xref: /openbmc/linux/net/netrom/af_netrom.c (revision 643d1f7f)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 2 of the License, or
5  * (at your option) any later version.
6  *
7  * Copyright Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
8  * Copyright Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
9  * Copyright Darryl Miles G7LED (dlm@g7led.demon.co.uk)
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/capability.h>
14 #include <linux/errno.h>
15 #include <linux/types.h>
16 #include <linux/socket.h>
17 #include <linux/in.h>
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/timer.h>
21 #include <linux/string.h>
22 #include <linux/sockios.h>
23 #include <linux/net.h>
24 #include <linux/stat.h>
25 #include <net/ax25.h>
26 #include <linux/inet.h>
27 #include <linux/netdevice.h>
28 #include <linux/if_arp.h>
29 #include <linux/skbuff.h>
30 #include <net/net_namespace.h>
31 #include <net/sock.h>
32 #include <asm/uaccess.h>
33 #include <asm/system.h>
34 #include <linux/fcntl.h>
35 #include <linux/termios.h>	/* For TIOCINQ/OUTQ */
36 #include <linux/mm.h>
37 #include <linux/interrupt.h>
38 #include <linux/notifier.h>
39 #include <net/netrom.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/arp.h>
45 #include <linux/init.h>
46 
47 static int nr_ndevs = 4;
48 
49 int sysctl_netrom_default_path_quality            = NR_DEFAULT_QUAL;
50 int sysctl_netrom_obsolescence_count_initialiser  = NR_DEFAULT_OBS;
51 int sysctl_netrom_network_ttl_initialiser         = NR_DEFAULT_TTL;
52 int sysctl_netrom_transport_timeout               = NR_DEFAULT_T1;
53 int sysctl_netrom_transport_maximum_tries         = NR_DEFAULT_N2;
54 int sysctl_netrom_transport_acknowledge_delay     = NR_DEFAULT_T2;
55 int sysctl_netrom_transport_busy_delay            = NR_DEFAULT_T4;
56 int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW;
57 int sysctl_netrom_transport_no_activity_timeout   = NR_DEFAULT_IDLE;
58 int sysctl_netrom_routing_control                 = NR_DEFAULT_ROUTING;
59 int sysctl_netrom_link_fails_count                = NR_DEFAULT_FAILS;
60 int sysctl_netrom_reset_circuit                   = NR_DEFAULT_RESET;
61 
62 static unsigned short circuit = 0x101;
63 
64 static HLIST_HEAD(nr_list);
65 static DEFINE_SPINLOCK(nr_list_lock);
66 
67 static const struct proto_ops nr_proto_ops;
68 
69 /*
70  * NETROM network devices are virtual network devices encapsulating NETROM
71  * frames into AX.25 which will be sent through an AX.25 device, so form a
72  * special "super class" of normal net devices; split their locks off into a
73  * separate class since they always nest.
74  */
75 static struct lock_class_key nr_netdev_xmit_lock_key;
76 
77 /*
78  *	Socket removal during an interrupt is now safe.
79  */
80 static void nr_remove_socket(struct sock *sk)
81 {
82 	spin_lock_bh(&nr_list_lock);
83 	sk_del_node_init(sk);
84 	spin_unlock_bh(&nr_list_lock);
85 }
86 
87 /*
88  *	Kill all bound sockets on a dropped device.
89  */
90 static void nr_kill_by_device(struct net_device *dev)
91 {
92 	struct sock *s;
93 	struct hlist_node *node;
94 
95 	spin_lock_bh(&nr_list_lock);
96 	sk_for_each(s, node, &nr_list)
97 		if (nr_sk(s)->device == dev)
98 			nr_disconnect(s, ENETUNREACH);
99 	spin_unlock_bh(&nr_list_lock);
100 }
101 
102 /*
103  *	Handle device status changes.
104  */
105 static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
106 {
107 	struct net_device *dev = (struct net_device *)ptr;
108 
109 	if (dev->nd_net != &init_net)
110 		return NOTIFY_DONE;
111 
112 	if (event != NETDEV_DOWN)
113 		return NOTIFY_DONE;
114 
115 	nr_kill_by_device(dev);
116 	nr_rt_device_down(dev);
117 
118 	return NOTIFY_DONE;
119 }
120 
121 /*
122  *	Add a socket to the bound sockets list.
123  */
124 static void nr_insert_socket(struct sock *sk)
125 {
126 	spin_lock_bh(&nr_list_lock);
127 	sk_add_node(sk, &nr_list);
128 	spin_unlock_bh(&nr_list_lock);
129 }
130 
131 /*
132  *	Find a socket that wants to accept the Connect Request we just
133  *	received.
134  */
135 static struct sock *nr_find_listener(ax25_address *addr)
136 {
137 	struct sock *s;
138 	struct hlist_node *node;
139 
140 	spin_lock_bh(&nr_list_lock);
141 	sk_for_each(s, node, &nr_list)
142 		if (!ax25cmp(&nr_sk(s)->source_addr, addr) &&
143 		    s->sk_state == TCP_LISTEN) {
144 			bh_lock_sock(s);
145 			goto found;
146 		}
147 	s = NULL;
148 found:
149 	spin_unlock_bh(&nr_list_lock);
150 	return s;
151 }
152 
153 /*
154  *	Find a connected NET/ROM socket given my circuit IDs.
155  */
156 static struct sock *nr_find_socket(unsigned char index, unsigned char id)
157 {
158 	struct sock *s;
159 	struct hlist_node *node;
160 
161 	spin_lock_bh(&nr_list_lock);
162 	sk_for_each(s, node, &nr_list) {
163 		struct nr_sock *nr = nr_sk(s);
164 
165 		if (nr->my_index == index && nr->my_id == id) {
166 			bh_lock_sock(s);
167 			goto found;
168 		}
169 	}
170 	s = NULL;
171 found:
172 	spin_unlock_bh(&nr_list_lock);
173 	return s;
174 }
175 
176 /*
177  *	Find a connected NET/ROM socket given their circuit IDs.
178  */
179 static struct sock *nr_find_peer(unsigned char index, unsigned char id,
180 	ax25_address *dest)
181 {
182 	struct sock *s;
183 	struct hlist_node *node;
184 
185 	spin_lock_bh(&nr_list_lock);
186 	sk_for_each(s, node, &nr_list) {
187 		struct nr_sock *nr = nr_sk(s);
188 
189 		if (nr->your_index == index && nr->your_id == id &&
190 		    !ax25cmp(&nr->dest_addr, dest)) {
191 			bh_lock_sock(s);
192 			goto found;
193 		}
194 	}
195 	s = NULL;
196 found:
197 	spin_unlock_bh(&nr_list_lock);
198 	return s;
199 }
200 
201 /*
202  *	Find next free circuit ID.
203  */
204 static unsigned short nr_find_next_circuit(void)
205 {
206 	unsigned short id = circuit;
207 	unsigned char i, j;
208 	struct sock *sk;
209 
210 	for (;;) {
211 		i = id / 256;
212 		j = id % 256;
213 
214 		if (i != 0 && j != 0) {
215 			if ((sk=nr_find_socket(i, j)) == NULL)
216 				break;
217 			bh_unlock_sock(sk);
218 		}
219 
220 		id++;
221 	}
222 
223 	return id;
224 }
225 
226 /*
227  *	Deferred destroy.
228  */
229 void nr_destroy_socket(struct sock *);
230 
231 /*
232  *	Handler for deferred kills.
233  */
234 static void nr_destroy_timer(unsigned long data)
235 {
236 	struct sock *sk=(struct sock *)data;
237 	bh_lock_sock(sk);
238 	sock_hold(sk);
239 	nr_destroy_socket(sk);
240 	bh_unlock_sock(sk);
241 	sock_put(sk);
242 }
243 
244 /*
245  *	This is called from user mode and the timers. Thus it protects itself
246  *	against interrupt users but doesn't worry about being called during
247  *	work. Once it is removed from the queue no interrupt or bottom half
248  *	will touch it and we are (fairly 8-) ) safe.
249  */
250 void nr_destroy_socket(struct sock *sk)
251 {
252 	struct sk_buff *skb;
253 
254 	nr_remove_socket(sk);
255 
256 	nr_stop_heartbeat(sk);
257 	nr_stop_t1timer(sk);
258 	nr_stop_t2timer(sk);
259 	nr_stop_t4timer(sk);
260 	nr_stop_idletimer(sk);
261 
262 	nr_clear_queues(sk);		/* Flush the queues */
263 
264 	while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
265 		if (skb->sk != sk) { /* A pending connection */
266 			/* Queue the unaccepted socket for death */
267 			sock_set_flag(skb->sk, SOCK_DEAD);
268 			nr_start_heartbeat(skb->sk);
269 			nr_sk(skb->sk)->state = NR_STATE_0;
270 		}
271 
272 		kfree_skb(skb);
273 	}
274 
275 	if (atomic_read(&sk->sk_wmem_alloc) ||
276 	    atomic_read(&sk->sk_rmem_alloc)) {
277 		/* Defer: outstanding buffers */
278 		sk->sk_timer.function = nr_destroy_timer;
279 		sk->sk_timer.expires  = jiffies + 2 * HZ;
280 		add_timer(&sk->sk_timer);
281 	} else
282 		sock_put(sk);
283 }
284 
285 /*
286  *	Handling for system calls applied via the various interfaces to a
287  *	NET/ROM socket object.
288  */
289 
290 static int nr_setsockopt(struct socket *sock, int level, int optname,
291 	char __user *optval, int optlen)
292 {
293 	struct sock *sk = sock->sk;
294 	struct nr_sock *nr = nr_sk(sk);
295 	int opt;
296 
297 	if (level != SOL_NETROM)
298 		return -ENOPROTOOPT;
299 
300 	if (optlen < sizeof(int))
301 		return -EINVAL;
302 
303 	if (get_user(opt, (int __user *)optval))
304 		return -EFAULT;
305 
306 	switch (optname) {
307 	case NETROM_T1:
308 		if (opt < 1)
309 			return -EINVAL;
310 		nr->t1 = opt * HZ;
311 		return 0;
312 
313 	case NETROM_T2:
314 		if (opt < 1)
315 			return -EINVAL;
316 		nr->t2 = opt * HZ;
317 		return 0;
318 
319 	case NETROM_N2:
320 		if (opt < 1 || opt > 31)
321 			return -EINVAL;
322 		nr->n2 = opt;
323 		return 0;
324 
325 	case NETROM_T4:
326 		if (opt < 1)
327 			return -EINVAL;
328 		nr->t4 = opt * HZ;
329 		return 0;
330 
331 	case NETROM_IDLE:
332 		if (opt < 0)
333 			return -EINVAL;
334 		nr->idle = opt * 60 * HZ;
335 		return 0;
336 
337 	default:
338 		return -ENOPROTOOPT;
339 	}
340 }
341 
342 static int nr_getsockopt(struct socket *sock, int level, int optname,
343 	char __user *optval, int __user *optlen)
344 {
345 	struct sock *sk = sock->sk;
346 	struct nr_sock *nr = nr_sk(sk);
347 	int val = 0;
348 	int len;
349 
350 	if (level != SOL_NETROM)
351 		return -ENOPROTOOPT;
352 
353 	if (get_user(len, optlen))
354 		return -EFAULT;
355 
356 	if (len < 0)
357 		return -EINVAL;
358 
359 	switch (optname) {
360 	case NETROM_T1:
361 		val = nr->t1 / HZ;
362 		break;
363 
364 	case NETROM_T2:
365 		val = nr->t2 / HZ;
366 		break;
367 
368 	case NETROM_N2:
369 		val = nr->n2;
370 		break;
371 
372 	case NETROM_T4:
373 		val = nr->t4 / HZ;
374 		break;
375 
376 	case NETROM_IDLE:
377 		val = nr->idle / (60 * HZ);
378 		break;
379 
380 	default:
381 		return -ENOPROTOOPT;
382 	}
383 
384 	len = min_t(unsigned int, len, sizeof(int));
385 
386 	if (put_user(len, optlen))
387 		return -EFAULT;
388 
389 	return copy_to_user(optval, &val, len) ? -EFAULT : 0;
390 }
391 
392 static int nr_listen(struct socket *sock, int backlog)
393 {
394 	struct sock *sk = sock->sk;
395 
396 	lock_sock(sk);
397 	if (sk->sk_state != TCP_LISTEN) {
398 		memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN);
399 		sk->sk_max_ack_backlog = backlog;
400 		sk->sk_state           = TCP_LISTEN;
401 		release_sock(sk);
402 		return 0;
403 	}
404 	release_sock(sk);
405 
406 	return -EOPNOTSUPP;
407 }
408 
409 static struct proto nr_proto = {
410 	.name	  = "NETROM",
411 	.owner	  = THIS_MODULE,
412 	.obj_size = sizeof(struct nr_sock),
413 };
414 
415 static int nr_create(struct net *net, struct socket *sock, int protocol)
416 {
417 	struct sock *sk;
418 	struct nr_sock *nr;
419 
420 	if (net != &init_net)
421 		return -EAFNOSUPPORT;
422 
423 	if (sock->type != SOCK_SEQPACKET || protocol != 0)
424 		return -ESOCKTNOSUPPORT;
425 
426 	sk = sk_alloc(net, PF_NETROM, GFP_ATOMIC, &nr_proto);
427 	if (sk  == NULL)
428 		return -ENOMEM;
429 
430 	nr = nr_sk(sk);
431 
432 	sock_init_data(sock, sk);
433 
434 	sock->ops    = &nr_proto_ops;
435 	sk->sk_protocol = protocol;
436 
437 	skb_queue_head_init(&nr->ack_queue);
438 	skb_queue_head_init(&nr->reseq_queue);
439 	skb_queue_head_init(&nr->frag_queue);
440 
441 	nr_init_timers(sk);
442 
443 	nr->t1     =
444 		msecs_to_jiffies(sysctl_netrom_transport_timeout);
445 	nr->t2     =
446 		msecs_to_jiffies(sysctl_netrom_transport_acknowledge_delay);
447 	nr->n2     =
448 		msecs_to_jiffies(sysctl_netrom_transport_maximum_tries);
449 	nr->t4     =
450 		msecs_to_jiffies(sysctl_netrom_transport_busy_delay);
451 	nr->idle   =
452 		msecs_to_jiffies(sysctl_netrom_transport_no_activity_timeout);
453 	nr->window = sysctl_netrom_transport_requested_window_size;
454 
455 	nr->bpqext = 1;
456 	nr->state  = NR_STATE_0;
457 
458 	return 0;
459 }
460 
461 static struct sock *nr_make_new(struct sock *osk)
462 {
463 	struct sock *sk;
464 	struct nr_sock *nr, *onr;
465 
466 	if (osk->sk_type != SOCK_SEQPACKET)
467 		return NULL;
468 
469 	sk = sk_alloc(osk->sk_net, PF_NETROM, GFP_ATOMIC, osk->sk_prot);
470 	if (sk == NULL)
471 		return NULL;
472 
473 	nr = nr_sk(sk);
474 
475 	sock_init_data(NULL, sk);
476 
477 	sk->sk_type     = osk->sk_type;
478 	sk->sk_socket   = osk->sk_socket;
479 	sk->sk_priority = osk->sk_priority;
480 	sk->sk_protocol = osk->sk_protocol;
481 	sk->sk_rcvbuf   = osk->sk_rcvbuf;
482 	sk->sk_sndbuf   = osk->sk_sndbuf;
483 	sk->sk_state    = TCP_ESTABLISHED;
484 	sk->sk_sleep    = osk->sk_sleep;
485 	sock_copy_flags(sk, osk);
486 
487 	skb_queue_head_init(&nr->ack_queue);
488 	skb_queue_head_init(&nr->reseq_queue);
489 	skb_queue_head_init(&nr->frag_queue);
490 
491 	nr_init_timers(sk);
492 
493 	onr = nr_sk(osk);
494 
495 	nr->t1      = onr->t1;
496 	nr->t2      = onr->t2;
497 	nr->n2      = onr->n2;
498 	nr->t4      = onr->t4;
499 	nr->idle    = onr->idle;
500 	nr->window  = onr->window;
501 
502 	nr->device  = onr->device;
503 	nr->bpqext  = onr->bpqext;
504 
505 	return sk;
506 }
507 
508 static int nr_release(struct socket *sock)
509 {
510 	struct sock *sk = sock->sk;
511 	struct nr_sock *nr;
512 
513 	if (sk == NULL) return 0;
514 
515 	sock_hold(sk);
516 	lock_sock(sk);
517 	nr = nr_sk(sk);
518 
519 	switch (nr->state) {
520 	case NR_STATE_0:
521 	case NR_STATE_1:
522 	case NR_STATE_2:
523 		nr_disconnect(sk, 0);
524 		nr_destroy_socket(sk);
525 		break;
526 
527 	case NR_STATE_3:
528 		nr_clear_queues(sk);
529 		nr->n2count = 0;
530 		nr_write_internal(sk, NR_DISCREQ);
531 		nr_start_t1timer(sk);
532 		nr_stop_t2timer(sk);
533 		nr_stop_t4timer(sk);
534 		nr_stop_idletimer(sk);
535 		nr->state    = NR_STATE_2;
536 		sk->sk_state    = TCP_CLOSE;
537 		sk->sk_shutdown |= SEND_SHUTDOWN;
538 		sk->sk_state_change(sk);
539 		sock_orphan(sk);
540 		sock_set_flag(sk, SOCK_DESTROY);
541 		sk->sk_socket   = NULL;
542 		break;
543 
544 	default:
545 		sk->sk_socket = NULL;
546 		break;
547 	}
548 
549 	sock->sk   = NULL;
550 	release_sock(sk);
551 	sock_put(sk);
552 
553 	return 0;
554 }
555 
556 static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
557 {
558 	struct sock *sk = sock->sk;
559 	struct nr_sock *nr = nr_sk(sk);
560 	struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr;
561 	struct net_device *dev;
562 	ax25_uid_assoc *user;
563 	ax25_address *source;
564 
565 	lock_sock(sk);
566 	if (!sock_flag(sk, SOCK_ZAPPED)) {
567 		release_sock(sk);
568 		return -EINVAL;
569 	}
570 	if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) {
571 		release_sock(sk);
572 		return -EINVAL;
573 	}
574 	if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) {
575 		release_sock(sk);
576 		return -EINVAL;
577 	}
578 	if (addr->fsa_ax25.sax25_family != AF_NETROM) {
579 		release_sock(sk);
580 		return -EINVAL;
581 	}
582 	if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) {
583 		SOCK_DEBUG(sk, "NET/ROM: bind failed: invalid node callsign\n");
584 		release_sock(sk);
585 		return -EADDRNOTAVAIL;
586 	}
587 
588 	/*
589 	 * Only the super user can set an arbitrary user callsign.
590 	 */
591 	if (addr->fsa_ax25.sax25_ndigis == 1) {
592 		if (!capable(CAP_NET_BIND_SERVICE)) {
593 			dev_put(dev);
594 			release_sock(sk);
595 			return -EACCES;
596 		}
597 		nr->user_addr   = addr->fsa_digipeater[0];
598 		nr->source_addr = addr->fsa_ax25.sax25_call;
599 	} else {
600 		source = &addr->fsa_ax25.sax25_call;
601 
602 		user = ax25_findbyuid(current->euid);
603 		if (user) {
604 			nr->user_addr   = user->call;
605 			ax25_uid_put(user);
606 		} else {
607 			if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) {
608 				release_sock(sk);
609 				dev_put(dev);
610 				return -EPERM;
611 			}
612 			nr->user_addr   = *source;
613 		}
614 
615 		nr->source_addr = *source;
616 	}
617 
618 	nr->device = dev;
619 	nr_insert_socket(sk);
620 
621 	sock_reset_flag(sk, SOCK_ZAPPED);
622 	dev_put(dev);
623 	release_sock(sk);
624 	SOCK_DEBUG(sk, "NET/ROM: socket is bound\n");
625 	return 0;
626 }
627 
628 static int nr_connect(struct socket *sock, struct sockaddr *uaddr,
629 	int addr_len, int flags)
630 {
631 	struct sock *sk = sock->sk;
632 	struct nr_sock *nr = nr_sk(sk);
633 	struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr;
634 	ax25_address *source = NULL;
635 	ax25_uid_assoc *user;
636 	struct net_device *dev;
637 	int err = 0;
638 
639 	lock_sock(sk);
640 	if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
641 		sock->state = SS_CONNECTED;
642 		goto out_release;	/* Connect completed during a ERESTARTSYS event */
643 	}
644 
645 	if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
646 		sock->state = SS_UNCONNECTED;
647 		err = -ECONNREFUSED;
648 		goto out_release;
649 	}
650 
651 	if (sk->sk_state == TCP_ESTABLISHED) {
652 		err = -EISCONN;	/* No reconnect on a seqpacket socket */
653 		goto out_release;
654 	}
655 
656 	sk->sk_state   = TCP_CLOSE;
657 	sock->state = SS_UNCONNECTED;
658 
659 	if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) {
660 		err = -EINVAL;
661 		goto out_release;
662 	}
663 	if (addr->sax25_family != AF_NETROM) {
664 		err = -EINVAL;
665 		goto out_release;
666 	}
667 	if (sock_flag(sk, SOCK_ZAPPED)) {	/* Must bind first - autobinding in this may or may not work */
668 		sock_reset_flag(sk, SOCK_ZAPPED);
669 
670 		if ((dev = nr_dev_first()) == NULL) {
671 			err = -ENETUNREACH;
672 			goto out_release;
673 		}
674 		source = (ax25_address *)dev->dev_addr;
675 
676 		user = ax25_findbyuid(current->euid);
677 		if (user) {
678 			nr->user_addr   = user->call;
679 			ax25_uid_put(user);
680 		} else {
681 			if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) {
682 				dev_put(dev);
683 				err = -EPERM;
684 				goto out_release;
685 			}
686 			nr->user_addr   = *source;
687 		}
688 
689 		nr->source_addr = *source;
690 		nr->device      = dev;
691 
692 		dev_put(dev);
693 		nr_insert_socket(sk);		/* Finish the bind */
694 	}
695 
696 	nr->dest_addr = addr->sax25_call;
697 
698 	release_sock(sk);
699 	circuit = nr_find_next_circuit();
700 	lock_sock(sk);
701 
702 	nr->my_index = circuit / 256;
703 	nr->my_id    = circuit % 256;
704 
705 	circuit++;
706 
707 	/* Move to connecting socket, start sending Connect Requests */
708 	sock->state  = SS_CONNECTING;
709 	sk->sk_state = TCP_SYN_SENT;
710 
711 	nr_establish_data_link(sk);
712 
713 	nr->state = NR_STATE_1;
714 
715 	nr_start_heartbeat(sk);
716 
717 	/* Now the loop */
718 	if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
719 		err = -EINPROGRESS;
720 		goto out_release;
721 	}
722 
723 	/*
724 	 * A Connect Ack with Choke or timeout or failed routing will go to
725 	 * closed.
726 	 */
727 	if (sk->sk_state == TCP_SYN_SENT) {
728 		DEFINE_WAIT(wait);
729 
730 		for (;;) {
731 			prepare_to_wait(sk->sk_sleep, &wait,
732 					TASK_INTERRUPTIBLE);
733 			if (sk->sk_state != TCP_SYN_SENT)
734 				break;
735 			if (!signal_pending(current)) {
736 				release_sock(sk);
737 				schedule();
738 				lock_sock(sk);
739 				continue;
740 			}
741 			err = -ERESTARTSYS;
742 			break;
743 		}
744 		finish_wait(sk->sk_sleep, &wait);
745 		if (err)
746 			goto out_release;
747 	}
748 
749 	if (sk->sk_state != TCP_ESTABLISHED) {
750 		sock->state = SS_UNCONNECTED;
751 		err = sock_error(sk);	/* Always set at this point */
752 		goto out_release;
753 	}
754 
755 	sock->state = SS_CONNECTED;
756 
757 out_release:
758 	release_sock(sk);
759 
760 	return err;
761 }
762 
763 static int nr_accept(struct socket *sock, struct socket *newsock, int flags)
764 {
765 	struct sk_buff *skb;
766 	struct sock *newsk;
767 	DEFINE_WAIT(wait);
768 	struct sock *sk;
769 	int err = 0;
770 
771 	if ((sk = sock->sk) == NULL)
772 		return -EINVAL;
773 
774 	lock_sock(sk);
775 	if (sk->sk_type != SOCK_SEQPACKET) {
776 		err = -EOPNOTSUPP;
777 		goto out_release;
778 	}
779 
780 	if (sk->sk_state != TCP_LISTEN) {
781 		err = -EINVAL;
782 		goto out_release;
783 	}
784 
785 	/*
786 	 *	The write queue this time is holding sockets ready to use
787 	 *	hooked into the SABM we saved
788 	 */
789 	for (;;) {
790 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
791 		skb = skb_dequeue(&sk->sk_receive_queue);
792 		if (skb)
793 			break;
794 
795 		if (flags & O_NONBLOCK) {
796 			err = -EWOULDBLOCK;
797 			break;
798 		}
799 		if (!signal_pending(current)) {
800 			release_sock(sk);
801 			schedule();
802 			lock_sock(sk);
803 			continue;
804 		}
805 		err = -ERESTARTSYS;
806 		break;
807 	}
808 	finish_wait(sk->sk_sleep, &wait);
809 	if (err)
810 		goto out_release;
811 
812 	newsk = skb->sk;
813 	newsk->sk_socket = newsock;
814 	newsk->sk_sleep = &newsock->wait;
815 
816 	/* Now attach up the new socket */
817 	kfree_skb(skb);
818 	sk_acceptq_removed(sk);
819 	newsock->sk = newsk;
820 
821 out_release:
822 	release_sock(sk);
823 
824 	return err;
825 }
826 
827 static int nr_getname(struct socket *sock, struct sockaddr *uaddr,
828 	int *uaddr_len, int peer)
829 {
830 	struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr;
831 	struct sock *sk = sock->sk;
832 	struct nr_sock *nr = nr_sk(sk);
833 
834 	lock_sock(sk);
835 	if (peer != 0) {
836 		if (sk->sk_state != TCP_ESTABLISHED) {
837 			release_sock(sk);
838 			return -ENOTCONN;
839 		}
840 		sax->fsa_ax25.sax25_family = AF_NETROM;
841 		sax->fsa_ax25.sax25_ndigis = 1;
842 		sax->fsa_ax25.sax25_call   = nr->user_addr;
843 		sax->fsa_digipeater[0]     = nr->dest_addr;
844 		*uaddr_len = sizeof(struct full_sockaddr_ax25);
845 	} else {
846 		sax->fsa_ax25.sax25_family = AF_NETROM;
847 		sax->fsa_ax25.sax25_ndigis = 0;
848 		sax->fsa_ax25.sax25_call   = nr->source_addr;
849 		*uaddr_len = sizeof(struct sockaddr_ax25);
850 	}
851 	release_sock(sk);
852 
853 	return 0;
854 }
855 
856 int nr_rx_frame(struct sk_buff *skb, struct net_device *dev)
857 {
858 	struct sock *sk;
859 	struct sock *make;
860 	struct nr_sock *nr_make;
861 	ax25_address *src, *dest, *user;
862 	unsigned short circuit_index, circuit_id;
863 	unsigned short peer_circuit_index, peer_circuit_id;
864 	unsigned short frametype, flags, window, timeout;
865 	int ret;
866 
867 	skb->sk = NULL;		/* Initially we don't know who it's for */
868 
869 	/*
870 	 *	skb->data points to the netrom frame start
871 	 */
872 
873 	src  = (ax25_address *)(skb->data + 0);
874 	dest = (ax25_address *)(skb->data + 7);
875 
876 	circuit_index      = skb->data[15];
877 	circuit_id         = skb->data[16];
878 	peer_circuit_index = skb->data[17];
879 	peer_circuit_id    = skb->data[18];
880 	frametype          = skb->data[19] & 0x0F;
881 	flags              = skb->data[19] & 0xF0;
882 
883 	/*
884 	 * Check for an incoming IP over NET/ROM frame.
885 	 */
886 	if (frametype == NR_PROTOEXT &&
887 	    circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) {
888 		skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN);
889 		skb_reset_transport_header(skb);
890 
891 		return nr_rx_ip(skb, dev);
892 	}
893 
894 	/*
895 	 * Find an existing socket connection, based on circuit ID, if it's
896 	 * a Connect Request base it on their circuit ID.
897 	 *
898 	 * Circuit ID 0/0 is not valid but it could still be a "reset" for a
899 	 * circuit that no longer exists at the other end ...
900 	 */
901 
902 	sk = NULL;
903 
904 	if (circuit_index == 0 && circuit_id == 0) {
905 		if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG)
906 			sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src);
907 	} else {
908 		if (frametype == NR_CONNREQ)
909 			sk = nr_find_peer(circuit_index, circuit_id, src);
910 		else
911 			sk = nr_find_socket(circuit_index, circuit_id);
912 	}
913 
914 	if (sk != NULL) {
915 		skb_reset_transport_header(skb);
916 
917 		if (frametype == NR_CONNACK && skb->len == 22)
918 			nr_sk(sk)->bpqext = 1;
919 		else
920 			nr_sk(sk)->bpqext = 0;
921 
922 		ret = nr_process_rx_frame(sk, skb);
923 		bh_unlock_sock(sk);
924 		return ret;
925 	}
926 
927 	/*
928 	 * Now it should be a CONNREQ.
929 	 */
930 	if (frametype != NR_CONNREQ) {
931 		/*
932 		 * Here it would be nice to be able to send a reset but
933 		 * NET/ROM doesn't have one.  We've tried to extend the protocol
934 		 * by sending NR_CONNACK | NR_CHOKE_FLAGS replies but that
935 		 * apparently kills BPQ boxes... :-(
936 		 * So now we try to follow the established behaviour of
937 		 * G8PZT's Xrouter which is sending packets with command type 7
938 		 * as an extension of the protocol.
939 		 */
940 		if (sysctl_netrom_reset_circuit &&
941 		    (frametype != NR_RESET || flags != 0))
942 			nr_transmit_reset(skb, 1);
943 
944 		return 0;
945 	}
946 
947 	sk = nr_find_listener(dest);
948 
949 	user = (ax25_address *)(skb->data + 21);
950 
951 	if (sk == NULL || sk_acceptq_is_full(sk) ||
952 	    (make = nr_make_new(sk)) == NULL) {
953 		nr_transmit_refusal(skb, 0);
954 		if (sk)
955 			bh_unlock_sock(sk);
956 		return 0;
957 	}
958 
959 	window = skb->data[20];
960 
961 	skb->sk             = make;
962 	make->sk_state	    = TCP_ESTABLISHED;
963 
964 	/* Fill in his circuit details */
965 	nr_make = nr_sk(make);
966 	nr_make->source_addr = *dest;
967 	nr_make->dest_addr   = *src;
968 	nr_make->user_addr   = *user;
969 
970 	nr_make->your_index  = circuit_index;
971 	nr_make->your_id     = circuit_id;
972 
973 	bh_unlock_sock(sk);
974 	circuit = nr_find_next_circuit();
975 	bh_lock_sock(sk);
976 
977 	nr_make->my_index    = circuit / 256;
978 	nr_make->my_id       = circuit % 256;
979 
980 	circuit++;
981 
982 	/* Window negotiation */
983 	if (window < nr_make->window)
984 		nr_make->window = window;
985 
986 	/* L4 timeout negotiation */
987 	if (skb->len == 37) {
988 		timeout = skb->data[36] * 256 + skb->data[35];
989 		if (timeout * HZ < nr_make->t1)
990 			nr_make->t1 = timeout * HZ;
991 		nr_make->bpqext = 1;
992 	} else {
993 		nr_make->bpqext = 0;
994 	}
995 
996 	nr_write_internal(make, NR_CONNACK);
997 
998 	nr_make->condition = 0x00;
999 	nr_make->vs        = 0;
1000 	nr_make->va        = 0;
1001 	nr_make->vr        = 0;
1002 	nr_make->vl        = 0;
1003 	nr_make->state     = NR_STATE_3;
1004 	sk_acceptq_added(sk);
1005 	skb_queue_head(&sk->sk_receive_queue, skb);
1006 
1007 	if (!sock_flag(sk, SOCK_DEAD))
1008 		sk->sk_data_ready(sk, skb->len);
1009 
1010 	bh_unlock_sock(sk);
1011 
1012 	nr_insert_socket(make);
1013 
1014 	nr_start_heartbeat(make);
1015 	nr_start_idletimer(make);
1016 
1017 	return 1;
1018 }
1019 
1020 static int nr_sendmsg(struct kiocb *iocb, struct socket *sock,
1021 		      struct msghdr *msg, size_t len)
1022 {
1023 	struct sock *sk = sock->sk;
1024 	struct nr_sock *nr = nr_sk(sk);
1025 	struct sockaddr_ax25 *usax = (struct sockaddr_ax25 *)msg->msg_name;
1026 	int err;
1027 	struct sockaddr_ax25 sax;
1028 	struct sk_buff *skb;
1029 	unsigned char *asmptr;
1030 	int size;
1031 
1032 	if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1033 		return -EINVAL;
1034 
1035 	lock_sock(sk);
1036 	if (sock_flag(sk, SOCK_ZAPPED)) {
1037 		err = -EADDRNOTAVAIL;
1038 		goto out;
1039 	}
1040 
1041 	if (sk->sk_shutdown & SEND_SHUTDOWN) {
1042 		send_sig(SIGPIPE, current, 0);
1043 		err = -EPIPE;
1044 		goto out;
1045 	}
1046 
1047 	if (nr->device == NULL) {
1048 		err = -ENETUNREACH;
1049 		goto out;
1050 	}
1051 
1052 	if (usax) {
1053 		if (msg->msg_namelen < sizeof(sax)) {
1054 			err = -EINVAL;
1055 			goto out;
1056 		}
1057 		sax = *usax;
1058 		if (ax25cmp(&nr->dest_addr, &sax.sax25_call) != 0) {
1059 			err = -EISCONN;
1060 			goto out;
1061 		}
1062 		if (sax.sax25_family != AF_NETROM) {
1063 			err = -EINVAL;
1064 			goto out;
1065 		}
1066 	} else {
1067 		if (sk->sk_state != TCP_ESTABLISHED) {
1068 			err = -ENOTCONN;
1069 			goto out;
1070 		}
1071 		sax.sax25_family = AF_NETROM;
1072 		sax.sax25_call   = nr->dest_addr;
1073 	}
1074 
1075 	SOCK_DEBUG(sk, "NET/ROM: sendto: Addresses built.\n");
1076 
1077 	/* Build a packet */
1078 	SOCK_DEBUG(sk, "NET/ROM: sendto: building packet.\n");
1079 	size = len + NR_NETWORK_LEN + NR_TRANSPORT_LEN;
1080 
1081 	if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
1082 		goto out;
1083 
1084 	skb_reserve(skb, size - len);
1085 	skb_reset_transport_header(skb);
1086 
1087 	/*
1088 	 *	Push down the NET/ROM header
1089 	 */
1090 
1091 	asmptr = skb_push(skb, NR_TRANSPORT_LEN);
1092 	SOCK_DEBUG(sk, "Building NET/ROM Header.\n");
1093 
1094 	/* Build a NET/ROM Transport header */
1095 
1096 	*asmptr++ = nr->your_index;
1097 	*asmptr++ = nr->your_id;
1098 	*asmptr++ = 0;		/* To be filled in later */
1099 	*asmptr++ = 0;		/*      Ditto            */
1100 	*asmptr++ = NR_INFO;
1101 	SOCK_DEBUG(sk, "Built header.\n");
1102 
1103 	/*
1104 	 *	Put the data on the end
1105 	 */
1106 	skb_put(skb, len);
1107 
1108 	SOCK_DEBUG(sk, "NET/ROM: Appending user data\n");
1109 
1110 	/* User data follows immediately after the NET/ROM transport header */
1111 	if (memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len)) {
1112 		kfree_skb(skb);
1113 		err = -EFAULT;
1114 		goto out;
1115 	}
1116 
1117 	SOCK_DEBUG(sk, "NET/ROM: Transmitting buffer\n");
1118 
1119 	if (sk->sk_state != TCP_ESTABLISHED) {
1120 		kfree_skb(skb);
1121 		err = -ENOTCONN;
1122 		goto out;
1123 	}
1124 
1125 	nr_output(sk, skb);	/* Shove it onto the queue */
1126 
1127 	err = len;
1128 out:
1129 	release_sock(sk);
1130 	return err;
1131 }
1132 
1133 static int nr_recvmsg(struct kiocb *iocb, struct socket *sock,
1134 		      struct msghdr *msg, size_t size, int flags)
1135 {
1136 	struct sock *sk = sock->sk;
1137 	struct sockaddr_ax25 *sax = (struct sockaddr_ax25 *)msg->msg_name;
1138 	size_t copied;
1139 	struct sk_buff *skb;
1140 	int er;
1141 
1142 	/*
1143 	 * This works for seqpacket too. The receiver has ordered the queue for
1144 	 * us! We do one quick check first though
1145 	 */
1146 
1147 	lock_sock(sk);
1148 	if (sk->sk_state != TCP_ESTABLISHED) {
1149 		release_sock(sk);
1150 		return -ENOTCONN;
1151 	}
1152 
1153 	/* Now we can treat all alike */
1154 	if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) {
1155 		release_sock(sk);
1156 		return er;
1157 	}
1158 
1159 	skb_reset_transport_header(skb);
1160 	copied     = skb->len;
1161 
1162 	if (copied > size) {
1163 		copied = size;
1164 		msg->msg_flags |= MSG_TRUNC;
1165 	}
1166 
1167 	skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1168 
1169 	if (sax != NULL) {
1170 		sax->sax25_family = AF_NETROM;
1171 		skb_copy_from_linear_data_offset(skb, 7, sax->sax25_call.ax25_call,
1172 			      AX25_ADDR_LEN);
1173 	}
1174 
1175 	msg->msg_namelen = sizeof(*sax);
1176 
1177 	skb_free_datagram(sk, skb);
1178 
1179 	release_sock(sk);
1180 	return copied;
1181 }
1182 
1183 
1184 static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1185 {
1186 	struct sock *sk = sock->sk;
1187 	void __user *argp = (void __user *)arg;
1188 	int ret;
1189 
1190 	switch (cmd) {
1191 	case TIOCOUTQ: {
1192 		long amount;
1193 
1194 		lock_sock(sk);
1195 		amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1196 		if (amount < 0)
1197 			amount = 0;
1198 		release_sock(sk);
1199 		return put_user(amount, (int __user *)argp);
1200 	}
1201 
1202 	case TIOCINQ: {
1203 		struct sk_buff *skb;
1204 		long amount = 0L;
1205 
1206 		lock_sock(sk);
1207 		/* These two are safe on a single CPU system as only user tasks fiddle here */
1208 		if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1209 			amount = skb->len;
1210 		release_sock(sk);
1211 		return put_user(amount, (int __user *)argp);
1212 	}
1213 
1214 	case SIOCGSTAMP:
1215 		lock_sock(sk);
1216 		ret = sock_get_timestamp(sk, argp);
1217 		release_sock(sk);
1218 		return ret;
1219 
1220 	case SIOCGSTAMPNS:
1221 		lock_sock(sk);
1222 		ret = sock_get_timestampns(sk, argp);
1223 		release_sock(sk);
1224 		return ret;
1225 
1226 	case SIOCGIFADDR:
1227 	case SIOCSIFADDR:
1228 	case SIOCGIFDSTADDR:
1229 	case SIOCSIFDSTADDR:
1230 	case SIOCGIFBRDADDR:
1231 	case SIOCSIFBRDADDR:
1232 	case SIOCGIFNETMASK:
1233 	case SIOCSIFNETMASK:
1234 	case SIOCGIFMETRIC:
1235 	case SIOCSIFMETRIC:
1236 		return -EINVAL;
1237 
1238 	case SIOCADDRT:
1239 	case SIOCDELRT:
1240 	case SIOCNRDECOBS:
1241 		if (!capable(CAP_NET_ADMIN)) return -EPERM;
1242 		return nr_rt_ioctl(cmd, argp);
1243 
1244 	default:
1245 		return -ENOIOCTLCMD;
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 #ifdef CONFIG_PROC_FS
1252 
1253 static void *nr_info_start(struct seq_file *seq, loff_t *pos)
1254 {
1255 	struct sock *s;
1256 	struct hlist_node *node;
1257 	int i = 1;
1258 
1259 	spin_lock_bh(&nr_list_lock);
1260 	if (*pos == 0)
1261 		return SEQ_START_TOKEN;
1262 
1263 	sk_for_each(s, node, &nr_list) {
1264 		if (i == *pos)
1265 			return s;
1266 		++i;
1267 	}
1268 	return NULL;
1269 }
1270 
1271 static void *nr_info_next(struct seq_file *seq, void *v, loff_t *pos)
1272 {
1273 	++*pos;
1274 
1275 	return (v == SEQ_START_TOKEN) ? sk_head(&nr_list)
1276 		: sk_next((struct sock *)v);
1277 }
1278 
1279 static void nr_info_stop(struct seq_file *seq, void *v)
1280 {
1281 	spin_unlock_bh(&nr_list_lock);
1282 }
1283 
1284 static int nr_info_show(struct seq_file *seq, void *v)
1285 {
1286 	struct sock *s = v;
1287 	struct net_device *dev;
1288 	struct nr_sock *nr;
1289 	const char *devname;
1290 	char buf[11];
1291 
1292 	if (v == SEQ_START_TOKEN)
1293 		seq_puts(seq,
1294 "user_addr dest_node src_node  dev    my  your  st  vs  vr  va    t1     t2     t4      idle   n2  wnd Snd-Q Rcv-Q inode\n");
1295 
1296 	else {
1297 
1298 		bh_lock_sock(s);
1299 		nr = nr_sk(s);
1300 
1301 		if ((dev = nr->device) == NULL)
1302 			devname = "???";
1303 		else
1304 			devname = dev->name;
1305 
1306 		seq_printf(seq, "%-9s ", ax2asc(buf, &nr->user_addr));
1307 		seq_printf(seq, "%-9s ", ax2asc(buf, &nr->dest_addr));
1308 		seq_printf(seq,
1309 "%-9s %-3s  %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n",
1310 			ax2asc(buf, &nr->source_addr),
1311 			devname,
1312 			nr->my_index,
1313 			nr->my_id,
1314 			nr->your_index,
1315 			nr->your_id,
1316 			nr->state,
1317 			nr->vs,
1318 			nr->vr,
1319 			nr->va,
1320 			ax25_display_timer(&nr->t1timer) / HZ,
1321 			nr->t1 / HZ,
1322 			ax25_display_timer(&nr->t2timer) / HZ,
1323 			nr->t2 / HZ,
1324 			ax25_display_timer(&nr->t4timer) / HZ,
1325 			nr->t4 / HZ,
1326 			ax25_display_timer(&nr->idletimer) / (60 * HZ),
1327 			nr->idle / (60 * HZ),
1328 			nr->n2count,
1329 			nr->n2,
1330 			nr->window,
1331 			atomic_read(&s->sk_wmem_alloc),
1332 			atomic_read(&s->sk_rmem_alloc),
1333 			s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
1334 
1335 		bh_unlock_sock(s);
1336 	}
1337 	return 0;
1338 }
1339 
1340 static const struct seq_operations nr_info_seqops = {
1341 	.start = nr_info_start,
1342 	.next = nr_info_next,
1343 	.stop = nr_info_stop,
1344 	.show = nr_info_show,
1345 };
1346 
1347 static int nr_info_open(struct inode *inode, struct file *file)
1348 {
1349 	return seq_open(file, &nr_info_seqops);
1350 }
1351 
1352 static const struct file_operations nr_info_fops = {
1353 	.owner = THIS_MODULE,
1354 	.open = nr_info_open,
1355 	.read = seq_read,
1356 	.llseek = seq_lseek,
1357 	.release = seq_release,
1358 };
1359 #endif	/* CONFIG_PROC_FS */
1360 
1361 static struct net_proto_family nr_family_ops = {
1362 	.family		=	PF_NETROM,
1363 	.create		=	nr_create,
1364 	.owner		=	THIS_MODULE,
1365 };
1366 
1367 static const struct proto_ops nr_proto_ops = {
1368 	.family		=	PF_NETROM,
1369 	.owner		=	THIS_MODULE,
1370 	.release	=	nr_release,
1371 	.bind		=	nr_bind,
1372 	.connect	=	nr_connect,
1373 	.socketpair	=	sock_no_socketpair,
1374 	.accept		=	nr_accept,
1375 	.getname	=	nr_getname,
1376 	.poll		=	datagram_poll,
1377 	.ioctl		=	nr_ioctl,
1378 	.listen		=	nr_listen,
1379 	.shutdown	=	sock_no_shutdown,
1380 	.setsockopt	=	nr_setsockopt,
1381 	.getsockopt	=	nr_getsockopt,
1382 	.sendmsg	=	nr_sendmsg,
1383 	.recvmsg	=	nr_recvmsg,
1384 	.mmap		=	sock_no_mmap,
1385 	.sendpage	=	sock_no_sendpage,
1386 };
1387 
1388 static struct notifier_block nr_dev_notifier = {
1389 	.notifier_call	=	nr_device_event,
1390 };
1391 
1392 static struct net_device **dev_nr;
1393 
1394 static struct ax25_protocol nr_pid = {
1395 	.pid	= AX25_P_NETROM,
1396 	.func	= nr_route_frame
1397 };
1398 
1399 static struct ax25_linkfail nr_linkfail_notifier = {
1400 	.func	= nr_link_failed,
1401 };
1402 
1403 static int __init nr_proto_init(void)
1404 {
1405 	int i;
1406 	int rc = proto_register(&nr_proto, 0);
1407 
1408 	if (rc != 0)
1409 		goto out;
1410 
1411 	if (nr_ndevs > 0x7fffffff/sizeof(struct net_device *)) {
1412 		printk(KERN_ERR "NET/ROM: nr_proto_init - nr_ndevs parameter to large\n");
1413 		return -1;
1414 	}
1415 
1416 	dev_nr = kzalloc(nr_ndevs * sizeof(struct net_device *), GFP_KERNEL);
1417 	if (dev_nr == NULL) {
1418 		printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device array\n");
1419 		return -1;
1420 	}
1421 
1422 	for (i = 0; i < nr_ndevs; i++) {
1423 		char name[IFNAMSIZ];
1424 		struct net_device *dev;
1425 
1426 		sprintf(name, "nr%d", i);
1427 		dev = alloc_netdev(sizeof(struct nr_private), name, nr_setup);
1428 		if (!dev) {
1429 			printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device structure\n");
1430 			goto fail;
1431 		}
1432 
1433 		dev->base_addr = i;
1434 		if (register_netdev(dev)) {
1435 			printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register network device\n");
1436 			free_netdev(dev);
1437 			goto fail;
1438 		}
1439 		lockdep_set_class(&dev->_xmit_lock, &nr_netdev_xmit_lock_key);
1440 		dev_nr[i] = dev;
1441 	}
1442 
1443 	if (sock_register(&nr_family_ops)) {
1444 		printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register socket family\n");
1445 		goto fail;
1446 	}
1447 
1448 	register_netdevice_notifier(&nr_dev_notifier);
1449 
1450 	ax25_register_pid(&nr_pid);
1451 	ax25_linkfail_register(&nr_linkfail_notifier);
1452 
1453 #ifdef CONFIG_SYSCTL
1454 	nr_register_sysctl();
1455 #endif
1456 
1457 	nr_loopback_init();
1458 
1459 	proc_net_fops_create(&init_net, "nr", S_IRUGO, &nr_info_fops);
1460 	proc_net_fops_create(&init_net, "nr_neigh", S_IRUGO, &nr_neigh_fops);
1461 	proc_net_fops_create(&init_net, "nr_nodes", S_IRUGO, &nr_nodes_fops);
1462 out:
1463 	return rc;
1464 fail:
1465 	while (--i >= 0) {
1466 		unregister_netdev(dev_nr[i]);
1467 		free_netdev(dev_nr[i]);
1468 	}
1469 	kfree(dev_nr);
1470 	proto_unregister(&nr_proto);
1471 	rc = -1;
1472 	goto out;
1473 }
1474 
1475 module_init(nr_proto_init);
1476 
1477 module_param(nr_ndevs, int, 0);
1478 MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices");
1479 
1480 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
1481 MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol");
1482 MODULE_LICENSE("GPL");
1483 MODULE_ALIAS_NETPROTO(PF_NETROM);
1484 
1485 static void __exit nr_exit(void)
1486 {
1487 	int i;
1488 
1489 	proc_net_remove(&init_net, "nr");
1490 	proc_net_remove(&init_net, "nr_neigh");
1491 	proc_net_remove(&init_net, "nr_nodes");
1492 	nr_loopback_clear();
1493 
1494 	nr_rt_free();
1495 
1496 #ifdef CONFIG_SYSCTL
1497 	nr_unregister_sysctl();
1498 #endif
1499 
1500 	ax25_linkfail_release(&nr_linkfail_notifier);
1501 	ax25_protocol_release(AX25_P_NETROM);
1502 
1503 	unregister_netdevice_notifier(&nr_dev_notifier);
1504 
1505 	sock_unregister(PF_NETROM);
1506 
1507 	for (i = 0; i < nr_ndevs; i++) {
1508 		struct net_device *dev = dev_nr[i];
1509 		if (dev) {
1510 			unregister_netdev(dev);
1511 			free_netdev(dev);
1512 		}
1513 	}
1514 
1515 	kfree(dev_nr);
1516 	proto_unregister(&nr_proto);
1517 }
1518 module_exit(nr_exit);
1519