down(dev); 127 128 return NOTIFY_DONE; 129 } 130 131 /* 132 * Add a socket to the bound sockets list. 133 */ 134 static void nr_insert_socket(struct sock *sk) 135 { 136 spin_lock_bh(&nr_list_lock); 137 sk_add_node(sk, &nr_list); 138 spin_unlock_bh(&nr_list_lock); 139 } 140 141 /* 142 * Find a socket that wants to accept the Connect Request we just 143 * received. 144 */ 145 static struct sock *nr_find_listener(ax25_address *addr) 146 { 147 struct sock *s; 148 149 spin_lock_bh(&nr_list_lock); 150 sk_for_each(s, &nr_list) 151 if (!ax25cmp(&nr_sk(s)->source_addr, addr) && 152 s->sk_state == TCP_LISTEN) { 153 sock_hold(s); 154 goto found; 155 } 156 s = NULL; 157 found: 158 spin_unlock_bh(&nr_list_lock); 159 return s; 160 } 161 162 /* 163 * Find a connected NET/ROM socket given my circuit IDs. 164 */ 165 static struct sock *nr_find_socket(unsigned char index, unsigned char id) 166 { 167 struct sock *s; 168 169 spin_lock_bh(&nr_list_lock); 170 sk_for_each(s, &nr_list) { 171 struct nr_sock *nr = nr_sk(s); 172 173 if (nr->my_index == index && nr->my_id == id) { 174 sock_hold(s); 175 goto found; 176 } 177 } 178 s = NULL; 179 found: 180 spin_unlock_bh(&nr_list_lock); 181 return s; 182 } 183 184 /* 185 * Find a connected NET/ROM socket given their circuit IDs. 186 */ 187 static struct sock *nr_find_peer(unsigned char index, unsigned char id, 188 ax25_address *dest) 189 { 190 struct sock *s; 191 192 spin_lock_bh(&nr_list_lock); 193 sk_for_each(s, &nr_list) { 194 struct nr_sock *nr = nr_sk(s); 195 196 if (nr->your_index == index && nr->your_id == id && 197 !ax25cmp(&nr->dest_addr, dest)) { 198 sock_hold(s); 199 goto found; 200 } 201 } 202 s = NULL; 203 found: 204 spin_unlock_bh(&nr_list_lock); 205 return s; 206 } 207 208 /* 209 * Find next free circuit ID. 210 */ 211 static unsigned short nr_find_next_circuit(void) 212 { 213 unsigned short id = circuit; 214 unsigned char i, j; 215 struct sock *sk; 216 217 for (;;) { 218 i = id / 256; 219 j = id % 256; 220 221 if (i != 0 && j != 0) { 222 if ((sk=nr_find_socket(i, j)) == NULL) 223 break; 224 sock_put(sk); 225 } 226 227 id++; 228 } 229 230 return id; 231 } 232 233 /* 234 * Deferred destroy. 235 */ 236 void nr_destroy_socket(struct sock *); 237 238 /* 239 * Handler for deferred kills. 240 */ 241 static void nr_destroy_timer(struct timer_list *t) 242 { 243 struct sock *sk = from_timer(sk, t, sk_timer); 244 bh_lock_sock(sk); 245 sock_hold(sk); 246 nr_destroy_socket(sk); 247 bh_unlock_sock(sk); 248 sock_put(sk); 249 } 250 251 /* 252 * This is called from user mode and the timers. Thus it protects itself 253 * against interrupt users but doesn't worry about being called during 254 * work. Once it is removed from the queue no interrupt or bottom half 255 * will touch it and we are (fairly 8-) ) safe. 256 */ 257 void nr_destroy_socket(struct sock *sk) 258 { 259 struct sk_buff *skb; 260 261 nr_remove_socket(sk); 262 263 nr_stop_heartbeat(sk); 264 nr_stop_t1timer(sk); 265 nr_stop_t2timer(sk); 266 nr_stop_t4timer(sk); 267 nr_stop_idletimer(sk); 268 269 nr_clear_queues(sk); /* Flush the queues */ 270 271 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 272 if (skb->sk != sk) { /* A pending connection */ 273 /* Queue the unaccepted socket for death */ 274 sock_set_flag(skb->sk, SOCK_DEAD); 275 nr_start_heartbeat(skb->sk); 276 nr_sk(skb->sk)->state = NR_STATE_0; 277 } 278 279 kfree_skb(skb); 280 } 281 282 if (sk_has_allocations(sk)) { 283 /* Defer: outstanding buffers */ 284 sk->sk_timer.function = nr_destroy_timer; 285 sk->sk_timer.expires = jiffies + 2 * HZ; 286 add_timer(&sk->sk_timer); 287 } else 288 sock_put(sk); 289 } 290 291 /* 292 * Handling for system calls applied via the various interfaces to a 293 * NET/ROM socket object. 294 */ 295 296 static int nr_setsockopt(struct socket *sock, int level, int optname, 297 char __user *optval, unsigned int optlen) 298 { 299 struct sock *sk = sock->sk; 300 struct nr_sock *nr = nr_sk(sk); 301 unsigned long opt; 302 303 if (level != SOL_NETROM) 304 return -ENOPROTOOPT; 305 306 if (optlen < sizeof(unsigned int)) 307 return -EINVAL; 308 309 if (get_user(opt, (unsigned int __user *)optval)) 310 return -EFAULT; 311 312 switch (optname) { 313 case NETROM_T1: 314 if (opt < 1 || opt > ULONG_MAX / HZ) 315 return -EINVAL; 316 nr->t1 = opt * HZ; 317 return 0; 318 319 case NETROM_T2: 320 if (opt < 1 || opt > ULONG_MAX / HZ) 321 return -EINVAL; 322 nr->t2 = opt * HZ; 323 return 0; 324 325 case NETROM_N2: 326 if (opt < 1 || opt > 31) 327 return -EINVAL; 328 nr->n2 = opt; 329 return 0; 330 331 case NETROM_T4: 332 if (opt < 1 || opt > ULONG_MAX / HZ) 333 return -EINVAL; 334 nr->t4 = opt * HZ; 335 return 0; 336 337 case NETROM_IDLE: 338 if (opt > ULONG_MAX / (60 * HZ)) 339 return -EINVAL; 340 nr->idle = opt * 60 * HZ; 341 return 0; 342 343 default: 344 return -ENOPROTOOPT; 345 } 346 } 347 348 static int nr_getsockopt(struct socket *sock, int level, int optname, 349 char __user *optval, int __user *optlen) 350 { 351 struct sock *sk = sock->sk; 352 struct nr_sock *nr = nr_sk(sk); 353 int val = 0; 354 int len; 355 356 if (level != SOL_NETROM) 357 return -ENOPROTOOPT; 358 359 if (get_user(len, optlen)) 360 return -EFAULT; 361 362 if (len < 0) 363 return -EINVAL; 364 365 switch (optname) { 366 case NETROM_T1: 367 val = nr->t1 / HZ; 368 break; 369 370 case NETROM_T2: 371 val = nr->t2 / HZ; 372 break; 373 374 case NETROM_N2: 375 val = nr->n2; 376 break; 377 378 case NETROM_T4: 379 val = nr->t4 / HZ; 380 break; 381 382 case NETROM_IDLE: 383 val = nr->idle / (60 * HZ); 384 break; 385 386 default: 387 return -ENOPROTOOPT; 388 } 389 390 len = min_t(unsigned int, len, sizeof(int)); 391 392 if (put_user(len, optlen)) 393 return -EFAULT; 394 395 return copy_to_user(optval, &val, len) ? -EFAULT : 0; 396 } 397 398 static int nr_listen(struct socket *sock, int backlog) 399 { 400 struct sock *sk = sock->sk; 401 402 lock_sock(sk); 403 if (sk->sk_state != TCP_LISTEN) { 404 memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN); 405 sk->sk_max_ack_backlog = backlog; 406 sk->sk_state = TCP_LISTEN; 407 release_sock(sk); 408 return 0; 409 } 410 release_sock(sk); 411 412 return -EOPNOTSUPP; 413 } 414 415 static struct proto nr_proto = { 416 .name = "NETROM", 417 .owner = THIS_MODULE, 418 .obj_size = sizeof(struct nr_sock), 419 }; 420 421 static int nr_create(struct net *net, struct socket *sock, int protocol, 422 int kern) 423 { 424 struct sock *sk; 425 struct nr_sock *nr; 426 427 if (!net_eq(net, &init_net)) 428 return -EAFNOSUPPORT; 429 430 if (sock->type != SOCK_SEQPACKET || protocol != 0) 431 return -ESOCKTNOSUPPORT; 432 433 sk = sk_alloc(net, PF_NETROM, GFP_ATOMIC, &nr_proto, kern); 434 if (sk == NULL) 435 return -ENOMEM; 436 437 nr = nr_sk(sk); 438 439 sock_init_data(sock, sk); 440 441 sock->ops = &nr_proto_ops; 442 sk->sk_protocol = protocol; 443 444 skb_queue_head_init(&nr->ack_queue); 445 skb_queue_head_init(&nr->reseq_queue); 446 skb_queue_head_init(&nr->frag_queue); 447 448 nr_init_timers(sk); 449 450 nr->t1 = 451 msecs_to_jiffies(sysctl_netrom_transport_timeout); 452 nr->t2 = 453 msecs_to_jiffies(sysctl_netrom_transport_acknowledge_delay); 454 nr->n2 = 455 msecs_to_jiffies(sysctl_netrom_transport_maximum_tries); 456 nr->t4 = 457 msecs_to_jiffies(sysctl_netrom_transport_busy_delay); 458 nr->idle = 459 msecs_to_jiffies(sysctl_netrom_transport_no_activity_timeout); 460 nr->window = sysctl_netrom_transport_requested_window_size; 461 462 nr->bpqext = 1; 463 nr->state = NR_STATE_0; 464 465 return 0; 466 } 467 468 static struct sock *nr_make_new(struct sock *osk) 469 { 470 struct sock *sk; 471 struct nr_sock *nr, *onr; 472 473 if (osk->sk_type != SOCK_SEQPACKET) 474 return NULL; 475 476 sk = sk_alloc(sock_net(osk), PF_NETROM, GFP_ATOMIC, osk->sk_prot, 0); 477 if (sk == NULL) 478 return NULL; 479 480 nr = nr_sk(sk); 481 482 sock_init_data(NULL, sk); 483 484 sk->sk_type = osk->sk_type; 485 sk->sk_priority = osk->sk_priority; 486 sk->sk_protocol = osk->sk_protocol; 487 sk->sk_rcvbuf = osk->sk_rcvbuf; 488 sk->sk_sndbuf = osk->sk_sndbuf; 489 sk->sk_state = TCP_ESTABLISHED; 490 sock_copy_flags(sk, osk); 491 492 skb_queue_head_init(&nr->ack_queue); 493 skb_queue_head_init(&nr->reseq_queue); 494 skb_queue_head_init(&nr->frag_queue); 495 496 nr_init_timers(sk); 497 498 onr = nr_sk(osk); 499 500 nr->t1 = onr->t1; 501 nr->t2 = onr->t2; 502 nr->n2 = onr->n2; 503 nr->t4 = onr->t4; 504 nr->idle = onr->idle; 505 nr->window = onr->window; 506 507 nr->device = onr->device; 508 nr->bpqext = onr->bpqext; 509 510 return sk; 511 } 512 513 static int nr_release(struct socket *sock) 514 { 515 struct sock *sk = sock->sk; 516 struct nr_sock *nr; 517 518 if (sk == NULL) return 0; 519 520 sock_hold(sk); 521 sock_orphan(sk); 522 lock_sock(sk); 523 nr = nr_sk(sk); 524 525 switch (nr->state) { 526 case NR_STATE_0: 527 case NR_STATE_1: 528 case NR_STATE_2: 529 nr_disconnect(sk, 0); 530 nr_destroy_socket(sk); 531 break; 532 533 case NR_STATE_3: 534 nr_clear_queues(sk); 535 nr->n2count = 0; 536 nr_write_internal(sk, NR_DISCREQ); 537 nr_start_t1timer(sk); 538 nr_stop_t2timer(sk); 539 nr_stop_t4timer(sk); 540 nr_stop_idletimer(sk); 541 nr->state = NR_STATE_2; 542 sk->sk_state = TCP_CLOSE; 543 sk->sk_shutdown |= SEND_SHUTDOWN; 544 sk->sk_state_change(sk); 545 sock_set_flag(sk, SOCK_DESTROY); 546 break; 547 548 default: 549 break; 550 } 551 552 sock->sk = NULL; 553 release_sock(sk); 554 sock_put(sk); 555 556 return 0; 557 } 558 559 static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 560 { 561 struct sock *sk = sock->sk; 562 struct nr_sock *nr = nr_sk(sk); 563 struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr; 564 struct net_device *dev; 565 ax25_uid_assoc *user; 566 ax25_address *source; 567 568 lock_sock(sk); 569 if (!sock_flag(sk, SOCK_ZAPPED)) { 570 release_sock(sk); 571 return -EINVAL; 572 } 573 if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) { 574 release_sock(sk); 575 return -EINVAL; 576 } 577 if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) { 578 release_sock(sk); 579 return -EINVAL; 580 } 581 if (addr->fsa_ax25.sax25_family != AF_NETROM) { 582 release_sock(sk); 583 return -EINVAL; 584 } 585 if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) { 586 release_sock(sk); 587 return -EADDRNOTAVAIL; 588 } 589 590 /* 591 * Only the super user can set an arbitrary user callsign. 592 */ 593 if (addr->fsa_ax25.sax25_ndigis == 1) { 594 if (!capable(CAP_NET_BIND_SERVICE)) { 595 dev_put(dev); 596 release_sock(sk); 597 return -EPERM; 598 } 599 nr->user_addr = addr->fsa_digipeater[0]; 600 nr->source_addr = addr->fsa_ax25.sax25_call; 601 } else { 602 source = &addr->fsa_ax25.sax25_call; 603 604 user = ax25_findbyuid(current_euid()); 605 if (user) { 606 nr->user_addr = user->call; 607 ax25_uid_put(user); 608 } else { 609 if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) { 610 release_sock(sk); 611 dev_put(dev); 612 return -EPERM; 613 } 614 nr->user_addr = *source; 615 } 616 617 nr->source_addr = *source; 618 } 619 620 nr->device = dev; 621 nr_insert_socket(sk); 622 623 sock_reset_flag(sk, SOCK_ZAPPED); 624 dev_put(dev); 625 release_sock(sk); 626 627 return 0; 628 } 629 630 static int nr_connect(struct socket *sock, struct sockaddr *uaddr, 631 int addr_len, int flags) 632 { 633 struct sock *sk = sock->sk; 634 struct nr_sock *nr = nr_sk(sk); 635 struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr; 636 ax25_address *source = NULL; 637 ax25_uid_assoc *user; 638 struct net_device *dev; 639 int err = 0; 640 641 lock_sock(sk); 642 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { 643 sock->state = SS_CONNECTED; 644 goto out_release; /* Connect completed during a ERESTARTSYS event */ 645 } 646 647 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) { 648 sock->state = SS_UNCONNECTED; 649 err = -ECONNREFUSED; 650 goto out_release; 651 } 652 653 if (sk->sk_state == TCP_ESTABLISHED) { 654 err = -EISCONN; /* No reconnect on a seqpacket socket */ 655 goto out_release; 656 } 657 658 sk->sk_state = TCP_CLOSE; 659 sock->state = SS_UNCONNECTED; 660 661 if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) { 662 err = -EINVAL; 663 goto out_release; 664 } 665 if (addr->sax25_family != AF_NETROM) { 666 err = -EINVAL; 667 goto out_release; 668 } 669 if (sock_flag(sk, SOCK_ZAPPED)) { /* Must bind first - autobinding in this may or may not work */ 670 sock_reset_flag(sk, SOCK_ZAPPED); 671 672 if ((dev = nr_dev_first()) == NULL) { 673 err = -ENETUNREACH; 674 goto out_release; 675 } 676 source = (ax25_address *)dev->dev_addr; 677 678 user = ax25_findbyuid(current_euid()); 679 if (user) { 680 nr->user_addr = user->call; 681 ax25_uid_put(user); 682 } else { 683 if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) { 684 dev_put(dev); 685 err = -EPERM; 686 goto out_release; 687 } 688 nr->user_addr = *source; 689 } 690 691 nr->source_addr = *source; 692 nr->device = dev; 693 694 dev_put(dev); 695 nr_insert_socket(sk); /* Finish the bind */ 696 } 697 698 nr->dest_addr = addr->sax25_call; 699 700 release_sock(sk); 701 circuit = nr_find_next_circuit(); 702 lock_sock(sk); 703 704 nr->my_index = circuit / 256; 705 nr->my_id = circuit % 256; 706 707 circuit++; 708 709 /* Move to connecting socket, start sending Connect Requests */ 710 sock->state = SS_CONNECTING; 711 sk->sk_state = TCP_SYN_SENT; 712 713 nr_establish_data_link(sk); 714 715 nr->state = NR_STATE_1; 716 717 nr_start_heartbeat(sk); 718 719 /* Now the loop */ 720 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) { 721 err = -EINPROGRESS; 722 goto out_release; 723 } 724 725 /* 726 * A Connect Ack with Choke or timeout or failed routing will go to 727 * closed. 728 */ 729 if (sk->sk_state == TCP_SYN_SENT) { 730 DEFINE_WAIT(wait); 731 732 for (;;) { 733 prepare_to_wait(sk_sleep(sk), &wait, 734 TASK_INTERRUPTIBLE); 735 if (sk->sk_state != TCP_SYN_SENT) 736 break; 737 if (!signal_pending(current)) { 738 release_sock(sk); 739 schedule(); 740 lock_sock(sk); 741 continue; 742 } 743 err = -ERESTARTSYS; 744 break; 745 } 746 finish_wait(sk_sleep(sk), &wait); 747 if (err) 748 goto out_release; 749 } 750 751 if (sk->sk_state != TCP_ESTABLISHED) { 752 sock->state = SS_UNCONNECTED; 753 err = sock_error(sk); /* Always set at this point */ 754 goto out_release; 755 } 756 757 sock->state = SS_CONNECTED; 758 759 out_release: 760 release_sock(sk); 761 762 return err; 763 } 764 765 static int nr_accept(struct socket *sock, struct socket *newsock, int flags, 766 bool kern) 767 { 768 struct sk_buff *skb; 769 struct sock *newsk; 770 DEFINE_WAIT(wait); 771 struct sock *sk; 772 int err = 0; 773 774 if ((sk = sock->sk) == NULL) 775 return -EINVAL; 776 777 lock_sock(sk); 778 if (sk->sk_type != SOCK_SEQPACKET) { 779 err = -EOPNOTSUPP; 780 goto out_release; 781 } 782 783 if (sk->sk_state != TCP_LISTEN) { 784 err = -EINVAL; 785 goto out_release; 786 } 787 788 /* 789 * The write queue this time is holding sockets ready to use 790 * hooked into the SABM we saved 791 */ 792 for (;;) { 793 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 794 skb = skb_dequeue(&sk->sk_receive_queue); 795 if (skb) 796 break; 797 798 if (flags & O_NONBLOCK) { 799 err = -EWOULDBLOCK; 800 break; 801 } 802 if (!signal_pending(current)) { 803 release_sock(sk); 804 schedule(); 805 lock_sock(sk); 806 continue; 807 } 808 err = -ERESTARTSYS; 809 break; 810 } 811 finish_wait(sk_sleep(sk), &wait); 812 if (err) 813 goto out_release; 814 815 newsk = skb->sk; 816 sock_graft(newsk, newsock); 817 818 /* Now attach up the new socket */ 819 kfree_skb(skb); 820 sk_acceptq_removed(sk); 821 822 out_release: 823 release_sock(sk); 824 825 return err; 826 } 827 828 static int nr_getname(struct socket *sock, struct sockaddr *uaddr, 829 int peer) 830 { 831 struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr; 832 struct sock *sk = sock->sk; 833 struct nr_sock *nr = nr_sk(sk); 834 int uaddr_len; 835 836 memset(&sax->fsa_ax25, 0, sizeof(struct sockaddr_ax25)); 837 838 lock_sock(sk); 839 if (peer != 0) { 840 if (sk->sk_state != TCP_ESTABLISHED) { 841 release_sock(sk); 842 return -ENOTCONN; 843 } 844 sax->fsa_ax25.sax25_family = AF_NETROM; 845 sax->fsa_ax25.sax25_ndigis = 1; 846 sax->fsa_ax25.sax25_call = nr->user_addr; 847 memset(sax->fsa_digipeater, 0, sizeof(sax->fsa_digipeater)); 848 sax->fsa_digipeater[0] = nr->dest_addr; 849 uaddr_len = sizeof(struct full_sockaddr_ax25); 850 } else { 851 sax->fsa_ax25.sax25_family = AF_NETROM; 852 sax->fsa_ax25.sax25_ndigis = 0; 853 sax->fsa_ax25.sax25_call = nr->source_addr; 854 uaddr_len = sizeof(struct sockaddr_ax25); 855 } 856 release_sock(sk); 857 858 return uaddr_len; 859 } 860 861 int nr_rx_frame(struct sk_buff *skb, struct net_device *dev) 862 { 863 struct sock *sk; 864 struct sock *make; 865 struct nr_sock *nr_make; 866 ax25_address *src, *dest, *user; 867 unsigned short circuit_index, circuit_id; 868 unsigned short peer_circuit_index, peer_circuit_id; 869 unsigned short frametype, flags, window, timeout; 870 int ret; 871 872 skb_orphan(skb); 873 874 /* 875 * skb->data points to the netrom frame start 876 */ 877 878 src = (ax25_address *)(skb->data + 0); 879 dest = (ax25_address *)(skb->data + 7); 880 881 circuit_index = skb->data[15]; 882 circuit_id = skb->data[16]; 883 peer_circuit_index = skb->data[17]; 884 peer_circuit_id = skb->data[18]; 885 frametype = skb->data[19] & 0x0F; 886 flags = skb->data[19] & 0xF0; 887 888 /* 889 * Check for an incoming IP over NET/ROM frame. 890 */ 891 if (frametype == NR_PROTOEXT && 892 circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) { 893 skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN); 894 skb_reset_transport_header(skb); 895 896 return nr_rx_ip(skb, dev); 897 } 898 899 /* 900 * Find an existing socket connection, based on circuit ID, if it's 901 * a Connect Request base it on their circuit ID. 902 * 903 * Circuit ID 0/0 is not valid but it could still be a "reset" for a 904 * circuit that no longer exists at the other end ... 905 */ 906 907 sk = NULL; 908 909 if (circuit_index == 0 && circuit_id == 0) { 910 if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG) 911 sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src); 912 } else { 913 if (frametype == NR_CONNREQ) 914 sk = nr_find_peer(circuit_index, circuit_id, src); 915 else 916 sk = nr_find_socket(circuit_index, circuit_id); 917 } 918 919 if (sk != NULL) { 920 bh_lock_sock(sk); 921 skb_reset_transport_header(skb); 922 923 if (frametype == NR_CONNACK && skb->len == 22) 924 nr_sk(sk)->bpqext = 1; 925 else 926 nr_sk(sk)->bpqext = 0; 927 928 ret = nr_process_rx_frame(sk, skb); 929 bh_unlock_sock(sk); 930 sock_put(sk); 931 return ret; 932 } 933 934 /* 935 * Now it should be a CONNREQ. 936 */ 937 if (frametype != NR_CONNREQ) { 938 /* 939 * Here it would be nice to be able to send a reset but 940 * NET/ROM doesn't have one. We've tried to extend the protocol 941 * by sending NR_CONNACK | NR_CHOKE_FLAGS replies but that 942 * apparently kills BPQ boxes... :-( 943 * So now we try to follow the established behaviour of 944 * G8PZT's Xrouter which is sending packets with command type 7 945 * as an extension of the protocol. 946 */ 947 if (sysctl_netrom_reset_circuit && 948 (frametype != NR_RESET || flags != 0)) 949 nr_transmit_reset(skb, 1); 950 951 return 0; 952 } 953 954 sk = nr_find_listener(dest); 955 956 user = (ax25_address *)(skb->data + 21); 957 958 if (sk == NULL || sk_acceptq_is_full(sk) || 959 (make = nr_make_new(sk)) == NULL) { 960 nr_transmit_refusal(skb, 0); 961 if (sk) 962 sock_put(sk); 963 return 0; 964 } 965 966 bh_lock_sock(sk); 967 968 window = skb->data[20]; 969 970 sock_hold(make); 971 skb->sk = make; 972 skb->destructor = sock_efree; 973 make->sk_state = TCP_ESTABLISHED; 974 975 /* Fill in his circuit details */ 976 nr_make = nr_sk(make); 977 nr_make->source_addr = *dest; 978 nr_make->dest_addr = *src; 979 nr_make->user_addr = *user; 980 981 nr_make->your_index = circuit_index; 982 nr_make->your_id = circuit_id; 983 984 bh_unlock_sock(sk); 985 circuit = nr_find_next_circuit(); 986 bh_lock_sock(sk); 987 988 nr_make->my_index = circuit / 256; 989 nr_make->my_id = circuit % 256; 990 991 circuit++; 992 993 /* Window negotiation */ 994 if (window < nr_make->window) 995 nr_make->window = window; 996 997 /* L4 timeout negotiation */ 998 if (skb->len == 37) { 999 timeout = skb->data[36] * 256 + skb->data[35]; 1000 if (timeout * HZ < nr_make->t1) 1001 nr_make->t1 = timeout * HZ; 1002 nr_make->bpqext = 1; 1003 } else { 1004 nr_make->bpqext = 0; 1005 } 1006 1007 nr_write_internal(make, NR_CONNACK); 1008 1009 nr_make->condition = 0x00; 1010 nr_make->vs = 0; 1011 nr_make->va = 0; 1012 nr_make->vr = 0; 1013 nr_make->vl = 0; 1014 nr_make->state = NR_STATE_3; 1015 sk_acceptq_added(sk); 1016 skb_queue_head(&sk->sk_receive_queue, skb); 1017 1018 if (!sock_flag(sk, SOCK_DEAD)) 1019 sk->sk_data_ready(sk); 1020 1021 bh_unlock_sock(sk); 1022 sock_put(sk); 1023 1024 nr_insert_socket(make); 1025 1026 nr_start_heartbeat(make); 1027 nr_start_idletimer(make); 1028 1029 return 1; 1030 } 1031 1032 static int nr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1033 { 1034 struct sock *sk = sock->sk; 1035 struct nr_sock *nr = nr_sk(sk); 1036 DECLARE_SOCKADDR(struct sockaddr_ax25 *, usax, msg->msg_name); 1037 int err; 1038 struct sockaddr_ax25 sax; 1039 struct sk_buff *skb; 1040 unsigned char *asmptr; 1041 int size; 1042 1043 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT)) 1044 return -EINVAL; 1045 1046 lock_sock(sk); 1047 if (sock_flag(sk, SOCK_ZAPPED)) { 1048 err = -EADDRNOTAVAIL; 1049 goto out; 1050 } 1051 1052 if (sk->sk_shutdown & SEND_SHUTDOWN) { 1053 send_sig(SIGPIPE, current, 0); 1054 err = -EPIPE; 1055 goto out; 1056 } 1057 1058 if (nr->device == NULL) { 1059 err = -ENETUNREACH; 1060 goto out; 1061 } 1062 1063 if (usax) { 1064 if (msg->msg_namelen < sizeof(sax)) { 1065 err = -EINVAL; 1066 goto out; 1067 } 1068 sax = *usax; 1069 if (ax25cmp(&nr->dest_addr, &sax.sax25_call) != 0) { 1070 err = -EISCONN; 1071 goto out; 1072 } 1073 if (sax.sax25_family != AF_NETROM) { 1074 err = -EINVAL; 1075 goto out; 1076 } 1077 } else { 1078 if (sk->sk_state != TCP_ESTABLISHED) { 1079 err = -ENOTCONN; 1080 goto out; 1081 } 1082 sax.sax25_family = AF_NETROM; 1083 sax.sax25_call = nr->dest_addr; 1084 } 1085 1086 /* Build a packet - the conventional user limit is 236 bytes. We can 1087 do ludicrously large NetROM frames but must not overflow */ 1088 if (len > 65536) { 1089 err = -EMSGSIZE; 1090 goto out; 1091 } 1092 1093 size = len + NR_NETWORK_LEN + NR_TRANSPORT_LEN; 1094 1095 if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL) 1096 goto out; 1097 1098 skb_reserve(skb, size - len); 1099 skb_reset_transport_header(skb); 1100 1101 /* 1102 * Push down the NET/ROM header 1103 */ 1104 1105 asmptr = skb_push(skb, NR_TRANSPORT_LEN); 1106 1107 /* Build a NET/ROM Transport header */ 1108 1109 *asmptr++ = nr->your_index; 1110 *asmptr++ = nr->your_id; 1111 *asmptr++ = 0; /* To be filled in later */ 1112 *asmptr++ = 0; /* Ditto */ 1113 *asmptr++ = NR_INFO; 1114 1115 /* 1116 * Put the data on the end 1117 */ 1118 skb_put(skb, len); 1119 1120 /* User data follows immediately after the NET/ROM transport header */ 1121 if (memcpy_from_msg(skb_transport_header(skb), msg, len)) { 1122 kfree_skb(skb); 1123 err = -EFAULT; 1124 goto out; 1125 } 1126 1127 if (sk->sk_state != TCP_ESTABLISHED) { 1128 kfree_skb(skb); 1129 err = -ENOTCONN; 1130 goto out; 1131 } 1132 1133 nr_output(sk, skb); /* Shove it onto the queue */ 1134 1135 err = len; 1136 out: 1137 release_sock(sk); 1138 return err; 1139 } 1140 1141 static int nr_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1142 int flags) 1143 { 1144 struct sock *sk = sock->sk; 1145 DECLARE_SOCKADDR(struct sockaddr_ax25 *, sax, msg->msg_name); 1146 size_t copied; 1147 struct sk_buff *skb; 1148 int er; 1149 1150 /* 1151 * This works for seqpacket too. The receiver has ordered the queue for 1152 * us! We do one quick check first though 1153 */ 1154 1155 lock_sock(sk); 1156 if (sk->sk_state != TCP_ESTABLISHED) { 1157 release_sock(sk); 1158 return -ENOTCONN; 1159 } 1160 1161 /* Now we can treat all alike */ 1162 if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) { 1163 release_sock(sk); 1164 return er; 1165 } 1166 1167 skb_reset_transport_header(skb); 1168 copied = skb->len; 1169 1170 if (copied > size) { 1171 copied = size; 1172 msg->msg_flags |= MSG_TRUNC; 1173 } 1174 1175 er = skb_copy_datagram_msg(skb, 0, msg, copied); 1176 if (er < 0) { 1177 skb_free_datagram(sk, skb); 1178 release_sock(sk); 1179 return er; 1180 } 1181 1182 if (sax != NULL) { 1183 memset(sax, 0, sizeof(*sax)); 1184 sax->sax25_family = AF_NETROM; 1185 skb_copy_from_linear_data_offset(skb, 7, sax->sax25_call.ax25_call, 1186 AX25_ADDR_LEN); 1187 msg->msg_namelen = sizeof(*sax); 1188 } 1189 1190 skb_free_datagram(sk, skb); 1191 1192 release_sock(sk); 1193 return copied; 1194 } 1195 1196 1197 static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1198 { 1199 struct sock *sk = sock->sk; 1200 void __user *argp = (void __user *)arg; 1201 1202 switch (cmd) { 1203 case TIOCOUTQ: { 1204 long amount; 1205 1206 lock_sock(sk); 1207 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 1208 if (amount < 0) 1209 amount = 0; 1210 release_sock(sk); 1211 return put_user(amount, (int __user *)argp); 1212 } 1213 1214 case TIOCINQ: { 1215 struct sk_buff *skb; 1216 long amount = 0L; 1217 1218 lock_sock(sk); 1219 /* These two are safe on a single CPU system as only user tasks fiddle here */ 1220 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) 1221 amount = skb->len; 1222 release_sock(sk); 1223 return put_user(amount, (int __user *)argp); 1224 } 1225 1226 case SIOCGIFADDR: 1227 case SIOCSIFADDR: 1228 case SIOCGIFDSTADDR: 1229 case SIOCSIFDSTADDR: 1230 case SIOCGIFBRDADDR: 1231 case SIOCSIFBRDADDR: 1232 case SIOCGIFNETMASK: 1233 case SIOCSIFNETMASK: 1234 case SIOCGIFMETRIC: 1235 case SIOCSIFMETRIC: 1236 return -EINVAL; 1237 1238 case SIOCADDRT: 1239 case SIOCDELRT: 1240 case SIOCNRDECOBS: 1241 if (!capable(CAP_NET_ADMIN)) 1242 return -EPERM; 1243 return nr_rt_ioctl(cmd, argp); 1244 1245 default: 1246 return -ENOIOCTLCMD; 1247 } 1248 1249 return 0; 1250 } 1251 1252 #ifdef CONFIG_PROC_FS 1253 1254 static void *nr_info_start(struct seq_file *seq, loff_t *pos) 1255 { 1256 spin_lock_bh(&nr_list_lock); 1257 return seq_hlist_start_head(&nr_list, *pos); 1258 } 1259 1260 static void *nr_info_next(struct seq_file *seq, void *v, loff_t *pos) 1261 { 1262 return seq_hlist_next(v, &nr_list, pos); 1263 } 1264 1265 static void nr_info_stop(struct seq_file *seq, void *v) 1266 { 1267 spin_unlock_bh(&nr_list_lock); 1268 } 1269 1270 static int nr_info_show(struct seq_file *seq, void *v) 1271 { 1272 struct sock *s = sk_entry(v); 1273 struct net_device *dev; 1274 struct nr_sock *nr; 1275 const char *devname; 1276 char buf[11]; 1277 1278 if (v == SEQ_START_TOKEN) 1279 seq_puts(seq, 1280 "user_addr dest_node src_node dev my your st vs vr va t1 t2 t4 idle n2 wnd Snd-Q Rcv-Q inode\n"); 1281 1282 else { 1283 1284 bh_lock_sock(s); 1285 nr = nr_sk(s); 1286 1287 if ((dev = nr->device) == NULL) 1288 devname = "???"; 1289 else 1290 devname = dev->name; 1291 1292 seq_printf(seq, "%-9s ", ax2asc(buf, &nr->user_addr)); 1293 seq_printf(seq, "%-9s ", ax2asc(buf, &nr->dest_addr)); 1294 seq_printf(seq, 1295 "%-9s %-3s %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n", 1296 ax2asc(buf, &nr->source_addr), 1297 devname, 1298 nr->my_index, 1299 nr->my_id, 1300 nr->your_index, 1301 nr->your_id, 1302 nr->state, 1303 nr->vs, 1304 nr->vr, 1305 nr->va, 1306 ax25_display_timer(&nr->t1timer) / HZ, 1307 nr->t1 / HZ, 1308 ax25_display_timer(&nr->t2timer) / HZ, 1309 nr->t2 / HZ, 1310 ax25_display_timer(&nr->t4timer) / HZ, 1311 nr->t4 / HZ, 1312 ax25_display_timer(&nr->idletimer) / (60 * HZ), 1313 nr->idle / (60 * HZ), 1314 nr->n2count, 1315 nr->n2, 1316 nr->window, 1317 sk_wmem_alloc_get(s), 1318 sk_rmem_alloc_get(s), 1319 s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L); 1320 1321 bh_unlock_sock(s); 1322 } 1323 return 0; 1324 } 1325 1326 static const struct seq_operations nr_info_seqops = { 1327 .start = nr_info_start, 1328 .next = nr_info_next, 1329 .stop = nr_info_stop, 1330 .show = nr_info_show, 1331 }; 1332 #endif /* CONFIG_PROC_FS */ 1333 1334 static const struct net_proto_family nr_family_ops = { 1335 .family = PF_NETROM, 1336 .create = nr_create, 1337 .owner = THIS_MODULE, 1338 }; 1339 1340 static const struct proto_ops nr_proto_ops = { 1341 .family = PF_NETROM, 1342 .owner = THIS_MODULE, 1343 .release = nr_release, 1344 .bind = nr_bind, 1345 .connect = nr_connect, 1346 .socketpair = sock_no_socketpair, 1347 .accept = nr_accept, 1348 .getname = nr_getname, 1349 .poll = datagram_poll, 1350 .ioctl = nr_ioctl, 1351 .gettstamp = sock_gettstamp, 1352 .listen = nr_listen, 1353 .shutdown = sock_no_shutdown, 1354 .setsockopt = nr_setsockopt, 1355 .getsockopt = nr_getsockopt, 1356 .sendmsg = nr_sendmsg, 1357 .recvmsg = nr_recvmsg, 1358 .mmap = sock_no_mmap, 1359 .sendpage = sock_no_sendpage, 1360 }; 1361 1362 static struct notifier_block nr_dev_notifier = { 1363 .notifier_call = nr_device_event, 1364 }; 1365 1366 static struct net_device **dev_nr; 1367 1368 static struct ax25_protocol nr_pid = { 1369 .pid = AX25_P_NETROM, 1370 .func = nr_route_frame 1371 }; 1372 1373 static struct ax25_linkfail nr_linkfail_notifier = { 1374 .func = nr_link_failed, 1375 }; 1376 1377 static int __init nr_proto_init(void) 1378 { 1379 int i; 1380 int rc = proto_register(&nr_proto, 0); 1381 1382 if (rc) 1383 return rc; 1384 1385 if (nr_ndevs > 0x7fffffff/sizeof(struct net_device *)) { 1386 pr_err("NET/ROM: %s - nr_ndevs parameter too large\n", 1387 __func__); 1388 rc = -EINVAL; 1389 goto unregister_proto; 1390 } 1391 1392 dev_nr = kcalloc(nr_ndevs, sizeof(struct net_device *), GFP_KERNEL); 1393 if (!dev_nr) { 1394 pr_err("NET/ROM: %s - unable to allocate device array\n", 1395 __func__); 1396 rc = -ENOMEM; 1397 goto unregister_proto; 1398 } 1399 1400 for (i = 0; i < nr_ndevs; i++) { 1401 char name[IFNAMSIZ]; 1402 struct net_device *dev; 1403 1404 sprintf(name, "nr%d", i); 1405 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, nr_setup); 1406 if (!dev) { 1407 rc = -ENOMEM; 1408 goto fail; 1409 } 1410 1411 dev->base_addr = i; 1412 rc = register_netdev(dev); 1413 if (rc) { 1414 free_netdev(dev); 1415 goto fail; 1416 } 1417 nr_set_lockdep_key(dev); 1418 dev_nr[i] = dev; 1419 } 1420 1421 rc = sock_register(&nr_family_ops); 1422 if (rc) 1423 goto fail; 1424 1425 rc = register_netdevice_notifier(&nr_dev_notifier); 1426 if (rc) 1427 goto out_sock; 1428 1429 ax25_register_pid(&nr_pid); 1430 ax25_linkfail_register(&nr_linkfail_notifier); 1431 1432 #ifdef CONFIG_SYSCTL 1433 rc = nr_register_sysctl(); 1434 if (rc) 1435 goto out_sysctl; 1436 #endif 1437 1438 nr_loopback_init(); 1439 1440 rc = -ENOMEM; 1441 if (!proc_create_seq("nr", 0444, init_net.proc_net, &nr_info_seqops)) 1442 goto proc_remove1; 1443 if (!proc_create_seq("nr_neigh", 0444, init_net.proc_net, 1444 &nr_neigh_seqops)) 1445 goto proc_remove2; 1446 if (!proc_create_seq("nr_nodes", 0444, init_net.proc_net, 1447 &nr_node_seqops)) 1448 goto proc_remove3; 1449 1450 return 0; 1451 1452 proc_remove3: 1453 remove_proc_entry("nr_neigh", init_net.proc_net); 1454 proc_remove2: 1455 remove_proc_entry("nr", init_net.proc_net); 1456 proc_remove1: 1457 1458 nr_loopback_clear(); 1459 nr_rt_free(); 1460 1461 #ifdef CONFIG_SYSCTL 1462 nr_unregister_sysctl(); 1463 out_sysctl: 1464 #endif 1465 ax25_linkfail_release(&nr_linkfail_notifier); 1466 ax25_protocol_release(AX25_P_NETROM); 1467 unregister_netdevice_notifier(&nr_dev_notifier); 1468 out_sock: 1469 sock_unregister(PF_NETROM); 1470 fail: 1471 while (--i >= 0) { 1472 unregister_netdev(dev_nr[i]); 1473 free_netdev(dev_nr[i]); 1474 } 1475 kfree(dev_nr); 1476 unregister_proto: 1477 proto_unregister(&nr_proto); 1478 return rc; 1479 } 1480 1481 module_init(nr_proto_init); 1482 1483 module_param(nr_ndevs, int, 0); 1484 MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices"); 1485 1486 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>"); 1487 MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol"); 1488 MODULE_LICENSE("GPL"); 1489 MODULE_ALIAS_NETPROTO(PF_NETROM); 1490 1491 static void __exit nr_exit(void) 1492 { 1493 int i; 1494 1495 remove_proc_entry("nr", init_net.proc_net); 1496 remove_proc_entry("nr_neigh", init_net.proc_net); 1497 remove_proc_entry("nr_nodes", init_net.proc_net); 1498 nr_loopback_clear(); 1499 1500 nr_rt_free(); 1501 1502 #ifdef CONFIG_SYSCTL 1503 nr_unregister_sysctl(); 1504 #endif 1505 1506 ax25_linkfail_release(&nr_linkfail_notifier); 1507 ax25_protocol_release(AX25_P_NETROM); 1508 1509 unregister_netdevice_notifier(&nr_dev_notifier); 1510 1511 sock_unregister(PF_NETROM); 1512 1513 for (i = 0; i < nr_ndevs; i++) { 1514 struct net_device *dev = dev_nr[i]; 1515 if (dev) { 1516 unregister_netdev(dev); 1517 free_netdev(dev); 1518 } 1519 } 1520 1521 kfree(dev_nr); 1522 proto_unregister(&nr_proto); 1523 } 1524 module_exit(nr_exit); 1525