xref: /openbmc/linux/net/netrom/af_netrom.c (revision 62e59c4e)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 2 of the License, or
5  * (at your option) any later version.
6  *
7  * Copyright Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
8  * Copyright Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
9  * Copyright Darryl Miles G7LED (dlm@g7led.demon.co.uk)
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/capability.h>
14 #include <linux/errno.h>
15 #include <linux/types.h>
16 #include <linux/socket.h>
17 #include <linux/in.h>
18 #include <linux/slab.h>
19 #include <linux/kernel.h>
20 #include <linux/sched/signal.h>
21 #include <linux/timer.h>
22 #include <linux/string.h>
23 #include <linux/sockios.h>
24 #include <linux/net.h>
25 #include <linux/stat.h>
26 #include <net/ax25.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_arp.h>
30 #include <linux/skbuff.h>
31 #include <net/net_namespace.h>
32 #include <net/sock.h>
33 #include <linux/uaccess.h>
34 #include <linux/fcntl.h>
35 #include <linux/termios.h>	/* For TIOCINQ/OUTQ */
36 #include <linux/mm.h>
37 #include <linux/interrupt.h>
38 #include <linux/notifier.h>
39 #include <net/netrom.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/arp.h>
45 #include <linux/init.h>
46 
47 static int nr_ndevs = 4;
48 
49 int sysctl_netrom_default_path_quality            = NR_DEFAULT_QUAL;
50 int sysctl_netrom_obsolescence_count_initialiser  = NR_DEFAULT_OBS;
51 int sysctl_netrom_network_ttl_initialiser         = NR_DEFAULT_TTL;
52 int sysctl_netrom_transport_timeout               = NR_DEFAULT_T1;
53 int sysctl_netrom_transport_maximum_tries         = NR_DEFAULT_N2;
54 int sysctl_netrom_transport_acknowledge_delay     = NR_DEFAULT_T2;
55 int sysctl_netrom_transport_busy_delay            = NR_DEFAULT_T4;
56 int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW;
57 int sysctl_netrom_transport_no_activity_timeout   = NR_DEFAULT_IDLE;
58 int sysctl_netrom_routing_control                 = NR_DEFAULT_ROUTING;
59 int sysctl_netrom_link_fails_count                = NR_DEFAULT_FAILS;
60 int sysctl_netrom_reset_circuit                   = NR_DEFAULT_RESET;
61 
62 static unsigned short circuit = 0x101;
63 
64 static HLIST_HEAD(nr_list);
65 static DEFINE_SPINLOCK(nr_list_lock);
66 
67 static const struct proto_ops nr_proto_ops;
68 
69 /*
70  * NETROM network devices are virtual network devices encapsulating NETROM
71  * frames into AX.25 which will be sent through an AX.25 device, so form a
72  * special "super class" of normal net devices; split their locks off into a
73  * separate class since they always nest.
74  */
75 static struct lock_class_key nr_netdev_xmit_lock_key;
76 static struct lock_class_key nr_netdev_addr_lock_key;
77 
78 static void nr_set_lockdep_one(struct net_device *dev,
79 			       struct netdev_queue *txq,
80 			       void *_unused)
81 {
82 	lockdep_set_class(&txq->_xmit_lock, &nr_netdev_xmit_lock_key);
83 }
84 
85 static void nr_set_lockdep_key(struct net_device *dev)
86 {
87 	lockdep_set_class(&dev->addr_list_lock, &nr_netdev_addr_lock_key);
88 	netdev_for_each_tx_queue(dev, nr_set_lockdep_one, NULL);
89 }
90 
91 /*
92  *	Socket removal during an interrupt is now safe.
93  */
94 static void nr_remove_socket(struct sock *sk)
95 {
96 	spin_lock_bh(&nr_list_lock);
97 	sk_del_node_init(sk);
98 	spin_unlock_bh(&nr_list_lock);
99 }
100 
101 /*
102  *	Kill all bound sockets on a dropped device.
103  */
104 static void nr_kill_by_device(struct net_device *dev)
105 {
106 	struct sock *s;
107 
108 	spin_lock_bh(&nr_list_lock);
109 	sk_for_each(s, &nr_list)
110 		if (nr_sk(s)->device == dev)
111 			nr_disconnect(s, ENETUNREACH);
112 	spin_unlock_bh(&nr_list_lock);
113 }
114 
115 /*
116  *	Handle device status changes.
117  */
118 static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
119 {
120 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
121 
122 	if (!net_eq(dev_net(dev), &init_net))
123 		return NOTIFY_DONE;
124 
125 	if (event != NETDEV_DOWN)
126 		return NOTIFY_DONE;
127 
128 	nr_kill_by_device(dev);
129 	nr_rt_device_down(dev);
130 
131 	return NOTIFY_DONE;
132 }
133 
134 /*
135  *	Add a socket to the bound sockets list.
136  */
137 static void nr_insert_socket(struct sock *sk)
138 {
139 	spin_lock_bh(&nr_list_lock);
140 	sk_add_node(sk, &nr_list);
141 	spin_unlock_bh(&nr_list_lock);
142 }
143 
144 /*
145  *	Find a socket that wants to accept the Connect Request we just
146  *	received.
147  */
148 static struct sock *nr_find_listener(ax25_address *addr)
149 {
150 	struct sock *s;
151 
152 	spin_lock_bh(&nr_list_lock);
153 	sk_for_each(s, &nr_list)
154 		if (!ax25cmp(&nr_sk(s)->source_addr, addr) &&
155 		    s->sk_state == TCP_LISTEN) {
156 			sock_hold(s);
157 			goto found;
158 		}
159 	s = NULL;
160 found:
161 	spin_unlock_bh(&nr_list_lock);
162 	return s;
163 }
164 
165 /*
166  *	Find a connected NET/ROM socket given my circuit IDs.
167  */
168 static struct sock *nr_find_socket(unsigned char index, unsigned char id)
169 {
170 	struct sock *s;
171 
172 	spin_lock_bh(&nr_list_lock);
173 	sk_for_each(s, &nr_list) {
174 		struct nr_sock *nr = nr_sk(s);
175 
176 		if (nr->my_index == index && nr->my_id == id) {
177 			sock_hold(s);
178 			goto found;
179 		}
180 	}
181 	s = NULL;
182 found:
183 	spin_unlock_bh(&nr_list_lock);
184 	return s;
185 }
186 
187 /*
188  *	Find a connected NET/ROM socket given their circuit IDs.
189  */
190 static struct sock *nr_find_peer(unsigned char index, unsigned char id,
191 	ax25_address *dest)
192 {
193 	struct sock *s;
194 
195 	spin_lock_bh(&nr_list_lock);
196 	sk_for_each(s, &nr_list) {
197 		struct nr_sock *nr = nr_sk(s);
198 
199 		if (nr->your_index == index && nr->your_id == id &&
200 		    !ax25cmp(&nr->dest_addr, dest)) {
201 			sock_hold(s);
202 			goto found;
203 		}
204 	}
205 	s = NULL;
206 found:
207 	spin_unlock_bh(&nr_list_lock);
208 	return s;
209 }
210 
211 /*
212  *	Find next free circuit ID.
213  */
214 static unsigned short nr_find_next_circuit(void)
215 {
216 	unsigned short id = circuit;
217 	unsigned char i, j;
218 	struct sock *sk;
219 
220 	for (;;) {
221 		i = id / 256;
222 		j = id % 256;
223 
224 		if (i != 0 && j != 0) {
225 			if ((sk=nr_find_socket(i, j)) == NULL)
226 				break;
227 			sock_put(sk);
228 		}
229 
230 		id++;
231 	}
232 
233 	return id;
234 }
235 
236 /*
237  *	Deferred destroy.
238  */
239 void nr_destroy_socket(struct sock *);
240 
241 /*
242  *	Handler for deferred kills.
243  */
244 static void nr_destroy_timer(struct timer_list *t)
245 {
246 	struct sock *sk = from_timer(sk, t, sk_timer);
247 	bh_lock_sock(sk);
248 	sock_hold(sk);
249 	nr_destroy_socket(sk);
250 	bh_unlock_sock(sk);
251 	sock_put(sk);
252 }
253 
254 /*
255  *	This is called from user mode and the timers. Thus it protects itself
256  *	against interrupt users but doesn't worry about being called during
257  *	work. Once it is removed from the queue no interrupt or bottom half
258  *	will touch it and we are (fairly 8-) ) safe.
259  */
260 void nr_destroy_socket(struct sock *sk)
261 {
262 	struct sk_buff *skb;
263 
264 	nr_remove_socket(sk);
265 
266 	nr_stop_heartbeat(sk);
267 	nr_stop_t1timer(sk);
268 	nr_stop_t2timer(sk);
269 	nr_stop_t4timer(sk);
270 	nr_stop_idletimer(sk);
271 
272 	nr_clear_queues(sk);		/* Flush the queues */
273 
274 	while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
275 		if (skb->sk != sk) { /* A pending connection */
276 			/* Queue the unaccepted socket for death */
277 			sock_set_flag(skb->sk, SOCK_DEAD);
278 			nr_start_heartbeat(skb->sk);
279 			nr_sk(skb->sk)->state = NR_STATE_0;
280 		}
281 
282 		kfree_skb(skb);
283 	}
284 
285 	if (sk_has_allocations(sk)) {
286 		/* Defer: outstanding buffers */
287 		sk->sk_timer.function = nr_destroy_timer;
288 		sk->sk_timer.expires  = jiffies + 2 * HZ;
289 		add_timer(&sk->sk_timer);
290 	} else
291 		sock_put(sk);
292 }
293 
294 /*
295  *	Handling for system calls applied via the various interfaces to a
296  *	NET/ROM socket object.
297  */
298 
299 static int nr_setsockopt(struct socket *sock, int level, int optname,
300 	char __user *optval, unsigned int optlen)
301 {
302 	struct sock *sk = sock->sk;
303 	struct nr_sock *nr = nr_sk(sk);
304 	unsigned long opt;
305 
306 	if (level != SOL_NETROM)
307 		return -ENOPROTOOPT;
308 
309 	if (optlen < sizeof(unsigned int))
310 		return -EINVAL;
311 
312 	if (get_user(opt, (unsigned int __user *)optval))
313 		return -EFAULT;
314 
315 	switch (optname) {
316 	case NETROM_T1:
317 		if (opt < 1 || opt > ULONG_MAX / HZ)
318 			return -EINVAL;
319 		nr->t1 = opt * HZ;
320 		return 0;
321 
322 	case NETROM_T2:
323 		if (opt < 1 || opt > ULONG_MAX / HZ)
324 			return -EINVAL;
325 		nr->t2 = opt * HZ;
326 		return 0;
327 
328 	case NETROM_N2:
329 		if (opt < 1 || opt > 31)
330 			return -EINVAL;
331 		nr->n2 = opt;
332 		return 0;
333 
334 	case NETROM_T4:
335 		if (opt < 1 || opt > ULONG_MAX / HZ)
336 			return -EINVAL;
337 		nr->t4 = opt * HZ;
338 		return 0;
339 
340 	case NETROM_IDLE:
341 		if (opt > ULONG_MAX / (60 * HZ))
342 			return -EINVAL;
343 		nr->idle = opt * 60 * HZ;
344 		return 0;
345 
346 	default:
347 		return -ENOPROTOOPT;
348 	}
349 }
350 
351 static int nr_getsockopt(struct socket *sock, int level, int optname,
352 	char __user *optval, int __user *optlen)
353 {
354 	struct sock *sk = sock->sk;
355 	struct nr_sock *nr = nr_sk(sk);
356 	int val = 0;
357 	int len;
358 
359 	if (level != SOL_NETROM)
360 		return -ENOPROTOOPT;
361 
362 	if (get_user(len, optlen))
363 		return -EFAULT;
364 
365 	if (len < 0)
366 		return -EINVAL;
367 
368 	switch (optname) {
369 	case NETROM_T1:
370 		val = nr->t1 / HZ;
371 		break;
372 
373 	case NETROM_T2:
374 		val = nr->t2 / HZ;
375 		break;
376 
377 	case NETROM_N2:
378 		val = nr->n2;
379 		break;
380 
381 	case NETROM_T4:
382 		val = nr->t4 / HZ;
383 		break;
384 
385 	case NETROM_IDLE:
386 		val = nr->idle / (60 * HZ);
387 		break;
388 
389 	default:
390 		return -ENOPROTOOPT;
391 	}
392 
393 	len = min_t(unsigned int, len, sizeof(int));
394 
395 	if (put_user(len, optlen))
396 		return -EFAULT;
397 
398 	return copy_to_user(optval, &val, len) ? -EFAULT : 0;
399 }
400 
401 static int nr_listen(struct socket *sock, int backlog)
402 {
403 	struct sock *sk = sock->sk;
404 
405 	lock_sock(sk);
406 	if (sk->sk_state != TCP_LISTEN) {
407 		memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN);
408 		sk->sk_max_ack_backlog = backlog;
409 		sk->sk_state           = TCP_LISTEN;
410 		release_sock(sk);
411 		return 0;
412 	}
413 	release_sock(sk);
414 
415 	return -EOPNOTSUPP;
416 }
417 
418 static struct proto nr_proto = {
419 	.name	  = "NETROM",
420 	.owner	  = THIS_MODULE,
421 	.obj_size = sizeof(struct nr_sock),
422 };
423 
424 static int nr_create(struct net *net, struct socket *sock, int protocol,
425 		     int kern)
426 {
427 	struct sock *sk;
428 	struct nr_sock *nr;
429 
430 	if (!net_eq(net, &init_net))
431 		return -EAFNOSUPPORT;
432 
433 	if (sock->type != SOCK_SEQPACKET || protocol != 0)
434 		return -ESOCKTNOSUPPORT;
435 
436 	sk = sk_alloc(net, PF_NETROM, GFP_ATOMIC, &nr_proto, kern);
437 	if (sk  == NULL)
438 		return -ENOMEM;
439 
440 	nr = nr_sk(sk);
441 
442 	sock_init_data(sock, sk);
443 
444 	sock->ops    = &nr_proto_ops;
445 	sk->sk_protocol = protocol;
446 
447 	skb_queue_head_init(&nr->ack_queue);
448 	skb_queue_head_init(&nr->reseq_queue);
449 	skb_queue_head_init(&nr->frag_queue);
450 
451 	nr_init_timers(sk);
452 
453 	nr->t1     =
454 		msecs_to_jiffies(sysctl_netrom_transport_timeout);
455 	nr->t2     =
456 		msecs_to_jiffies(sysctl_netrom_transport_acknowledge_delay);
457 	nr->n2     =
458 		msecs_to_jiffies(sysctl_netrom_transport_maximum_tries);
459 	nr->t4     =
460 		msecs_to_jiffies(sysctl_netrom_transport_busy_delay);
461 	nr->idle   =
462 		msecs_to_jiffies(sysctl_netrom_transport_no_activity_timeout);
463 	nr->window = sysctl_netrom_transport_requested_window_size;
464 
465 	nr->bpqext = 1;
466 	nr->state  = NR_STATE_0;
467 
468 	return 0;
469 }
470 
471 static struct sock *nr_make_new(struct sock *osk)
472 {
473 	struct sock *sk;
474 	struct nr_sock *nr, *onr;
475 
476 	if (osk->sk_type != SOCK_SEQPACKET)
477 		return NULL;
478 
479 	sk = sk_alloc(sock_net(osk), PF_NETROM, GFP_ATOMIC, osk->sk_prot, 0);
480 	if (sk == NULL)
481 		return NULL;
482 
483 	nr = nr_sk(sk);
484 
485 	sock_init_data(NULL, sk);
486 
487 	sk->sk_type     = osk->sk_type;
488 	sk->sk_priority = osk->sk_priority;
489 	sk->sk_protocol = osk->sk_protocol;
490 	sk->sk_rcvbuf   = osk->sk_rcvbuf;
491 	sk->sk_sndbuf   = osk->sk_sndbuf;
492 	sk->sk_state    = TCP_ESTABLISHED;
493 	sock_copy_flags(sk, osk);
494 
495 	skb_queue_head_init(&nr->ack_queue);
496 	skb_queue_head_init(&nr->reseq_queue);
497 	skb_queue_head_init(&nr->frag_queue);
498 
499 	nr_init_timers(sk);
500 
501 	onr = nr_sk(osk);
502 
503 	nr->t1      = onr->t1;
504 	nr->t2      = onr->t2;
505 	nr->n2      = onr->n2;
506 	nr->t4      = onr->t4;
507 	nr->idle    = onr->idle;
508 	nr->window  = onr->window;
509 
510 	nr->device  = onr->device;
511 	nr->bpqext  = onr->bpqext;
512 
513 	return sk;
514 }
515 
516 static int nr_release(struct socket *sock)
517 {
518 	struct sock *sk = sock->sk;
519 	struct nr_sock *nr;
520 
521 	if (sk == NULL) return 0;
522 
523 	sock_hold(sk);
524 	sock_orphan(sk);
525 	lock_sock(sk);
526 	nr = nr_sk(sk);
527 
528 	switch (nr->state) {
529 	case NR_STATE_0:
530 	case NR_STATE_1:
531 	case NR_STATE_2:
532 		nr_disconnect(sk, 0);
533 		nr_destroy_socket(sk);
534 		break;
535 
536 	case NR_STATE_3:
537 		nr_clear_queues(sk);
538 		nr->n2count = 0;
539 		nr_write_internal(sk, NR_DISCREQ);
540 		nr_start_t1timer(sk);
541 		nr_stop_t2timer(sk);
542 		nr_stop_t4timer(sk);
543 		nr_stop_idletimer(sk);
544 		nr->state    = NR_STATE_2;
545 		sk->sk_state    = TCP_CLOSE;
546 		sk->sk_shutdown |= SEND_SHUTDOWN;
547 		sk->sk_state_change(sk);
548 		sock_set_flag(sk, SOCK_DESTROY);
549 		break;
550 
551 	default:
552 		break;
553 	}
554 
555 	sock->sk   = NULL;
556 	release_sock(sk);
557 	sock_put(sk);
558 
559 	return 0;
560 }
561 
562 static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
563 {
564 	struct sock *sk = sock->sk;
565 	struct nr_sock *nr = nr_sk(sk);
566 	struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr;
567 	struct net_device *dev;
568 	ax25_uid_assoc *user;
569 	ax25_address *source;
570 
571 	lock_sock(sk);
572 	if (!sock_flag(sk, SOCK_ZAPPED)) {
573 		release_sock(sk);
574 		return -EINVAL;
575 	}
576 	if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) {
577 		release_sock(sk);
578 		return -EINVAL;
579 	}
580 	if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) {
581 		release_sock(sk);
582 		return -EINVAL;
583 	}
584 	if (addr->fsa_ax25.sax25_family != AF_NETROM) {
585 		release_sock(sk);
586 		return -EINVAL;
587 	}
588 	if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) {
589 		release_sock(sk);
590 		return -EADDRNOTAVAIL;
591 	}
592 
593 	/*
594 	 * Only the super user can set an arbitrary user callsign.
595 	 */
596 	if (addr->fsa_ax25.sax25_ndigis == 1) {
597 		if (!capable(CAP_NET_BIND_SERVICE)) {
598 			dev_put(dev);
599 			release_sock(sk);
600 			return -EPERM;
601 		}
602 		nr->user_addr   = addr->fsa_digipeater[0];
603 		nr->source_addr = addr->fsa_ax25.sax25_call;
604 	} else {
605 		source = &addr->fsa_ax25.sax25_call;
606 
607 		user = ax25_findbyuid(current_euid());
608 		if (user) {
609 			nr->user_addr   = user->call;
610 			ax25_uid_put(user);
611 		} else {
612 			if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) {
613 				release_sock(sk);
614 				dev_put(dev);
615 				return -EPERM;
616 			}
617 			nr->user_addr   = *source;
618 		}
619 
620 		nr->source_addr = *source;
621 	}
622 
623 	nr->device = dev;
624 	nr_insert_socket(sk);
625 
626 	sock_reset_flag(sk, SOCK_ZAPPED);
627 	dev_put(dev);
628 	release_sock(sk);
629 
630 	return 0;
631 }
632 
633 static int nr_connect(struct socket *sock, struct sockaddr *uaddr,
634 	int addr_len, int flags)
635 {
636 	struct sock *sk = sock->sk;
637 	struct nr_sock *nr = nr_sk(sk);
638 	struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr;
639 	ax25_address *source = NULL;
640 	ax25_uid_assoc *user;
641 	struct net_device *dev;
642 	int err = 0;
643 
644 	lock_sock(sk);
645 	if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
646 		sock->state = SS_CONNECTED;
647 		goto out_release;	/* Connect completed during a ERESTARTSYS event */
648 	}
649 
650 	if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
651 		sock->state = SS_UNCONNECTED;
652 		err = -ECONNREFUSED;
653 		goto out_release;
654 	}
655 
656 	if (sk->sk_state == TCP_ESTABLISHED) {
657 		err = -EISCONN;	/* No reconnect on a seqpacket socket */
658 		goto out_release;
659 	}
660 
661 	sk->sk_state   = TCP_CLOSE;
662 	sock->state = SS_UNCONNECTED;
663 
664 	if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) {
665 		err = -EINVAL;
666 		goto out_release;
667 	}
668 	if (addr->sax25_family != AF_NETROM) {
669 		err = -EINVAL;
670 		goto out_release;
671 	}
672 	if (sock_flag(sk, SOCK_ZAPPED)) {	/* Must bind first - autobinding in this may or may not work */
673 		sock_reset_flag(sk, SOCK_ZAPPED);
674 
675 		if ((dev = nr_dev_first()) == NULL) {
676 			err = -ENETUNREACH;
677 			goto out_release;
678 		}
679 		source = (ax25_address *)dev->dev_addr;
680 
681 		user = ax25_findbyuid(current_euid());
682 		if (user) {
683 			nr->user_addr   = user->call;
684 			ax25_uid_put(user);
685 		} else {
686 			if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) {
687 				dev_put(dev);
688 				err = -EPERM;
689 				goto out_release;
690 			}
691 			nr->user_addr   = *source;
692 		}
693 
694 		nr->source_addr = *source;
695 		nr->device      = dev;
696 
697 		dev_put(dev);
698 		nr_insert_socket(sk);		/* Finish the bind */
699 	}
700 
701 	nr->dest_addr = addr->sax25_call;
702 
703 	release_sock(sk);
704 	circuit = nr_find_next_circuit();
705 	lock_sock(sk);
706 
707 	nr->my_index = circuit / 256;
708 	nr->my_id    = circuit % 256;
709 
710 	circuit++;
711 
712 	/* Move to connecting socket, start sending Connect Requests */
713 	sock->state  = SS_CONNECTING;
714 	sk->sk_state = TCP_SYN_SENT;
715 
716 	nr_establish_data_link(sk);
717 
718 	nr->state = NR_STATE_1;
719 
720 	nr_start_heartbeat(sk);
721 
722 	/* Now the loop */
723 	if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
724 		err = -EINPROGRESS;
725 		goto out_release;
726 	}
727 
728 	/*
729 	 * A Connect Ack with Choke or timeout or failed routing will go to
730 	 * closed.
731 	 */
732 	if (sk->sk_state == TCP_SYN_SENT) {
733 		DEFINE_WAIT(wait);
734 
735 		for (;;) {
736 			prepare_to_wait(sk_sleep(sk), &wait,
737 					TASK_INTERRUPTIBLE);
738 			if (sk->sk_state != TCP_SYN_SENT)
739 				break;
740 			if (!signal_pending(current)) {
741 				release_sock(sk);
742 				schedule();
743 				lock_sock(sk);
744 				continue;
745 			}
746 			err = -ERESTARTSYS;
747 			break;
748 		}
749 		finish_wait(sk_sleep(sk), &wait);
750 		if (err)
751 			goto out_release;
752 	}
753 
754 	if (sk->sk_state != TCP_ESTABLISHED) {
755 		sock->state = SS_UNCONNECTED;
756 		err = sock_error(sk);	/* Always set at this point */
757 		goto out_release;
758 	}
759 
760 	sock->state = SS_CONNECTED;
761 
762 out_release:
763 	release_sock(sk);
764 
765 	return err;
766 }
767 
768 static int nr_accept(struct socket *sock, struct socket *newsock, int flags,
769 		     bool kern)
770 {
771 	struct sk_buff *skb;
772 	struct sock *newsk;
773 	DEFINE_WAIT(wait);
774 	struct sock *sk;
775 	int err = 0;
776 
777 	if ((sk = sock->sk) == NULL)
778 		return -EINVAL;
779 
780 	lock_sock(sk);
781 	if (sk->sk_type != SOCK_SEQPACKET) {
782 		err = -EOPNOTSUPP;
783 		goto out_release;
784 	}
785 
786 	if (sk->sk_state != TCP_LISTEN) {
787 		err = -EINVAL;
788 		goto out_release;
789 	}
790 
791 	/*
792 	 *	The write queue this time is holding sockets ready to use
793 	 *	hooked into the SABM we saved
794 	 */
795 	for (;;) {
796 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
797 		skb = skb_dequeue(&sk->sk_receive_queue);
798 		if (skb)
799 			break;
800 
801 		if (flags & O_NONBLOCK) {
802 			err = -EWOULDBLOCK;
803 			break;
804 		}
805 		if (!signal_pending(current)) {
806 			release_sock(sk);
807 			schedule();
808 			lock_sock(sk);
809 			continue;
810 		}
811 		err = -ERESTARTSYS;
812 		break;
813 	}
814 	finish_wait(sk_sleep(sk), &wait);
815 	if (err)
816 		goto out_release;
817 
818 	newsk = skb->sk;
819 	sock_graft(newsk, newsock);
820 
821 	/* Now attach up the new socket */
822 	kfree_skb(skb);
823 	sk_acceptq_removed(sk);
824 
825 out_release:
826 	release_sock(sk);
827 
828 	return err;
829 }
830 
831 static int nr_getname(struct socket *sock, struct sockaddr *uaddr,
832 	int peer)
833 {
834 	struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr;
835 	struct sock *sk = sock->sk;
836 	struct nr_sock *nr = nr_sk(sk);
837 	int uaddr_len;
838 
839 	memset(&sax->fsa_ax25, 0, sizeof(struct sockaddr_ax25));
840 
841 	lock_sock(sk);
842 	if (peer != 0) {
843 		if (sk->sk_state != TCP_ESTABLISHED) {
844 			release_sock(sk);
845 			return -ENOTCONN;
846 		}
847 		sax->fsa_ax25.sax25_family = AF_NETROM;
848 		sax->fsa_ax25.sax25_ndigis = 1;
849 		sax->fsa_ax25.sax25_call   = nr->user_addr;
850 		memset(sax->fsa_digipeater, 0, sizeof(sax->fsa_digipeater));
851 		sax->fsa_digipeater[0]     = nr->dest_addr;
852 		uaddr_len = sizeof(struct full_sockaddr_ax25);
853 	} else {
854 		sax->fsa_ax25.sax25_family = AF_NETROM;
855 		sax->fsa_ax25.sax25_ndigis = 0;
856 		sax->fsa_ax25.sax25_call   = nr->source_addr;
857 		uaddr_len = sizeof(struct sockaddr_ax25);
858 	}
859 	release_sock(sk);
860 
861 	return uaddr_len;
862 }
863 
864 int nr_rx_frame(struct sk_buff *skb, struct net_device *dev)
865 {
866 	struct sock *sk;
867 	struct sock *make;
868 	struct nr_sock *nr_make;
869 	ax25_address *src, *dest, *user;
870 	unsigned short circuit_index, circuit_id;
871 	unsigned short peer_circuit_index, peer_circuit_id;
872 	unsigned short frametype, flags, window, timeout;
873 	int ret;
874 
875 	skb->sk = NULL;		/* Initially we don't know who it's for */
876 
877 	/*
878 	 *	skb->data points to the netrom frame start
879 	 */
880 
881 	src  = (ax25_address *)(skb->data + 0);
882 	dest = (ax25_address *)(skb->data + 7);
883 
884 	circuit_index      = skb->data[15];
885 	circuit_id         = skb->data[16];
886 	peer_circuit_index = skb->data[17];
887 	peer_circuit_id    = skb->data[18];
888 	frametype          = skb->data[19] & 0x0F;
889 	flags              = skb->data[19] & 0xF0;
890 
891 	/*
892 	 * Check for an incoming IP over NET/ROM frame.
893 	 */
894 	if (frametype == NR_PROTOEXT &&
895 	    circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) {
896 		skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN);
897 		skb_reset_transport_header(skb);
898 
899 		return nr_rx_ip(skb, dev);
900 	}
901 
902 	/*
903 	 * Find an existing socket connection, based on circuit ID, if it's
904 	 * a Connect Request base it on their circuit ID.
905 	 *
906 	 * Circuit ID 0/0 is not valid but it could still be a "reset" for a
907 	 * circuit that no longer exists at the other end ...
908 	 */
909 
910 	sk = NULL;
911 
912 	if (circuit_index == 0 && circuit_id == 0) {
913 		if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG)
914 			sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src);
915 	} else {
916 		if (frametype == NR_CONNREQ)
917 			sk = nr_find_peer(circuit_index, circuit_id, src);
918 		else
919 			sk = nr_find_socket(circuit_index, circuit_id);
920 	}
921 
922 	if (sk != NULL) {
923 		bh_lock_sock(sk);
924 		skb_reset_transport_header(skb);
925 
926 		if (frametype == NR_CONNACK && skb->len == 22)
927 			nr_sk(sk)->bpqext = 1;
928 		else
929 			nr_sk(sk)->bpqext = 0;
930 
931 		ret = nr_process_rx_frame(sk, skb);
932 		bh_unlock_sock(sk);
933 		sock_put(sk);
934 		return ret;
935 	}
936 
937 	/*
938 	 * Now it should be a CONNREQ.
939 	 */
940 	if (frametype != NR_CONNREQ) {
941 		/*
942 		 * Here it would be nice to be able to send a reset but
943 		 * NET/ROM doesn't have one.  We've tried to extend the protocol
944 		 * by sending NR_CONNACK | NR_CHOKE_FLAGS replies but that
945 		 * apparently kills BPQ boxes... :-(
946 		 * So now we try to follow the established behaviour of
947 		 * G8PZT's Xrouter which is sending packets with command type 7
948 		 * as an extension of the protocol.
949 		 */
950 		if (sysctl_netrom_reset_circuit &&
951 		    (frametype != NR_RESET || flags != 0))
952 			nr_transmit_reset(skb, 1);
953 
954 		return 0;
955 	}
956 
957 	sk = nr_find_listener(dest);
958 
959 	user = (ax25_address *)(skb->data + 21);
960 
961 	if (sk == NULL || sk_acceptq_is_full(sk) ||
962 	    (make = nr_make_new(sk)) == NULL) {
963 		nr_transmit_refusal(skb, 0);
964 		if (sk)
965 			sock_put(sk);
966 		return 0;
967 	}
968 
969 	bh_lock_sock(sk);
970 
971 	window = skb->data[20];
972 
973 	skb->sk             = make;
974 	make->sk_state	    = TCP_ESTABLISHED;
975 
976 	/* Fill in his circuit details */
977 	nr_make = nr_sk(make);
978 	nr_make->source_addr = *dest;
979 	nr_make->dest_addr   = *src;
980 	nr_make->user_addr   = *user;
981 
982 	nr_make->your_index  = circuit_index;
983 	nr_make->your_id     = circuit_id;
984 
985 	bh_unlock_sock(sk);
986 	circuit = nr_find_next_circuit();
987 	bh_lock_sock(sk);
988 
989 	nr_make->my_index    = circuit / 256;
990 	nr_make->my_id       = circuit % 256;
991 
992 	circuit++;
993 
994 	/* Window negotiation */
995 	if (window < nr_make->window)
996 		nr_make->window = window;
997 
998 	/* L4 timeout negotiation */
999 	if (skb->len == 37) {
1000 		timeout = skb->data[36] * 256 + skb->data[35];
1001 		if (timeout * HZ < nr_make->t1)
1002 			nr_make->t1 = timeout * HZ;
1003 		nr_make->bpqext = 1;
1004 	} else {
1005 		nr_make->bpqext = 0;
1006 	}
1007 
1008 	nr_write_internal(make, NR_CONNACK);
1009 
1010 	nr_make->condition = 0x00;
1011 	nr_make->vs        = 0;
1012 	nr_make->va        = 0;
1013 	nr_make->vr        = 0;
1014 	nr_make->vl        = 0;
1015 	nr_make->state     = NR_STATE_3;
1016 	sk_acceptq_added(sk);
1017 	skb_queue_head(&sk->sk_receive_queue, skb);
1018 
1019 	if (!sock_flag(sk, SOCK_DEAD))
1020 		sk->sk_data_ready(sk);
1021 
1022 	bh_unlock_sock(sk);
1023 	sock_put(sk);
1024 
1025 	nr_insert_socket(make);
1026 
1027 	nr_start_heartbeat(make);
1028 	nr_start_idletimer(make);
1029 
1030 	return 1;
1031 }
1032 
1033 static int nr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
1034 {
1035 	struct sock *sk = sock->sk;
1036 	struct nr_sock *nr = nr_sk(sk);
1037 	DECLARE_SOCKADDR(struct sockaddr_ax25 *, usax, msg->msg_name);
1038 	int err;
1039 	struct sockaddr_ax25 sax;
1040 	struct sk_buff *skb;
1041 	unsigned char *asmptr;
1042 	int size;
1043 
1044 	if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1045 		return -EINVAL;
1046 
1047 	lock_sock(sk);
1048 	if (sock_flag(sk, SOCK_ZAPPED)) {
1049 		err = -EADDRNOTAVAIL;
1050 		goto out;
1051 	}
1052 
1053 	if (sk->sk_shutdown & SEND_SHUTDOWN) {
1054 		send_sig(SIGPIPE, current, 0);
1055 		err = -EPIPE;
1056 		goto out;
1057 	}
1058 
1059 	if (nr->device == NULL) {
1060 		err = -ENETUNREACH;
1061 		goto out;
1062 	}
1063 
1064 	if (usax) {
1065 		if (msg->msg_namelen < sizeof(sax)) {
1066 			err = -EINVAL;
1067 			goto out;
1068 		}
1069 		sax = *usax;
1070 		if (ax25cmp(&nr->dest_addr, &sax.sax25_call) != 0) {
1071 			err = -EISCONN;
1072 			goto out;
1073 		}
1074 		if (sax.sax25_family != AF_NETROM) {
1075 			err = -EINVAL;
1076 			goto out;
1077 		}
1078 	} else {
1079 		if (sk->sk_state != TCP_ESTABLISHED) {
1080 			err = -ENOTCONN;
1081 			goto out;
1082 		}
1083 		sax.sax25_family = AF_NETROM;
1084 		sax.sax25_call   = nr->dest_addr;
1085 	}
1086 
1087 	/* Build a packet - the conventional user limit is 236 bytes. We can
1088 	   do ludicrously large NetROM frames but must not overflow */
1089 	if (len > 65536) {
1090 		err = -EMSGSIZE;
1091 		goto out;
1092 	}
1093 
1094 	size = len + NR_NETWORK_LEN + NR_TRANSPORT_LEN;
1095 
1096 	if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
1097 		goto out;
1098 
1099 	skb_reserve(skb, size - len);
1100 	skb_reset_transport_header(skb);
1101 
1102 	/*
1103 	 *	Push down the NET/ROM header
1104 	 */
1105 
1106 	asmptr = skb_push(skb, NR_TRANSPORT_LEN);
1107 
1108 	/* Build a NET/ROM Transport header */
1109 
1110 	*asmptr++ = nr->your_index;
1111 	*asmptr++ = nr->your_id;
1112 	*asmptr++ = 0;		/* To be filled in later */
1113 	*asmptr++ = 0;		/*      Ditto            */
1114 	*asmptr++ = NR_INFO;
1115 
1116 	/*
1117 	 *	Put the data on the end
1118 	 */
1119 	skb_put(skb, len);
1120 
1121 	/* User data follows immediately after the NET/ROM transport header */
1122 	if (memcpy_from_msg(skb_transport_header(skb), msg, len)) {
1123 		kfree_skb(skb);
1124 		err = -EFAULT;
1125 		goto out;
1126 	}
1127 
1128 	if (sk->sk_state != TCP_ESTABLISHED) {
1129 		kfree_skb(skb);
1130 		err = -ENOTCONN;
1131 		goto out;
1132 	}
1133 
1134 	nr_output(sk, skb);	/* Shove it onto the queue */
1135 
1136 	err = len;
1137 out:
1138 	release_sock(sk);
1139 	return err;
1140 }
1141 
1142 static int nr_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1143 		      int flags)
1144 {
1145 	struct sock *sk = sock->sk;
1146 	DECLARE_SOCKADDR(struct sockaddr_ax25 *, sax, msg->msg_name);
1147 	size_t copied;
1148 	struct sk_buff *skb;
1149 	int er;
1150 
1151 	/*
1152 	 * This works for seqpacket too. The receiver has ordered the queue for
1153 	 * us! We do one quick check first though
1154 	 */
1155 
1156 	lock_sock(sk);
1157 	if (sk->sk_state != TCP_ESTABLISHED) {
1158 		release_sock(sk);
1159 		return -ENOTCONN;
1160 	}
1161 
1162 	/* Now we can treat all alike */
1163 	if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) {
1164 		release_sock(sk);
1165 		return er;
1166 	}
1167 
1168 	skb_reset_transport_header(skb);
1169 	copied     = skb->len;
1170 
1171 	if (copied > size) {
1172 		copied = size;
1173 		msg->msg_flags |= MSG_TRUNC;
1174 	}
1175 
1176 	er = skb_copy_datagram_msg(skb, 0, msg, copied);
1177 	if (er < 0) {
1178 		skb_free_datagram(sk, skb);
1179 		release_sock(sk);
1180 		return er;
1181 	}
1182 
1183 	if (sax != NULL) {
1184 		memset(sax, 0, sizeof(*sax));
1185 		sax->sax25_family = AF_NETROM;
1186 		skb_copy_from_linear_data_offset(skb, 7, sax->sax25_call.ax25_call,
1187 			      AX25_ADDR_LEN);
1188 		msg->msg_namelen = sizeof(*sax);
1189 	}
1190 
1191 	skb_free_datagram(sk, skb);
1192 
1193 	release_sock(sk);
1194 	return copied;
1195 }
1196 
1197 
1198 static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1199 {
1200 	struct sock *sk = sock->sk;
1201 	void __user *argp = (void __user *)arg;
1202 	int ret;
1203 
1204 	switch (cmd) {
1205 	case TIOCOUTQ: {
1206 		long amount;
1207 
1208 		lock_sock(sk);
1209 		amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1210 		if (amount < 0)
1211 			amount = 0;
1212 		release_sock(sk);
1213 		return put_user(amount, (int __user *)argp);
1214 	}
1215 
1216 	case TIOCINQ: {
1217 		struct sk_buff *skb;
1218 		long amount = 0L;
1219 
1220 		lock_sock(sk);
1221 		/* These two are safe on a single CPU system as only user tasks fiddle here */
1222 		if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1223 			amount = skb->len;
1224 		release_sock(sk);
1225 		return put_user(amount, (int __user *)argp);
1226 	}
1227 
1228 	case SIOCGSTAMP:
1229 		lock_sock(sk);
1230 		ret = sock_get_timestamp(sk, argp);
1231 		release_sock(sk);
1232 		return ret;
1233 
1234 	case SIOCGSTAMPNS:
1235 		lock_sock(sk);
1236 		ret = sock_get_timestampns(sk, argp);
1237 		release_sock(sk);
1238 		return ret;
1239 
1240 	case SIOCGIFADDR:
1241 	case SIOCSIFADDR:
1242 	case SIOCGIFDSTADDR:
1243 	case SIOCSIFDSTADDR:
1244 	case SIOCGIFBRDADDR:
1245 	case SIOCSIFBRDADDR:
1246 	case SIOCGIFNETMASK:
1247 	case SIOCSIFNETMASK:
1248 	case SIOCGIFMETRIC:
1249 	case SIOCSIFMETRIC:
1250 		return -EINVAL;
1251 
1252 	case SIOCADDRT:
1253 	case SIOCDELRT:
1254 	case SIOCNRDECOBS:
1255 		if (!capable(CAP_NET_ADMIN))
1256 			return -EPERM;
1257 		return nr_rt_ioctl(cmd, argp);
1258 
1259 	default:
1260 		return -ENOIOCTLCMD;
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 #ifdef CONFIG_PROC_FS
1267 
1268 static void *nr_info_start(struct seq_file *seq, loff_t *pos)
1269 {
1270 	spin_lock_bh(&nr_list_lock);
1271 	return seq_hlist_start_head(&nr_list, *pos);
1272 }
1273 
1274 static void *nr_info_next(struct seq_file *seq, void *v, loff_t *pos)
1275 {
1276 	return seq_hlist_next(v, &nr_list, pos);
1277 }
1278 
1279 static void nr_info_stop(struct seq_file *seq, void *v)
1280 {
1281 	spin_unlock_bh(&nr_list_lock);
1282 }
1283 
1284 static int nr_info_show(struct seq_file *seq, void *v)
1285 {
1286 	struct sock *s = sk_entry(v);
1287 	struct net_device *dev;
1288 	struct nr_sock *nr;
1289 	const char *devname;
1290 	char buf[11];
1291 
1292 	if (v == SEQ_START_TOKEN)
1293 		seq_puts(seq,
1294 "user_addr dest_node src_node  dev    my  your  st  vs  vr  va    t1     t2     t4      idle   n2  wnd Snd-Q Rcv-Q inode\n");
1295 
1296 	else {
1297 
1298 		bh_lock_sock(s);
1299 		nr = nr_sk(s);
1300 
1301 		if ((dev = nr->device) == NULL)
1302 			devname = "???";
1303 		else
1304 			devname = dev->name;
1305 
1306 		seq_printf(seq, "%-9s ", ax2asc(buf, &nr->user_addr));
1307 		seq_printf(seq, "%-9s ", ax2asc(buf, &nr->dest_addr));
1308 		seq_printf(seq,
1309 "%-9s %-3s  %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n",
1310 			ax2asc(buf, &nr->source_addr),
1311 			devname,
1312 			nr->my_index,
1313 			nr->my_id,
1314 			nr->your_index,
1315 			nr->your_id,
1316 			nr->state,
1317 			nr->vs,
1318 			nr->vr,
1319 			nr->va,
1320 			ax25_display_timer(&nr->t1timer) / HZ,
1321 			nr->t1 / HZ,
1322 			ax25_display_timer(&nr->t2timer) / HZ,
1323 			nr->t2 / HZ,
1324 			ax25_display_timer(&nr->t4timer) / HZ,
1325 			nr->t4 / HZ,
1326 			ax25_display_timer(&nr->idletimer) / (60 * HZ),
1327 			nr->idle / (60 * HZ),
1328 			nr->n2count,
1329 			nr->n2,
1330 			nr->window,
1331 			sk_wmem_alloc_get(s),
1332 			sk_rmem_alloc_get(s),
1333 			s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
1334 
1335 		bh_unlock_sock(s);
1336 	}
1337 	return 0;
1338 }
1339 
1340 static const struct seq_operations nr_info_seqops = {
1341 	.start = nr_info_start,
1342 	.next = nr_info_next,
1343 	.stop = nr_info_stop,
1344 	.show = nr_info_show,
1345 };
1346 #endif	/* CONFIG_PROC_FS */
1347 
1348 static const struct net_proto_family nr_family_ops = {
1349 	.family		=	PF_NETROM,
1350 	.create		=	nr_create,
1351 	.owner		=	THIS_MODULE,
1352 };
1353 
1354 static const struct proto_ops nr_proto_ops = {
1355 	.family		=	PF_NETROM,
1356 	.owner		=	THIS_MODULE,
1357 	.release	=	nr_release,
1358 	.bind		=	nr_bind,
1359 	.connect	=	nr_connect,
1360 	.socketpair	=	sock_no_socketpair,
1361 	.accept		=	nr_accept,
1362 	.getname	=	nr_getname,
1363 	.poll		=	datagram_poll,
1364 	.ioctl		=	nr_ioctl,
1365 	.listen		=	nr_listen,
1366 	.shutdown	=	sock_no_shutdown,
1367 	.setsockopt	=	nr_setsockopt,
1368 	.getsockopt	=	nr_getsockopt,
1369 	.sendmsg	=	nr_sendmsg,
1370 	.recvmsg	=	nr_recvmsg,
1371 	.mmap		=	sock_no_mmap,
1372 	.sendpage	=	sock_no_sendpage,
1373 };
1374 
1375 static struct notifier_block nr_dev_notifier = {
1376 	.notifier_call	=	nr_device_event,
1377 };
1378 
1379 static struct net_device **dev_nr;
1380 
1381 static struct ax25_protocol nr_pid = {
1382 	.pid	= AX25_P_NETROM,
1383 	.func	= nr_route_frame
1384 };
1385 
1386 static struct ax25_linkfail nr_linkfail_notifier = {
1387 	.func	= nr_link_failed,
1388 };
1389 
1390 static int __init nr_proto_init(void)
1391 {
1392 	int i;
1393 	int rc = proto_register(&nr_proto, 0);
1394 
1395 	if (rc)
1396 		return rc;
1397 
1398 	if (nr_ndevs > 0x7fffffff/sizeof(struct net_device *)) {
1399 		pr_err("NET/ROM: %s - nr_ndevs parameter too large\n",
1400 		       __func__);
1401 		rc = -EINVAL;
1402 		goto unregister_proto;
1403 	}
1404 
1405 	dev_nr = kcalloc(nr_ndevs, sizeof(struct net_device *), GFP_KERNEL);
1406 	if (!dev_nr) {
1407 		pr_err("NET/ROM: %s - unable to allocate device array\n",
1408 		       __func__);
1409 		rc = -ENOMEM;
1410 		goto unregister_proto;
1411 	}
1412 
1413 	for (i = 0; i < nr_ndevs; i++) {
1414 		char name[IFNAMSIZ];
1415 		struct net_device *dev;
1416 
1417 		sprintf(name, "nr%d", i);
1418 		dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, nr_setup);
1419 		if (!dev) {
1420 			rc = -ENOMEM;
1421 			goto fail;
1422 		}
1423 
1424 		dev->base_addr = i;
1425 		rc = register_netdev(dev);
1426 		if (rc) {
1427 			free_netdev(dev);
1428 			goto fail;
1429 		}
1430 		nr_set_lockdep_key(dev);
1431 		dev_nr[i] = dev;
1432 	}
1433 
1434 	rc = sock_register(&nr_family_ops);
1435 	if (rc)
1436 		goto fail;
1437 
1438 	rc = register_netdevice_notifier(&nr_dev_notifier);
1439 	if (rc)
1440 		goto out_sock;
1441 
1442 	ax25_register_pid(&nr_pid);
1443 	ax25_linkfail_register(&nr_linkfail_notifier);
1444 
1445 #ifdef CONFIG_SYSCTL
1446 	rc = nr_register_sysctl();
1447 	if (rc)
1448 		goto out_sysctl;
1449 #endif
1450 
1451 	nr_loopback_init();
1452 
1453 	rc = -ENOMEM;
1454 	if (!proc_create_seq("nr", 0444, init_net.proc_net, &nr_info_seqops))
1455 		goto proc_remove1;
1456 	if (!proc_create_seq("nr_neigh", 0444, init_net.proc_net,
1457 			     &nr_neigh_seqops))
1458 		goto proc_remove2;
1459 	if (!proc_create_seq("nr_nodes", 0444, init_net.proc_net,
1460 			     &nr_node_seqops))
1461 		goto proc_remove3;
1462 
1463 	return 0;
1464 
1465 proc_remove3:
1466 	remove_proc_entry("nr_neigh", init_net.proc_net);
1467 proc_remove2:
1468 	remove_proc_entry("nr", init_net.proc_net);
1469 proc_remove1:
1470 
1471 	nr_loopback_clear();
1472 	nr_rt_free();
1473 
1474 #ifdef CONFIG_SYSCTL
1475 	nr_unregister_sysctl();
1476 out_sysctl:
1477 #endif
1478 	ax25_linkfail_release(&nr_linkfail_notifier);
1479 	ax25_protocol_release(AX25_P_NETROM);
1480 	unregister_netdevice_notifier(&nr_dev_notifier);
1481 out_sock:
1482 	sock_unregister(PF_NETROM);
1483 fail:
1484 	while (--i >= 0) {
1485 		unregister_netdev(dev_nr[i]);
1486 		free_netdev(dev_nr[i]);
1487 	}
1488 	kfree(dev_nr);
1489 unregister_proto:
1490 	proto_unregister(&nr_proto);
1491 	return rc;
1492 }
1493 
1494 module_init(nr_proto_init);
1495 
1496 module_param(nr_ndevs, int, 0);
1497 MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices");
1498 
1499 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
1500 MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol");
1501 MODULE_LICENSE("GPL");
1502 MODULE_ALIAS_NETPROTO(PF_NETROM);
1503 
1504 static void __exit nr_exit(void)
1505 {
1506 	int i;
1507 
1508 	remove_proc_entry("nr", init_net.proc_net);
1509 	remove_proc_entry("nr_neigh", init_net.proc_net);
1510 	remove_proc_entry("nr_nodes", init_net.proc_net);
1511 	nr_loopback_clear();
1512 
1513 	nr_rt_free();
1514 
1515 #ifdef CONFIG_SYSCTL
1516 	nr_unregister_sysctl();
1517 #endif
1518 
1519 	ax25_linkfail_release(&nr_linkfail_notifier);
1520 	ax25_protocol_release(AX25_P_NETROM);
1521 
1522 	unregister_netdevice_notifier(&nr_dev_notifier);
1523 
1524 	sock_unregister(PF_NETROM);
1525 
1526 	for (i = 0; i < nr_ndevs; i++) {
1527 		struct net_device *dev = dev_nr[i];
1528 		if (dev) {
1529 			unregister_netdev(dev);
1530 			free_netdev(dev);
1531 		}
1532 	}
1533 
1534 	kfree(dev_nr);
1535 	proto_unregister(&nr_proto);
1536 }
1537 module_exit(nr_exit);
1538