1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Copyright Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk) 5 * Copyright Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk) 6 * Copyright Darryl Miles G7LED (dlm@g7led.demon.co.uk) 7 */ 8 #include <linux/module.h> 9 #include <linux/moduleparam.h> 10 #include <linux/capability.h> 11 #include <linux/errno.h> 12 #include <linux/types.h> 13 #include <linux/socket.h> 14 #include <linux/in.h> 15 #include <linux/slab.h> 16 #include <linux/kernel.h> 17 #include <linux/sched/signal.h> 18 #include <linux/timer.h> 19 #include <linux/string.h> 20 #include <linux/sockios.h> 21 #include <linux/net.h> 22 #include <linux/stat.h> 23 #include <net/ax25.h> 24 #include <linux/inet.h> 25 #include <linux/netdevice.h> 26 #include <linux/if_arp.h> 27 #include <linux/skbuff.h> 28 #include <net/net_namespace.h> 29 #include <net/sock.h> 30 #include <linux/uaccess.h> 31 #include <linux/fcntl.h> 32 #include <linux/termios.h> /* For TIOCINQ/OUTQ */ 33 #include <linux/mm.h> 34 #include <linux/interrupt.h> 35 #include <linux/notifier.h> 36 #include <net/netrom.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <net/ip.h> 40 #include <net/tcp_states.h> 41 #include <net/arp.h> 42 #include <linux/init.h> 43 44 static int nr_ndevs = 4; 45 46 int sysctl_netrom_default_path_quality = NR_DEFAULT_QUAL; 47 int sysctl_netrom_obsolescence_count_initialiser = NR_DEFAULT_OBS; 48 int sysctl_netrom_network_ttl_initialiser = NR_DEFAULT_TTL; 49 int sysctl_netrom_transport_timeout = NR_DEFAULT_T1; 50 int sysctl_netrom_transport_maximum_tries = NR_DEFAULT_N2; 51 int sysctl_netrom_transport_acknowledge_delay = NR_DEFAULT_T2; 52 int sysctl_netrom_transport_busy_delay = NR_DEFAULT_T4; 53 int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW; 54 int sysctl_netrom_transport_no_activity_timeout = NR_DEFAULT_IDLE; 55 int sysctl_netrom_routing_control = NR_DEFAULT_ROUTING; 56 int sysctl_netrom_link_fails_count = NR_DEFAULT_FAILS; 57 int sysctl_netrom_reset_circuit = NR_DEFAULT_RESET; 58 59 static unsigned short circuit = 0x101; 60 61 static HLIST_HEAD(nr_list); 62 static DEFINE_SPINLOCK(nr_list_lock); 63 64 static const struct proto_ops nr_proto_ops; 65 66 /* 67 * NETROM network devices are virtual network devices encapsulating NETROM 68 * frames into AX.25 which will be sent through an AX.25 device, so form a 69 * special "super class" of normal net devices; split their locks off into a 70 * separate class since they always nest. 71 */ 72 static struct lock_class_key nr_netdev_xmit_lock_key; 73 static struct lock_class_key nr_netdev_addr_lock_key; 74 75 static void nr_set_lockdep_one(struct net_device *dev, 76 struct netdev_queue *txq, 77 void *_unused) 78 { 79 lockdep_set_class(&txq->_xmit_lock, &nr_netdev_xmit_lock_key); 80 } 81 82 static void nr_set_lockdep_key(struct net_device *dev) 83 { 84 lockdep_set_class(&dev->addr_list_lock, &nr_netdev_addr_lock_key); 85 netdev_for_each_tx_queue(dev, nr_set_lockdep_one, NULL); 86 } 87 88 /* 89 * Socket removal during an interrupt is now safe. 90 */ 91 static void nr_remove_socket(struct sock *sk) 92 { 93 spin_lock_bh(&nr_list_lock); 94 sk_del_node_init(sk); 95 spin_unlock_bh(&nr_list_lock); 96 } 97 98 /* 99 * Kill all bound sockets on a dropped device. 100 */ 101 static void nr_kill_by_device(struct net_device *dev) 102 { 103 struct sock *s; 104 105 spin_lock_bh(&nr_list_lock); 106 sk_for_each(s, &nr_list) 107 if (nr_sk(s)->device == dev) 108 nr_disconnect(s, ENETUNREACH); 109 spin_unlock_bh(&nr_list_lock); 110 } 111 112 /* 113 * Handle device status changes. 114 */ 115 static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 116 { 117 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 118 119 if (!net_eq(dev_net(dev), &init_net)) 120 return NOTIFY_DONE; 121 122 if (event != NETDEV_DOWN) 123 return NOTIFY_DONE; 124 125 nr_kill_by_device(dev); 126 nr_rt_device_down(dev); 127 128 return NOTIFY_DONE; 129 } 130 131 /* 132 * Add a socket to the bound sockets list. 133 */ 134 static void nr_insert_socket(struct sock *sk) 135 { 136 spin_lock_bh(&nr_list_lock); 137 sk_add_node(sk, &nr_list); 138 spin_unlock_bh(&nr_list_lock); 139 } 140 141 /* 142 * Find a socket that wants to accept the Connect Request we just 143 * received. 144 */ 145 static struct sock *nr_find_listener(ax25_address *addr) 146 { 147 struct sock *s; 148 149 spin_lock_bh(&nr_list_lock); 150 sk_for_each(s, &nr_list) 151 if (!ax25cmp(&nr_sk(s)->source_addr, addr) && 152 s->sk_state == TCP_LISTEN) { 153 sock_hold(s); 154 goto found; 155 } 156 s = NULL; 157 found: 158 spin_unlock_bh(&nr_list_lock); 159 return s; 160 } 161 162 /* 163 * Find a connected NET/ROM socket given my circuit IDs. 164 */ 165 static struct sock *nr_find_socket(unsigned char index, unsigned char id) 166 { 167 struct sock *s; 168 169 spin_lock_bh(&nr_list_lock); 170 sk_for_each(s, &nr_list) { 171 struct nr_sock *nr = nr_sk(s); 172 173 if (nr->my_index == index && nr->my_id == id) { 174 sock_hold(s); 175 goto found; 176 } 177 } 178 s = NULL; 179 found: 180 spin_unlock_bh(&nr_list_lock); 181 return s; 182 } 183 184 /* 185 * Find a connected NET/ROM socket given their circuit IDs. 186 */ 187 static struct sock *nr_find_peer(unsigned char index, unsigned char id, 188 ax25_address *dest) 189 { 190 struct sock *s; 191 192 spin_lock_bh(&nr_list_lock); 193 sk_for_each(s, &nr_list) { 194 struct nr_sock *nr = nr_sk(s); 195 196 if (nr->your_index == index && nr->your_id == id && 197 !ax25cmp(&nr->dest_addr, dest)) { 198 sock_hold(s); 199 goto found; 200 } 201 } 202 s = NULL; 203 found: 204 spin_unlock_bh(&nr_list_lock); 205 return s; 206 } 207 208 /* 209 * Find next free circuit ID. 210 */ 211 static unsigned short nr_find_next_circuit(void) 212 { 213 unsigned short id = circuit; 214 unsigned char i, j; 215 struct sock *sk; 216 217 for (;;) { 218 i = id / 256; 219 j = id % 256; 220 221 if (i != 0 && j != 0) { 222 if ((sk=nr_find_socket(i, j)) == NULL) 223 break; 224 sock_put(sk); 225 } 226 227 id++; 228 } 229 230 return id; 231 } 232 233 /* 234 * Deferred destroy. 235 */ 236 void nr_destroy_socket(struct sock *); 237 238 /* 239 * Handler for deferred kills. 240 */ 241 static void nr_destroy_timer(struct timer_list *t) 242 { 243 struct sock *sk = from_timer(sk, t, sk_timer); 244 bh_lock_sock(sk); 245 sock_hold(sk); 246 nr_destroy_socket(sk); 247 bh_unlock_sock(sk); 248 sock_put(sk); 249 } 250 251 /* 252 * This is called from user mode and the timers. Thus it protects itself 253 * against interrupt users but doesn't worry about being called during 254 * work. Once it is removed from the queue no interrupt or bottom half 255 * will touch it and we are (fairly 8-) ) safe. 256 */ 257 void nr_destroy_socket(struct sock *sk) 258 { 259 struct sk_buff *skb; 260 261 nr_remove_socket(sk); 262 263 nr_stop_heartbeat(sk); 264 nr_stop_t1timer(sk); 265 nr_stop_t2timer(sk); 266 nr_stop_t4timer(sk); 267 nr_stop_idletimer(sk); 268 269 nr_clear_queues(sk); /* Flush the queues */ 270 271 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 272 if (skb->sk != sk) { /* A pending connection */ 273 /* Queue the unaccepted socket for death */ 274 sock_set_flag(skb->sk, SOCK_DEAD); 275 nr_start_heartbeat(skb->sk); 276 nr_sk(skb->sk)->state = NR_STATE_0; 277 } 278 279 kfree_skb(skb); 280 } 281 282 if (sk_has_allocations(sk)) { 283 /* Defer: outstanding buffers */ 284 sk->sk_timer.function = nr_destroy_timer; 285 sk->sk_timer.expires = jiffies + 2 * HZ; 286 add_timer(&sk->sk_timer); 287 } else 288 sock_put(sk); 289 } 290 291 /* 292 * Handling for system calls applied via the various interfaces to a 293 * NET/ROM socket object. 294 */ 295 296 static int nr_setsockopt(struct socket *sock, int level, int optname, 297 sockptr_t optval, unsigned int optlen) 298 { 299 struct sock *sk = sock->sk; 300 struct nr_sock *nr = nr_sk(sk); 301 unsigned int opt; 302 303 if (level != SOL_NETROM) 304 return -ENOPROTOOPT; 305 306 if (optlen < sizeof(unsigned int)) 307 return -EINVAL; 308 309 if (copy_from_sockptr(&opt, optval, sizeof(opt))) 310 return -EFAULT; 311 312 switch (optname) { 313 case NETROM_T1: 314 if (opt < 1 || opt > UINT_MAX / HZ) 315 return -EINVAL; 316 nr->t1 = opt * HZ; 317 return 0; 318 319 case NETROM_T2: 320 if (opt < 1 || opt > UINT_MAX / HZ) 321 return -EINVAL; 322 nr->t2 = opt * HZ; 323 return 0; 324 325 case NETROM_N2: 326 if (opt < 1 || opt > 31) 327 return -EINVAL; 328 nr->n2 = opt; 329 return 0; 330 331 case NETROM_T4: 332 if (opt < 1 || opt > UINT_MAX / HZ) 333 return -EINVAL; 334 nr->t4 = opt * HZ; 335 return 0; 336 337 case NETROM_IDLE: 338 if (opt > UINT_MAX / (60 * HZ)) 339 return -EINVAL; 340 nr->idle = opt * 60 * HZ; 341 return 0; 342 343 default: 344 return -ENOPROTOOPT; 345 } 346 } 347 348 static int nr_getsockopt(struct socket *sock, int level, int optname, 349 char __user *optval, int __user *optlen) 350 { 351 struct sock *sk = sock->sk; 352 struct nr_sock *nr = nr_sk(sk); 353 int val = 0; 354 int len; 355 356 if (level != SOL_NETROM) 357 return -ENOPROTOOPT; 358 359 if (get_user(len, optlen)) 360 return -EFAULT; 361 362 if (len < 0) 363 return -EINVAL; 364 365 switch (optname) { 366 case NETROM_T1: 367 val = nr->t1 / HZ; 368 break; 369 370 case NETROM_T2: 371 val = nr->t2 / HZ; 372 break; 373 374 case NETROM_N2: 375 val = nr->n2; 376 break; 377 378 case NETROM_T4: 379 val = nr->t4 / HZ; 380 break; 381 382 case NETROM_IDLE: 383 val = nr->idle / (60 * HZ); 384 break; 385 386 default: 387 return -ENOPROTOOPT; 388 } 389 390 len = min_t(unsigned int, len, sizeof(int)); 391 392 if (put_user(len, optlen)) 393 return -EFAULT; 394 395 return copy_to_user(optval, &val, len) ? -EFAULT : 0; 396 } 397 398 static int nr_listen(struct socket *sock, int backlog) 399 { 400 struct sock *sk = sock->sk; 401 402 lock_sock(sk); 403 if (sock->state != SS_UNCONNECTED) { 404 release_sock(sk); 405 return -EINVAL; 406 } 407 408 if (sk->sk_state != TCP_LISTEN) { 409 memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN); 410 sk->sk_max_ack_backlog = backlog; 411 sk->sk_state = TCP_LISTEN; 412 release_sock(sk); 413 return 0; 414 } 415 release_sock(sk); 416 417 return -EOPNOTSUPP; 418 } 419 420 static struct proto nr_proto = { 421 .name = "NETROM", 422 .owner = THIS_MODULE, 423 .obj_size = sizeof(struct nr_sock), 424 }; 425 426 static int nr_create(struct net *net, struct socket *sock, int protocol, 427 int kern) 428 { 429 struct sock *sk; 430 struct nr_sock *nr; 431 432 if (!net_eq(net, &init_net)) 433 return -EAFNOSUPPORT; 434 435 if (sock->type != SOCK_SEQPACKET || protocol != 0) 436 return -ESOCKTNOSUPPORT; 437 438 sk = sk_alloc(net, PF_NETROM, GFP_ATOMIC, &nr_proto, kern); 439 if (sk == NULL) 440 return -ENOMEM; 441 442 nr = nr_sk(sk); 443 444 sock_init_data(sock, sk); 445 446 sock->ops = &nr_proto_ops; 447 sk->sk_protocol = protocol; 448 449 skb_queue_head_init(&nr->ack_queue); 450 skb_queue_head_init(&nr->reseq_queue); 451 skb_queue_head_init(&nr->frag_queue); 452 453 nr_init_timers(sk); 454 455 nr->t1 = 456 msecs_to_jiffies(sysctl_netrom_transport_timeout); 457 nr->t2 = 458 msecs_to_jiffies(sysctl_netrom_transport_acknowledge_delay); 459 nr->n2 = 460 msecs_to_jiffies(sysctl_netrom_transport_maximum_tries); 461 nr->t4 = 462 msecs_to_jiffies(sysctl_netrom_transport_busy_delay); 463 nr->idle = 464 msecs_to_jiffies(sysctl_netrom_transport_no_activity_timeout); 465 nr->window = sysctl_netrom_transport_requested_window_size; 466 467 nr->bpqext = 1; 468 nr->state = NR_STATE_0; 469 470 return 0; 471 } 472 473 static struct sock *nr_make_new(struct sock *osk) 474 { 475 struct sock *sk; 476 struct nr_sock *nr, *onr; 477 478 if (osk->sk_type != SOCK_SEQPACKET) 479 return NULL; 480 481 sk = sk_alloc(sock_net(osk), PF_NETROM, GFP_ATOMIC, osk->sk_prot, 0); 482 if (sk == NULL) 483 return NULL; 484 485 nr = nr_sk(sk); 486 487 sock_init_data(NULL, sk); 488 489 sk->sk_type = osk->sk_type; 490 sk->sk_priority = osk->sk_priority; 491 sk->sk_protocol = osk->sk_protocol; 492 sk->sk_rcvbuf = osk->sk_rcvbuf; 493 sk->sk_sndbuf = osk->sk_sndbuf; 494 sk->sk_state = TCP_ESTABLISHED; 495 sock_copy_flags(sk, osk); 496 497 skb_queue_head_init(&nr->ack_queue); 498 skb_queue_head_init(&nr->reseq_queue); 499 skb_queue_head_init(&nr->frag_queue); 500 501 nr_init_timers(sk); 502 503 onr = nr_sk(osk); 504 505 nr->t1 = onr->t1; 506 nr->t2 = onr->t2; 507 nr->n2 = onr->n2; 508 nr->t4 = onr->t4; 509 nr->idle = onr->idle; 510 nr->window = onr->window; 511 512 nr->device = onr->device; 513 nr->bpqext = onr->bpqext; 514 515 return sk; 516 } 517 518 static int nr_release(struct socket *sock) 519 { 520 struct sock *sk = sock->sk; 521 struct nr_sock *nr; 522 523 if (sk == NULL) return 0; 524 525 sock_hold(sk); 526 sock_orphan(sk); 527 lock_sock(sk); 528 nr = nr_sk(sk); 529 530 switch (nr->state) { 531 case NR_STATE_0: 532 case NR_STATE_1: 533 case NR_STATE_2: 534 nr_disconnect(sk, 0); 535 nr_destroy_socket(sk); 536 break; 537 538 case NR_STATE_3: 539 nr_clear_queues(sk); 540 nr->n2count = 0; 541 nr_write_internal(sk, NR_DISCREQ); 542 nr_start_t1timer(sk); 543 nr_stop_t2timer(sk); 544 nr_stop_t4timer(sk); 545 nr_stop_idletimer(sk); 546 nr->state = NR_STATE_2; 547 sk->sk_state = TCP_CLOSE; 548 sk->sk_shutdown |= SEND_SHUTDOWN; 549 sk->sk_state_change(sk); 550 sock_set_flag(sk, SOCK_DESTROY); 551 break; 552 553 default: 554 break; 555 } 556 557 sock->sk = NULL; 558 release_sock(sk); 559 sock_put(sk); 560 561 return 0; 562 } 563 564 static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 565 { 566 struct sock *sk = sock->sk; 567 struct nr_sock *nr = nr_sk(sk); 568 struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr; 569 struct net_device *dev; 570 ax25_uid_assoc *user; 571 ax25_address *source; 572 573 lock_sock(sk); 574 if (!sock_flag(sk, SOCK_ZAPPED)) { 575 release_sock(sk); 576 return -EINVAL; 577 } 578 if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) { 579 release_sock(sk); 580 return -EINVAL; 581 } 582 if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) { 583 release_sock(sk); 584 return -EINVAL; 585 } 586 if (addr->fsa_ax25.sax25_family != AF_NETROM) { 587 release_sock(sk); 588 return -EINVAL; 589 } 590 if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) { 591 release_sock(sk); 592 return -EADDRNOTAVAIL; 593 } 594 595 /* 596 * Only the super user can set an arbitrary user callsign. 597 */ 598 if (addr->fsa_ax25.sax25_ndigis == 1) { 599 if (!capable(CAP_NET_BIND_SERVICE)) { 600 dev_put(dev); 601 release_sock(sk); 602 return -EPERM; 603 } 604 nr->user_addr = addr->fsa_digipeater[0]; 605 nr->source_addr = addr->fsa_ax25.sax25_call; 606 } else { 607 source = &addr->fsa_ax25.sax25_call; 608 609 user = ax25_findbyuid(current_euid()); 610 if (user) { 611 nr->user_addr = user->call; 612 ax25_uid_put(user); 613 } else { 614 if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) { 615 release_sock(sk); 616 dev_put(dev); 617 return -EPERM; 618 } 619 nr->user_addr = *source; 620 } 621 622 nr->source_addr = *source; 623 } 624 625 nr->device = dev; 626 nr_insert_socket(sk); 627 628 sock_reset_flag(sk, SOCK_ZAPPED); 629 dev_put(dev); 630 release_sock(sk); 631 632 return 0; 633 } 634 635 static int nr_connect(struct socket *sock, struct sockaddr *uaddr, 636 int addr_len, int flags) 637 { 638 struct sock *sk = sock->sk; 639 struct nr_sock *nr = nr_sk(sk); 640 struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr; 641 const ax25_address *source = NULL; 642 ax25_uid_assoc *user; 643 struct net_device *dev; 644 int err = 0; 645 646 lock_sock(sk); 647 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { 648 sock->state = SS_CONNECTED; 649 goto out_release; /* Connect completed during a ERESTARTSYS event */ 650 } 651 652 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) { 653 sock->state = SS_UNCONNECTED; 654 err = -ECONNREFUSED; 655 goto out_release; 656 } 657 658 if (sk->sk_state == TCP_ESTABLISHED) { 659 err = -EISCONN; /* No reconnect on a seqpacket socket */ 660 goto out_release; 661 } 662 663 if (sock->state == SS_CONNECTING) { 664 err = -EALREADY; 665 goto out_release; 666 } 667 668 sk->sk_state = TCP_CLOSE; 669 sock->state = SS_UNCONNECTED; 670 671 if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) { 672 err = -EINVAL; 673 goto out_release; 674 } 675 if (addr->sax25_family != AF_NETROM) { 676 err = -EINVAL; 677 goto out_release; 678 } 679 if (sock_flag(sk, SOCK_ZAPPED)) { /* Must bind first - autobinding in this may or may not work */ 680 sock_reset_flag(sk, SOCK_ZAPPED); 681 682 if ((dev = nr_dev_first()) == NULL) { 683 err = -ENETUNREACH; 684 goto out_release; 685 } 686 source = (const ax25_address *)dev->dev_addr; 687 688 user = ax25_findbyuid(current_euid()); 689 if (user) { 690 nr->user_addr = user->call; 691 ax25_uid_put(user); 692 } else { 693 if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) { 694 dev_put(dev); 695 err = -EPERM; 696 goto out_release; 697 } 698 nr->user_addr = *source; 699 } 700 701 nr->source_addr = *source; 702 nr->device = dev; 703 704 dev_put(dev); 705 nr_insert_socket(sk); /* Finish the bind */ 706 } 707 708 nr->dest_addr = addr->sax25_call; 709 710 release_sock(sk); 711 circuit = nr_find_next_circuit(); 712 lock_sock(sk); 713 714 nr->my_index = circuit / 256; 715 nr->my_id = circuit % 256; 716 717 circuit++; 718 719 /* Move to connecting socket, start sending Connect Requests */ 720 sock->state = SS_CONNECTING; 721 sk->sk_state = TCP_SYN_SENT; 722 723 nr_establish_data_link(sk); 724 725 nr->state = NR_STATE_1; 726 727 nr_start_heartbeat(sk); 728 729 /* Now the loop */ 730 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) { 731 err = -EINPROGRESS; 732 goto out_release; 733 } 734 735 /* 736 * A Connect Ack with Choke or timeout or failed routing will go to 737 * closed. 738 */ 739 if (sk->sk_state == TCP_SYN_SENT) { 740 DEFINE_WAIT(wait); 741 742 for (;;) { 743 prepare_to_wait(sk_sleep(sk), &wait, 744 TASK_INTERRUPTIBLE); 745 if (sk->sk_state != TCP_SYN_SENT) 746 break; 747 if (!signal_pending(current)) { 748 release_sock(sk); 749 schedule(); 750 lock_sock(sk); 751 continue; 752 } 753 err = -ERESTARTSYS; 754 break; 755 } 756 finish_wait(sk_sleep(sk), &wait); 757 if (err) 758 goto out_release; 759 } 760 761 if (sk->sk_state != TCP_ESTABLISHED) { 762 sock->state = SS_UNCONNECTED; 763 err = sock_error(sk); /* Always set at this point */ 764 goto out_release; 765 } 766 767 sock->state = SS_CONNECTED; 768 769 out_release: 770 release_sock(sk); 771 772 return err; 773 } 774 775 static int nr_accept(struct socket *sock, struct socket *newsock, int flags, 776 bool kern) 777 { 778 struct sk_buff *skb; 779 struct sock *newsk; 780 DEFINE_WAIT(wait); 781 struct sock *sk; 782 int err = 0; 783 784 if ((sk = sock->sk) == NULL) 785 return -EINVAL; 786 787 lock_sock(sk); 788 if (sk->sk_type != SOCK_SEQPACKET) { 789 err = -EOPNOTSUPP; 790 goto out_release; 791 } 792 793 if (sk->sk_state != TCP_LISTEN) { 794 err = -EINVAL; 795 goto out_release; 796 } 797 798 /* 799 * The write queue this time is holding sockets ready to use 800 * hooked into the SABM we saved 801 */ 802 for (;;) { 803 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 804 skb = skb_dequeue(&sk->sk_receive_queue); 805 if (skb) 806 break; 807 808 if (flags & O_NONBLOCK) { 809 err = -EWOULDBLOCK; 810 break; 811 } 812 if (!signal_pending(current)) { 813 release_sock(sk); 814 schedule(); 815 lock_sock(sk); 816 continue; 817 } 818 err = -ERESTARTSYS; 819 break; 820 } 821 finish_wait(sk_sleep(sk), &wait); 822 if (err) 823 goto out_release; 824 825 newsk = skb->sk; 826 sock_graft(newsk, newsock); 827 828 /* Now attach up the new socket */ 829 kfree_skb(skb); 830 sk_acceptq_removed(sk); 831 832 out_release: 833 release_sock(sk); 834 835 return err; 836 } 837 838 static int nr_getname(struct socket *sock, struct sockaddr *uaddr, 839 int peer) 840 { 841 struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr; 842 struct sock *sk = sock->sk; 843 struct nr_sock *nr = nr_sk(sk); 844 int uaddr_len; 845 846 memset(&sax->fsa_ax25, 0, sizeof(struct sockaddr_ax25)); 847 848 lock_sock(sk); 849 if (peer != 0) { 850 if (sk->sk_state != TCP_ESTABLISHED) { 851 release_sock(sk); 852 return -ENOTCONN; 853 } 854 sax->fsa_ax25.sax25_family = AF_NETROM; 855 sax->fsa_ax25.sax25_ndigis = 1; 856 sax->fsa_ax25.sax25_call = nr->user_addr; 857 memset(sax->fsa_digipeater, 0, sizeof(sax->fsa_digipeater)); 858 sax->fsa_digipeater[0] = nr->dest_addr; 859 uaddr_len = sizeof(struct full_sockaddr_ax25); 860 } else { 861 sax->fsa_ax25.sax25_family = AF_NETROM; 862 sax->fsa_ax25.sax25_ndigis = 0; 863 sax->fsa_ax25.sax25_call = nr->source_addr; 864 uaddr_len = sizeof(struct sockaddr_ax25); 865 } 866 release_sock(sk); 867 868 return uaddr_len; 869 } 870 871 int nr_rx_frame(struct sk_buff *skb, struct net_device *dev) 872 { 873 struct sock *sk; 874 struct sock *make; 875 struct nr_sock *nr_make; 876 ax25_address *src, *dest, *user; 877 unsigned short circuit_index, circuit_id; 878 unsigned short peer_circuit_index, peer_circuit_id; 879 unsigned short frametype, flags, window, timeout; 880 int ret; 881 882 skb_orphan(skb); 883 884 /* 885 * skb->data points to the netrom frame start 886 */ 887 888 src = (ax25_address *)(skb->data + 0); 889 dest = (ax25_address *)(skb->data + 7); 890 891 circuit_index = skb->data[15]; 892 circuit_id = skb->data[16]; 893 peer_circuit_index = skb->data[17]; 894 peer_circuit_id = skb->data[18]; 895 frametype = skb->data[19] & 0x0F; 896 flags = skb->data[19] & 0xF0; 897 898 /* 899 * Check for an incoming IP over NET/ROM frame. 900 */ 901 if (frametype == NR_PROTOEXT && 902 circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) { 903 skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN); 904 skb_reset_transport_header(skb); 905 906 return nr_rx_ip(skb, dev); 907 } 908 909 /* 910 * Find an existing socket connection, based on circuit ID, if it's 911 * a Connect Request base it on their circuit ID. 912 * 913 * Circuit ID 0/0 is not valid but it could still be a "reset" for a 914 * circuit that no longer exists at the other end ... 915 */ 916 917 sk = NULL; 918 919 if (circuit_index == 0 && circuit_id == 0) { 920 if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG) 921 sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src); 922 } else { 923 if (frametype == NR_CONNREQ) 924 sk = nr_find_peer(circuit_index, circuit_id, src); 925 else 926 sk = nr_find_socket(circuit_index, circuit_id); 927 } 928 929 if (sk != NULL) { 930 bh_lock_sock(sk); 931 skb_reset_transport_header(skb); 932 933 if (frametype == NR_CONNACK && skb->len == 22) 934 nr_sk(sk)->bpqext = 1; 935 else 936 nr_sk(sk)->bpqext = 0; 937 938 ret = nr_process_rx_frame(sk, skb); 939 bh_unlock_sock(sk); 940 sock_put(sk); 941 return ret; 942 } 943 944 /* 945 * Now it should be a CONNREQ. 946 */ 947 if (frametype != NR_CONNREQ) { 948 /* 949 * Here it would be nice to be able to send a reset but 950 * NET/ROM doesn't have one. We've tried to extend the protocol 951 * by sending NR_CONNACK | NR_CHOKE_FLAGS replies but that 952 * apparently kills BPQ boxes... :-( 953 * So now we try to follow the established behaviour of 954 * G8PZT's Xrouter which is sending packets with command type 7 955 * as an extension of the protocol. 956 */ 957 if (sysctl_netrom_reset_circuit && 958 (frametype != NR_RESET || flags != 0)) 959 nr_transmit_reset(skb, 1); 960 961 return 0; 962 } 963 964 sk = nr_find_listener(dest); 965 966 user = (ax25_address *)(skb->data + 21); 967 968 if (sk == NULL || sk_acceptq_is_full(sk) || 969 (make = nr_make_new(sk)) == NULL) { 970 nr_transmit_refusal(skb, 0); 971 if (sk) 972 sock_put(sk); 973 return 0; 974 } 975 976 bh_lock_sock(sk); 977 978 window = skb->data[20]; 979 980 sock_hold(make); 981 skb->sk = make; 982 skb->destructor = sock_efree; 983 make->sk_state = TCP_ESTABLISHED; 984 985 /* Fill in his circuit details */ 986 nr_make = nr_sk(make); 987 nr_make->source_addr = *dest; 988 nr_make->dest_addr = *src; 989 nr_make->user_addr = *user; 990 991 nr_make->your_index = circuit_index; 992 nr_make->your_id = circuit_id; 993 994 bh_unlock_sock(sk); 995 circuit = nr_find_next_circuit(); 996 bh_lock_sock(sk); 997 998 nr_make->my_index = circuit / 256; 999 nr_make->my_id = circuit % 256; 1000 1001 circuit++; 1002 1003 /* Window negotiation */ 1004 if (window < nr_make->window) 1005 nr_make->window = window; 1006 1007 /* L4 timeout negotiation */ 1008 if (skb->len == 37) { 1009 timeout = skb->data[36] * 256 + skb->data[35]; 1010 if (timeout * HZ < nr_make->t1) 1011 nr_make->t1 = timeout * HZ; 1012 nr_make->bpqext = 1; 1013 } else { 1014 nr_make->bpqext = 0; 1015 } 1016 1017 nr_write_internal(make, NR_CONNACK); 1018 1019 nr_make->condition = 0x00; 1020 nr_make->vs = 0; 1021 nr_make->va = 0; 1022 nr_make->vr = 0; 1023 nr_make->vl = 0; 1024 nr_make->state = NR_STATE_3; 1025 sk_acceptq_added(sk); 1026 skb_queue_head(&sk->sk_receive_queue, skb); 1027 1028 if (!sock_flag(sk, SOCK_DEAD)) 1029 sk->sk_data_ready(sk); 1030 1031 bh_unlock_sock(sk); 1032 sock_put(sk); 1033 1034 nr_insert_socket(make); 1035 1036 nr_start_heartbeat(make); 1037 nr_start_idletimer(make); 1038 1039 return 1; 1040 } 1041 1042 static int nr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1043 { 1044 struct sock *sk = sock->sk; 1045 struct nr_sock *nr = nr_sk(sk); 1046 DECLARE_SOCKADDR(struct sockaddr_ax25 *, usax, msg->msg_name); 1047 int err; 1048 struct sockaddr_ax25 sax; 1049 struct sk_buff *skb; 1050 unsigned char *asmptr; 1051 int size; 1052 1053 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT)) 1054 return -EINVAL; 1055 1056 lock_sock(sk); 1057 if (sock_flag(sk, SOCK_ZAPPED)) { 1058 err = -EADDRNOTAVAIL; 1059 goto out; 1060 } 1061 1062 if (sk->sk_shutdown & SEND_SHUTDOWN) { 1063 send_sig(SIGPIPE, current, 0); 1064 err = -EPIPE; 1065 goto out; 1066 } 1067 1068 if (nr->device == NULL) { 1069 err = -ENETUNREACH; 1070 goto out; 1071 } 1072 1073 if (usax) { 1074 if (msg->msg_namelen < sizeof(sax)) { 1075 err = -EINVAL; 1076 goto out; 1077 } 1078 sax = *usax; 1079 if (ax25cmp(&nr->dest_addr, &sax.sax25_call) != 0) { 1080 err = -EISCONN; 1081 goto out; 1082 } 1083 if (sax.sax25_family != AF_NETROM) { 1084 err = -EINVAL; 1085 goto out; 1086 } 1087 } else { 1088 if (sk->sk_state != TCP_ESTABLISHED) { 1089 err = -ENOTCONN; 1090 goto out; 1091 } 1092 sax.sax25_family = AF_NETROM; 1093 sax.sax25_call = nr->dest_addr; 1094 } 1095 1096 /* Build a packet - the conventional user limit is 236 bytes. We can 1097 do ludicrously large NetROM frames but must not overflow */ 1098 if (len > 65536) { 1099 err = -EMSGSIZE; 1100 goto out; 1101 } 1102 1103 size = len + NR_NETWORK_LEN + NR_TRANSPORT_LEN; 1104 1105 if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL) 1106 goto out; 1107 1108 skb_reserve(skb, size - len); 1109 skb_reset_transport_header(skb); 1110 1111 /* 1112 * Push down the NET/ROM header 1113 */ 1114 1115 asmptr = skb_push(skb, NR_TRANSPORT_LEN); 1116 1117 /* Build a NET/ROM Transport header */ 1118 1119 *asmptr++ = nr->your_index; 1120 *asmptr++ = nr->your_id; 1121 *asmptr++ = 0; /* To be filled in later */ 1122 *asmptr++ = 0; /* Ditto */ 1123 *asmptr++ = NR_INFO; 1124 1125 /* 1126 * Put the data on the end 1127 */ 1128 skb_put(skb, len); 1129 1130 /* User data follows immediately after the NET/ROM transport header */ 1131 if (memcpy_from_msg(skb_transport_header(skb), msg, len)) { 1132 kfree_skb(skb); 1133 err = -EFAULT; 1134 goto out; 1135 } 1136 1137 if (sk->sk_state != TCP_ESTABLISHED) { 1138 kfree_skb(skb); 1139 err = -ENOTCONN; 1140 goto out; 1141 } 1142 1143 nr_output(sk, skb); /* Shove it onto the queue */ 1144 1145 err = len; 1146 out: 1147 release_sock(sk); 1148 return err; 1149 } 1150 1151 static int nr_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1152 int flags) 1153 { 1154 struct sock *sk = sock->sk; 1155 DECLARE_SOCKADDR(struct sockaddr_ax25 *, sax, msg->msg_name); 1156 size_t copied; 1157 struct sk_buff *skb; 1158 int er; 1159 1160 /* 1161 * This works for seqpacket too. The receiver has ordered the queue for 1162 * us! We do one quick check first though 1163 */ 1164 1165 lock_sock(sk); 1166 if (sk->sk_state != TCP_ESTABLISHED) { 1167 release_sock(sk); 1168 return -ENOTCONN; 1169 } 1170 1171 /* Now we can treat all alike */ 1172 skb = skb_recv_datagram(sk, flags, &er); 1173 if (!skb) { 1174 release_sock(sk); 1175 return er; 1176 } 1177 1178 skb_reset_transport_header(skb); 1179 copied = skb->len; 1180 1181 if (copied > size) { 1182 copied = size; 1183 msg->msg_flags |= MSG_TRUNC; 1184 } 1185 1186 er = skb_copy_datagram_msg(skb, 0, msg, copied); 1187 if (er < 0) { 1188 skb_free_datagram(sk, skb); 1189 release_sock(sk); 1190 return er; 1191 } 1192 1193 if (sax != NULL) { 1194 memset(sax, 0, sizeof(*sax)); 1195 sax->sax25_family = AF_NETROM; 1196 skb_copy_from_linear_data_offset(skb, 7, sax->sax25_call.ax25_call, 1197 AX25_ADDR_LEN); 1198 msg->msg_namelen = sizeof(*sax); 1199 } 1200 1201 skb_free_datagram(sk, skb); 1202 1203 release_sock(sk); 1204 return copied; 1205 } 1206 1207 1208 static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1209 { 1210 struct sock *sk = sock->sk; 1211 void __user *argp = (void __user *)arg; 1212 1213 switch (cmd) { 1214 case TIOCOUTQ: { 1215 long amount; 1216 1217 lock_sock(sk); 1218 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 1219 if (amount < 0) 1220 amount = 0; 1221 release_sock(sk); 1222 return put_user(amount, (int __user *)argp); 1223 } 1224 1225 case TIOCINQ: { 1226 struct sk_buff *skb; 1227 long amount = 0L; 1228 1229 lock_sock(sk); 1230 /* These two are safe on a single CPU system as only user tasks fiddle here */ 1231 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) 1232 amount = skb->len; 1233 release_sock(sk); 1234 return put_user(amount, (int __user *)argp); 1235 } 1236 1237 case SIOCGIFADDR: 1238 case SIOCSIFADDR: 1239 case SIOCGIFDSTADDR: 1240 case SIOCSIFDSTADDR: 1241 case SIOCGIFBRDADDR: 1242 case SIOCSIFBRDADDR: 1243 case SIOCGIFNETMASK: 1244 case SIOCSIFNETMASK: 1245 case SIOCGIFMETRIC: 1246 case SIOCSIFMETRIC: 1247 return -EINVAL; 1248 1249 case SIOCADDRT: 1250 case SIOCDELRT: 1251 case SIOCNRDECOBS: 1252 if (!capable(CAP_NET_ADMIN)) 1253 return -EPERM; 1254 return nr_rt_ioctl(cmd, argp); 1255 1256 default: 1257 return -ENOIOCTLCMD; 1258 } 1259 1260 return 0; 1261 } 1262 1263 #ifdef CONFIG_PROC_FS 1264 1265 static void *nr_info_start(struct seq_file *seq, loff_t *pos) 1266 __acquires(&nr_list_lock) 1267 { 1268 spin_lock_bh(&nr_list_lock); 1269 return seq_hlist_start_head(&nr_list, *pos); 1270 } 1271 1272 static void *nr_info_next(struct seq_file *seq, void *v, loff_t *pos) 1273 { 1274 return seq_hlist_next(v, &nr_list, pos); 1275 } 1276 1277 static void nr_info_stop(struct seq_file *seq, void *v) 1278 __releases(&nr_list_lock) 1279 { 1280 spin_unlock_bh(&nr_list_lock); 1281 } 1282 1283 static int nr_info_show(struct seq_file *seq, void *v) 1284 { 1285 struct sock *s = sk_entry(v); 1286 struct net_device *dev; 1287 struct nr_sock *nr; 1288 const char *devname; 1289 char buf[11]; 1290 1291 if (v == SEQ_START_TOKEN) 1292 seq_puts(seq, 1293 "user_addr dest_node src_node dev my your st vs vr va t1 t2 t4 idle n2 wnd Snd-Q Rcv-Q inode\n"); 1294 1295 else { 1296 1297 bh_lock_sock(s); 1298 nr = nr_sk(s); 1299 1300 if ((dev = nr->device) == NULL) 1301 devname = "???"; 1302 else 1303 devname = dev->name; 1304 1305 seq_printf(seq, "%-9s ", ax2asc(buf, &nr->user_addr)); 1306 seq_printf(seq, "%-9s ", ax2asc(buf, &nr->dest_addr)); 1307 seq_printf(seq, 1308 "%-9s %-3s %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n", 1309 ax2asc(buf, &nr->source_addr), 1310 devname, 1311 nr->my_index, 1312 nr->my_id, 1313 nr->your_index, 1314 nr->your_id, 1315 nr->state, 1316 nr->vs, 1317 nr->vr, 1318 nr->va, 1319 ax25_display_timer(&nr->t1timer) / HZ, 1320 nr->t1 / HZ, 1321 ax25_display_timer(&nr->t2timer) / HZ, 1322 nr->t2 / HZ, 1323 ax25_display_timer(&nr->t4timer) / HZ, 1324 nr->t4 / HZ, 1325 ax25_display_timer(&nr->idletimer) / (60 * HZ), 1326 nr->idle / (60 * HZ), 1327 nr->n2count, 1328 nr->n2, 1329 nr->window, 1330 sk_wmem_alloc_get(s), 1331 sk_rmem_alloc_get(s), 1332 s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L); 1333 1334 bh_unlock_sock(s); 1335 } 1336 return 0; 1337 } 1338 1339 static const struct seq_operations nr_info_seqops = { 1340 .start = nr_info_start, 1341 .next = nr_info_next, 1342 .stop = nr_info_stop, 1343 .show = nr_info_show, 1344 }; 1345 #endif /* CONFIG_PROC_FS */ 1346 1347 static const struct net_proto_family nr_family_ops = { 1348 .family = PF_NETROM, 1349 .create = nr_create, 1350 .owner = THIS_MODULE, 1351 }; 1352 1353 static const struct proto_ops nr_proto_ops = { 1354 .family = PF_NETROM, 1355 .owner = THIS_MODULE, 1356 .release = nr_release, 1357 .bind = nr_bind, 1358 .connect = nr_connect, 1359 .socketpair = sock_no_socketpair, 1360 .accept = nr_accept, 1361 .getname = nr_getname, 1362 .poll = datagram_poll, 1363 .ioctl = nr_ioctl, 1364 .gettstamp = sock_gettstamp, 1365 .listen = nr_listen, 1366 .shutdown = sock_no_shutdown, 1367 .setsockopt = nr_setsockopt, 1368 .getsockopt = nr_getsockopt, 1369 .sendmsg = nr_sendmsg, 1370 .recvmsg = nr_recvmsg, 1371 .mmap = sock_no_mmap, 1372 }; 1373 1374 static struct notifier_block nr_dev_notifier = { 1375 .notifier_call = nr_device_event, 1376 }; 1377 1378 static struct net_device **dev_nr; 1379 1380 static struct ax25_protocol nr_pid = { 1381 .pid = AX25_P_NETROM, 1382 .func = nr_route_frame 1383 }; 1384 1385 static struct ax25_linkfail nr_linkfail_notifier = { 1386 .func = nr_link_failed, 1387 }; 1388 1389 static int __init nr_proto_init(void) 1390 { 1391 int i; 1392 int rc = proto_register(&nr_proto, 0); 1393 1394 if (rc) 1395 return rc; 1396 1397 if (nr_ndevs > 0x7fffffff/sizeof(struct net_device *)) { 1398 pr_err("NET/ROM: %s - nr_ndevs parameter too large\n", 1399 __func__); 1400 rc = -EINVAL; 1401 goto unregister_proto; 1402 } 1403 1404 dev_nr = kcalloc(nr_ndevs, sizeof(struct net_device *), GFP_KERNEL); 1405 if (!dev_nr) { 1406 pr_err("NET/ROM: %s - unable to allocate device array\n", 1407 __func__); 1408 rc = -ENOMEM; 1409 goto unregister_proto; 1410 } 1411 1412 for (i = 0; i < nr_ndevs; i++) { 1413 char name[IFNAMSIZ]; 1414 struct net_device *dev; 1415 1416 sprintf(name, "nr%d", i); 1417 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, nr_setup); 1418 if (!dev) { 1419 rc = -ENOMEM; 1420 goto fail; 1421 } 1422 1423 dev->base_addr = i; 1424 rc = register_netdev(dev); 1425 if (rc) { 1426 free_netdev(dev); 1427 goto fail; 1428 } 1429 nr_set_lockdep_key(dev); 1430 dev_nr[i] = dev; 1431 } 1432 1433 rc = sock_register(&nr_family_ops); 1434 if (rc) 1435 goto fail; 1436 1437 rc = register_netdevice_notifier(&nr_dev_notifier); 1438 if (rc) 1439 goto out_sock; 1440 1441 ax25_register_pid(&nr_pid); 1442 ax25_linkfail_register(&nr_linkfail_notifier); 1443 1444 #ifdef CONFIG_SYSCTL 1445 rc = nr_register_sysctl(); 1446 if (rc) 1447 goto out_sysctl; 1448 #endif 1449 1450 nr_loopback_init(); 1451 1452 rc = -ENOMEM; 1453 if (!proc_create_seq("nr", 0444, init_net.proc_net, &nr_info_seqops)) 1454 goto proc_remove1; 1455 if (!proc_create_seq("nr_neigh", 0444, init_net.proc_net, 1456 &nr_neigh_seqops)) 1457 goto proc_remove2; 1458 if (!proc_create_seq("nr_nodes", 0444, init_net.proc_net, 1459 &nr_node_seqops)) 1460 goto proc_remove3; 1461 1462 return 0; 1463 1464 proc_remove3: 1465 remove_proc_entry("nr_neigh", init_net.proc_net); 1466 proc_remove2: 1467 remove_proc_entry("nr", init_net.proc_net); 1468 proc_remove1: 1469 1470 nr_loopback_clear(); 1471 nr_rt_free(); 1472 1473 #ifdef CONFIG_SYSCTL 1474 nr_unregister_sysctl(); 1475 out_sysctl: 1476 #endif 1477 ax25_linkfail_release(&nr_linkfail_notifier); 1478 ax25_protocol_release(AX25_P_NETROM); 1479 unregister_netdevice_notifier(&nr_dev_notifier); 1480 out_sock: 1481 sock_unregister(PF_NETROM); 1482 fail: 1483 while (--i >= 0) { 1484 unregister_netdev(dev_nr[i]); 1485 free_netdev(dev_nr[i]); 1486 } 1487 kfree(dev_nr); 1488 unregister_proto: 1489 proto_unregister(&nr_proto); 1490 return rc; 1491 } 1492 1493 module_init(nr_proto_init); 1494 1495 module_param(nr_ndevs, int, 0); 1496 MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices"); 1497 1498 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>"); 1499 MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol"); 1500 MODULE_LICENSE("GPL"); 1501 MODULE_ALIAS_NETPROTO(PF_NETROM); 1502 1503 static void __exit nr_exit(void) 1504 { 1505 int i; 1506 1507 remove_proc_entry("nr", init_net.proc_net); 1508 remove_proc_entry("nr_neigh", init_net.proc_net); 1509 remove_proc_entry("nr_nodes", init_net.proc_net); 1510 nr_loopback_clear(); 1511 1512 nr_rt_free(); 1513 1514 #ifdef CONFIG_SYSCTL 1515 nr_unregister_sysctl(); 1516 #endif 1517 1518 ax25_linkfail_release(&nr_linkfail_notifier); 1519 ax25_protocol_release(AX25_P_NETROM); 1520 1521 unregister_netdevice_notifier(&nr_dev_notifier); 1522 1523 sock_unregister(PF_NETROM); 1524 1525 for (i = 0; i < nr_ndevs; i++) { 1526 struct net_device *dev = dev_nr[i]; 1527 if (dev) { 1528 unregister_netdev(dev); 1529 free_netdev(dev); 1530 } 1531 } 1532 1533 kfree(dev_nr); 1534 proto_unregister(&nr_proto); 1535 } 1536 module_exit(nr_exit); 1537