xref: /openbmc/linux/net/netrom/af_netrom.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 2 of the License, or
5  * (at your option) any later version.
6  *
7  * Copyright Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
8  * Copyright Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
9  * Copyright Darryl Miles G7LED (dlm@g7led.demon.co.uk)
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/capability.h>
14 #include <linux/errno.h>
15 #include <linux/types.h>
16 #include <linux/socket.h>
17 #include <linux/in.h>
18 #include <linux/slab.h>
19 #include <linux/kernel.h>
20 #include <linux/sched/signal.h>
21 #include <linux/timer.h>
22 #include <linux/string.h>
23 #include <linux/sockios.h>
24 #include <linux/net.h>
25 #include <linux/stat.h>
26 #include <net/ax25.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_arp.h>
30 #include <linux/skbuff.h>
31 #include <net/net_namespace.h>
32 #include <net/sock.h>
33 #include <linux/uaccess.h>
34 #include <linux/fcntl.h>
35 #include <linux/termios.h>	/* For TIOCINQ/OUTQ */
36 #include <linux/mm.h>
37 #include <linux/interrupt.h>
38 #include <linux/notifier.h>
39 #include <net/netrom.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/arp.h>
45 #include <linux/init.h>
46 
47 static int nr_ndevs = 4;
48 
49 int sysctl_netrom_default_path_quality            = NR_DEFAULT_QUAL;
50 int sysctl_netrom_obsolescence_count_initialiser  = NR_DEFAULT_OBS;
51 int sysctl_netrom_network_ttl_initialiser         = NR_DEFAULT_TTL;
52 int sysctl_netrom_transport_timeout               = NR_DEFAULT_T1;
53 int sysctl_netrom_transport_maximum_tries         = NR_DEFAULT_N2;
54 int sysctl_netrom_transport_acknowledge_delay     = NR_DEFAULT_T2;
55 int sysctl_netrom_transport_busy_delay            = NR_DEFAULT_T4;
56 int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW;
57 int sysctl_netrom_transport_no_activity_timeout   = NR_DEFAULT_IDLE;
58 int sysctl_netrom_routing_control                 = NR_DEFAULT_ROUTING;
59 int sysctl_netrom_link_fails_count                = NR_DEFAULT_FAILS;
60 int sysctl_netrom_reset_circuit                   = NR_DEFAULT_RESET;
61 
62 static unsigned short circuit = 0x101;
63 
64 static HLIST_HEAD(nr_list);
65 static DEFINE_SPINLOCK(nr_list_lock);
66 
67 static const struct proto_ops nr_proto_ops;
68 
69 /*
70  * NETROM network devices are virtual network devices encapsulating NETROM
71  * frames into AX.25 which will be sent through an AX.25 device, so form a
72  * special "super class" of normal net devices; split their locks off into a
73  * separate class since they always nest.
74  */
75 static struct lock_class_key nr_netdev_xmit_lock_key;
76 static struct lock_class_key nr_netdev_addr_lock_key;
77 
78 static void nr_set_lockdep_one(struct net_device *dev,
79 			       struct netdev_queue *txq,
80 			       void *_unused)
81 {
82 	lockdep_set_class(&txq->_xmit_lock, &nr_netdev_xmit_lock_key);
83 }
84 
85 static void nr_set_lockdep_key(struct net_device *dev)
86 {
87 	lockdep_set_class(&dev->addr_list_lock, &nr_netdev_addr_lock_key);
88 	netdev_for_each_tx_queue(dev, nr_set_lockdep_one, NULL);
89 }
90 
91 /*
92  *	Socket removal during an interrupt is now safe.
93  */
94 static void nr_remove_socket(struct sock *sk)
95 {
96 	spin_lock_bh(&nr_list_lock);
97 	sk_del_node_init(sk);
98 	spin_unlock_bh(&nr_list_lock);
99 }
100 
101 /*
102  *	Kill all bound sockets on a dropped device.
103  */
104 static void nr_kill_by_device(struct net_device *dev)
105 {
106 	struct sock *s;
107 
108 	spin_lock_bh(&nr_list_lock);
109 	sk_for_each(s, &nr_list)
110 		if (nr_sk(s)->device == dev)
111 			nr_disconnect(s, ENETUNREACH);
112 	spin_unlock_bh(&nr_list_lock);
113 }
114 
115 /*
116  *	Handle device status changes.
117  */
118 static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
119 {
120 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
121 
122 	if (!net_eq(dev_net(dev), &init_net))
123 		return NOTIFY_DONE;
124 
125 	if (event != NETDEV_DOWN)
126 		return NOTIFY_DONE;
127 
128 	nr_kill_by_device(dev);
129 	nr_rt_device_down(dev);
130 
131 	return NOTIFY_DONE;
132 }
133 
134 /*
135  *	Add a socket to the bound sockets list.
136  */
137 static void nr_insert_socket(struct sock *sk)
138 {
139 	spin_lock_bh(&nr_list_lock);
140 	sk_add_node(sk, &nr_list);
141 	spin_unlock_bh(&nr_list_lock);
142 }
143 
144 /*
145  *	Find a socket that wants to accept the Connect Request we just
146  *	received.
147  */
148 static struct sock *nr_find_listener(ax25_address *addr)
149 {
150 	struct sock *s;
151 
152 	spin_lock_bh(&nr_list_lock);
153 	sk_for_each(s, &nr_list)
154 		if (!ax25cmp(&nr_sk(s)->source_addr, addr) &&
155 		    s->sk_state == TCP_LISTEN) {
156 			bh_lock_sock(s);
157 			goto found;
158 		}
159 	s = NULL;
160 found:
161 	spin_unlock_bh(&nr_list_lock);
162 	return s;
163 }
164 
165 /*
166  *	Find a connected NET/ROM socket given my circuit IDs.
167  */
168 static struct sock *nr_find_socket(unsigned char index, unsigned char id)
169 {
170 	struct sock *s;
171 
172 	spin_lock_bh(&nr_list_lock);
173 	sk_for_each(s, &nr_list) {
174 		struct nr_sock *nr = nr_sk(s);
175 
176 		if (nr->my_index == index && nr->my_id == id) {
177 			bh_lock_sock(s);
178 			goto found;
179 		}
180 	}
181 	s = NULL;
182 found:
183 	spin_unlock_bh(&nr_list_lock);
184 	return s;
185 }
186 
187 /*
188  *	Find a connected NET/ROM socket given their circuit IDs.
189  */
190 static struct sock *nr_find_peer(unsigned char index, unsigned char id,
191 	ax25_address *dest)
192 {
193 	struct sock *s;
194 
195 	spin_lock_bh(&nr_list_lock);
196 	sk_for_each(s, &nr_list) {
197 		struct nr_sock *nr = nr_sk(s);
198 
199 		if (nr->your_index == index && nr->your_id == id &&
200 		    !ax25cmp(&nr->dest_addr, dest)) {
201 			bh_lock_sock(s);
202 			goto found;
203 		}
204 	}
205 	s = NULL;
206 found:
207 	spin_unlock_bh(&nr_list_lock);
208 	return s;
209 }
210 
211 /*
212  *	Find next free circuit ID.
213  */
214 static unsigned short nr_find_next_circuit(void)
215 {
216 	unsigned short id = circuit;
217 	unsigned char i, j;
218 	struct sock *sk;
219 
220 	for (;;) {
221 		i = id / 256;
222 		j = id % 256;
223 
224 		if (i != 0 && j != 0) {
225 			if ((sk=nr_find_socket(i, j)) == NULL)
226 				break;
227 			bh_unlock_sock(sk);
228 		}
229 
230 		id++;
231 	}
232 
233 	return id;
234 }
235 
236 /*
237  *	Deferred destroy.
238  */
239 void nr_destroy_socket(struct sock *);
240 
241 /*
242  *	Handler for deferred kills.
243  */
244 static void nr_destroy_timer(struct timer_list *t)
245 {
246 	struct sock *sk = from_timer(sk, t, sk_timer);
247 	bh_lock_sock(sk);
248 	sock_hold(sk);
249 	nr_destroy_socket(sk);
250 	bh_unlock_sock(sk);
251 	sock_put(sk);
252 }
253 
254 /*
255  *	This is called from user mode and the timers. Thus it protects itself
256  *	against interrupt users but doesn't worry about being called during
257  *	work. Once it is removed from the queue no interrupt or bottom half
258  *	will touch it and we are (fairly 8-) ) safe.
259  */
260 void nr_destroy_socket(struct sock *sk)
261 {
262 	struct sk_buff *skb;
263 
264 	nr_remove_socket(sk);
265 
266 	nr_stop_heartbeat(sk);
267 	nr_stop_t1timer(sk);
268 	nr_stop_t2timer(sk);
269 	nr_stop_t4timer(sk);
270 	nr_stop_idletimer(sk);
271 
272 	nr_clear_queues(sk);		/* Flush the queues */
273 
274 	while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
275 		if (skb->sk != sk) { /* A pending connection */
276 			/* Queue the unaccepted socket for death */
277 			sock_set_flag(skb->sk, SOCK_DEAD);
278 			nr_start_heartbeat(skb->sk);
279 			nr_sk(skb->sk)->state = NR_STATE_0;
280 		}
281 
282 		kfree_skb(skb);
283 	}
284 
285 	if (sk_has_allocations(sk)) {
286 		/* Defer: outstanding buffers */
287 		sk->sk_timer.function = nr_destroy_timer;
288 		sk->sk_timer.expires  = jiffies + 2 * HZ;
289 		add_timer(&sk->sk_timer);
290 	} else
291 		sock_put(sk);
292 }
293 
294 /*
295  *	Handling for system calls applied via the various interfaces to a
296  *	NET/ROM socket object.
297  */
298 
299 static int nr_setsockopt(struct socket *sock, int level, int optname,
300 	char __user *optval, unsigned int optlen)
301 {
302 	struct sock *sk = sock->sk;
303 	struct nr_sock *nr = nr_sk(sk);
304 	unsigned long opt;
305 
306 	if (level != SOL_NETROM)
307 		return -ENOPROTOOPT;
308 
309 	if (optlen < sizeof(unsigned int))
310 		return -EINVAL;
311 
312 	if (get_user(opt, (unsigned int __user *)optval))
313 		return -EFAULT;
314 
315 	switch (optname) {
316 	case NETROM_T1:
317 		if (opt < 1 || opt > ULONG_MAX / HZ)
318 			return -EINVAL;
319 		nr->t1 = opt * HZ;
320 		return 0;
321 
322 	case NETROM_T2:
323 		if (opt < 1 || opt > ULONG_MAX / HZ)
324 			return -EINVAL;
325 		nr->t2 = opt * HZ;
326 		return 0;
327 
328 	case NETROM_N2:
329 		if (opt < 1 || opt > 31)
330 			return -EINVAL;
331 		nr->n2 = opt;
332 		return 0;
333 
334 	case NETROM_T4:
335 		if (opt < 1 || opt > ULONG_MAX / HZ)
336 			return -EINVAL;
337 		nr->t4 = opt * HZ;
338 		return 0;
339 
340 	case NETROM_IDLE:
341 		if (opt > ULONG_MAX / (60 * HZ))
342 			return -EINVAL;
343 		nr->idle = opt * 60 * HZ;
344 		return 0;
345 
346 	default:
347 		return -ENOPROTOOPT;
348 	}
349 }
350 
351 static int nr_getsockopt(struct socket *sock, int level, int optname,
352 	char __user *optval, int __user *optlen)
353 {
354 	struct sock *sk = sock->sk;
355 	struct nr_sock *nr = nr_sk(sk);
356 	int val = 0;
357 	int len;
358 
359 	if (level != SOL_NETROM)
360 		return -ENOPROTOOPT;
361 
362 	if (get_user(len, optlen))
363 		return -EFAULT;
364 
365 	if (len < 0)
366 		return -EINVAL;
367 
368 	switch (optname) {
369 	case NETROM_T1:
370 		val = nr->t1 / HZ;
371 		break;
372 
373 	case NETROM_T2:
374 		val = nr->t2 / HZ;
375 		break;
376 
377 	case NETROM_N2:
378 		val = nr->n2;
379 		break;
380 
381 	case NETROM_T4:
382 		val = nr->t4 / HZ;
383 		break;
384 
385 	case NETROM_IDLE:
386 		val = nr->idle / (60 * HZ);
387 		break;
388 
389 	default:
390 		return -ENOPROTOOPT;
391 	}
392 
393 	len = min_t(unsigned int, len, sizeof(int));
394 
395 	if (put_user(len, optlen))
396 		return -EFAULT;
397 
398 	return copy_to_user(optval, &val, len) ? -EFAULT : 0;
399 }
400 
401 static int nr_listen(struct socket *sock, int backlog)
402 {
403 	struct sock *sk = sock->sk;
404 
405 	lock_sock(sk);
406 	if (sk->sk_state != TCP_LISTEN) {
407 		memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN);
408 		sk->sk_max_ack_backlog = backlog;
409 		sk->sk_state           = TCP_LISTEN;
410 		release_sock(sk);
411 		return 0;
412 	}
413 	release_sock(sk);
414 
415 	return -EOPNOTSUPP;
416 }
417 
418 static struct proto nr_proto = {
419 	.name	  = "NETROM",
420 	.owner	  = THIS_MODULE,
421 	.obj_size = sizeof(struct nr_sock),
422 };
423 
424 static int nr_create(struct net *net, struct socket *sock, int protocol,
425 		     int kern)
426 {
427 	struct sock *sk;
428 	struct nr_sock *nr;
429 
430 	if (!net_eq(net, &init_net))
431 		return -EAFNOSUPPORT;
432 
433 	if (sock->type != SOCK_SEQPACKET || protocol != 0)
434 		return -ESOCKTNOSUPPORT;
435 
436 	sk = sk_alloc(net, PF_NETROM, GFP_ATOMIC, &nr_proto, kern);
437 	if (sk  == NULL)
438 		return -ENOMEM;
439 
440 	nr = nr_sk(sk);
441 
442 	sock_init_data(sock, sk);
443 
444 	sock->ops    = &nr_proto_ops;
445 	sk->sk_protocol = protocol;
446 
447 	skb_queue_head_init(&nr->ack_queue);
448 	skb_queue_head_init(&nr->reseq_queue);
449 	skb_queue_head_init(&nr->frag_queue);
450 
451 	nr_init_timers(sk);
452 
453 	nr->t1     =
454 		msecs_to_jiffies(sysctl_netrom_transport_timeout);
455 	nr->t2     =
456 		msecs_to_jiffies(sysctl_netrom_transport_acknowledge_delay);
457 	nr->n2     =
458 		msecs_to_jiffies(sysctl_netrom_transport_maximum_tries);
459 	nr->t4     =
460 		msecs_to_jiffies(sysctl_netrom_transport_busy_delay);
461 	nr->idle   =
462 		msecs_to_jiffies(sysctl_netrom_transport_no_activity_timeout);
463 	nr->window = sysctl_netrom_transport_requested_window_size;
464 
465 	nr->bpqext = 1;
466 	nr->state  = NR_STATE_0;
467 
468 	return 0;
469 }
470 
471 static struct sock *nr_make_new(struct sock *osk)
472 {
473 	struct sock *sk;
474 	struct nr_sock *nr, *onr;
475 
476 	if (osk->sk_type != SOCK_SEQPACKET)
477 		return NULL;
478 
479 	sk = sk_alloc(sock_net(osk), PF_NETROM, GFP_ATOMIC, osk->sk_prot, 0);
480 	if (sk == NULL)
481 		return NULL;
482 
483 	nr = nr_sk(sk);
484 
485 	sock_init_data(NULL, sk);
486 
487 	sk->sk_type     = osk->sk_type;
488 	sk->sk_priority = osk->sk_priority;
489 	sk->sk_protocol = osk->sk_protocol;
490 	sk->sk_rcvbuf   = osk->sk_rcvbuf;
491 	sk->sk_sndbuf   = osk->sk_sndbuf;
492 	sk->sk_state    = TCP_ESTABLISHED;
493 	sock_copy_flags(sk, osk);
494 
495 	skb_queue_head_init(&nr->ack_queue);
496 	skb_queue_head_init(&nr->reseq_queue);
497 	skb_queue_head_init(&nr->frag_queue);
498 
499 	nr_init_timers(sk);
500 
501 	onr = nr_sk(osk);
502 
503 	nr->t1      = onr->t1;
504 	nr->t2      = onr->t2;
505 	nr->n2      = onr->n2;
506 	nr->t4      = onr->t4;
507 	nr->idle    = onr->idle;
508 	nr->window  = onr->window;
509 
510 	nr->device  = onr->device;
511 	nr->bpqext  = onr->bpqext;
512 
513 	return sk;
514 }
515 
516 static int nr_release(struct socket *sock)
517 {
518 	struct sock *sk = sock->sk;
519 	struct nr_sock *nr;
520 
521 	if (sk == NULL) return 0;
522 
523 	sock_hold(sk);
524 	sock_orphan(sk);
525 	lock_sock(sk);
526 	nr = nr_sk(sk);
527 
528 	switch (nr->state) {
529 	case NR_STATE_0:
530 	case NR_STATE_1:
531 	case NR_STATE_2:
532 		nr_disconnect(sk, 0);
533 		nr_destroy_socket(sk);
534 		break;
535 
536 	case NR_STATE_3:
537 		nr_clear_queues(sk);
538 		nr->n2count = 0;
539 		nr_write_internal(sk, NR_DISCREQ);
540 		nr_start_t1timer(sk);
541 		nr_stop_t2timer(sk);
542 		nr_stop_t4timer(sk);
543 		nr_stop_idletimer(sk);
544 		nr->state    = NR_STATE_2;
545 		sk->sk_state    = TCP_CLOSE;
546 		sk->sk_shutdown |= SEND_SHUTDOWN;
547 		sk->sk_state_change(sk);
548 		sock_set_flag(sk, SOCK_DESTROY);
549 		break;
550 
551 	default:
552 		break;
553 	}
554 
555 	sock->sk   = NULL;
556 	release_sock(sk);
557 	sock_put(sk);
558 
559 	return 0;
560 }
561 
562 static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
563 {
564 	struct sock *sk = sock->sk;
565 	struct nr_sock *nr = nr_sk(sk);
566 	struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr;
567 	struct net_device *dev;
568 	ax25_uid_assoc *user;
569 	ax25_address *source;
570 
571 	lock_sock(sk);
572 	if (!sock_flag(sk, SOCK_ZAPPED)) {
573 		release_sock(sk);
574 		return -EINVAL;
575 	}
576 	if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) {
577 		release_sock(sk);
578 		return -EINVAL;
579 	}
580 	if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) {
581 		release_sock(sk);
582 		return -EINVAL;
583 	}
584 	if (addr->fsa_ax25.sax25_family != AF_NETROM) {
585 		release_sock(sk);
586 		return -EINVAL;
587 	}
588 	if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) {
589 		release_sock(sk);
590 		return -EADDRNOTAVAIL;
591 	}
592 
593 	/*
594 	 * Only the super user can set an arbitrary user callsign.
595 	 */
596 	if (addr->fsa_ax25.sax25_ndigis == 1) {
597 		if (!capable(CAP_NET_BIND_SERVICE)) {
598 			dev_put(dev);
599 			release_sock(sk);
600 			return -EPERM;
601 		}
602 		nr->user_addr   = addr->fsa_digipeater[0];
603 		nr->source_addr = addr->fsa_ax25.sax25_call;
604 	} else {
605 		source = &addr->fsa_ax25.sax25_call;
606 
607 		user = ax25_findbyuid(current_euid());
608 		if (user) {
609 			nr->user_addr   = user->call;
610 			ax25_uid_put(user);
611 		} else {
612 			if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) {
613 				release_sock(sk);
614 				dev_put(dev);
615 				return -EPERM;
616 			}
617 			nr->user_addr   = *source;
618 		}
619 
620 		nr->source_addr = *source;
621 	}
622 
623 	nr->device = dev;
624 	nr_insert_socket(sk);
625 
626 	sock_reset_flag(sk, SOCK_ZAPPED);
627 	dev_put(dev);
628 	release_sock(sk);
629 
630 	return 0;
631 }
632 
633 static int nr_connect(struct socket *sock, struct sockaddr *uaddr,
634 	int addr_len, int flags)
635 {
636 	struct sock *sk = sock->sk;
637 	struct nr_sock *nr = nr_sk(sk);
638 	struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr;
639 	ax25_address *source = NULL;
640 	ax25_uid_assoc *user;
641 	struct net_device *dev;
642 	int err = 0;
643 
644 	lock_sock(sk);
645 	if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
646 		sock->state = SS_CONNECTED;
647 		goto out_release;	/* Connect completed during a ERESTARTSYS event */
648 	}
649 
650 	if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
651 		sock->state = SS_UNCONNECTED;
652 		err = -ECONNREFUSED;
653 		goto out_release;
654 	}
655 
656 	if (sk->sk_state == TCP_ESTABLISHED) {
657 		err = -EISCONN;	/* No reconnect on a seqpacket socket */
658 		goto out_release;
659 	}
660 
661 	sk->sk_state   = TCP_CLOSE;
662 	sock->state = SS_UNCONNECTED;
663 
664 	if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) {
665 		err = -EINVAL;
666 		goto out_release;
667 	}
668 	if (addr->sax25_family != AF_NETROM) {
669 		err = -EINVAL;
670 		goto out_release;
671 	}
672 	if (sock_flag(sk, SOCK_ZAPPED)) {	/* Must bind first - autobinding in this may or may not work */
673 		sock_reset_flag(sk, SOCK_ZAPPED);
674 
675 		if ((dev = nr_dev_first()) == NULL) {
676 			err = -ENETUNREACH;
677 			goto out_release;
678 		}
679 		source = (ax25_address *)dev->dev_addr;
680 
681 		user = ax25_findbyuid(current_euid());
682 		if (user) {
683 			nr->user_addr   = user->call;
684 			ax25_uid_put(user);
685 		} else {
686 			if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) {
687 				dev_put(dev);
688 				err = -EPERM;
689 				goto out_release;
690 			}
691 			nr->user_addr   = *source;
692 		}
693 
694 		nr->source_addr = *source;
695 		nr->device      = dev;
696 
697 		dev_put(dev);
698 		nr_insert_socket(sk);		/* Finish the bind */
699 	}
700 
701 	nr->dest_addr = addr->sax25_call;
702 
703 	release_sock(sk);
704 	circuit = nr_find_next_circuit();
705 	lock_sock(sk);
706 
707 	nr->my_index = circuit / 256;
708 	nr->my_id    = circuit % 256;
709 
710 	circuit++;
711 
712 	/* Move to connecting socket, start sending Connect Requests */
713 	sock->state  = SS_CONNECTING;
714 	sk->sk_state = TCP_SYN_SENT;
715 
716 	nr_establish_data_link(sk);
717 
718 	nr->state = NR_STATE_1;
719 
720 	nr_start_heartbeat(sk);
721 
722 	/* Now the loop */
723 	if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
724 		err = -EINPROGRESS;
725 		goto out_release;
726 	}
727 
728 	/*
729 	 * A Connect Ack with Choke or timeout or failed routing will go to
730 	 * closed.
731 	 */
732 	if (sk->sk_state == TCP_SYN_SENT) {
733 		DEFINE_WAIT(wait);
734 
735 		for (;;) {
736 			prepare_to_wait(sk_sleep(sk), &wait,
737 					TASK_INTERRUPTIBLE);
738 			if (sk->sk_state != TCP_SYN_SENT)
739 				break;
740 			if (!signal_pending(current)) {
741 				release_sock(sk);
742 				schedule();
743 				lock_sock(sk);
744 				continue;
745 			}
746 			err = -ERESTARTSYS;
747 			break;
748 		}
749 		finish_wait(sk_sleep(sk), &wait);
750 		if (err)
751 			goto out_release;
752 	}
753 
754 	if (sk->sk_state != TCP_ESTABLISHED) {
755 		sock->state = SS_UNCONNECTED;
756 		err = sock_error(sk);	/* Always set at this point */
757 		goto out_release;
758 	}
759 
760 	sock->state = SS_CONNECTED;
761 
762 out_release:
763 	release_sock(sk);
764 
765 	return err;
766 }
767 
768 static int nr_accept(struct socket *sock, struct socket *newsock, int flags,
769 		     bool kern)
770 {
771 	struct sk_buff *skb;
772 	struct sock *newsk;
773 	DEFINE_WAIT(wait);
774 	struct sock *sk;
775 	int err = 0;
776 
777 	if ((sk = sock->sk) == NULL)
778 		return -EINVAL;
779 
780 	lock_sock(sk);
781 	if (sk->sk_type != SOCK_SEQPACKET) {
782 		err = -EOPNOTSUPP;
783 		goto out_release;
784 	}
785 
786 	if (sk->sk_state != TCP_LISTEN) {
787 		err = -EINVAL;
788 		goto out_release;
789 	}
790 
791 	/*
792 	 *	The write queue this time is holding sockets ready to use
793 	 *	hooked into the SABM we saved
794 	 */
795 	for (;;) {
796 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
797 		skb = skb_dequeue(&sk->sk_receive_queue);
798 		if (skb)
799 			break;
800 
801 		if (flags & O_NONBLOCK) {
802 			err = -EWOULDBLOCK;
803 			break;
804 		}
805 		if (!signal_pending(current)) {
806 			release_sock(sk);
807 			schedule();
808 			lock_sock(sk);
809 			continue;
810 		}
811 		err = -ERESTARTSYS;
812 		break;
813 	}
814 	finish_wait(sk_sleep(sk), &wait);
815 	if (err)
816 		goto out_release;
817 
818 	newsk = skb->sk;
819 	sock_graft(newsk, newsock);
820 
821 	/* Now attach up the new socket */
822 	kfree_skb(skb);
823 	sk_acceptq_removed(sk);
824 
825 out_release:
826 	release_sock(sk);
827 
828 	return err;
829 }
830 
831 static int nr_getname(struct socket *sock, struct sockaddr *uaddr,
832 	int *uaddr_len, int peer)
833 {
834 	struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr;
835 	struct sock *sk = sock->sk;
836 	struct nr_sock *nr = nr_sk(sk);
837 
838 	memset(&sax->fsa_ax25, 0, sizeof(struct sockaddr_ax25));
839 
840 	lock_sock(sk);
841 	if (peer != 0) {
842 		if (sk->sk_state != TCP_ESTABLISHED) {
843 			release_sock(sk);
844 			return -ENOTCONN;
845 		}
846 		sax->fsa_ax25.sax25_family = AF_NETROM;
847 		sax->fsa_ax25.sax25_ndigis = 1;
848 		sax->fsa_ax25.sax25_call   = nr->user_addr;
849 		memset(sax->fsa_digipeater, 0, sizeof(sax->fsa_digipeater));
850 		sax->fsa_digipeater[0]     = nr->dest_addr;
851 		*uaddr_len = sizeof(struct full_sockaddr_ax25);
852 	} else {
853 		sax->fsa_ax25.sax25_family = AF_NETROM;
854 		sax->fsa_ax25.sax25_ndigis = 0;
855 		sax->fsa_ax25.sax25_call   = nr->source_addr;
856 		*uaddr_len = sizeof(struct sockaddr_ax25);
857 	}
858 	release_sock(sk);
859 
860 	return 0;
861 }
862 
863 int nr_rx_frame(struct sk_buff *skb, struct net_device *dev)
864 {
865 	struct sock *sk;
866 	struct sock *make;
867 	struct nr_sock *nr_make;
868 	ax25_address *src, *dest, *user;
869 	unsigned short circuit_index, circuit_id;
870 	unsigned short peer_circuit_index, peer_circuit_id;
871 	unsigned short frametype, flags, window, timeout;
872 	int ret;
873 
874 	skb->sk = NULL;		/* Initially we don't know who it's for */
875 
876 	/*
877 	 *	skb->data points to the netrom frame start
878 	 */
879 
880 	src  = (ax25_address *)(skb->data + 0);
881 	dest = (ax25_address *)(skb->data + 7);
882 
883 	circuit_index      = skb->data[15];
884 	circuit_id         = skb->data[16];
885 	peer_circuit_index = skb->data[17];
886 	peer_circuit_id    = skb->data[18];
887 	frametype          = skb->data[19] & 0x0F;
888 	flags              = skb->data[19] & 0xF0;
889 
890 	/*
891 	 * Check for an incoming IP over NET/ROM frame.
892 	 */
893 	if (frametype == NR_PROTOEXT &&
894 	    circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) {
895 		skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN);
896 		skb_reset_transport_header(skb);
897 
898 		return nr_rx_ip(skb, dev);
899 	}
900 
901 	/*
902 	 * Find an existing socket connection, based on circuit ID, if it's
903 	 * a Connect Request base it on their circuit ID.
904 	 *
905 	 * Circuit ID 0/0 is not valid but it could still be a "reset" for a
906 	 * circuit that no longer exists at the other end ...
907 	 */
908 
909 	sk = NULL;
910 
911 	if (circuit_index == 0 && circuit_id == 0) {
912 		if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG)
913 			sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src);
914 	} else {
915 		if (frametype == NR_CONNREQ)
916 			sk = nr_find_peer(circuit_index, circuit_id, src);
917 		else
918 			sk = nr_find_socket(circuit_index, circuit_id);
919 	}
920 
921 	if (sk != NULL) {
922 		skb_reset_transport_header(skb);
923 
924 		if (frametype == NR_CONNACK && skb->len == 22)
925 			nr_sk(sk)->bpqext = 1;
926 		else
927 			nr_sk(sk)->bpqext = 0;
928 
929 		ret = nr_process_rx_frame(sk, skb);
930 		bh_unlock_sock(sk);
931 		return ret;
932 	}
933 
934 	/*
935 	 * Now it should be a CONNREQ.
936 	 */
937 	if (frametype != NR_CONNREQ) {
938 		/*
939 		 * Here it would be nice to be able to send a reset but
940 		 * NET/ROM doesn't have one.  We've tried to extend the protocol
941 		 * by sending NR_CONNACK | NR_CHOKE_FLAGS replies but that
942 		 * apparently kills BPQ boxes... :-(
943 		 * So now we try to follow the established behaviour of
944 		 * G8PZT's Xrouter which is sending packets with command type 7
945 		 * as an extension of the protocol.
946 		 */
947 		if (sysctl_netrom_reset_circuit &&
948 		    (frametype != NR_RESET || flags != 0))
949 			nr_transmit_reset(skb, 1);
950 
951 		return 0;
952 	}
953 
954 	sk = nr_find_listener(dest);
955 
956 	user = (ax25_address *)(skb->data + 21);
957 
958 	if (sk == NULL || sk_acceptq_is_full(sk) ||
959 	    (make = nr_make_new(sk)) == NULL) {
960 		nr_transmit_refusal(skb, 0);
961 		if (sk)
962 			bh_unlock_sock(sk);
963 		return 0;
964 	}
965 
966 	window = skb->data[20];
967 
968 	skb->sk             = make;
969 	make->sk_state	    = TCP_ESTABLISHED;
970 
971 	/* Fill in his circuit details */
972 	nr_make = nr_sk(make);
973 	nr_make->source_addr = *dest;
974 	nr_make->dest_addr   = *src;
975 	nr_make->user_addr   = *user;
976 
977 	nr_make->your_index  = circuit_index;
978 	nr_make->your_id     = circuit_id;
979 
980 	bh_unlock_sock(sk);
981 	circuit = nr_find_next_circuit();
982 	bh_lock_sock(sk);
983 
984 	nr_make->my_index    = circuit / 256;
985 	nr_make->my_id       = circuit % 256;
986 
987 	circuit++;
988 
989 	/* Window negotiation */
990 	if (window < nr_make->window)
991 		nr_make->window = window;
992 
993 	/* L4 timeout negotiation */
994 	if (skb->len == 37) {
995 		timeout = skb->data[36] * 256 + skb->data[35];
996 		if (timeout * HZ < nr_make->t1)
997 			nr_make->t1 = timeout * HZ;
998 		nr_make->bpqext = 1;
999 	} else {
1000 		nr_make->bpqext = 0;
1001 	}
1002 
1003 	nr_write_internal(make, NR_CONNACK);
1004 
1005 	nr_make->condition = 0x00;
1006 	nr_make->vs        = 0;
1007 	nr_make->va        = 0;
1008 	nr_make->vr        = 0;
1009 	nr_make->vl        = 0;
1010 	nr_make->state     = NR_STATE_3;
1011 	sk_acceptq_added(sk);
1012 	skb_queue_head(&sk->sk_receive_queue, skb);
1013 
1014 	if (!sock_flag(sk, SOCK_DEAD))
1015 		sk->sk_data_ready(sk);
1016 
1017 	bh_unlock_sock(sk);
1018 
1019 	nr_insert_socket(make);
1020 
1021 	nr_start_heartbeat(make);
1022 	nr_start_idletimer(make);
1023 
1024 	return 1;
1025 }
1026 
1027 static int nr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
1028 {
1029 	struct sock *sk = sock->sk;
1030 	struct nr_sock *nr = nr_sk(sk);
1031 	DECLARE_SOCKADDR(struct sockaddr_ax25 *, usax, msg->msg_name);
1032 	int err;
1033 	struct sockaddr_ax25 sax;
1034 	struct sk_buff *skb;
1035 	unsigned char *asmptr;
1036 	int size;
1037 
1038 	if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1039 		return -EINVAL;
1040 
1041 	lock_sock(sk);
1042 	if (sock_flag(sk, SOCK_ZAPPED)) {
1043 		err = -EADDRNOTAVAIL;
1044 		goto out;
1045 	}
1046 
1047 	if (sk->sk_shutdown & SEND_SHUTDOWN) {
1048 		send_sig(SIGPIPE, current, 0);
1049 		err = -EPIPE;
1050 		goto out;
1051 	}
1052 
1053 	if (nr->device == NULL) {
1054 		err = -ENETUNREACH;
1055 		goto out;
1056 	}
1057 
1058 	if (usax) {
1059 		if (msg->msg_namelen < sizeof(sax)) {
1060 			err = -EINVAL;
1061 			goto out;
1062 		}
1063 		sax = *usax;
1064 		if (ax25cmp(&nr->dest_addr, &sax.sax25_call) != 0) {
1065 			err = -EISCONN;
1066 			goto out;
1067 		}
1068 		if (sax.sax25_family != AF_NETROM) {
1069 			err = -EINVAL;
1070 			goto out;
1071 		}
1072 	} else {
1073 		if (sk->sk_state != TCP_ESTABLISHED) {
1074 			err = -ENOTCONN;
1075 			goto out;
1076 		}
1077 		sax.sax25_family = AF_NETROM;
1078 		sax.sax25_call   = nr->dest_addr;
1079 	}
1080 
1081 	/* Build a packet - the conventional user limit is 236 bytes. We can
1082 	   do ludicrously large NetROM frames but must not overflow */
1083 	if (len > 65536) {
1084 		err = -EMSGSIZE;
1085 		goto out;
1086 	}
1087 
1088 	size = len + NR_NETWORK_LEN + NR_TRANSPORT_LEN;
1089 
1090 	if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
1091 		goto out;
1092 
1093 	skb_reserve(skb, size - len);
1094 	skb_reset_transport_header(skb);
1095 
1096 	/*
1097 	 *	Push down the NET/ROM header
1098 	 */
1099 
1100 	asmptr = skb_push(skb, NR_TRANSPORT_LEN);
1101 
1102 	/* Build a NET/ROM Transport header */
1103 
1104 	*asmptr++ = nr->your_index;
1105 	*asmptr++ = nr->your_id;
1106 	*asmptr++ = 0;		/* To be filled in later */
1107 	*asmptr++ = 0;		/*      Ditto            */
1108 	*asmptr++ = NR_INFO;
1109 
1110 	/*
1111 	 *	Put the data on the end
1112 	 */
1113 	skb_put(skb, len);
1114 
1115 	/* User data follows immediately after the NET/ROM transport header */
1116 	if (memcpy_from_msg(skb_transport_header(skb), msg, len)) {
1117 		kfree_skb(skb);
1118 		err = -EFAULT;
1119 		goto out;
1120 	}
1121 
1122 	if (sk->sk_state != TCP_ESTABLISHED) {
1123 		kfree_skb(skb);
1124 		err = -ENOTCONN;
1125 		goto out;
1126 	}
1127 
1128 	nr_output(sk, skb);	/* Shove it onto the queue */
1129 
1130 	err = len;
1131 out:
1132 	release_sock(sk);
1133 	return err;
1134 }
1135 
1136 static int nr_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1137 		      int flags)
1138 {
1139 	struct sock *sk = sock->sk;
1140 	DECLARE_SOCKADDR(struct sockaddr_ax25 *, sax, msg->msg_name);
1141 	size_t copied;
1142 	struct sk_buff *skb;
1143 	int er;
1144 
1145 	/*
1146 	 * This works for seqpacket too. The receiver has ordered the queue for
1147 	 * us! We do one quick check first though
1148 	 */
1149 
1150 	lock_sock(sk);
1151 	if (sk->sk_state != TCP_ESTABLISHED) {
1152 		release_sock(sk);
1153 		return -ENOTCONN;
1154 	}
1155 
1156 	/* Now we can treat all alike */
1157 	if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) {
1158 		release_sock(sk);
1159 		return er;
1160 	}
1161 
1162 	skb_reset_transport_header(skb);
1163 	copied     = skb->len;
1164 
1165 	if (copied > size) {
1166 		copied = size;
1167 		msg->msg_flags |= MSG_TRUNC;
1168 	}
1169 
1170 	er = skb_copy_datagram_msg(skb, 0, msg, copied);
1171 	if (er < 0) {
1172 		skb_free_datagram(sk, skb);
1173 		release_sock(sk);
1174 		return er;
1175 	}
1176 
1177 	if (sax != NULL) {
1178 		memset(sax, 0, sizeof(*sax));
1179 		sax->sax25_family = AF_NETROM;
1180 		skb_copy_from_linear_data_offset(skb, 7, sax->sax25_call.ax25_call,
1181 			      AX25_ADDR_LEN);
1182 		msg->msg_namelen = sizeof(*sax);
1183 	}
1184 
1185 	skb_free_datagram(sk, skb);
1186 
1187 	release_sock(sk);
1188 	return copied;
1189 }
1190 
1191 
1192 static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1193 {
1194 	struct sock *sk = sock->sk;
1195 	void __user *argp = (void __user *)arg;
1196 	int ret;
1197 
1198 	switch (cmd) {
1199 	case TIOCOUTQ: {
1200 		long amount;
1201 
1202 		lock_sock(sk);
1203 		amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1204 		if (amount < 0)
1205 			amount = 0;
1206 		release_sock(sk);
1207 		return put_user(amount, (int __user *)argp);
1208 	}
1209 
1210 	case TIOCINQ: {
1211 		struct sk_buff *skb;
1212 		long amount = 0L;
1213 
1214 		lock_sock(sk);
1215 		/* These two are safe on a single CPU system as only user tasks fiddle here */
1216 		if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1217 			amount = skb->len;
1218 		release_sock(sk);
1219 		return put_user(amount, (int __user *)argp);
1220 	}
1221 
1222 	case SIOCGSTAMP:
1223 		lock_sock(sk);
1224 		ret = sock_get_timestamp(sk, argp);
1225 		release_sock(sk);
1226 		return ret;
1227 
1228 	case SIOCGSTAMPNS:
1229 		lock_sock(sk);
1230 		ret = sock_get_timestampns(sk, argp);
1231 		release_sock(sk);
1232 		return ret;
1233 
1234 	case SIOCGIFADDR:
1235 	case SIOCSIFADDR:
1236 	case SIOCGIFDSTADDR:
1237 	case SIOCSIFDSTADDR:
1238 	case SIOCGIFBRDADDR:
1239 	case SIOCSIFBRDADDR:
1240 	case SIOCGIFNETMASK:
1241 	case SIOCSIFNETMASK:
1242 	case SIOCGIFMETRIC:
1243 	case SIOCSIFMETRIC:
1244 		return -EINVAL;
1245 
1246 	case SIOCADDRT:
1247 	case SIOCDELRT:
1248 	case SIOCNRDECOBS:
1249 		if (!capable(CAP_NET_ADMIN))
1250 			return -EPERM;
1251 		return nr_rt_ioctl(cmd, argp);
1252 
1253 	default:
1254 		return -ENOIOCTLCMD;
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 #ifdef CONFIG_PROC_FS
1261 
1262 static void *nr_info_start(struct seq_file *seq, loff_t *pos)
1263 {
1264 	spin_lock_bh(&nr_list_lock);
1265 	return seq_hlist_start_head(&nr_list, *pos);
1266 }
1267 
1268 static void *nr_info_next(struct seq_file *seq, void *v, loff_t *pos)
1269 {
1270 	return seq_hlist_next(v, &nr_list, pos);
1271 }
1272 
1273 static void nr_info_stop(struct seq_file *seq, void *v)
1274 {
1275 	spin_unlock_bh(&nr_list_lock);
1276 }
1277 
1278 static int nr_info_show(struct seq_file *seq, void *v)
1279 {
1280 	struct sock *s = sk_entry(v);
1281 	struct net_device *dev;
1282 	struct nr_sock *nr;
1283 	const char *devname;
1284 	char buf[11];
1285 
1286 	if (v == SEQ_START_TOKEN)
1287 		seq_puts(seq,
1288 "user_addr dest_node src_node  dev    my  your  st  vs  vr  va    t1     t2     t4      idle   n2  wnd Snd-Q Rcv-Q inode\n");
1289 
1290 	else {
1291 
1292 		bh_lock_sock(s);
1293 		nr = nr_sk(s);
1294 
1295 		if ((dev = nr->device) == NULL)
1296 			devname = "???";
1297 		else
1298 			devname = dev->name;
1299 
1300 		seq_printf(seq, "%-9s ", ax2asc(buf, &nr->user_addr));
1301 		seq_printf(seq, "%-9s ", ax2asc(buf, &nr->dest_addr));
1302 		seq_printf(seq,
1303 "%-9s %-3s  %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n",
1304 			ax2asc(buf, &nr->source_addr),
1305 			devname,
1306 			nr->my_index,
1307 			nr->my_id,
1308 			nr->your_index,
1309 			nr->your_id,
1310 			nr->state,
1311 			nr->vs,
1312 			nr->vr,
1313 			nr->va,
1314 			ax25_display_timer(&nr->t1timer) / HZ,
1315 			nr->t1 / HZ,
1316 			ax25_display_timer(&nr->t2timer) / HZ,
1317 			nr->t2 / HZ,
1318 			ax25_display_timer(&nr->t4timer) / HZ,
1319 			nr->t4 / HZ,
1320 			ax25_display_timer(&nr->idletimer) / (60 * HZ),
1321 			nr->idle / (60 * HZ),
1322 			nr->n2count,
1323 			nr->n2,
1324 			nr->window,
1325 			sk_wmem_alloc_get(s),
1326 			sk_rmem_alloc_get(s),
1327 			s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
1328 
1329 		bh_unlock_sock(s);
1330 	}
1331 	return 0;
1332 }
1333 
1334 static const struct seq_operations nr_info_seqops = {
1335 	.start = nr_info_start,
1336 	.next = nr_info_next,
1337 	.stop = nr_info_stop,
1338 	.show = nr_info_show,
1339 };
1340 
1341 static int nr_info_open(struct inode *inode, struct file *file)
1342 {
1343 	return seq_open(file, &nr_info_seqops);
1344 }
1345 
1346 static const struct file_operations nr_info_fops = {
1347 	.open = nr_info_open,
1348 	.read = seq_read,
1349 	.llseek = seq_lseek,
1350 	.release = seq_release,
1351 };
1352 #endif	/* CONFIG_PROC_FS */
1353 
1354 static const struct net_proto_family nr_family_ops = {
1355 	.family		=	PF_NETROM,
1356 	.create		=	nr_create,
1357 	.owner		=	THIS_MODULE,
1358 };
1359 
1360 static const struct proto_ops nr_proto_ops = {
1361 	.family		=	PF_NETROM,
1362 	.owner		=	THIS_MODULE,
1363 	.release	=	nr_release,
1364 	.bind		=	nr_bind,
1365 	.connect	=	nr_connect,
1366 	.socketpair	=	sock_no_socketpair,
1367 	.accept		=	nr_accept,
1368 	.getname	=	nr_getname,
1369 	.poll		=	datagram_poll,
1370 	.ioctl		=	nr_ioctl,
1371 	.listen		=	nr_listen,
1372 	.shutdown	=	sock_no_shutdown,
1373 	.setsockopt	=	nr_setsockopt,
1374 	.getsockopt	=	nr_getsockopt,
1375 	.sendmsg	=	nr_sendmsg,
1376 	.recvmsg	=	nr_recvmsg,
1377 	.mmap		=	sock_no_mmap,
1378 	.sendpage	=	sock_no_sendpage,
1379 };
1380 
1381 static struct notifier_block nr_dev_notifier = {
1382 	.notifier_call	=	nr_device_event,
1383 };
1384 
1385 static struct net_device **dev_nr;
1386 
1387 static struct ax25_protocol nr_pid = {
1388 	.pid	= AX25_P_NETROM,
1389 	.func	= nr_route_frame
1390 };
1391 
1392 static struct ax25_linkfail nr_linkfail_notifier = {
1393 	.func	= nr_link_failed,
1394 };
1395 
1396 static int __init nr_proto_init(void)
1397 {
1398 	int i;
1399 	int rc = proto_register(&nr_proto, 0);
1400 
1401 	if (rc != 0)
1402 		goto out;
1403 
1404 	if (nr_ndevs > 0x7fffffff/sizeof(struct net_device *)) {
1405 		printk(KERN_ERR "NET/ROM: nr_proto_init - nr_ndevs parameter to large\n");
1406 		return -1;
1407 	}
1408 
1409 	dev_nr = kzalloc(nr_ndevs * sizeof(struct net_device *), GFP_KERNEL);
1410 	if (dev_nr == NULL) {
1411 		printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device array\n");
1412 		return -1;
1413 	}
1414 
1415 	for (i = 0; i < nr_ndevs; i++) {
1416 		char name[IFNAMSIZ];
1417 		struct net_device *dev;
1418 
1419 		sprintf(name, "nr%d", i);
1420 		dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, nr_setup);
1421 		if (!dev) {
1422 			printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device structure\n");
1423 			goto fail;
1424 		}
1425 
1426 		dev->base_addr = i;
1427 		if (register_netdev(dev)) {
1428 			printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register network device\n");
1429 			free_netdev(dev);
1430 			goto fail;
1431 		}
1432 		nr_set_lockdep_key(dev);
1433 		dev_nr[i] = dev;
1434 	}
1435 
1436 	if (sock_register(&nr_family_ops)) {
1437 		printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register socket family\n");
1438 		goto fail;
1439 	}
1440 
1441 	register_netdevice_notifier(&nr_dev_notifier);
1442 
1443 	ax25_register_pid(&nr_pid);
1444 	ax25_linkfail_register(&nr_linkfail_notifier);
1445 
1446 #ifdef CONFIG_SYSCTL
1447 	nr_register_sysctl();
1448 #endif
1449 
1450 	nr_loopback_init();
1451 
1452 	proc_create("nr", S_IRUGO, init_net.proc_net, &nr_info_fops);
1453 	proc_create("nr_neigh", S_IRUGO, init_net.proc_net, &nr_neigh_fops);
1454 	proc_create("nr_nodes", S_IRUGO, init_net.proc_net, &nr_nodes_fops);
1455 out:
1456 	return rc;
1457 fail:
1458 	while (--i >= 0) {
1459 		unregister_netdev(dev_nr[i]);
1460 		free_netdev(dev_nr[i]);
1461 	}
1462 	kfree(dev_nr);
1463 	proto_unregister(&nr_proto);
1464 	rc = -1;
1465 	goto out;
1466 }
1467 
1468 module_init(nr_proto_init);
1469 
1470 module_param(nr_ndevs, int, 0);
1471 MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices");
1472 
1473 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
1474 MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol");
1475 MODULE_LICENSE("GPL");
1476 MODULE_ALIAS_NETPROTO(PF_NETROM);
1477 
1478 static void __exit nr_exit(void)
1479 {
1480 	int i;
1481 
1482 	remove_proc_entry("nr", init_net.proc_net);
1483 	remove_proc_entry("nr_neigh", init_net.proc_net);
1484 	remove_proc_entry("nr_nodes", init_net.proc_net);
1485 	nr_loopback_clear();
1486 
1487 	nr_rt_free();
1488 
1489 #ifdef CONFIG_SYSCTL
1490 	nr_unregister_sysctl();
1491 #endif
1492 
1493 	ax25_linkfail_release(&nr_linkfail_notifier);
1494 	ax25_protocol_release(AX25_P_NETROM);
1495 
1496 	unregister_netdevice_notifier(&nr_dev_notifier);
1497 
1498 	sock_unregister(PF_NETROM);
1499 
1500 	for (i = 0; i < nr_ndevs; i++) {
1501 		struct net_device *dev = dev_nr[i];
1502 		if (dev) {
1503 			unregister_netdev(dev);
1504 			free_netdev(dev);
1505 		}
1506 	}
1507 
1508 	kfree(dev_nr);
1509 	proto_unregister(&nr_proto);
1510 }
1511 module_exit(nr_exit);
1512