xref: /openbmc/linux/net/netrom/af_netrom.c (revision b5265c81)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Copyright Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
5  * Copyright Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
6  * Copyright Darryl Miles G7LED (dlm@g7led.demon.co.uk)
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/capability.h>
11 #include <linux/errno.h>
12 #include <linux/types.h>
13 #include <linux/socket.h>
14 #include <linux/in.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/sched/signal.h>
18 #include <linux/timer.h>
19 #include <linux/string.h>
20 #include <linux/sockios.h>
21 #include <linux/net.h>
22 #include <linux/stat.h>
23 #include <net/ax25.h>
24 #include <linux/inet.h>
25 #include <linux/netdevice.h>
26 #include <linux/if_arp.h>
27 #include <linux/skbuff.h>
28 #include <net/net_namespace.h>
29 #include <net/sock.h>
30 #include <linux/uaccess.h>
31 #include <linux/fcntl.h>
32 #include <linux/termios.h>	/* For TIOCINQ/OUTQ */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/notifier.h>
36 #include <net/netrom.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <net/ip.h>
40 #include <net/tcp_states.h>
41 #include <net/arp.h>
42 #include <linux/init.h>
43 
44 static int nr_ndevs = 4;
45 
46 int sysctl_netrom_default_path_quality            = NR_DEFAULT_QUAL;
47 int sysctl_netrom_obsolescence_count_initialiser  = NR_DEFAULT_OBS;
48 int sysctl_netrom_network_ttl_initialiser         = NR_DEFAULT_TTL;
49 int sysctl_netrom_transport_timeout               = NR_DEFAULT_T1;
50 int sysctl_netrom_transport_maximum_tries         = NR_DEFAULT_N2;
51 int sysctl_netrom_transport_acknowledge_delay     = NR_DEFAULT_T2;
52 int sysctl_netrom_transport_busy_delay            = NR_DEFAULT_T4;
53 int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW;
54 int sysctl_netrom_transport_no_activity_timeout   = NR_DEFAULT_IDLE;
55 int sysctl_netrom_routing_control                 = NR_DEFAULT_ROUTING;
56 int sysctl_netrom_link_fails_count                = NR_DEFAULT_FAILS;
57 int sysctl_netrom_reset_circuit                   = NR_DEFAULT_RESET;
58 
59 static unsigned short circuit = 0x101;
60 
61 static HLIST_HEAD(nr_list);
62 static DEFINE_SPINLOCK(nr_list_lock);
63 
64 static const struct proto_ops nr_proto_ops;
65 
66 /*
67  * NETROM network devices are virtual network devices encapsulating NETROM
68  * frames into AX.25 which will be sent through an AX.25 device, so form a
69  * special "super class" of normal net devices; split their locks off into a
70  * separate class since they always nest.
71  */
72 static struct lock_class_key nr_netdev_xmit_lock_key;
73 
74 static void nr_set_lockdep_one(struct net_device *dev,
75 			       struct netdev_queue *txq,
76 			       void *_unused)
77 {
78 	lockdep_set_class(&txq->_xmit_lock, &nr_netdev_xmit_lock_key);
79 }
80 
81 static void nr_set_lockdep_key(struct net_device *dev)
82 {
83 	netdev_for_each_tx_queue(dev, nr_set_lockdep_one, NULL);
84 }
85 
86 /*
87  *	Socket removal during an interrupt is now safe.
88  */
89 static void nr_remove_socket(struct sock *sk)
90 {
91 	spin_lock_bh(&nr_list_lock);
92 	sk_del_node_init(sk);
93 	spin_unlock_bh(&nr_list_lock);
94 }
95 
96 /*
97  *	Kill all bound sockets on a dropped device.
98  */
99 static void nr_kill_by_device(struct net_device *dev)
100 {
101 	struct sock *s;
102 
103 	spin_lock_bh(&nr_list_lock);
104 	sk_for_each(s, &nr_list)
105 		if (nr_sk(s)->device == dev)
106 			nr_disconnect(s, ENETUNREACH);
107 	spin_unlock_bh(&nr_list_lock);
108 }
109 
110 /*
111  *	Handle device status changes.
112  */
113 static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
114 {
115 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
116 
117 	if (!net_eq(dev_net(dev), &init_net))
118 		return NOTIFY_DONE;
119 
120 	if (event != NETDEV_DOWN)
121 		return NOTIFY_DONE;
122 
123 	nr_kill_by_device(dev);
124 	nr_rt_device_down(dev);
125 
126 	return NOTIFY_DONE;
127 }
128 
129 /*
130  *	Add a socket to the bound sockets list.
131  */
132 static void nr_insert_socket(struct sock *sk)
133 {
134 	spin_lock_bh(&nr_list_lock);
135 	sk_add_node(sk, &nr_list);
136 	spin_unlock_bh(&nr_list_lock);
137 }
138 
139 /*
140  *	Find a socket that wants to accept the Connect Request we just
141  *	received.
142  */
143 static struct sock *nr_find_listener(ax25_address *addr)
144 {
145 	struct sock *s;
146 
147 	spin_lock_bh(&nr_list_lock);
148 	sk_for_each(s, &nr_list)
149 		if (!ax25cmp(&nr_sk(s)->source_addr, addr) &&
150 		    s->sk_state == TCP_LISTEN) {
151 			sock_hold(s);
152 			goto found;
153 		}
154 	s = NULL;
155 found:
156 	spin_unlock_bh(&nr_list_lock);
157 	return s;
158 }
159 
160 /*
161  *	Find a connected NET/ROM socket given my circuit IDs.
162  */
163 static struct sock *nr_find_socket(unsigned char index, unsigned char id)
164 {
165 	struct sock *s;
166 
167 	spin_lock_bh(&nr_list_lock);
168 	sk_for_each(s, &nr_list) {
169 		struct nr_sock *nr = nr_sk(s);
170 
171 		if (nr->my_index == index && nr->my_id == id) {
172 			sock_hold(s);
173 			goto found;
174 		}
175 	}
176 	s = NULL;
177 found:
178 	spin_unlock_bh(&nr_list_lock);
179 	return s;
180 }
181 
182 /*
183  *	Find a connected NET/ROM socket given their circuit IDs.
184  */
185 static struct sock *nr_find_peer(unsigned char index, unsigned char id,
186 	ax25_address *dest)
187 {
188 	struct sock *s;
189 
190 	spin_lock_bh(&nr_list_lock);
191 	sk_for_each(s, &nr_list) {
192 		struct nr_sock *nr = nr_sk(s);
193 
194 		if (nr->your_index == index && nr->your_id == id &&
195 		    !ax25cmp(&nr->dest_addr, dest)) {
196 			sock_hold(s);
197 			goto found;
198 		}
199 	}
200 	s = NULL;
201 found:
202 	spin_unlock_bh(&nr_list_lock);
203 	return s;
204 }
205 
206 /*
207  *	Find next free circuit ID.
208  */
209 static unsigned short nr_find_next_circuit(void)
210 {
211 	unsigned short id = circuit;
212 	unsigned char i, j;
213 	struct sock *sk;
214 
215 	for (;;) {
216 		i = id / 256;
217 		j = id % 256;
218 
219 		if (i != 0 && j != 0) {
220 			if ((sk=nr_find_socket(i, j)) == NULL)
221 				break;
222 			sock_put(sk);
223 		}
224 
225 		id++;
226 	}
227 
228 	return id;
229 }
230 
231 /*
232  *	Deferred destroy.
233  */
234 void nr_destroy_socket(struct sock *);
235 
236 /*
237  *	Handler for deferred kills.
238  */
239 static void nr_destroy_timer(struct timer_list *t)
240 {
241 	struct sock *sk = from_timer(sk, t, sk_timer);
242 	bh_lock_sock(sk);
243 	sock_hold(sk);
244 	nr_destroy_socket(sk);
245 	bh_unlock_sock(sk);
246 	sock_put(sk);
247 }
248 
249 /*
250  *	This is called from user mode and the timers. Thus it protects itself
251  *	against interrupt users but doesn't worry about being called during
252  *	work. Once it is removed from the queue no interrupt or bottom half
253  *	will touch it and we are (fairly 8-) ) safe.
254  */
255 void nr_destroy_socket(struct sock *sk)
256 {
257 	struct sk_buff *skb;
258 
259 	nr_remove_socket(sk);
260 
261 	nr_stop_heartbeat(sk);
262 	nr_stop_t1timer(sk);
263 	nr_stop_t2timer(sk);
264 	nr_stop_t4timer(sk);
265 	nr_stop_idletimer(sk);
266 
267 	nr_clear_queues(sk);		/* Flush the queues */
268 
269 	while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
270 		if (skb->sk != sk) { /* A pending connection */
271 			/* Queue the unaccepted socket for death */
272 			sock_set_flag(skb->sk, SOCK_DEAD);
273 			nr_start_heartbeat(skb->sk);
274 			nr_sk(skb->sk)->state = NR_STATE_0;
275 		}
276 
277 		kfree_skb(skb);
278 	}
279 
280 	if (sk_has_allocations(sk)) {
281 		/* Defer: outstanding buffers */
282 		sk->sk_timer.function = nr_destroy_timer;
283 		sk->sk_timer.expires  = jiffies + 2 * HZ;
284 		add_timer(&sk->sk_timer);
285 	} else
286 		sock_put(sk);
287 }
288 
289 /*
290  *	Handling for system calls applied via the various interfaces to a
291  *	NET/ROM socket object.
292  */
293 
294 static int nr_setsockopt(struct socket *sock, int level, int optname,
295 	char __user *optval, unsigned int optlen)
296 {
297 	struct sock *sk = sock->sk;
298 	struct nr_sock *nr = nr_sk(sk);
299 	unsigned long opt;
300 
301 	if (level != SOL_NETROM)
302 		return -ENOPROTOOPT;
303 
304 	if (optlen < sizeof(unsigned int))
305 		return -EINVAL;
306 
307 	if (get_user(opt, (unsigned int __user *)optval))
308 		return -EFAULT;
309 
310 	switch (optname) {
311 	case NETROM_T1:
312 		if (opt < 1 || opt > ULONG_MAX / HZ)
313 			return -EINVAL;
314 		nr->t1 = opt * HZ;
315 		return 0;
316 
317 	case NETROM_T2:
318 		if (opt < 1 || opt > ULONG_MAX / HZ)
319 			return -EINVAL;
320 		nr->t2 = opt * HZ;
321 		return 0;
322 
323 	case NETROM_N2:
324 		if (opt < 1 || opt > 31)
325 			return -EINVAL;
326 		nr->n2 = opt;
327 		return 0;
328 
329 	case NETROM_T4:
330 		if (opt < 1 || opt > ULONG_MAX / HZ)
331 			return -EINVAL;
332 		nr->t4 = opt * HZ;
333 		return 0;
334 
335 	case NETROM_IDLE:
336 		if (opt > ULONG_MAX / (60 * HZ))
337 			return -EINVAL;
338 		nr->idle = opt * 60 * HZ;
339 		return 0;
340 
341 	default:
342 		return -ENOPROTOOPT;
343 	}
344 }
345 
346 static int nr_getsockopt(struct socket *sock, int level, int optname,
347 	char __user *optval, int __user *optlen)
348 {
349 	struct sock *sk = sock->sk;
350 	struct nr_sock *nr = nr_sk(sk);
351 	int val = 0;
352 	int len;
353 
354 	if (level != SOL_NETROM)
355 		return -ENOPROTOOPT;
356 
357 	if (get_user(len, optlen))
358 		return -EFAULT;
359 
360 	if (len < 0)
361 		return -EINVAL;
362 
363 	switch (optname) {
364 	case NETROM_T1:
365 		val = nr->t1 / HZ;
366 		break;
367 
368 	case NETROM_T2:
369 		val = nr->t2 / HZ;
370 		break;
371 
372 	case NETROM_N2:
373 		val = nr->n2;
374 		break;
375 
376 	case NETROM_T4:
377 		val = nr->t4 / HZ;
378 		break;
379 
380 	case NETROM_IDLE:
381 		val = nr->idle / (60 * HZ);
382 		break;
383 
384 	default:
385 		return -ENOPROTOOPT;
386 	}
387 
388 	len = min_t(unsigned int, len, sizeof(int));
389 
390 	if (put_user(len, optlen))
391 		return -EFAULT;
392 
393 	return copy_to_user(optval, &val, len) ? -EFAULT : 0;
394 }
395 
396 static int nr_listen(struct socket *sock, int backlog)
397 {
398 	struct sock *sk = sock->sk;
399 
400 	lock_sock(sk);
401 	if (sk->sk_state != TCP_LISTEN) {
402 		memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN);
403 		sk->sk_max_ack_backlog = backlog;
404 		sk->sk_state           = TCP_LISTEN;
405 		release_sock(sk);
406 		return 0;
407 	}
408 	release_sock(sk);
409 
410 	return -EOPNOTSUPP;
411 }
412 
413 static struct proto nr_proto = {
414 	.name	  = "NETROM",
415 	.owner	  = THIS_MODULE,
416 	.obj_size = sizeof(struct nr_sock),
417 };
418 
419 static int nr_create(struct net *net, struct socket *sock, int protocol,
420 		     int kern)
421 {
422 	struct sock *sk;
423 	struct nr_sock *nr;
424 
425 	if (!net_eq(net, &init_net))
426 		return -EAFNOSUPPORT;
427 
428 	if (sock->type != SOCK_SEQPACKET || protocol != 0)
429 		return -ESOCKTNOSUPPORT;
430 
431 	sk = sk_alloc(net, PF_NETROM, GFP_ATOMIC, &nr_proto, kern);
432 	if (sk  == NULL)
433 		return -ENOMEM;
434 
435 	nr = nr_sk(sk);
436 
437 	sock_init_data(sock, sk);
438 
439 	sock->ops    = &nr_proto_ops;
440 	sk->sk_protocol = protocol;
441 
442 	skb_queue_head_init(&nr->ack_queue);
443 	skb_queue_head_init(&nr->reseq_queue);
444 	skb_queue_head_init(&nr->frag_queue);
445 
446 	nr_init_timers(sk);
447 
448 	nr->t1     =
449 		msecs_to_jiffies(sysctl_netrom_transport_timeout);
450 	nr->t2     =
451 		msecs_to_jiffies(sysctl_netrom_transport_acknowledge_delay);
452 	nr->n2     =
453 		msecs_to_jiffies(sysctl_netrom_transport_maximum_tries);
454 	nr->t4     =
455 		msecs_to_jiffies(sysctl_netrom_transport_busy_delay);
456 	nr->idle   =
457 		msecs_to_jiffies(sysctl_netrom_transport_no_activity_timeout);
458 	nr->window = sysctl_netrom_transport_requested_window_size;
459 
460 	nr->bpqext = 1;
461 	nr->state  = NR_STATE_0;
462 
463 	return 0;
464 }
465 
466 static struct sock *nr_make_new(struct sock *osk)
467 {
468 	struct sock *sk;
469 	struct nr_sock *nr, *onr;
470 
471 	if (osk->sk_type != SOCK_SEQPACKET)
472 		return NULL;
473 
474 	sk = sk_alloc(sock_net(osk), PF_NETROM, GFP_ATOMIC, osk->sk_prot, 0);
475 	if (sk == NULL)
476 		return NULL;
477 
478 	nr = nr_sk(sk);
479 
480 	sock_init_data(NULL, sk);
481 
482 	sk->sk_type     = osk->sk_type;
483 	sk->sk_priority = osk->sk_priority;
484 	sk->sk_protocol = osk->sk_protocol;
485 	sk->sk_rcvbuf   = osk->sk_rcvbuf;
486 	sk->sk_sndbuf   = osk->sk_sndbuf;
487 	sk->sk_state    = TCP_ESTABLISHED;
488 	sock_copy_flags(sk, osk);
489 
490 	skb_queue_head_init(&nr->ack_queue);
491 	skb_queue_head_init(&nr->reseq_queue);
492 	skb_queue_head_init(&nr->frag_queue);
493 
494 	nr_init_timers(sk);
495 
496 	onr = nr_sk(osk);
497 
498 	nr->t1      = onr->t1;
499 	nr->t2      = onr->t2;
500 	nr->n2      = onr->n2;
501 	nr->t4      = onr->t4;
502 	nr->idle    = onr->idle;
503 	nr->window  = onr->window;
504 
505 	nr->device  = onr->device;
506 	nr->bpqext  = onr->bpqext;
507 
508 	return sk;
509 }
510 
511 static int nr_release(struct socket *sock)
512 {
513 	struct sock *sk = sock->sk;
514 	struct nr_sock *nr;
515 
516 	if (sk == NULL) return 0;
517 
518 	sock_hold(sk);
519 	sock_orphan(sk);
520 	lock_sock(sk);
521 	nr = nr_sk(sk);
522 
523 	switch (nr->state) {
524 	case NR_STATE_0:
525 	case NR_STATE_1:
526 	case NR_STATE_2:
527 		nr_disconnect(sk, 0);
528 		nr_destroy_socket(sk);
529 		break;
530 
531 	case NR_STATE_3:
532 		nr_clear_queues(sk);
533 		nr->n2count = 0;
534 		nr_write_internal(sk, NR_DISCREQ);
535 		nr_start_t1timer(sk);
536 		nr_stop_t2timer(sk);
537 		nr_stop_t4timer(sk);
538 		nr_stop_idletimer(sk);
539 		nr->state    = NR_STATE_2;
540 		sk->sk_state    = TCP_CLOSE;
541 		sk->sk_shutdown |= SEND_SHUTDOWN;
542 		sk->sk_state_change(sk);
543 		sock_set_flag(sk, SOCK_DESTROY);
544 		break;
545 
546 	default:
547 		break;
548 	}
549 
550 	sock->sk   = NULL;
551 	release_sock(sk);
552 	sock_put(sk);
553 
554 	return 0;
555 }
556 
557 static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
558 {
559 	struct sock *sk = sock->sk;
560 	struct nr_sock *nr = nr_sk(sk);
561 	struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr;
562 	struct net_device *dev;
563 	ax25_uid_assoc *user;
564 	ax25_address *source;
565 
566 	lock_sock(sk);
567 	if (!sock_flag(sk, SOCK_ZAPPED)) {
568 		release_sock(sk);
569 		return -EINVAL;
570 	}
571 	if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) {
572 		release_sock(sk);
573 		return -EINVAL;
574 	}
575 	if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) {
576 		release_sock(sk);
577 		return -EINVAL;
578 	}
579 	if (addr->fsa_ax25.sax25_family != AF_NETROM) {
580 		release_sock(sk);
581 		return -EINVAL;
582 	}
583 	if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) {
584 		release_sock(sk);
585 		return -EADDRNOTAVAIL;
586 	}
587 
588 	/*
589 	 * Only the super user can set an arbitrary user callsign.
590 	 */
591 	if (addr->fsa_ax25.sax25_ndigis == 1) {
592 		if (!capable(CAP_NET_BIND_SERVICE)) {
593 			dev_put(dev);
594 			release_sock(sk);
595 			return -EPERM;
596 		}
597 		nr->user_addr   = addr->fsa_digipeater[0];
598 		nr->source_addr = addr->fsa_ax25.sax25_call;
599 	} else {
600 		source = &addr->fsa_ax25.sax25_call;
601 
602 		user = ax25_findbyuid(current_euid());
603 		if (user) {
604 			nr->user_addr   = user->call;
605 			ax25_uid_put(user);
606 		} else {
607 			if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) {
608 				release_sock(sk);
609 				dev_put(dev);
610 				return -EPERM;
611 			}
612 			nr->user_addr   = *source;
613 		}
614 
615 		nr->source_addr = *source;
616 	}
617 
618 	nr->device = dev;
619 	nr_insert_socket(sk);
620 
621 	sock_reset_flag(sk, SOCK_ZAPPED);
622 	dev_put(dev);
623 	release_sock(sk);
624 
625 	return 0;
626 }
627 
628 static int nr_connect(struct socket *sock, struct sockaddr *uaddr,
629 	int addr_len, int flags)
630 {
631 	struct sock *sk = sock->sk;
632 	struct nr_sock *nr = nr_sk(sk);
633 	struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr;
634 	ax25_address *source = NULL;
635 	ax25_uid_assoc *user;
636 	struct net_device *dev;
637 	int err = 0;
638 
639 	lock_sock(sk);
640 	if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
641 		sock->state = SS_CONNECTED;
642 		goto out_release;	/* Connect completed during a ERESTARTSYS event */
643 	}
644 
645 	if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
646 		sock->state = SS_UNCONNECTED;
647 		err = -ECONNREFUSED;
648 		goto out_release;
649 	}
650 
651 	if (sk->sk_state == TCP_ESTABLISHED) {
652 		err = -EISCONN;	/* No reconnect on a seqpacket socket */
653 		goto out_release;
654 	}
655 
656 	sk->sk_state   = TCP_CLOSE;
657 	sock->state = SS_UNCONNECTED;
658 
659 	if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) {
660 		err = -EINVAL;
661 		goto out_release;
662 	}
663 	if (addr->sax25_family != AF_NETROM) {
664 		err = -EINVAL;
665 		goto out_release;
666 	}
667 	if (sock_flag(sk, SOCK_ZAPPED)) {	/* Must bind first - autobinding in this may or may not work */
668 		sock_reset_flag(sk, SOCK_ZAPPED);
669 
670 		if ((dev = nr_dev_first()) == NULL) {
671 			err = -ENETUNREACH;
672 			goto out_release;
673 		}
674 		source = (ax25_address *)dev->dev_addr;
675 
676 		user = ax25_findbyuid(current_euid());
677 		if (user) {
678 			nr->user_addr   = user->call;
679 			ax25_uid_put(user);
680 		} else {
681 			if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) {
682 				dev_put(dev);
683 				err = -EPERM;
684 				goto out_release;
685 			}
686 			nr->user_addr   = *source;
687 		}
688 
689 		nr->source_addr = *source;
690 		nr->device      = dev;
691 
692 		dev_put(dev);
693 		nr_insert_socket(sk);		/* Finish the bind */
694 	}
695 
696 	nr->dest_addr = addr->sax25_call;
697 
698 	release_sock(sk);
699 	circuit = nr_find_next_circuit();
700 	lock_sock(sk);
701 
702 	nr->my_index = circuit / 256;
703 	nr->my_id    = circuit % 256;
704 
705 	circuit++;
706 
707 	/* Move to connecting socket, start sending Connect Requests */
708 	sock->state  = SS_CONNECTING;
709 	sk->sk_state = TCP_SYN_SENT;
710 
711 	nr_establish_data_link(sk);
712 
713 	nr->state = NR_STATE_1;
714 
715 	nr_start_heartbeat(sk);
716 
717 	/* Now the loop */
718 	if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
719 		err = -EINPROGRESS;
720 		goto out_release;
721 	}
722 
723 	/*
724 	 * A Connect Ack with Choke or timeout or failed routing will go to
725 	 * closed.
726 	 */
727 	if (sk->sk_state == TCP_SYN_SENT) {
728 		DEFINE_WAIT(wait);
729 
730 		for (;;) {
731 			prepare_to_wait(sk_sleep(sk), &wait,
732 					TASK_INTERRUPTIBLE);
733 			if (sk->sk_state != TCP_SYN_SENT)
734 				break;
735 			if (!signal_pending(current)) {
736 				release_sock(sk);
737 				schedule();
738 				lock_sock(sk);
739 				continue;
740 			}
741 			err = -ERESTARTSYS;
742 			break;
743 		}
744 		finish_wait(sk_sleep(sk), &wait);
745 		if (err)
746 			goto out_release;
747 	}
748 
749 	if (sk->sk_state != TCP_ESTABLISHED) {
750 		sock->state = SS_UNCONNECTED;
751 		err = sock_error(sk);	/* Always set at this point */
752 		goto out_release;
753 	}
754 
755 	sock->state = SS_CONNECTED;
756 
757 out_release:
758 	release_sock(sk);
759 
760 	return err;
761 }
762 
763 static int nr_accept(struct socket *sock, struct socket *newsock, int flags,
764 		     bool kern)
765 {
766 	struct sk_buff *skb;
767 	struct sock *newsk;
768 	DEFINE_WAIT(wait);
769 	struct sock *sk;
770 	int err = 0;
771 
772 	if ((sk = sock->sk) == NULL)
773 		return -EINVAL;
774 
775 	lock_sock(sk);
776 	if (sk->sk_type != SOCK_SEQPACKET) {
777 		err = -EOPNOTSUPP;
778 		goto out_release;
779 	}
780 
781 	if (sk->sk_state != TCP_LISTEN) {
782 		err = -EINVAL;
783 		goto out_release;
784 	}
785 
786 	/*
787 	 *	The write queue this time is holding sockets ready to use
788 	 *	hooked into the SABM we saved
789 	 */
790 	for (;;) {
791 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
792 		skb = skb_dequeue(&sk->sk_receive_queue);
793 		if (skb)
794 			break;
795 
796 		if (flags & O_NONBLOCK) {
797 			err = -EWOULDBLOCK;
798 			break;
799 		}
800 		if (!signal_pending(current)) {
801 			release_sock(sk);
802 			schedule();
803 			lock_sock(sk);
804 			continue;
805 		}
806 		err = -ERESTARTSYS;
807 		break;
808 	}
809 	finish_wait(sk_sleep(sk), &wait);
810 	if (err)
811 		goto out_release;
812 
813 	newsk = skb->sk;
814 	sock_graft(newsk, newsock);
815 
816 	/* Now attach up the new socket */
817 	kfree_skb(skb);
818 	sk_acceptq_removed(sk);
819 
820 out_release:
821 	release_sock(sk);
822 
823 	return err;
824 }
825 
826 static int nr_getname(struct socket *sock, struct sockaddr *uaddr,
827 	int peer)
828 {
829 	struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr;
830 	struct sock *sk = sock->sk;
831 	struct nr_sock *nr = nr_sk(sk);
832 	int uaddr_len;
833 
834 	memset(&sax->fsa_ax25, 0, sizeof(struct sockaddr_ax25));
835 
836 	lock_sock(sk);
837 	if (peer != 0) {
838 		if (sk->sk_state != TCP_ESTABLISHED) {
839 			release_sock(sk);
840 			return -ENOTCONN;
841 		}
842 		sax->fsa_ax25.sax25_family = AF_NETROM;
843 		sax->fsa_ax25.sax25_ndigis = 1;
844 		sax->fsa_ax25.sax25_call   = nr->user_addr;
845 		memset(sax->fsa_digipeater, 0, sizeof(sax->fsa_digipeater));
846 		sax->fsa_digipeater[0]     = nr->dest_addr;
847 		uaddr_len = sizeof(struct full_sockaddr_ax25);
848 	} else {
849 		sax->fsa_ax25.sax25_family = AF_NETROM;
850 		sax->fsa_ax25.sax25_ndigis = 0;
851 		sax->fsa_ax25.sax25_call   = nr->source_addr;
852 		uaddr_len = sizeof(struct sockaddr_ax25);
853 	}
854 	release_sock(sk);
855 
856 	return uaddr_len;
857 }
858 
859 int nr_rx_frame(struct sk_buff *skb, struct net_device *dev)
860 {
861 	struct sock *sk;
862 	struct sock *make;
863 	struct nr_sock *nr_make;
864 	ax25_address *src, *dest, *user;
865 	unsigned short circuit_index, circuit_id;
866 	unsigned short peer_circuit_index, peer_circuit_id;
867 	unsigned short frametype, flags, window, timeout;
868 	int ret;
869 
870 	skb_orphan(skb);
871 
872 	/*
873 	 *	skb->data points to the netrom frame start
874 	 */
875 
876 	src  = (ax25_address *)(skb->data + 0);
877 	dest = (ax25_address *)(skb->data + 7);
878 
879 	circuit_index      = skb->data[15];
880 	circuit_id         = skb->data[16];
881 	peer_circuit_index = skb->data[17];
882 	peer_circuit_id    = skb->data[18];
883 	frametype          = skb->data[19] & 0x0F;
884 	flags              = skb->data[19] & 0xF0;
885 
886 	/*
887 	 * Check for an incoming IP over NET/ROM frame.
888 	 */
889 	if (frametype == NR_PROTOEXT &&
890 	    circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) {
891 		skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN);
892 		skb_reset_transport_header(skb);
893 
894 		return nr_rx_ip(skb, dev);
895 	}
896 
897 	/*
898 	 * Find an existing socket connection, based on circuit ID, if it's
899 	 * a Connect Request base it on their circuit ID.
900 	 *
901 	 * Circuit ID 0/0 is not valid but it could still be a "reset" for a
902 	 * circuit that no longer exists at the other end ...
903 	 */
904 
905 	sk = NULL;
906 
907 	if (circuit_index == 0 && circuit_id == 0) {
908 		if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG)
909 			sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src);
910 	} else {
911 		if (frametype == NR_CONNREQ)
912 			sk = nr_find_peer(circuit_index, circuit_id, src);
913 		else
914 			sk = nr_find_socket(circuit_index, circuit_id);
915 	}
916 
917 	if (sk != NULL) {
918 		bh_lock_sock(sk);
919 		skb_reset_transport_header(skb);
920 
921 		if (frametype == NR_CONNACK && skb->len == 22)
922 			nr_sk(sk)->bpqext = 1;
923 		else
924 			nr_sk(sk)->bpqext = 0;
925 
926 		ret = nr_process_rx_frame(sk, skb);
927 		bh_unlock_sock(sk);
928 		sock_put(sk);
929 		return ret;
930 	}
931 
932 	/*
933 	 * Now it should be a CONNREQ.
934 	 */
935 	if (frametype != NR_CONNREQ) {
936 		/*
937 		 * Here it would be nice to be able to send a reset but
938 		 * NET/ROM doesn't have one.  We've tried to extend the protocol
939 		 * by sending NR_CONNACK | NR_CHOKE_FLAGS replies but that
940 		 * apparently kills BPQ boxes... :-(
941 		 * So now we try to follow the established behaviour of
942 		 * G8PZT's Xrouter which is sending packets with command type 7
943 		 * as an extension of the protocol.
944 		 */
945 		if (sysctl_netrom_reset_circuit &&
946 		    (frametype != NR_RESET || flags != 0))
947 			nr_transmit_reset(skb, 1);
948 
949 		return 0;
950 	}
951 
952 	sk = nr_find_listener(dest);
953 
954 	user = (ax25_address *)(skb->data + 21);
955 
956 	if (sk == NULL || sk_acceptq_is_full(sk) ||
957 	    (make = nr_make_new(sk)) == NULL) {
958 		nr_transmit_refusal(skb, 0);
959 		if (sk)
960 			sock_put(sk);
961 		return 0;
962 	}
963 
964 	bh_lock_sock(sk);
965 
966 	window = skb->data[20];
967 
968 	sock_hold(make);
969 	skb->sk             = make;
970 	skb->destructor     = sock_efree;
971 	make->sk_state	    = TCP_ESTABLISHED;
972 
973 	/* Fill in his circuit details */
974 	nr_make = nr_sk(make);
975 	nr_make->source_addr = *dest;
976 	nr_make->dest_addr   = *src;
977 	nr_make->user_addr   = *user;
978 
979 	nr_make->your_index  = circuit_index;
980 	nr_make->your_id     = circuit_id;
981 
982 	bh_unlock_sock(sk);
983 	circuit = nr_find_next_circuit();
984 	bh_lock_sock(sk);
985 
986 	nr_make->my_index    = circuit / 256;
987 	nr_make->my_id       = circuit % 256;
988 
989 	circuit++;
990 
991 	/* Window negotiation */
992 	if (window < nr_make->window)
993 		nr_make->window = window;
994 
995 	/* L4 timeout negotiation */
996 	if (skb->len == 37) {
997 		timeout = skb->data[36] * 256 + skb->data[35];
998 		if (timeout * HZ < nr_make->t1)
999 			nr_make->t1 = timeout * HZ;
1000 		nr_make->bpqext = 1;
1001 	} else {
1002 		nr_make->bpqext = 0;
1003 	}
1004 
1005 	nr_write_internal(make, NR_CONNACK);
1006 
1007 	nr_make->condition = 0x00;
1008 	nr_make->vs        = 0;
1009 	nr_make->va        = 0;
1010 	nr_make->vr        = 0;
1011 	nr_make->vl        = 0;
1012 	nr_make->state     = NR_STATE_3;
1013 	sk_acceptq_added(sk);
1014 	skb_queue_head(&sk->sk_receive_queue, skb);
1015 
1016 	if (!sock_flag(sk, SOCK_DEAD))
1017 		sk->sk_data_ready(sk);
1018 
1019 	bh_unlock_sock(sk);
1020 	sock_put(sk);
1021 
1022 	nr_insert_socket(make);
1023 
1024 	nr_start_heartbeat(make);
1025 	nr_start_idletimer(make);
1026 
1027 	return 1;
1028 }
1029 
1030 static int nr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
1031 {
1032 	struct sock *sk = sock->sk;
1033 	struct nr_sock *nr = nr_sk(sk);
1034 	DECLARE_SOCKADDR(struct sockaddr_ax25 *, usax, msg->msg_name);
1035 	int err;
1036 	struct sockaddr_ax25 sax;
1037 	struct sk_buff *skb;
1038 	unsigned char *asmptr;
1039 	int size;
1040 
1041 	if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1042 		return -EINVAL;
1043 
1044 	lock_sock(sk);
1045 	if (sock_flag(sk, SOCK_ZAPPED)) {
1046 		err = -EADDRNOTAVAIL;
1047 		goto out;
1048 	}
1049 
1050 	if (sk->sk_shutdown & SEND_SHUTDOWN) {
1051 		send_sig(SIGPIPE, current, 0);
1052 		err = -EPIPE;
1053 		goto out;
1054 	}
1055 
1056 	if (nr->device == NULL) {
1057 		err = -ENETUNREACH;
1058 		goto out;
1059 	}
1060 
1061 	if (usax) {
1062 		if (msg->msg_namelen < sizeof(sax)) {
1063 			err = -EINVAL;
1064 			goto out;
1065 		}
1066 		sax = *usax;
1067 		if (ax25cmp(&nr->dest_addr, &sax.sax25_call) != 0) {
1068 			err = -EISCONN;
1069 			goto out;
1070 		}
1071 		if (sax.sax25_family != AF_NETROM) {
1072 			err = -EINVAL;
1073 			goto out;
1074 		}
1075 	} else {
1076 		if (sk->sk_state != TCP_ESTABLISHED) {
1077 			err = -ENOTCONN;
1078 			goto out;
1079 		}
1080 		sax.sax25_family = AF_NETROM;
1081 		sax.sax25_call   = nr->dest_addr;
1082 	}
1083 
1084 	/* Build a packet - the conventional user limit is 236 bytes. We can
1085 	   do ludicrously large NetROM frames but must not overflow */
1086 	if (len > 65536) {
1087 		err = -EMSGSIZE;
1088 		goto out;
1089 	}
1090 
1091 	size = len + NR_NETWORK_LEN + NR_TRANSPORT_LEN;
1092 
1093 	if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
1094 		goto out;
1095 
1096 	skb_reserve(skb, size - len);
1097 	skb_reset_transport_header(skb);
1098 
1099 	/*
1100 	 *	Push down the NET/ROM header
1101 	 */
1102 
1103 	asmptr = skb_push(skb, NR_TRANSPORT_LEN);
1104 
1105 	/* Build a NET/ROM Transport header */
1106 
1107 	*asmptr++ = nr->your_index;
1108 	*asmptr++ = nr->your_id;
1109 	*asmptr++ = 0;		/* To be filled in later */
1110 	*asmptr++ = 0;		/*      Ditto            */
1111 	*asmptr++ = NR_INFO;
1112 
1113 	/*
1114 	 *	Put the data on the end
1115 	 */
1116 	skb_put(skb, len);
1117 
1118 	/* User data follows immediately after the NET/ROM transport header */
1119 	if (memcpy_from_msg(skb_transport_header(skb), msg, len)) {
1120 		kfree_skb(skb);
1121 		err = -EFAULT;
1122 		goto out;
1123 	}
1124 
1125 	if (sk->sk_state != TCP_ESTABLISHED) {
1126 		kfree_skb(skb);
1127 		err = -ENOTCONN;
1128 		goto out;
1129 	}
1130 
1131 	nr_output(sk, skb);	/* Shove it onto the queue */
1132 
1133 	err = len;
1134 out:
1135 	release_sock(sk);
1136 	return err;
1137 }
1138 
1139 static int nr_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1140 		      int flags)
1141 {
1142 	struct sock *sk = sock->sk;
1143 	DECLARE_SOCKADDR(struct sockaddr_ax25 *, sax, msg->msg_name);
1144 	size_t copied;
1145 	struct sk_buff *skb;
1146 	int er;
1147 
1148 	/*
1149 	 * This works for seqpacket too. The receiver has ordered the queue for
1150 	 * us! We do one quick check first though
1151 	 */
1152 
1153 	lock_sock(sk);
1154 	if (sk->sk_state != TCP_ESTABLISHED) {
1155 		release_sock(sk);
1156 		return -ENOTCONN;
1157 	}
1158 
1159 	/* Now we can treat all alike */
1160 	if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) {
1161 		release_sock(sk);
1162 		return er;
1163 	}
1164 
1165 	skb_reset_transport_header(skb);
1166 	copied     = skb->len;
1167 
1168 	if (copied > size) {
1169 		copied = size;
1170 		msg->msg_flags |= MSG_TRUNC;
1171 	}
1172 
1173 	er = skb_copy_datagram_msg(skb, 0, msg, copied);
1174 	if (er < 0) {
1175 		skb_free_datagram(sk, skb);
1176 		release_sock(sk);
1177 		return er;
1178 	}
1179 
1180 	if (sax != NULL) {
1181 		memset(sax, 0, sizeof(*sax));
1182 		sax->sax25_family = AF_NETROM;
1183 		skb_copy_from_linear_data_offset(skb, 7, sax->sax25_call.ax25_call,
1184 			      AX25_ADDR_LEN);
1185 		msg->msg_namelen = sizeof(*sax);
1186 	}
1187 
1188 	skb_free_datagram(sk, skb);
1189 
1190 	release_sock(sk);
1191 	return copied;
1192 }
1193 
1194 
1195 static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1196 {
1197 	struct sock *sk = sock->sk;
1198 	void __user *argp = (void __user *)arg;
1199 
1200 	switch (cmd) {
1201 	case TIOCOUTQ: {
1202 		long amount;
1203 
1204 		lock_sock(sk);
1205 		amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1206 		if (amount < 0)
1207 			amount = 0;
1208 		release_sock(sk);
1209 		return put_user(amount, (int __user *)argp);
1210 	}
1211 
1212 	case TIOCINQ: {
1213 		struct sk_buff *skb;
1214 		long amount = 0L;
1215 
1216 		lock_sock(sk);
1217 		/* These two are safe on a single CPU system as only user tasks fiddle here */
1218 		if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1219 			amount = skb->len;
1220 		release_sock(sk);
1221 		return put_user(amount, (int __user *)argp);
1222 	}
1223 
1224 	case SIOCGIFADDR:
1225 	case SIOCSIFADDR:
1226 	case SIOCGIFDSTADDR:
1227 	case SIOCSIFDSTADDR:
1228 	case SIOCGIFBRDADDR:
1229 	case SIOCSIFBRDADDR:
1230 	case SIOCGIFNETMASK:
1231 	case SIOCSIFNETMASK:
1232 	case SIOCGIFMETRIC:
1233 	case SIOCSIFMETRIC:
1234 		return -EINVAL;
1235 
1236 	case SIOCADDRT:
1237 	case SIOCDELRT:
1238 	case SIOCNRDECOBS:
1239 		if (!capable(CAP_NET_ADMIN))
1240 			return -EPERM;
1241 		return nr_rt_ioctl(cmd, argp);
1242 
1243 	default:
1244 		return -ENOIOCTLCMD;
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 #ifdef CONFIG_PROC_FS
1251 
1252 static void *nr_info_start(struct seq_file *seq, loff_t *pos)
1253 	__acquires(&nr_list_lock)
1254 {
1255 	spin_lock_bh(&nr_list_lock);
1256 	return seq_hlist_start_head(&nr_list, *pos);
1257 }
1258 
1259 static void *nr_info_next(struct seq_file *seq, void *v, loff_t *pos)
1260 {
1261 	return seq_hlist_next(v, &nr_list, pos);
1262 }
1263 
1264 static void nr_info_stop(struct seq_file *seq, void *v)
1265 	__releases(&nr_list_lock)
1266 {
1267 	spin_unlock_bh(&nr_list_lock);
1268 }
1269 
1270 static int nr_info_show(struct seq_file *seq, void *v)
1271 {
1272 	struct sock *s = sk_entry(v);
1273 	struct net_device *dev;
1274 	struct nr_sock *nr;
1275 	const char *devname;
1276 	char buf[11];
1277 
1278 	if (v == SEQ_START_TOKEN)
1279 		seq_puts(seq,
1280 "user_addr dest_node src_node  dev    my  your  st  vs  vr  va    t1     t2     t4      idle   n2  wnd Snd-Q Rcv-Q inode\n");
1281 
1282 	else {
1283 
1284 		bh_lock_sock(s);
1285 		nr = nr_sk(s);
1286 
1287 		if ((dev = nr->device) == NULL)
1288 			devname = "???";
1289 		else
1290 			devname = dev->name;
1291 
1292 		seq_printf(seq, "%-9s ", ax2asc(buf, &nr->user_addr));
1293 		seq_printf(seq, "%-9s ", ax2asc(buf, &nr->dest_addr));
1294 		seq_printf(seq,
1295 "%-9s %-3s  %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n",
1296 			ax2asc(buf, &nr->source_addr),
1297 			devname,
1298 			nr->my_index,
1299 			nr->my_id,
1300 			nr->your_index,
1301 			nr->your_id,
1302 			nr->state,
1303 			nr->vs,
1304 			nr->vr,
1305 			nr->va,
1306 			ax25_display_timer(&nr->t1timer) / HZ,
1307 			nr->t1 / HZ,
1308 			ax25_display_timer(&nr->t2timer) / HZ,
1309 			nr->t2 / HZ,
1310 			ax25_display_timer(&nr->t4timer) / HZ,
1311 			nr->t4 / HZ,
1312 			ax25_display_timer(&nr->idletimer) / (60 * HZ),
1313 			nr->idle / (60 * HZ),
1314 			nr->n2count,
1315 			nr->n2,
1316 			nr->window,
1317 			sk_wmem_alloc_get(s),
1318 			sk_rmem_alloc_get(s),
1319 			s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
1320 
1321 		bh_unlock_sock(s);
1322 	}
1323 	return 0;
1324 }
1325 
1326 static const struct seq_operations nr_info_seqops = {
1327 	.start = nr_info_start,
1328 	.next = nr_info_next,
1329 	.stop = nr_info_stop,
1330 	.show = nr_info_show,
1331 };
1332 #endif	/* CONFIG_PROC_FS */
1333 
1334 static const struct net_proto_family nr_family_ops = {
1335 	.family		=	PF_NETROM,
1336 	.create		=	nr_create,
1337 	.owner		=	THIS_MODULE,
1338 };
1339 
1340 static const struct proto_ops nr_proto_ops = {
1341 	.family		=	PF_NETROM,
1342 	.owner		=	THIS_MODULE,
1343 	.release	=	nr_release,
1344 	.bind		=	nr_bind,
1345 	.connect	=	nr_connect,
1346 	.socketpair	=	sock_no_socketpair,
1347 	.accept		=	nr_accept,
1348 	.getname	=	nr_getname,
1349 	.poll		=	datagram_poll,
1350 	.ioctl		=	nr_ioctl,
1351 	.gettstamp	=	sock_gettstamp,
1352 	.listen		=	nr_listen,
1353 	.shutdown	=	sock_no_shutdown,
1354 	.setsockopt	=	nr_setsockopt,
1355 	.getsockopt	=	nr_getsockopt,
1356 	.sendmsg	=	nr_sendmsg,
1357 	.recvmsg	=	nr_recvmsg,
1358 	.mmap		=	sock_no_mmap,
1359 	.sendpage	=	sock_no_sendpage,
1360 };
1361 
1362 static struct notifier_block nr_dev_notifier = {
1363 	.notifier_call	=	nr_device_event,
1364 };
1365 
1366 static struct net_device **dev_nr;
1367 
1368 static struct ax25_protocol nr_pid = {
1369 	.pid	= AX25_P_NETROM,
1370 	.func	= nr_route_frame
1371 };
1372 
1373 static struct ax25_linkfail nr_linkfail_notifier = {
1374 	.func	= nr_link_failed,
1375 };
1376 
1377 static int __init nr_proto_init(void)
1378 {
1379 	int i;
1380 	int rc = proto_register(&nr_proto, 0);
1381 
1382 	if (rc)
1383 		return rc;
1384 
1385 	if (nr_ndevs > 0x7fffffff/sizeof(struct net_device *)) {
1386 		pr_err("NET/ROM: %s - nr_ndevs parameter too large\n",
1387 		       __func__);
1388 		rc = -EINVAL;
1389 		goto unregister_proto;
1390 	}
1391 
1392 	dev_nr = kcalloc(nr_ndevs, sizeof(struct net_device *), GFP_KERNEL);
1393 	if (!dev_nr) {
1394 		pr_err("NET/ROM: %s - unable to allocate device array\n",
1395 		       __func__);
1396 		rc = -ENOMEM;
1397 		goto unregister_proto;
1398 	}
1399 
1400 	for (i = 0; i < nr_ndevs; i++) {
1401 		char name[IFNAMSIZ];
1402 		struct net_device *dev;
1403 
1404 		sprintf(name, "nr%d", i);
1405 		dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, nr_setup);
1406 		if (!dev) {
1407 			rc = -ENOMEM;
1408 			goto fail;
1409 		}
1410 
1411 		dev->base_addr = i;
1412 		rc = register_netdev(dev);
1413 		if (rc) {
1414 			free_netdev(dev);
1415 			goto fail;
1416 		}
1417 		nr_set_lockdep_key(dev);
1418 		dev_nr[i] = dev;
1419 	}
1420 
1421 	rc = sock_register(&nr_family_ops);
1422 	if (rc)
1423 		goto fail;
1424 
1425 	rc = register_netdevice_notifier(&nr_dev_notifier);
1426 	if (rc)
1427 		goto out_sock;
1428 
1429 	ax25_register_pid(&nr_pid);
1430 	ax25_linkfail_register(&nr_linkfail_notifier);
1431 
1432 #ifdef CONFIG_SYSCTL
1433 	rc = nr_register_sysctl();
1434 	if (rc)
1435 		goto out_sysctl;
1436 #endif
1437 
1438 	nr_loopback_init();
1439 
1440 	rc = -ENOMEM;
1441 	if (!proc_create_seq("nr", 0444, init_net.proc_net, &nr_info_seqops))
1442 		goto proc_remove1;
1443 	if (!proc_create_seq("nr_neigh", 0444, init_net.proc_net,
1444 			     &nr_neigh_seqops))
1445 		goto proc_remove2;
1446 	if (!proc_create_seq("nr_nodes", 0444, init_net.proc_net,
1447 			     &nr_node_seqops))
1448 		goto proc_remove3;
1449 
1450 	return 0;
1451 
1452 proc_remove3:
1453 	remove_proc_entry("nr_neigh", init_net.proc_net);
1454 proc_remove2:
1455 	remove_proc_entry("nr", init_net.proc_net);
1456 proc_remove1:
1457 
1458 	nr_loopback_clear();
1459 	nr_rt_free();
1460 
1461 #ifdef CONFIG_SYSCTL
1462 	nr_unregister_sysctl();
1463 out_sysctl:
1464 #endif
1465 	ax25_linkfail_release(&nr_linkfail_notifier);
1466 	ax25_protocol_release(AX25_P_NETROM);
1467 	unregister_netdevice_notifier(&nr_dev_notifier);
1468 out_sock:
1469 	sock_unregister(PF_NETROM);
1470 fail:
1471 	while (--i >= 0) {
1472 		unregister_netdev(dev_nr[i]);
1473 		free_netdev(dev_nr[i]);
1474 	}
1475 	kfree(dev_nr);
1476 unregister_proto:
1477 	proto_unregister(&nr_proto);
1478 	return rc;
1479 }
1480 
1481 module_init(nr_proto_init);
1482 
1483 module_param(nr_ndevs, int, 0);
1484 MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices");
1485 
1486 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
1487 MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol");
1488 MODULE_LICENSE("GPL");
1489 MODULE_ALIAS_NETPROTO(PF_NETROM);
1490 
1491 static void __exit nr_exit(void)
1492 {
1493 	int i;
1494 
1495 	remove_proc_entry("nr", init_net.proc_net);
1496 	remove_proc_entry("nr_neigh", init_net.proc_net);
1497 	remove_proc_entry("nr_nodes", init_net.proc_net);
1498 	nr_loopback_clear();
1499 
1500 	nr_rt_free();
1501 
1502 #ifdef CONFIG_SYSCTL
1503 	nr_unregister_sysctl();
1504 #endif
1505 
1506 	ax25_linkfail_release(&nr_linkfail_notifier);
1507 	ax25_protocol_release(AX25_P_NETROM);
1508 
1509 	unregister_netdevice_notifier(&nr_dev_notifier);
1510 
1511 	sock_unregister(PF_NETROM);
1512 
1513 	for (i = 0; i < nr_ndevs; i++) {
1514 		struct net_device *dev = dev_nr[i];
1515 		if (dev) {
1516 			unregister_netdev(dev);
1517 			free_netdev(dev);
1518 		}
1519 	}
1520 
1521 	kfree(dev_nr);
1522 	proto_unregister(&nr_proto);
1523 }
1524 module_exit(nr_exit);
1525