1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License as published by 4 * the Free Software Foundation; either version 2 of the License, or 5 * (at your option) any later version. 6 * 7 * Copyright Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk) 8 * Copyright Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk) 9 * Copyright Darryl Miles G7LED (dlm@g7led.demon.co.uk) 10 */ 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/capability.h> 14 #include <linux/errno.h> 15 #include <linux/types.h> 16 #include <linux/socket.h> 17 #include <linux/in.h> 18 #include <linux/slab.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/timer.h> 22 #include <linux/string.h> 23 #include <linux/sockios.h> 24 #include <linux/net.h> 25 #include <linux/stat.h> 26 #include <net/ax25.h> 27 #include <linux/inet.h> 28 #include <linux/netdevice.h> 29 #include <linux/if_arp.h> 30 #include <linux/skbuff.h> 31 #include <net/net_namespace.h> 32 #include <net/sock.h> 33 #include <asm/uaccess.h> 34 #include <linux/fcntl.h> 35 #include <linux/termios.h> /* For TIOCINQ/OUTQ */ 36 #include <linux/mm.h> 37 #include <linux/interrupt.h> 38 #include <linux/notifier.h> 39 #include <net/netrom.h> 40 #include <linux/proc_fs.h> 41 #include <linux/seq_file.h> 42 #include <net/ip.h> 43 #include <net/tcp_states.h> 44 #include <net/arp.h> 45 #include <linux/init.h> 46 47 static int nr_ndevs = 4; 48 49 int sysctl_netrom_default_path_quality = NR_DEFAULT_QUAL; 50 int sysctl_netrom_obsolescence_count_initialiser = NR_DEFAULT_OBS; 51 int sysctl_netrom_network_ttl_initialiser = NR_DEFAULT_TTL; 52 int sysctl_netrom_transport_timeout = NR_DEFAULT_T1; 53 int sysctl_netrom_transport_maximum_tries = NR_DEFAULT_N2; 54 int sysctl_netrom_transport_acknowledge_delay = NR_DEFAULT_T2; 55 int sysctl_netrom_transport_busy_delay = NR_DEFAULT_T4; 56 int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW; 57 int sysctl_netrom_transport_no_activity_timeout = NR_DEFAULT_IDLE; 58 int sysctl_netrom_routing_control = NR_DEFAULT_ROUTING; 59 int sysctl_netrom_link_fails_count = NR_DEFAULT_FAILS; 60 int sysctl_netrom_reset_circuit = NR_DEFAULT_RESET; 61 62 static unsigned short circuit = 0x101; 63 64 static HLIST_HEAD(nr_list); 65 static DEFINE_SPINLOCK(nr_list_lock); 66 67 static const struct proto_ops nr_proto_ops; 68 69 /* 70 * NETROM network devices are virtual network devices encapsulating NETROM 71 * frames into AX.25 which will be sent through an AX.25 device, so form a 72 * special "super class" of normal net devices; split their locks off into a 73 * separate class since they always nest. 74 */ 75 static struct lock_class_key nr_netdev_xmit_lock_key; 76 static struct lock_class_key nr_netdev_addr_lock_key; 77 78 static void nr_set_lockdep_one(struct net_device *dev, 79 struct netdev_queue *txq, 80 void *_unused) 81 { 82 lockdep_set_class(&txq->_xmit_lock, &nr_netdev_xmit_lock_key); 83 } 84 85 static void nr_set_lockdep_key(struct net_device *dev) 86 { 87 lockdep_set_class(&dev->addr_list_lock, &nr_netdev_addr_lock_key); 88 netdev_for_each_tx_queue(dev, nr_set_lockdep_one, NULL); 89 } 90 91 /* 92 * Socket removal during an interrupt is now safe. 93 */ 94 static void nr_remove_socket(struct sock *sk) 95 { 96 spin_lock_bh(&nr_list_lock); 97 sk_del_node_init(sk); 98 spin_unlock_bh(&nr_list_lock); 99 } 100 101 /* 102 * Kill all bound sockets on a dropped device. 103 */ 104 static void nr_kill_by_device(struct net_device *dev) 105 { 106 struct sock *s; 107 struct hlist_node *node; 108 109 spin_lock_bh(&nr_list_lock); 110 sk_for_each(s, node, &nr_list) 111 if (nr_sk(s)->device == dev) 112 nr_disconnect(s, ENETUNREACH); 113 spin_unlock_bh(&nr_list_lock); 114 } 115 116 /* 117 * Handle device status changes. 118 */ 119 static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 120 { 121 struct net_device *dev = (struct net_device *)ptr; 122 123 if (!net_eq(dev_net(dev), &init_net)) 124 return NOTIFY_DONE; 125 126 if (event != NETDEV_DOWN) 127 return NOTIFY_DONE; 128 129 nr_kill_by_device(dev); 130 nr_rt_device_down(dev); 131 132 return NOTIFY_DONE; 133 } 134 135 /* 136 * Add a socket to the bound sockets list. 137 */ 138 static void nr_insert_socket(struct sock *sk) 139 { 140 spin_lock_bh(&nr_list_lock); 141 sk_add_node(sk, &nr_list); 142 spin_unlock_bh(&nr_list_lock); 143 } 144 145 /* 146 * Find a socket that wants to accept the Connect Request we just 147 * received. 148 */ 149 static struct sock *nr_find_listener(ax25_address *addr) 150 { 151 struct sock *s; 152 struct hlist_node *node; 153 154 spin_lock_bh(&nr_list_lock); 155 sk_for_each(s, node, &nr_list) 156 if (!ax25cmp(&nr_sk(s)->source_addr, addr) && 157 s->sk_state == TCP_LISTEN) { 158 bh_lock_sock(s); 159 goto found; 160 } 161 s = NULL; 162 found: 163 spin_unlock_bh(&nr_list_lock); 164 return s; 165 } 166 167 /* 168 * Find a connected NET/ROM socket given my circuit IDs. 169 */ 170 static struct sock *nr_find_socket(unsigned char index, unsigned char id) 171 { 172 struct sock *s; 173 struct hlist_node *node; 174 175 spin_lock_bh(&nr_list_lock); 176 sk_for_each(s, node, &nr_list) { 177 struct nr_sock *nr = nr_sk(s); 178 179 if (nr->my_index == index && nr->my_id == id) { 180 bh_lock_sock(s); 181 goto found; 182 } 183 } 184 s = NULL; 185 found: 186 spin_unlock_bh(&nr_list_lock); 187 return s; 188 } 189 190 /* 191 * Find a connected NET/ROM socket given their circuit IDs. 192 */ 193 static struct sock *nr_find_peer(unsigned char index, unsigned char id, 194 ax25_address *dest) 195 { 196 struct sock *s; 197 struct hlist_node *node; 198 199 spin_lock_bh(&nr_list_lock); 200 sk_for_each(s, node, &nr_list) { 201 struct nr_sock *nr = nr_sk(s); 202 203 if (nr->your_index == index && nr->your_id == id && 204 !ax25cmp(&nr->dest_addr, dest)) { 205 bh_lock_sock(s); 206 goto found; 207 } 208 } 209 s = NULL; 210 found: 211 spin_unlock_bh(&nr_list_lock); 212 return s; 213 } 214 215 /* 216 * Find next free circuit ID. 217 */ 218 static unsigned short nr_find_next_circuit(void) 219 { 220 unsigned short id = circuit; 221 unsigned char i, j; 222 struct sock *sk; 223 224 for (;;) { 225 i = id / 256; 226 j = id % 256; 227 228 if (i != 0 && j != 0) { 229 if ((sk=nr_find_socket(i, j)) == NULL) 230 break; 231 bh_unlock_sock(sk); 232 } 233 234 id++; 235 } 236 237 return id; 238 } 239 240 /* 241 * Deferred destroy. 242 */ 243 void nr_destroy_socket(struct sock *); 244 245 /* 246 * Handler for deferred kills. 247 */ 248 static void nr_destroy_timer(unsigned long data) 249 { 250 struct sock *sk=(struct sock *)data; 251 bh_lock_sock(sk); 252 sock_hold(sk); 253 nr_destroy_socket(sk); 254 bh_unlock_sock(sk); 255 sock_put(sk); 256 } 257 258 /* 259 * This is called from user mode and the timers. Thus it protects itself 260 * against interrupt users but doesn't worry about being called during 261 * work. Once it is removed from the queue no interrupt or bottom half 262 * will touch it and we are (fairly 8-) ) safe. 263 */ 264 void nr_destroy_socket(struct sock *sk) 265 { 266 struct sk_buff *skb; 267 268 nr_remove_socket(sk); 269 270 nr_stop_heartbeat(sk); 271 nr_stop_t1timer(sk); 272 nr_stop_t2timer(sk); 273 nr_stop_t4timer(sk); 274 nr_stop_idletimer(sk); 275 276 nr_clear_queues(sk); /* Flush the queues */ 277 278 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 279 if (skb->sk != sk) { /* A pending connection */ 280 /* Queue the unaccepted socket for death */ 281 sock_set_flag(skb->sk, SOCK_DEAD); 282 nr_start_heartbeat(skb->sk); 283 nr_sk(skb->sk)->state = NR_STATE_0; 284 } 285 286 kfree_skb(skb); 287 } 288 289 if (sk_has_allocations(sk)) { 290 /* Defer: outstanding buffers */ 291 sk->sk_timer.function = nr_destroy_timer; 292 sk->sk_timer.expires = jiffies + 2 * HZ; 293 add_timer(&sk->sk_timer); 294 } else 295 sock_put(sk); 296 } 297 298 /* 299 * Handling for system calls applied via the various interfaces to a 300 * NET/ROM socket object. 301 */ 302 303 static int nr_setsockopt(struct socket *sock, int level, int optname, 304 char __user *optval, unsigned int optlen) 305 { 306 struct sock *sk = sock->sk; 307 struct nr_sock *nr = nr_sk(sk); 308 unsigned long opt; 309 310 if (level != SOL_NETROM) 311 return -ENOPROTOOPT; 312 313 if (optlen < sizeof(unsigned int)) 314 return -EINVAL; 315 316 if (get_user(opt, (unsigned int __user *)optval)) 317 return -EFAULT; 318 319 switch (optname) { 320 case NETROM_T1: 321 if (opt < 1 || opt > ULONG_MAX / HZ) 322 return -EINVAL; 323 nr->t1 = opt * HZ; 324 return 0; 325 326 case NETROM_T2: 327 if (opt < 1 || opt > ULONG_MAX / HZ) 328 return -EINVAL; 329 nr->t2 = opt * HZ; 330 return 0; 331 332 case NETROM_N2: 333 if (opt < 1 || opt > 31) 334 return -EINVAL; 335 nr->n2 = opt; 336 return 0; 337 338 case NETROM_T4: 339 if (opt < 1 || opt > ULONG_MAX / HZ) 340 return -EINVAL; 341 nr->t4 = opt * HZ; 342 return 0; 343 344 case NETROM_IDLE: 345 if (opt > ULONG_MAX / (60 * HZ)) 346 return -EINVAL; 347 nr->idle = opt * 60 * HZ; 348 return 0; 349 350 default: 351 return -ENOPROTOOPT; 352 } 353 } 354 355 static int nr_getsockopt(struct socket *sock, int level, int optname, 356 char __user *optval, int __user *optlen) 357 { 358 struct sock *sk = sock->sk; 359 struct nr_sock *nr = nr_sk(sk); 360 int val = 0; 361 int len; 362 363 if (level != SOL_NETROM) 364 return -ENOPROTOOPT; 365 366 if (get_user(len, optlen)) 367 return -EFAULT; 368 369 if (len < 0) 370 return -EINVAL; 371 372 switch (optname) { 373 case NETROM_T1: 374 val = nr->t1 / HZ; 375 break; 376 377 case NETROM_T2: 378 val = nr->t2 / HZ; 379 break; 380 381 case NETROM_N2: 382 val = nr->n2; 383 break; 384 385 case NETROM_T4: 386 val = nr->t4 / HZ; 387 break; 388 389 case NETROM_IDLE: 390 val = nr->idle / (60 * HZ); 391 break; 392 393 default: 394 return -ENOPROTOOPT; 395 } 396 397 len = min_t(unsigned int, len, sizeof(int)); 398 399 if (put_user(len, optlen)) 400 return -EFAULT; 401 402 return copy_to_user(optval, &val, len) ? -EFAULT : 0; 403 } 404 405 static int nr_listen(struct socket *sock, int backlog) 406 { 407 struct sock *sk = sock->sk; 408 409 lock_sock(sk); 410 if (sk->sk_state != TCP_LISTEN) { 411 memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN); 412 sk->sk_max_ack_backlog = backlog; 413 sk->sk_state = TCP_LISTEN; 414 release_sock(sk); 415 return 0; 416 } 417 release_sock(sk); 418 419 return -EOPNOTSUPP; 420 } 421 422 static struct proto nr_proto = { 423 .name = "NETROM", 424 .owner = THIS_MODULE, 425 .obj_size = sizeof(struct nr_sock), 426 }; 427 428 static int nr_create(struct net *net, struct socket *sock, int protocol, 429 int kern) 430 { 431 struct sock *sk; 432 struct nr_sock *nr; 433 434 if (!net_eq(net, &init_net)) 435 return -EAFNOSUPPORT; 436 437 if (sock->type != SOCK_SEQPACKET || protocol != 0) 438 return -ESOCKTNOSUPPORT; 439 440 sk = sk_alloc(net, PF_NETROM, GFP_ATOMIC, &nr_proto); 441 if (sk == NULL) 442 return -ENOMEM; 443 444 nr = nr_sk(sk); 445 446 sock_init_data(sock, sk); 447 448 sock->ops = &nr_proto_ops; 449 sk->sk_protocol = protocol; 450 451 skb_queue_head_init(&nr->ack_queue); 452 skb_queue_head_init(&nr->reseq_queue); 453 skb_queue_head_init(&nr->frag_queue); 454 455 nr_init_timers(sk); 456 457 nr->t1 = 458 msecs_to_jiffies(sysctl_netrom_transport_timeout); 459 nr->t2 = 460 msecs_to_jiffies(sysctl_netrom_transport_acknowledge_delay); 461 nr->n2 = 462 msecs_to_jiffies(sysctl_netrom_transport_maximum_tries); 463 nr->t4 = 464 msecs_to_jiffies(sysctl_netrom_transport_busy_delay); 465 nr->idle = 466 msecs_to_jiffies(sysctl_netrom_transport_no_activity_timeout); 467 nr->window = sysctl_netrom_transport_requested_window_size; 468 469 nr->bpqext = 1; 470 nr->state = NR_STATE_0; 471 472 return 0; 473 } 474 475 static struct sock *nr_make_new(struct sock *osk) 476 { 477 struct sock *sk; 478 struct nr_sock *nr, *onr; 479 480 if (osk->sk_type != SOCK_SEQPACKET) 481 return NULL; 482 483 sk = sk_alloc(sock_net(osk), PF_NETROM, GFP_ATOMIC, osk->sk_prot); 484 if (sk == NULL) 485 return NULL; 486 487 nr = nr_sk(sk); 488 489 sock_init_data(NULL, sk); 490 491 sk->sk_type = osk->sk_type; 492 sk->sk_priority = osk->sk_priority; 493 sk->sk_protocol = osk->sk_protocol; 494 sk->sk_rcvbuf = osk->sk_rcvbuf; 495 sk->sk_sndbuf = osk->sk_sndbuf; 496 sk->sk_state = TCP_ESTABLISHED; 497 sock_copy_flags(sk, osk); 498 499 skb_queue_head_init(&nr->ack_queue); 500 skb_queue_head_init(&nr->reseq_queue); 501 skb_queue_head_init(&nr->frag_queue); 502 503 nr_init_timers(sk); 504 505 onr = nr_sk(osk); 506 507 nr->t1 = onr->t1; 508 nr->t2 = onr->t2; 509 nr->n2 = onr->n2; 510 nr->t4 = onr->t4; 511 nr->idle = onr->idle; 512 nr->window = onr->window; 513 514 nr->device = onr->device; 515 nr->bpqext = onr->bpqext; 516 517 return sk; 518 } 519 520 static int nr_release(struct socket *sock) 521 { 522 struct sock *sk = sock->sk; 523 struct nr_sock *nr; 524 525 if (sk == NULL) return 0; 526 527 sock_hold(sk); 528 sock_orphan(sk); 529 lock_sock(sk); 530 nr = nr_sk(sk); 531 532 switch (nr->state) { 533 case NR_STATE_0: 534 case NR_STATE_1: 535 case NR_STATE_2: 536 nr_disconnect(sk, 0); 537 nr_destroy_socket(sk); 538 break; 539 540 case NR_STATE_3: 541 nr_clear_queues(sk); 542 nr->n2count = 0; 543 nr_write_internal(sk, NR_DISCREQ); 544 nr_start_t1timer(sk); 545 nr_stop_t2timer(sk); 546 nr_stop_t4timer(sk); 547 nr_stop_idletimer(sk); 548 nr->state = NR_STATE_2; 549 sk->sk_state = TCP_CLOSE; 550 sk->sk_shutdown |= SEND_SHUTDOWN; 551 sk->sk_state_change(sk); 552 sock_set_flag(sk, SOCK_DESTROY); 553 break; 554 555 default: 556 break; 557 } 558 559 sock->sk = NULL; 560 release_sock(sk); 561 sock_put(sk); 562 563 return 0; 564 } 565 566 static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 567 { 568 struct sock *sk = sock->sk; 569 struct nr_sock *nr = nr_sk(sk); 570 struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr; 571 struct net_device *dev; 572 ax25_uid_assoc *user; 573 ax25_address *source; 574 575 lock_sock(sk); 576 if (!sock_flag(sk, SOCK_ZAPPED)) { 577 release_sock(sk); 578 return -EINVAL; 579 } 580 if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) { 581 release_sock(sk); 582 return -EINVAL; 583 } 584 if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) { 585 release_sock(sk); 586 return -EINVAL; 587 } 588 if (addr->fsa_ax25.sax25_family != AF_NETROM) { 589 release_sock(sk); 590 return -EINVAL; 591 } 592 if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) { 593 release_sock(sk); 594 return -EADDRNOTAVAIL; 595 } 596 597 /* 598 * Only the super user can set an arbitrary user callsign. 599 */ 600 if (addr->fsa_ax25.sax25_ndigis == 1) { 601 if (!capable(CAP_NET_BIND_SERVICE)) { 602 dev_put(dev); 603 release_sock(sk); 604 return -EACCES; 605 } 606 nr->user_addr = addr->fsa_digipeater[0]; 607 nr->source_addr = addr->fsa_ax25.sax25_call; 608 } else { 609 source = &addr->fsa_ax25.sax25_call; 610 611 user = ax25_findbyuid(current_euid()); 612 if (user) { 613 nr->user_addr = user->call; 614 ax25_uid_put(user); 615 } else { 616 if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) { 617 release_sock(sk); 618 dev_put(dev); 619 return -EPERM; 620 } 621 nr->user_addr = *source; 622 } 623 624 nr->source_addr = *source; 625 } 626 627 nr->device = dev; 628 nr_insert_socket(sk); 629 630 sock_reset_flag(sk, SOCK_ZAPPED); 631 dev_put(dev); 632 release_sock(sk); 633 634 return 0; 635 } 636 637 static int nr_connect(struct socket *sock, struct sockaddr *uaddr, 638 int addr_len, int flags) 639 { 640 struct sock *sk = sock->sk; 641 struct nr_sock *nr = nr_sk(sk); 642 struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr; 643 ax25_address *source = NULL; 644 ax25_uid_assoc *user; 645 struct net_device *dev; 646 int err = 0; 647 648 lock_sock(sk); 649 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { 650 sock->state = SS_CONNECTED; 651 goto out_release; /* Connect completed during a ERESTARTSYS event */ 652 } 653 654 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) { 655 sock->state = SS_UNCONNECTED; 656 err = -ECONNREFUSED; 657 goto out_release; 658 } 659 660 if (sk->sk_state == TCP_ESTABLISHED) { 661 err = -EISCONN; /* No reconnect on a seqpacket socket */ 662 goto out_release; 663 } 664 665 sk->sk_state = TCP_CLOSE; 666 sock->state = SS_UNCONNECTED; 667 668 if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) { 669 err = -EINVAL; 670 goto out_release; 671 } 672 if (addr->sax25_family != AF_NETROM) { 673 err = -EINVAL; 674 goto out_release; 675 } 676 if (sock_flag(sk, SOCK_ZAPPED)) { /* Must bind first - autobinding in this may or may not work */ 677 sock_reset_flag(sk, SOCK_ZAPPED); 678 679 if ((dev = nr_dev_first()) == NULL) { 680 err = -ENETUNREACH; 681 goto out_release; 682 } 683 source = (ax25_address *)dev->dev_addr; 684 685 user = ax25_findbyuid(current_euid()); 686 if (user) { 687 nr->user_addr = user->call; 688 ax25_uid_put(user); 689 } else { 690 if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) { 691 dev_put(dev); 692 err = -EPERM; 693 goto out_release; 694 } 695 nr->user_addr = *source; 696 } 697 698 nr->source_addr = *source; 699 nr->device = dev; 700 701 dev_put(dev); 702 nr_insert_socket(sk); /* Finish the bind */ 703 } 704 705 nr->dest_addr = addr->sax25_call; 706 707 release_sock(sk); 708 circuit = nr_find_next_circuit(); 709 lock_sock(sk); 710 711 nr->my_index = circuit / 256; 712 nr->my_id = circuit % 256; 713 714 circuit++; 715 716 /* Move to connecting socket, start sending Connect Requests */ 717 sock->state = SS_CONNECTING; 718 sk->sk_state = TCP_SYN_SENT; 719 720 nr_establish_data_link(sk); 721 722 nr->state = NR_STATE_1; 723 724 nr_start_heartbeat(sk); 725 726 /* Now the loop */ 727 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) { 728 err = -EINPROGRESS; 729 goto out_release; 730 } 731 732 /* 733 * A Connect Ack with Choke or timeout or failed routing will go to 734 * closed. 735 */ 736 if (sk->sk_state == TCP_SYN_SENT) { 737 DEFINE_WAIT(wait); 738 739 for (;;) { 740 prepare_to_wait(sk_sleep(sk), &wait, 741 TASK_INTERRUPTIBLE); 742 if (sk->sk_state != TCP_SYN_SENT) 743 break; 744 if (!signal_pending(current)) { 745 release_sock(sk); 746 schedule(); 747 lock_sock(sk); 748 continue; 749 } 750 err = -ERESTARTSYS; 751 break; 752 } 753 finish_wait(sk_sleep(sk), &wait); 754 if (err) 755 goto out_release; 756 } 757 758 if (sk->sk_state != TCP_ESTABLISHED) { 759 sock->state = SS_UNCONNECTED; 760 err = sock_error(sk); /* Always set at this point */ 761 goto out_release; 762 } 763 764 sock->state = SS_CONNECTED; 765 766 out_release: 767 release_sock(sk); 768 769 return err; 770 } 771 772 static int nr_accept(struct socket *sock, struct socket *newsock, int flags) 773 { 774 struct sk_buff *skb; 775 struct sock *newsk; 776 DEFINE_WAIT(wait); 777 struct sock *sk; 778 int err = 0; 779 780 if ((sk = sock->sk) == NULL) 781 return -EINVAL; 782 783 lock_sock(sk); 784 if (sk->sk_type != SOCK_SEQPACKET) { 785 err = -EOPNOTSUPP; 786 goto out_release; 787 } 788 789 if (sk->sk_state != TCP_LISTEN) { 790 err = -EINVAL; 791 goto out_release; 792 } 793 794 /* 795 * The write queue this time is holding sockets ready to use 796 * hooked into the SABM we saved 797 */ 798 for (;;) { 799 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 800 skb = skb_dequeue(&sk->sk_receive_queue); 801 if (skb) 802 break; 803 804 if (flags & O_NONBLOCK) { 805 err = -EWOULDBLOCK; 806 break; 807 } 808 if (!signal_pending(current)) { 809 release_sock(sk); 810 schedule(); 811 lock_sock(sk); 812 continue; 813 } 814 err = -ERESTARTSYS; 815 break; 816 } 817 finish_wait(sk_sleep(sk), &wait); 818 if (err) 819 goto out_release; 820 821 newsk = skb->sk; 822 sock_graft(newsk, newsock); 823 824 /* Now attach up the new socket */ 825 kfree_skb(skb); 826 sk_acceptq_removed(sk); 827 828 out_release: 829 release_sock(sk); 830 831 return err; 832 } 833 834 static int nr_getname(struct socket *sock, struct sockaddr *uaddr, 835 int *uaddr_len, int peer) 836 { 837 struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr; 838 struct sock *sk = sock->sk; 839 struct nr_sock *nr = nr_sk(sk); 840 841 lock_sock(sk); 842 if (peer != 0) { 843 if (sk->sk_state != TCP_ESTABLISHED) { 844 release_sock(sk); 845 return -ENOTCONN; 846 } 847 sax->fsa_ax25.sax25_family = AF_NETROM; 848 sax->fsa_ax25.sax25_ndigis = 1; 849 sax->fsa_ax25.sax25_call = nr->user_addr; 850 memset(sax->fsa_digipeater, 0, sizeof(sax->fsa_digipeater)); 851 sax->fsa_digipeater[0] = nr->dest_addr; 852 *uaddr_len = sizeof(struct full_sockaddr_ax25); 853 } else { 854 sax->fsa_ax25.sax25_family = AF_NETROM; 855 sax->fsa_ax25.sax25_ndigis = 0; 856 sax->fsa_ax25.sax25_call = nr->source_addr; 857 *uaddr_len = sizeof(struct sockaddr_ax25); 858 } 859 release_sock(sk); 860 861 return 0; 862 } 863 864 int nr_rx_frame(struct sk_buff *skb, struct net_device *dev) 865 { 866 struct sock *sk; 867 struct sock *make; 868 struct nr_sock *nr_make; 869 ax25_address *src, *dest, *user; 870 unsigned short circuit_index, circuit_id; 871 unsigned short peer_circuit_index, peer_circuit_id; 872 unsigned short frametype, flags, window, timeout; 873 int ret; 874 875 skb->sk = NULL; /* Initially we don't know who it's for */ 876 877 /* 878 * skb->data points to the netrom frame start 879 */ 880 881 src = (ax25_address *)(skb->data + 0); 882 dest = (ax25_address *)(skb->data + 7); 883 884 circuit_index = skb->data[15]; 885 circuit_id = skb->data[16]; 886 peer_circuit_index = skb->data[17]; 887 peer_circuit_id = skb->data[18]; 888 frametype = skb->data[19] & 0x0F; 889 flags = skb->data[19] & 0xF0; 890 891 /* 892 * Check for an incoming IP over NET/ROM frame. 893 */ 894 if (frametype == NR_PROTOEXT && 895 circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) { 896 skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN); 897 skb_reset_transport_header(skb); 898 899 return nr_rx_ip(skb, dev); 900 } 901 902 /* 903 * Find an existing socket connection, based on circuit ID, if it's 904 * a Connect Request base it on their circuit ID. 905 * 906 * Circuit ID 0/0 is not valid but it could still be a "reset" for a 907 * circuit that no longer exists at the other end ... 908 */ 909 910 sk = NULL; 911 912 if (circuit_index == 0 && circuit_id == 0) { 913 if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG) 914 sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src); 915 } else { 916 if (frametype == NR_CONNREQ) 917 sk = nr_find_peer(circuit_index, circuit_id, src); 918 else 919 sk = nr_find_socket(circuit_index, circuit_id); 920 } 921 922 if (sk != NULL) { 923 skb_reset_transport_header(skb); 924 925 if (frametype == NR_CONNACK && skb->len == 22) 926 nr_sk(sk)->bpqext = 1; 927 else 928 nr_sk(sk)->bpqext = 0; 929 930 ret = nr_process_rx_frame(sk, skb); 931 bh_unlock_sock(sk); 932 return ret; 933 } 934 935 /* 936 * Now it should be a CONNREQ. 937 */ 938 if (frametype != NR_CONNREQ) { 939 /* 940 * Here it would be nice to be able to send a reset but 941 * NET/ROM doesn't have one. We've tried to extend the protocol 942 * by sending NR_CONNACK | NR_CHOKE_FLAGS replies but that 943 * apparently kills BPQ boxes... :-( 944 * So now we try to follow the established behaviour of 945 * G8PZT's Xrouter which is sending packets with command type 7 946 * as an extension of the protocol. 947 */ 948 if (sysctl_netrom_reset_circuit && 949 (frametype != NR_RESET || flags != 0)) 950 nr_transmit_reset(skb, 1); 951 952 return 0; 953 } 954 955 sk = nr_find_listener(dest); 956 957 user = (ax25_address *)(skb->data + 21); 958 959 if (sk == NULL || sk_acceptq_is_full(sk) || 960 (make = nr_make_new(sk)) == NULL) { 961 nr_transmit_refusal(skb, 0); 962 if (sk) 963 bh_unlock_sock(sk); 964 return 0; 965 } 966 967 window = skb->data[20]; 968 969 skb->sk = make; 970 make->sk_state = TCP_ESTABLISHED; 971 972 /* Fill in his circuit details */ 973 nr_make = nr_sk(make); 974 nr_make->source_addr = *dest; 975 nr_make->dest_addr = *src; 976 nr_make->user_addr = *user; 977 978 nr_make->your_index = circuit_index; 979 nr_make->your_id = circuit_id; 980 981 bh_unlock_sock(sk); 982 circuit = nr_find_next_circuit(); 983 bh_lock_sock(sk); 984 985 nr_make->my_index = circuit / 256; 986 nr_make->my_id = circuit % 256; 987 988 circuit++; 989 990 /* Window negotiation */ 991 if (window < nr_make->window) 992 nr_make->window = window; 993 994 /* L4 timeout negotiation */ 995 if (skb->len == 37) { 996 timeout = skb->data[36] * 256 + skb->data[35]; 997 if (timeout * HZ < nr_make->t1) 998 nr_make->t1 = timeout * HZ; 999 nr_make->bpqext = 1; 1000 } else { 1001 nr_make->bpqext = 0; 1002 } 1003 1004 nr_write_internal(make, NR_CONNACK); 1005 1006 nr_make->condition = 0x00; 1007 nr_make->vs = 0; 1008 nr_make->va = 0; 1009 nr_make->vr = 0; 1010 nr_make->vl = 0; 1011 nr_make->state = NR_STATE_3; 1012 sk_acceptq_added(sk); 1013 skb_queue_head(&sk->sk_receive_queue, skb); 1014 1015 if (!sock_flag(sk, SOCK_DEAD)) 1016 sk->sk_data_ready(sk, skb->len); 1017 1018 bh_unlock_sock(sk); 1019 1020 nr_insert_socket(make); 1021 1022 nr_start_heartbeat(make); 1023 nr_start_idletimer(make); 1024 1025 return 1; 1026 } 1027 1028 static int nr_sendmsg(struct kiocb *iocb, struct socket *sock, 1029 struct msghdr *msg, size_t len) 1030 { 1031 struct sock *sk = sock->sk; 1032 struct nr_sock *nr = nr_sk(sk); 1033 struct sockaddr_ax25 *usax = (struct sockaddr_ax25 *)msg->msg_name; 1034 int err; 1035 struct sockaddr_ax25 sax; 1036 struct sk_buff *skb; 1037 unsigned char *asmptr; 1038 int size; 1039 1040 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT)) 1041 return -EINVAL; 1042 1043 lock_sock(sk); 1044 if (sock_flag(sk, SOCK_ZAPPED)) { 1045 err = -EADDRNOTAVAIL; 1046 goto out; 1047 } 1048 1049 if (sk->sk_shutdown & SEND_SHUTDOWN) { 1050 send_sig(SIGPIPE, current, 0); 1051 err = -EPIPE; 1052 goto out; 1053 } 1054 1055 if (nr->device == NULL) { 1056 err = -ENETUNREACH; 1057 goto out; 1058 } 1059 1060 if (usax) { 1061 if (msg->msg_namelen < sizeof(sax)) { 1062 err = -EINVAL; 1063 goto out; 1064 } 1065 sax = *usax; 1066 if (ax25cmp(&nr->dest_addr, &sax.sax25_call) != 0) { 1067 err = -EISCONN; 1068 goto out; 1069 } 1070 if (sax.sax25_family != AF_NETROM) { 1071 err = -EINVAL; 1072 goto out; 1073 } 1074 } else { 1075 if (sk->sk_state != TCP_ESTABLISHED) { 1076 err = -ENOTCONN; 1077 goto out; 1078 } 1079 sax.sax25_family = AF_NETROM; 1080 sax.sax25_call = nr->dest_addr; 1081 } 1082 1083 /* Build a packet - the conventional user limit is 236 bytes. We can 1084 do ludicrously large NetROM frames but must not overflow */ 1085 if (len > 65536) { 1086 err = -EMSGSIZE; 1087 goto out; 1088 } 1089 1090 size = len + NR_NETWORK_LEN + NR_TRANSPORT_LEN; 1091 1092 if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL) 1093 goto out; 1094 1095 skb_reserve(skb, size - len); 1096 skb_reset_transport_header(skb); 1097 1098 /* 1099 * Push down the NET/ROM header 1100 */ 1101 1102 asmptr = skb_push(skb, NR_TRANSPORT_LEN); 1103 1104 /* Build a NET/ROM Transport header */ 1105 1106 *asmptr++ = nr->your_index; 1107 *asmptr++ = nr->your_id; 1108 *asmptr++ = 0; /* To be filled in later */ 1109 *asmptr++ = 0; /* Ditto */ 1110 *asmptr++ = NR_INFO; 1111 1112 /* 1113 * Put the data on the end 1114 */ 1115 skb_put(skb, len); 1116 1117 /* User data follows immediately after the NET/ROM transport header */ 1118 if (memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len)) { 1119 kfree_skb(skb); 1120 err = -EFAULT; 1121 goto out; 1122 } 1123 1124 if (sk->sk_state != TCP_ESTABLISHED) { 1125 kfree_skb(skb); 1126 err = -ENOTCONN; 1127 goto out; 1128 } 1129 1130 nr_output(sk, skb); /* Shove it onto the queue */ 1131 1132 err = len; 1133 out: 1134 release_sock(sk); 1135 return err; 1136 } 1137 1138 static int nr_recvmsg(struct kiocb *iocb, struct socket *sock, 1139 struct msghdr *msg, size_t size, int flags) 1140 { 1141 struct sock *sk = sock->sk; 1142 struct sockaddr_ax25 *sax = (struct sockaddr_ax25 *)msg->msg_name; 1143 size_t copied; 1144 struct sk_buff *skb; 1145 int er; 1146 1147 /* 1148 * This works for seqpacket too. The receiver has ordered the queue for 1149 * us! We do one quick check first though 1150 */ 1151 1152 lock_sock(sk); 1153 if (sk->sk_state != TCP_ESTABLISHED) { 1154 release_sock(sk); 1155 return -ENOTCONN; 1156 } 1157 1158 /* Now we can treat all alike */ 1159 if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) { 1160 release_sock(sk); 1161 return er; 1162 } 1163 1164 skb_reset_transport_header(skb); 1165 copied = skb->len; 1166 1167 if (copied > size) { 1168 copied = size; 1169 msg->msg_flags |= MSG_TRUNC; 1170 } 1171 1172 skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1173 1174 if (sax != NULL) { 1175 sax->sax25_family = AF_NETROM; 1176 skb_copy_from_linear_data_offset(skb, 7, sax->sax25_call.ax25_call, 1177 AX25_ADDR_LEN); 1178 } 1179 1180 msg->msg_namelen = sizeof(*sax); 1181 1182 skb_free_datagram(sk, skb); 1183 1184 release_sock(sk); 1185 return copied; 1186 } 1187 1188 1189 static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1190 { 1191 struct sock *sk = sock->sk; 1192 void __user *argp = (void __user *)arg; 1193 int ret; 1194 1195 switch (cmd) { 1196 case TIOCOUTQ: { 1197 long amount; 1198 1199 lock_sock(sk); 1200 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 1201 if (amount < 0) 1202 amount = 0; 1203 release_sock(sk); 1204 return put_user(amount, (int __user *)argp); 1205 } 1206 1207 case TIOCINQ: { 1208 struct sk_buff *skb; 1209 long amount = 0L; 1210 1211 lock_sock(sk); 1212 /* These two are safe on a single CPU system as only user tasks fiddle here */ 1213 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) 1214 amount = skb->len; 1215 release_sock(sk); 1216 return put_user(amount, (int __user *)argp); 1217 } 1218 1219 case SIOCGSTAMP: 1220 lock_sock(sk); 1221 ret = sock_get_timestamp(sk, argp); 1222 release_sock(sk); 1223 return ret; 1224 1225 case SIOCGSTAMPNS: 1226 lock_sock(sk); 1227 ret = sock_get_timestampns(sk, argp); 1228 release_sock(sk); 1229 return ret; 1230 1231 case SIOCGIFADDR: 1232 case SIOCSIFADDR: 1233 case SIOCGIFDSTADDR: 1234 case SIOCSIFDSTADDR: 1235 case SIOCGIFBRDADDR: 1236 case SIOCSIFBRDADDR: 1237 case SIOCGIFNETMASK: 1238 case SIOCSIFNETMASK: 1239 case SIOCGIFMETRIC: 1240 case SIOCSIFMETRIC: 1241 return -EINVAL; 1242 1243 case SIOCADDRT: 1244 case SIOCDELRT: 1245 case SIOCNRDECOBS: 1246 if (!capable(CAP_NET_ADMIN)) 1247 return -EPERM; 1248 return nr_rt_ioctl(cmd, argp); 1249 1250 default: 1251 return -ENOIOCTLCMD; 1252 } 1253 1254 return 0; 1255 } 1256 1257 #ifdef CONFIG_PROC_FS 1258 1259 static void *nr_info_start(struct seq_file *seq, loff_t *pos) 1260 { 1261 spin_lock_bh(&nr_list_lock); 1262 return seq_hlist_start_head(&nr_list, *pos); 1263 } 1264 1265 static void *nr_info_next(struct seq_file *seq, void *v, loff_t *pos) 1266 { 1267 return seq_hlist_next(v, &nr_list, pos); 1268 } 1269 1270 static void nr_info_stop(struct seq_file *seq, void *v) 1271 { 1272 spin_unlock_bh(&nr_list_lock); 1273 } 1274 1275 static int nr_info_show(struct seq_file *seq, void *v) 1276 { 1277 struct sock *s = sk_entry(v); 1278 struct net_device *dev; 1279 struct nr_sock *nr; 1280 const char *devname; 1281 char buf[11]; 1282 1283 if (v == SEQ_START_TOKEN) 1284 seq_puts(seq, 1285 "user_addr dest_node src_node dev my your st vs vr va t1 t2 t4 idle n2 wnd Snd-Q Rcv-Q inode\n"); 1286 1287 else { 1288 1289 bh_lock_sock(s); 1290 nr = nr_sk(s); 1291 1292 if ((dev = nr->device) == NULL) 1293 devname = "???"; 1294 else 1295 devname = dev->name; 1296 1297 seq_printf(seq, "%-9s ", ax2asc(buf, &nr->user_addr)); 1298 seq_printf(seq, "%-9s ", ax2asc(buf, &nr->dest_addr)); 1299 seq_printf(seq, 1300 "%-9s %-3s %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n", 1301 ax2asc(buf, &nr->source_addr), 1302 devname, 1303 nr->my_index, 1304 nr->my_id, 1305 nr->your_index, 1306 nr->your_id, 1307 nr->state, 1308 nr->vs, 1309 nr->vr, 1310 nr->va, 1311 ax25_display_timer(&nr->t1timer) / HZ, 1312 nr->t1 / HZ, 1313 ax25_display_timer(&nr->t2timer) / HZ, 1314 nr->t2 / HZ, 1315 ax25_display_timer(&nr->t4timer) / HZ, 1316 nr->t4 / HZ, 1317 ax25_display_timer(&nr->idletimer) / (60 * HZ), 1318 nr->idle / (60 * HZ), 1319 nr->n2count, 1320 nr->n2, 1321 nr->window, 1322 sk_wmem_alloc_get(s), 1323 sk_rmem_alloc_get(s), 1324 s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L); 1325 1326 bh_unlock_sock(s); 1327 } 1328 return 0; 1329 } 1330 1331 static const struct seq_operations nr_info_seqops = { 1332 .start = nr_info_start, 1333 .next = nr_info_next, 1334 .stop = nr_info_stop, 1335 .show = nr_info_show, 1336 }; 1337 1338 static int nr_info_open(struct inode *inode, struct file *file) 1339 { 1340 return seq_open(file, &nr_info_seqops); 1341 } 1342 1343 static const struct file_operations nr_info_fops = { 1344 .owner = THIS_MODULE, 1345 .open = nr_info_open, 1346 .read = seq_read, 1347 .llseek = seq_lseek, 1348 .release = seq_release, 1349 }; 1350 #endif /* CONFIG_PROC_FS */ 1351 1352 static const struct net_proto_family nr_family_ops = { 1353 .family = PF_NETROM, 1354 .create = nr_create, 1355 .owner = THIS_MODULE, 1356 }; 1357 1358 static const struct proto_ops nr_proto_ops = { 1359 .family = PF_NETROM, 1360 .owner = THIS_MODULE, 1361 .release = nr_release, 1362 .bind = nr_bind, 1363 .connect = nr_connect, 1364 .socketpair = sock_no_socketpair, 1365 .accept = nr_accept, 1366 .getname = nr_getname, 1367 .poll = datagram_poll, 1368 .ioctl = nr_ioctl, 1369 .listen = nr_listen, 1370 .shutdown = sock_no_shutdown, 1371 .setsockopt = nr_setsockopt, 1372 .getsockopt = nr_getsockopt, 1373 .sendmsg = nr_sendmsg, 1374 .recvmsg = nr_recvmsg, 1375 .mmap = sock_no_mmap, 1376 .sendpage = sock_no_sendpage, 1377 }; 1378 1379 static struct notifier_block nr_dev_notifier = { 1380 .notifier_call = nr_device_event, 1381 }; 1382 1383 static struct net_device **dev_nr; 1384 1385 static struct ax25_protocol nr_pid = { 1386 .pid = AX25_P_NETROM, 1387 .func = nr_route_frame 1388 }; 1389 1390 static struct ax25_linkfail nr_linkfail_notifier = { 1391 .func = nr_link_failed, 1392 }; 1393 1394 static int __init nr_proto_init(void) 1395 { 1396 int i; 1397 int rc = proto_register(&nr_proto, 0); 1398 1399 if (rc != 0) 1400 goto out; 1401 1402 if (nr_ndevs > 0x7fffffff/sizeof(struct net_device *)) { 1403 printk(KERN_ERR "NET/ROM: nr_proto_init - nr_ndevs parameter to large\n"); 1404 return -1; 1405 } 1406 1407 dev_nr = kzalloc(nr_ndevs * sizeof(struct net_device *), GFP_KERNEL); 1408 if (dev_nr == NULL) { 1409 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device array\n"); 1410 return -1; 1411 } 1412 1413 for (i = 0; i < nr_ndevs; i++) { 1414 char name[IFNAMSIZ]; 1415 struct net_device *dev; 1416 1417 sprintf(name, "nr%d", i); 1418 dev = alloc_netdev(0, name, nr_setup); 1419 if (!dev) { 1420 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device structure\n"); 1421 goto fail; 1422 } 1423 1424 dev->base_addr = i; 1425 if (register_netdev(dev)) { 1426 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register network device\n"); 1427 free_netdev(dev); 1428 goto fail; 1429 } 1430 nr_set_lockdep_key(dev); 1431 dev_nr[i] = dev; 1432 } 1433 1434 if (sock_register(&nr_family_ops)) { 1435 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register socket family\n"); 1436 goto fail; 1437 } 1438 1439 register_netdevice_notifier(&nr_dev_notifier); 1440 1441 ax25_register_pid(&nr_pid); 1442 ax25_linkfail_register(&nr_linkfail_notifier); 1443 1444 #ifdef CONFIG_SYSCTL 1445 nr_register_sysctl(); 1446 #endif 1447 1448 nr_loopback_init(); 1449 1450 proc_net_fops_create(&init_net, "nr", S_IRUGO, &nr_info_fops); 1451 proc_net_fops_create(&init_net, "nr_neigh", S_IRUGO, &nr_neigh_fops); 1452 proc_net_fops_create(&init_net, "nr_nodes", S_IRUGO, &nr_nodes_fops); 1453 out: 1454 return rc; 1455 fail: 1456 while (--i >= 0) { 1457 unregister_netdev(dev_nr[i]); 1458 free_netdev(dev_nr[i]); 1459 } 1460 kfree(dev_nr); 1461 proto_unregister(&nr_proto); 1462 rc = -1; 1463 goto out; 1464 } 1465 1466 module_init(nr_proto_init); 1467 1468 module_param(nr_ndevs, int, 0); 1469 MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices"); 1470 1471 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>"); 1472 MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol"); 1473 MODULE_LICENSE("GPL"); 1474 MODULE_ALIAS_NETPROTO(PF_NETROM); 1475 1476 static void __exit nr_exit(void) 1477 { 1478 int i; 1479 1480 proc_net_remove(&init_net, "nr"); 1481 proc_net_remove(&init_net, "nr_neigh"); 1482 proc_net_remove(&init_net, "nr_nodes"); 1483 nr_loopback_clear(); 1484 1485 nr_rt_free(); 1486 1487 #ifdef CONFIG_SYSCTL 1488 nr_unregister_sysctl(); 1489 #endif 1490 1491 ax25_linkfail_release(&nr_linkfail_notifier); 1492 ax25_protocol_release(AX25_P_NETROM); 1493 1494 unregister_netdevice_notifier(&nr_dev_notifier); 1495 1496 sock_unregister(PF_NETROM); 1497 1498 for (i = 0; i < nr_ndevs; i++) { 1499 struct net_device *dev = dev_nr[i]; 1500 if (dev) { 1501 unregister_netdev(dev); 1502 free_netdev(dev); 1503 } 1504 } 1505 1506 kfree(dev_nr); 1507 proto_unregister(&nr_proto); 1508 } 1509 module_exit(nr_exit); 1510