1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License as published by 4 * the Free Software Foundation; either version 2 of the License, or 5 * (at your option) any later version. 6 * 7 * Copyright Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk) 8 * Copyright Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk) 9 * Copyright Darryl Miles G7LED (dlm@g7led.demon.co.uk) 10 */ 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/capability.h> 14 #include <linux/errno.h> 15 #include <linux/types.h> 16 #include <linux/socket.h> 17 #include <linux/in.h> 18 #include <linux/slab.h> 19 #include <linux/kernel.h> 20 #include <linux/sched/signal.h> 21 #include <linux/timer.h> 22 #include <linux/string.h> 23 #include <linux/sockios.h> 24 #include <linux/net.h> 25 #include <linux/stat.h> 26 #include <net/ax25.h> 27 #include <linux/inet.h> 28 #include <linux/netdevice.h> 29 #include <linux/if_arp.h> 30 #include <linux/skbuff.h> 31 #include <net/net_namespace.h> 32 #include <net/sock.h> 33 #include <linux/uaccess.h> 34 #include <linux/fcntl.h> 35 #include <linux/termios.h> /* For TIOCINQ/OUTQ */ 36 #include <linux/mm.h> 37 #include <linux/interrupt.h> 38 #include <linux/notifier.h> 39 #include <net/netrom.h> 40 #include <linux/proc_fs.h> 41 #include <linux/seq_file.h> 42 #include <net/ip.h> 43 #include <net/tcp_states.h> 44 #include <net/arp.h> 45 #include <linux/init.h> 46 47 static int nr_ndevs = 4; 48 49 int sysctl_netrom_default_path_quality = NR_DEFAULT_QUAL; 50 int sysctl_netrom_obsolescence_count_initialiser = NR_DEFAULT_OBS; 51 int sysctl_netrom_network_ttl_initialiser = NR_DEFAULT_TTL; 52 int sysctl_netrom_transport_timeout = NR_DEFAULT_T1; 53 int sysctl_netrom_transport_maximum_tries = NR_DEFAULT_N2; 54 int sysctl_netrom_transport_acknowledge_delay = NR_DEFAULT_T2; 55 int sysctl_netrom_transport_busy_delay = NR_DEFAULT_T4; 56 int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW; 57 int sysctl_netrom_transport_no_activity_timeout = NR_DEFAULT_IDLE; 58 int sysctl_netrom_routing_control = NR_DEFAULT_ROUTING; 59 int sysctl_netrom_link_fails_count = NR_DEFAULT_FAILS; 60 int sysctl_netrom_reset_circuit = NR_DEFAULT_RESET; 61 62 static unsigned short circuit = 0x101; 63 64 static HLIST_HEAD(nr_list); 65 static DEFINE_SPINLOCK(nr_list_lock); 66 67 static const struct proto_ops nr_proto_ops; 68 69 /* 70 * NETROM network devices are virtual network devices encapsulating NETROM 71 * frames into AX.25 which will be sent through an AX.25 device, so form a 72 * special "super class" of normal net devices; split their locks off into a 73 * separate class since they always nest. 74 */ 75 static struct lock_class_key nr_netdev_xmit_lock_key; 76 static struct lock_class_key nr_netdev_addr_lock_key; 77 78 static void nr_set_lockdep_one(struct net_device *dev, 79 struct netdev_queue *txq, 80 void *_unused) 81 { 82 lockdep_set_class(&txq->_xmit_lock, &nr_netdev_xmit_lock_key); 83 } 84 85 static void nr_set_lockdep_key(struct net_device *dev) 86 { 87 lockdep_set_class(&dev->addr_list_lock, &nr_netdev_addr_lock_key); 88 netdev_for_each_tx_queue(dev, nr_set_lockdep_one, NULL); 89 } 90 91 /* 92 * Socket removal during an interrupt is now safe. 93 */ 94 static void nr_remove_socket(struct sock *sk) 95 { 96 spin_lock_bh(&nr_list_lock); 97 sk_del_node_init(sk); 98 spin_unlock_bh(&nr_list_lock); 99 } 100 101 /* 102 * Kill all bound sockets on a dropped device. 103 */ 104 static void nr_kill_by_device(struct net_device *dev) 105 { 106 struct sock *s; 107 108 spin_lock_bh(&nr_list_lock); 109 sk_for_each(s, &nr_list) 110 if (nr_sk(s)->device == dev) 111 nr_disconnect(s, ENETUNREACH); 112 spin_unlock_bh(&nr_list_lock); 113 } 114 115 /* 116 * Handle device status changes. 117 */ 118 static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 119 { 120 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 121 122 if (!net_eq(dev_net(dev), &init_net)) 123 return NOTIFY_DONE; 124 125 if (event != NETDEV_DOWN) 126 return NOTIFY_DONE; 127 128 nr_kill_by_device(dev); 129 nr_rt_device_down(dev); 130 131 return NOTIFY_DONE; 132 } 133 134 /* 135 * Add a socket to the bound sockets list. 136 */ 137 static void nr_insert_socket(struct sock *sk) 138 { 139 spin_lock_bh(&nr_list_lock); 140 sk_add_node(sk, &nr_list); 141 spin_unlock_bh(&nr_list_lock); 142 } 143 144 /* 145 * Find a socket that wants to accept the Connect Request we just 146 * received. 147 */ 148 static struct sock *nr_find_listener(ax25_address *addr) 149 { 150 struct sock *s; 151 152 spin_lock_bh(&nr_list_lock); 153 sk_for_each(s, &nr_list) 154 if (!ax25cmp(&nr_sk(s)->source_addr, addr) && 155 s->sk_state == TCP_LISTEN) { 156 bh_lock_sock(s); 157 goto found; 158 } 159 s = NULL; 160 found: 161 spin_unlock_bh(&nr_list_lock); 162 return s; 163 } 164 165 /* 166 * Find a connected NET/ROM socket given my circuit IDs. 167 */ 168 static struct sock *nr_find_socket(unsigned char index, unsigned char id) 169 { 170 struct sock *s; 171 172 spin_lock_bh(&nr_list_lock); 173 sk_for_each(s, &nr_list) { 174 struct nr_sock *nr = nr_sk(s); 175 176 if (nr->my_index == index && nr->my_id == id) { 177 bh_lock_sock(s); 178 goto found; 179 } 180 } 181 s = NULL; 182 found: 183 spin_unlock_bh(&nr_list_lock); 184 return s; 185 } 186 187 /* 188 * Find a connected NET/ROM socket given their circuit IDs. 189 */ 190 static struct sock *nr_find_peer(unsigned char index, unsigned char id, 191 ax25_address *dest) 192 { 193 struct sock *s; 194 195 spin_lock_bh(&nr_list_lock); 196 sk_for_each(s, &nr_list) { 197 struct nr_sock *nr = nr_sk(s); 198 199 if (nr->your_index == index && nr->your_id == id && 200 !ax25cmp(&nr->dest_addr, dest)) { 201 bh_lock_sock(s); 202 goto found; 203 } 204 } 205 s = NULL; 206 found: 207 spin_unlock_bh(&nr_list_lock); 208 return s; 209 } 210 211 /* 212 * Find next free circuit ID. 213 */ 214 static unsigned short nr_find_next_circuit(void) 215 { 216 unsigned short id = circuit; 217 unsigned char i, j; 218 struct sock *sk; 219 220 for (;;) { 221 i = id / 256; 222 j = id % 256; 223 224 if (i != 0 && j != 0) { 225 if ((sk=nr_find_socket(i, j)) == NULL) 226 break; 227 bh_unlock_sock(sk); 228 } 229 230 id++; 231 } 232 233 return id; 234 } 235 236 /* 237 * Deferred destroy. 238 */ 239 void nr_destroy_socket(struct sock *); 240 241 /* 242 * Handler for deferred kills. 243 */ 244 static void nr_destroy_timer(struct timer_list *t) 245 { 246 struct sock *sk = from_timer(sk, t, sk_timer); 247 bh_lock_sock(sk); 248 sock_hold(sk); 249 nr_destroy_socket(sk); 250 bh_unlock_sock(sk); 251 sock_put(sk); 252 } 253 254 /* 255 * This is called from user mode and the timers. Thus it protects itself 256 * against interrupt users but doesn't worry about being called during 257 * work. Once it is removed from the queue no interrupt or bottom half 258 * will touch it and we are (fairly 8-) ) safe. 259 */ 260 void nr_destroy_socket(struct sock *sk) 261 { 262 struct sk_buff *skb; 263 264 nr_remove_socket(sk); 265 266 nr_stop_heartbeat(sk); 267 nr_stop_t1timer(sk); 268 nr_stop_t2timer(sk); 269 nr_stop_t4timer(sk); 270 nr_stop_idletimer(sk); 271 272 nr_clear_queues(sk); /* Flush the queues */ 273 274 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 275 if (skb->sk != sk) { /* A pending connection */ 276 /* Queue the unaccepted socket for death */ 277 sock_set_flag(skb->sk, SOCK_DEAD); 278 nr_start_heartbeat(skb->sk); 279 nr_sk(skb->sk)->state = NR_STATE_0; 280 } 281 282 kfree_skb(skb); 283 } 284 285 if (sk_has_allocations(sk)) { 286 /* Defer: outstanding buffers */ 287 sk->sk_timer.function = nr_destroy_timer; 288 sk->sk_timer.expires = jiffies + 2 * HZ; 289 add_timer(&sk->sk_timer); 290 } else 291 sock_put(sk); 292 } 293 294 /* 295 * Handling for system calls applied via the various interfaces to a 296 * NET/ROM socket object. 297 */ 298 299 static int nr_setsockopt(struct socket *sock, int level, int optname, 300 char __user *optval, unsigned int optlen) 301 { 302 struct sock *sk = sock->sk; 303 struct nr_sock *nr = nr_sk(sk); 304 unsigned long opt; 305 306 if (level != SOL_NETROM) 307 return -ENOPROTOOPT; 308 309 if (optlen < sizeof(unsigned int)) 310 return -EINVAL; 311 312 if (get_user(opt, (unsigned int __user *)optval)) 313 return -EFAULT; 314 315 switch (optname) { 316 case NETROM_T1: 317 if (opt < 1 || opt > ULONG_MAX / HZ) 318 return -EINVAL; 319 nr->t1 = opt * HZ; 320 return 0; 321 322 case NETROM_T2: 323 if (opt < 1 || opt > ULONG_MAX / HZ) 324 return -EINVAL; 325 nr->t2 = opt * HZ; 326 return 0; 327 328 case NETROM_N2: 329 if (opt < 1 || opt > 31) 330 return -EINVAL; 331 nr->n2 = opt; 332 return 0; 333 334 case NETROM_T4: 335 if (opt < 1 || opt > ULONG_MAX / HZ) 336 return -EINVAL; 337 nr->t4 = opt * HZ; 338 return 0; 339 340 case NETROM_IDLE: 341 if (opt > ULONG_MAX / (60 * HZ)) 342 return -EINVAL; 343 nr->idle = opt * 60 * HZ; 344 return 0; 345 346 default: 347 return -ENOPROTOOPT; 348 } 349 } 350 351 static int nr_getsockopt(struct socket *sock, int level, int optname, 352 char __user *optval, int __user *optlen) 353 { 354 struct sock *sk = sock->sk; 355 struct nr_sock *nr = nr_sk(sk); 356 int val = 0; 357 int len; 358 359 if (level != SOL_NETROM) 360 return -ENOPROTOOPT; 361 362 if (get_user(len, optlen)) 363 return -EFAULT; 364 365 if (len < 0) 366 return -EINVAL; 367 368 switch (optname) { 369 case NETROM_T1: 370 val = nr->t1 / HZ; 371 break; 372 373 case NETROM_T2: 374 val = nr->t2 / HZ; 375 break; 376 377 case NETROM_N2: 378 val = nr->n2; 379 break; 380 381 case NETROM_T4: 382 val = nr->t4 / HZ; 383 break; 384 385 case NETROM_IDLE: 386 val = nr->idle / (60 * HZ); 387 break; 388 389 default: 390 return -ENOPROTOOPT; 391 } 392 393 len = min_t(unsigned int, len, sizeof(int)); 394 395 if (put_user(len, optlen)) 396 return -EFAULT; 397 398 return copy_to_user(optval, &val, len) ? -EFAULT : 0; 399 } 400 401 static int nr_listen(struct socket *sock, int backlog) 402 { 403 struct sock *sk = sock->sk; 404 405 lock_sock(sk); 406 if (sk->sk_state != TCP_LISTEN) { 407 memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN); 408 sk->sk_max_ack_backlog = backlog; 409 sk->sk_state = TCP_LISTEN; 410 release_sock(sk); 411 return 0; 412 } 413 release_sock(sk); 414 415 return -EOPNOTSUPP; 416 } 417 418 static struct proto nr_proto = { 419 .name = "NETROM", 420 .owner = THIS_MODULE, 421 .obj_size = sizeof(struct nr_sock), 422 }; 423 424 static int nr_create(struct net *net, struct socket *sock, int protocol, 425 int kern) 426 { 427 struct sock *sk; 428 struct nr_sock *nr; 429 430 if (!net_eq(net, &init_net)) 431 return -EAFNOSUPPORT; 432 433 if (sock->type != SOCK_SEQPACKET || protocol != 0) 434 return -ESOCKTNOSUPPORT; 435 436 sk = sk_alloc(net, PF_NETROM, GFP_ATOMIC, &nr_proto, kern); 437 if (sk == NULL) 438 return -ENOMEM; 439 440 nr = nr_sk(sk); 441 442 sock_init_data(sock, sk); 443 444 sock->ops = &nr_proto_ops; 445 sk->sk_protocol = protocol; 446 447 skb_queue_head_init(&nr->ack_queue); 448 skb_queue_head_init(&nr->reseq_queue); 449 skb_queue_head_init(&nr->frag_queue); 450 451 nr_init_timers(sk); 452 453 nr->t1 = 454 msecs_to_jiffies(sysctl_netrom_transport_timeout); 455 nr->t2 = 456 msecs_to_jiffies(sysctl_netrom_transport_acknowledge_delay); 457 nr->n2 = 458 msecs_to_jiffies(sysctl_netrom_transport_maximum_tries); 459 nr->t4 = 460 msecs_to_jiffies(sysctl_netrom_transport_busy_delay); 461 nr->idle = 462 msecs_to_jiffies(sysctl_netrom_transport_no_activity_timeout); 463 nr->window = sysctl_netrom_transport_requested_window_size; 464 465 nr->bpqext = 1; 466 nr->state = NR_STATE_0; 467 468 return 0; 469 } 470 471 static struct sock *nr_make_new(struct sock *osk) 472 { 473 struct sock *sk; 474 struct nr_sock *nr, *onr; 475 476 if (osk->sk_type != SOCK_SEQPACKET) 477 return NULL; 478 479 sk = sk_alloc(sock_net(osk), PF_NETROM, GFP_ATOMIC, osk->sk_prot, 0); 480 if (sk == NULL) 481 return NULL; 482 483 nr = nr_sk(sk); 484 485 sock_init_data(NULL, sk); 486 487 sk->sk_type = osk->sk_type; 488 sk->sk_priority = osk->sk_priority; 489 sk->sk_protocol = osk->sk_protocol; 490 sk->sk_rcvbuf = osk->sk_rcvbuf; 491 sk->sk_sndbuf = osk->sk_sndbuf; 492 sk->sk_state = TCP_ESTABLISHED; 493 sock_copy_flags(sk, osk); 494 495 skb_queue_head_init(&nr->ack_queue); 496 skb_queue_head_init(&nr->reseq_queue); 497 skb_queue_head_init(&nr->frag_queue); 498 499 nr_init_timers(sk); 500 501 onr = nr_sk(osk); 502 503 nr->t1 = onr->t1; 504 nr->t2 = onr->t2; 505 nr->n2 = onr->n2; 506 nr->t4 = onr->t4; 507 nr->idle = onr->idle; 508 nr->window = onr->window; 509 510 nr->device = onr->device; 511 nr->bpqext = onr->bpqext; 512 513 return sk; 514 } 515 516 static int nr_release(struct socket *sock) 517 { 518 struct sock *sk = sock->sk; 519 struct nr_sock *nr; 520 521 if (sk == NULL) return 0; 522 523 sock_hold(sk); 524 sock_orphan(sk); 525 lock_sock(sk); 526 nr = nr_sk(sk); 527 528 switch (nr->state) { 529 case NR_STATE_0: 530 case NR_STATE_1: 531 case NR_STATE_2: 532 nr_disconnect(sk, 0); 533 nr_destroy_socket(sk); 534 break; 535 536 case NR_STATE_3: 537 nr_clear_queues(sk); 538 nr->n2count = 0; 539 nr_write_internal(sk, NR_DISCREQ); 540 nr_start_t1timer(sk); 541 nr_stop_t2timer(sk); 542 nr_stop_t4timer(sk); 543 nr_stop_idletimer(sk); 544 nr->state = NR_STATE_2; 545 sk->sk_state = TCP_CLOSE; 546 sk->sk_shutdown |= SEND_SHUTDOWN; 547 sk->sk_state_change(sk); 548 sock_set_flag(sk, SOCK_DESTROY); 549 break; 550 551 default: 552 break; 553 } 554 555 sock->sk = NULL; 556 release_sock(sk); 557 sock_put(sk); 558 559 return 0; 560 } 561 562 static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 563 { 564 struct sock *sk = sock->sk; 565 struct nr_sock *nr = nr_sk(sk); 566 struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr; 567 struct net_device *dev; 568 ax25_uid_assoc *user; 569 ax25_address *source; 570 571 lock_sock(sk); 572 if (!sock_flag(sk, SOCK_ZAPPED)) { 573 release_sock(sk); 574 return -EINVAL; 575 } 576 if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) { 577 release_sock(sk); 578 return -EINVAL; 579 } 580 if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) { 581 release_sock(sk); 582 return -EINVAL; 583 } 584 if (addr->fsa_ax25.sax25_family != AF_NETROM) { 585 release_sock(sk); 586 return -EINVAL; 587 } 588 if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) { 589 release_sock(sk); 590 return -EADDRNOTAVAIL; 591 } 592 593 /* 594 * Only the super user can set an arbitrary user callsign. 595 */ 596 if (addr->fsa_ax25.sax25_ndigis == 1) { 597 if (!capable(CAP_NET_BIND_SERVICE)) { 598 dev_put(dev); 599 release_sock(sk); 600 return -EPERM; 601 } 602 nr->user_addr = addr->fsa_digipeater[0]; 603 nr->source_addr = addr->fsa_ax25.sax25_call; 604 } else { 605 source = &addr->fsa_ax25.sax25_call; 606 607 user = ax25_findbyuid(current_euid()); 608 if (user) { 609 nr->user_addr = user->call; 610 ax25_uid_put(user); 611 } else { 612 if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) { 613 release_sock(sk); 614 dev_put(dev); 615 return -EPERM; 616 } 617 nr->user_addr = *source; 618 } 619 620 nr->source_addr = *source; 621 } 622 623 nr->device = dev; 624 nr_insert_socket(sk); 625 626 sock_reset_flag(sk, SOCK_ZAPPED); 627 dev_put(dev); 628 release_sock(sk); 629 630 return 0; 631 } 632 633 static int nr_connect(struct socket *sock, struct sockaddr *uaddr, 634 int addr_len, int flags) 635 { 636 struct sock *sk = sock->sk; 637 struct nr_sock *nr = nr_sk(sk); 638 struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr; 639 ax25_address *source = NULL; 640 ax25_uid_assoc *user; 641 struct net_device *dev; 642 int err = 0; 643 644 lock_sock(sk); 645 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { 646 sock->state = SS_CONNECTED; 647 goto out_release; /* Connect completed during a ERESTARTSYS event */ 648 } 649 650 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) { 651 sock->state = SS_UNCONNECTED; 652 err = -ECONNREFUSED; 653 goto out_release; 654 } 655 656 if (sk->sk_state == TCP_ESTABLISHED) { 657 err = -EISCONN; /* No reconnect on a seqpacket socket */ 658 goto out_release; 659 } 660 661 sk->sk_state = TCP_CLOSE; 662 sock->state = SS_UNCONNECTED; 663 664 if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) { 665 err = -EINVAL; 666 goto out_release; 667 } 668 if (addr->sax25_family != AF_NETROM) { 669 err = -EINVAL; 670 goto out_release; 671 } 672 if (sock_flag(sk, SOCK_ZAPPED)) { /* Must bind first - autobinding in this may or may not work */ 673 sock_reset_flag(sk, SOCK_ZAPPED); 674 675 if ((dev = nr_dev_first()) == NULL) { 676 err = -ENETUNREACH; 677 goto out_release; 678 } 679 source = (ax25_address *)dev->dev_addr; 680 681 user = ax25_findbyuid(current_euid()); 682 if (user) { 683 nr->user_addr = user->call; 684 ax25_uid_put(user); 685 } else { 686 if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) { 687 dev_put(dev); 688 err = -EPERM; 689 goto out_release; 690 } 691 nr->user_addr = *source; 692 } 693 694 nr->source_addr = *source; 695 nr->device = dev; 696 697 dev_put(dev); 698 nr_insert_socket(sk); /* Finish the bind */ 699 } 700 701 nr->dest_addr = addr->sax25_call; 702 703 release_sock(sk); 704 circuit = nr_find_next_circuit(); 705 lock_sock(sk); 706 707 nr->my_index = circuit / 256; 708 nr->my_id = circuit % 256; 709 710 circuit++; 711 712 /* Move to connecting socket, start sending Connect Requests */ 713 sock->state = SS_CONNECTING; 714 sk->sk_state = TCP_SYN_SENT; 715 716 nr_establish_data_link(sk); 717 718 nr->state = NR_STATE_1; 719 720 nr_start_heartbeat(sk); 721 722 /* Now the loop */ 723 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) { 724 err = -EINPROGRESS; 725 goto out_release; 726 } 727 728 /* 729 * A Connect Ack with Choke or timeout or failed routing will go to 730 * closed. 731 */ 732 if (sk->sk_state == TCP_SYN_SENT) { 733 DEFINE_WAIT(wait); 734 735 for (;;) { 736 prepare_to_wait(sk_sleep(sk), &wait, 737 TASK_INTERRUPTIBLE); 738 if (sk->sk_state != TCP_SYN_SENT) 739 break; 740 if (!signal_pending(current)) { 741 release_sock(sk); 742 schedule(); 743 lock_sock(sk); 744 continue; 745 } 746 err = -ERESTARTSYS; 747 break; 748 } 749 finish_wait(sk_sleep(sk), &wait); 750 if (err) 751 goto out_release; 752 } 753 754 if (sk->sk_state != TCP_ESTABLISHED) { 755 sock->state = SS_UNCONNECTED; 756 err = sock_error(sk); /* Always set at this point */ 757 goto out_release; 758 } 759 760 sock->state = SS_CONNECTED; 761 762 out_release: 763 release_sock(sk); 764 765 return err; 766 } 767 768 static int nr_accept(struct socket *sock, struct socket *newsock, int flags, 769 bool kern) 770 { 771 struct sk_buff *skb; 772 struct sock *newsk; 773 DEFINE_WAIT(wait); 774 struct sock *sk; 775 int err = 0; 776 777 if ((sk = sock->sk) == NULL) 778 return -EINVAL; 779 780 lock_sock(sk); 781 if (sk->sk_type != SOCK_SEQPACKET) { 782 err = -EOPNOTSUPP; 783 goto out_release; 784 } 785 786 if (sk->sk_state != TCP_LISTEN) { 787 err = -EINVAL; 788 goto out_release; 789 } 790 791 /* 792 * The write queue this time is holding sockets ready to use 793 * hooked into the SABM we saved 794 */ 795 for (;;) { 796 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 797 skb = skb_dequeue(&sk->sk_receive_queue); 798 if (skb) 799 break; 800 801 if (flags & O_NONBLOCK) { 802 err = -EWOULDBLOCK; 803 break; 804 } 805 if (!signal_pending(current)) { 806 release_sock(sk); 807 schedule(); 808 lock_sock(sk); 809 continue; 810 } 811 err = -ERESTARTSYS; 812 break; 813 } 814 finish_wait(sk_sleep(sk), &wait); 815 if (err) 816 goto out_release; 817 818 newsk = skb->sk; 819 sock_graft(newsk, newsock); 820 821 /* Now attach up the new socket */ 822 kfree_skb(skb); 823 sk_acceptq_removed(sk); 824 825 out_release: 826 release_sock(sk); 827 828 return err; 829 } 830 831 static int nr_getname(struct socket *sock, struct sockaddr *uaddr, 832 int peer) 833 { 834 struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr; 835 struct sock *sk = sock->sk; 836 struct nr_sock *nr = nr_sk(sk); 837 int uaddr_len; 838 839 memset(&sax->fsa_ax25, 0, sizeof(struct sockaddr_ax25)); 840 841 lock_sock(sk); 842 if (peer != 0) { 843 if (sk->sk_state != TCP_ESTABLISHED) { 844 release_sock(sk); 845 return -ENOTCONN; 846 } 847 sax->fsa_ax25.sax25_family = AF_NETROM; 848 sax->fsa_ax25.sax25_ndigis = 1; 849 sax->fsa_ax25.sax25_call = nr->user_addr; 850 memset(sax->fsa_digipeater, 0, sizeof(sax->fsa_digipeater)); 851 sax->fsa_digipeater[0] = nr->dest_addr; 852 uaddr_len = sizeof(struct full_sockaddr_ax25); 853 } else { 854 sax->fsa_ax25.sax25_family = AF_NETROM; 855 sax->fsa_ax25.sax25_ndigis = 0; 856 sax->fsa_ax25.sax25_call = nr->source_addr; 857 uaddr_len = sizeof(struct sockaddr_ax25); 858 } 859 release_sock(sk); 860 861 return uaddr_len; 862 } 863 864 int nr_rx_frame(struct sk_buff *skb, struct net_device *dev) 865 { 866 struct sock *sk; 867 struct sock *make; 868 struct nr_sock *nr_make; 869 ax25_address *src, *dest, *user; 870 unsigned short circuit_index, circuit_id; 871 unsigned short peer_circuit_index, peer_circuit_id; 872 unsigned short frametype, flags, window, timeout; 873 int ret; 874 875 skb->sk = NULL; /* Initially we don't know who it's for */ 876 877 /* 878 * skb->data points to the netrom frame start 879 */ 880 881 src = (ax25_address *)(skb->data + 0); 882 dest = (ax25_address *)(skb->data + 7); 883 884 circuit_index = skb->data[15]; 885 circuit_id = skb->data[16]; 886 peer_circuit_index = skb->data[17]; 887 peer_circuit_id = skb->data[18]; 888 frametype = skb->data[19] & 0x0F; 889 flags = skb->data[19] & 0xF0; 890 891 /* 892 * Check for an incoming IP over NET/ROM frame. 893 */ 894 if (frametype == NR_PROTOEXT && 895 circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) { 896 skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN); 897 skb_reset_transport_header(skb); 898 899 return nr_rx_ip(skb, dev); 900 } 901 902 /* 903 * Find an existing socket connection, based on circuit ID, if it's 904 * a Connect Request base it on their circuit ID. 905 * 906 * Circuit ID 0/0 is not valid but it could still be a "reset" for a 907 * circuit that no longer exists at the other end ... 908 */ 909 910 sk = NULL; 911 912 if (circuit_index == 0 && circuit_id == 0) { 913 if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG) 914 sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src); 915 } else { 916 if (frametype == NR_CONNREQ) 917 sk = nr_find_peer(circuit_index, circuit_id, src); 918 else 919 sk = nr_find_socket(circuit_index, circuit_id); 920 } 921 922 if (sk != NULL) { 923 skb_reset_transport_header(skb); 924 925 if (frametype == NR_CONNACK && skb->len == 22) 926 nr_sk(sk)->bpqext = 1; 927 else 928 nr_sk(sk)->bpqext = 0; 929 930 ret = nr_process_rx_frame(sk, skb); 931 bh_unlock_sock(sk); 932 return ret; 933 } 934 935 /* 936 * Now it should be a CONNREQ. 937 */ 938 if (frametype != NR_CONNREQ) { 939 /* 940 * Here it would be nice to be able to send a reset but 941 * NET/ROM doesn't have one. We've tried to extend the protocol 942 * by sending NR_CONNACK | NR_CHOKE_FLAGS replies but that 943 * apparently kills BPQ boxes... :-( 944 * So now we try to follow the established behaviour of 945 * G8PZT's Xrouter which is sending packets with command type 7 946 * as an extension of the protocol. 947 */ 948 if (sysctl_netrom_reset_circuit && 949 (frametype != NR_RESET || flags != 0)) 950 nr_transmit_reset(skb, 1); 951 952 return 0; 953 } 954 955 sk = nr_find_listener(dest); 956 957 user = (ax25_address *)(skb->data + 21); 958 959 if (sk == NULL || sk_acceptq_is_full(sk) || 960 (make = nr_make_new(sk)) == NULL) { 961 nr_transmit_refusal(skb, 0); 962 if (sk) 963 bh_unlock_sock(sk); 964 return 0; 965 } 966 967 window = skb->data[20]; 968 969 skb->sk = make; 970 make->sk_state = TCP_ESTABLISHED; 971 972 /* Fill in his circuit details */ 973 nr_make = nr_sk(make); 974 nr_make->source_addr = *dest; 975 nr_make->dest_addr = *src; 976 nr_make->user_addr = *user; 977 978 nr_make->your_index = circuit_index; 979 nr_make->your_id = circuit_id; 980 981 bh_unlock_sock(sk); 982 circuit = nr_find_next_circuit(); 983 bh_lock_sock(sk); 984 985 nr_make->my_index = circuit / 256; 986 nr_make->my_id = circuit % 256; 987 988 circuit++; 989 990 /* Window negotiation */ 991 if (window < nr_make->window) 992 nr_make->window = window; 993 994 /* L4 timeout negotiation */ 995 if (skb->len == 37) { 996 timeout = skb->data[36] * 256 + skb->data[35]; 997 if (timeout * HZ < nr_make->t1) 998 nr_make->t1 = timeout * HZ; 999 nr_make->bpqext = 1; 1000 } else { 1001 nr_make->bpqext = 0; 1002 } 1003 1004 nr_write_internal(make, NR_CONNACK); 1005 1006 nr_make->condition = 0x00; 1007 nr_make->vs = 0; 1008 nr_make->va = 0; 1009 nr_make->vr = 0; 1010 nr_make->vl = 0; 1011 nr_make->state = NR_STATE_3; 1012 sk_acceptq_added(sk); 1013 skb_queue_head(&sk->sk_receive_queue, skb); 1014 1015 if (!sock_flag(sk, SOCK_DEAD)) 1016 sk->sk_data_ready(sk); 1017 1018 bh_unlock_sock(sk); 1019 1020 nr_insert_socket(make); 1021 1022 nr_start_heartbeat(make); 1023 nr_start_idletimer(make); 1024 1025 return 1; 1026 } 1027 1028 static int nr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1029 { 1030 struct sock *sk = sock->sk; 1031 struct nr_sock *nr = nr_sk(sk); 1032 DECLARE_SOCKADDR(struct sockaddr_ax25 *, usax, msg->msg_name); 1033 int err; 1034 struct sockaddr_ax25 sax; 1035 struct sk_buff *skb; 1036 unsigned char *asmptr; 1037 int size; 1038 1039 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT)) 1040 return -EINVAL; 1041 1042 lock_sock(sk); 1043 if (sock_flag(sk, SOCK_ZAPPED)) { 1044 err = -EADDRNOTAVAIL; 1045 goto out; 1046 } 1047 1048 if (sk->sk_shutdown & SEND_SHUTDOWN) { 1049 send_sig(SIGPIPE, current, 0); 1050 err = -EPIPE; 1051 goto out; 1052 } 1053 1054 if (nr->device == NULL) { 1055 err = -ENETUNREACH; 1056 goto out; 1057 } 1058 1059 if (usax) { 1060 if (msg->msg_namelen < sizeof(sax)) { 1061 err = -EINVAL; 1062 goto out; 1063 } 1064 sax = *usax; 1065 if (ax25cmp(&nr->dest_addr, &sax.sax25_call) != 0) { 1066 err = -EISCONN; 1067 goto out; 1068 } 1069 if (sax.sax25_family != AF_NETROM) { 1070 err = -EINVAL; 1071 goto out; 1072 } 1073 } else { 1074 if (sk->sk_state != TCP_ESTABLISHED) { 1075 err = -ENOTCONN; 1076 goto out; 1077 } 1078 sax.sax25_family = AF_NETROM; 1079 sax.sax25_call = nr->dest_addr; 1080 } 1081 1082 /* Build a packet - the conventional user limit is 236 bytes. We can 1083 do ludicrously large NetROM frames but must not overflow */ 1084 if (len > 65536) { 1085 err = -EMSGSIZE; 1086 goto out; 1087 } 1088 1089 size = len + NR_NETWORK_LEN + NR_TRANSPORT_LEN; 1090 1091 if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL) 1092 goto out; 1093 1094 skb_reserve(skb, size - len); 1095 skb_reset_transport_header(skb); 1096 1097 /* 1098 * Push down the NET/ROM header 1099 */ 1100 1101 asmptr = skb_push(skb, NR_TRANSPORT_LEN); 1102 1103 /* Build a NET/ROM Transport header */ 1104 1105 *asmptr++ = nr->your_index; 1106 *asmptr++ = nr->your_id; 1107 *asmptr++ = 0; /* To be filled in later */ 1108 *asmptr++ = 0; /* Ditto */ 1109 *asmptr++ = NR_INFO; 1110 1111 /* 1112 * Put the data on the end 1113 */ 1114 skb_put(skb, len); 1115 1116 /* User data follows immediately after the NET/ROM transport header */ 1117 if (memcpy_from_msg(skb_transport_header(skb), msg, len)) { 1118 kfree_skb(skb); 1119 err = -EFAULT; 1120 goto out; 1121 } 1122 1123 if (sk->sk_state != TCP_ESTABLISHED) { 1124 kfree_skb(skb); 1125 err = -ENOTCONN; 1126 goto out; 1127 } 1128 1129 nr_output(sk, skb); /* Shove it onto the queue */ 1130 1131 err = len; 1132 out: 1133 release_sock(sk); 1134 return err; 1135 } 1136 1137 static int nr_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1138 int flags) 1139 { 1140 struct sock *sk = sock->sk; 1141 DECLARE_SOCKADDR(struct sockaddr_ax25 *, sax, msg->msg_name); 1142 size_t copied; 1143 struct sk_buff *skb; 1144 int er; 1145 1146 /* 1147 * This works for seqpacket too. The receiver has ordered the queue for 1148 * us! We do one quick check first though 1149 */ 1150 1151 lock_sock(sk); 1152 if (sk->sk_state != TCP_ESTABLISHED) { 1153 release_sock(sk); 1154 return -ENOTCONN; 1155 } 1156 1157 /* Now we can treat all alike */ 1158 if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) { 1159 release_sock(sk); 1160 return er; 1161 } 1162 1163 skb_reset_transport_header(skb); 1164 copied = skb->len; 1165 1166 if (copied > size) { 1167 copied = size; 1168 msg->msg_flags |= MSG_TRUNC; 1169 } 1170 1171 er = skb_copy_datagram_msg(skb, 0, msg, copied); 1172 if (er < 0) { 1173 skb_free_datagram(sk, skb); 1174 release_sock(sk); 1175 return er; 1176 } 1177 1178 if (sax != NULL) { 1179 memset(sax, 0, sizeof(*sax)); 1180 sax->sax25_family = AF_NETROM; 1181 skb_copy_from_linear_data_offset(skb, 7, sax->sax25_call.ax25_call, 1182 AX25_ADDR_LEN); 1183 msg->msg_namelen = sizeof(*sax); 1184 } 1185 1186 skb_free_datagram(sk, skb); 1187 1188 release_sock(sk); 1189 return copied; 1190 } 1191 1192 1193 static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1194 { 1195 struct sock *sk = sock->sk; 1196 void __user *argp = (void __user *)arg; 1197 int ret; 1198 1199 switch (cmd) { 1200 case TIOCOUTQ: { 1201 long amount; 1202 1203 lock_sock(sk); 1204 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 1205 if (amount < 0) 1206 amount = 0; 1207 release_sock(sk); 1208 return put_user(amount, (int __user *)argp); 1209 } 1210 1211 case TIOCINQ: { 1212 struct sk_buff *skb; 1213 long amount = 0L; 1214 1215 lock_sock(sk); 1216 /* These two are safe on a single CPU system as only user tasks fiddle here */ 1217 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) 1218 amount = skb->len; 1219 release_sock(sk); 1220 return put_user(amount, (int __user *)argp); 1221 } 1222 1223 case SIOCGSTAMP: 1224 lock_sock(sk); 1225 ret = sock_get_timestamp(sk, argp); 1226 release_sock(sk); 1227 return ret; 1228 1229 case SIOCGSTAMPNS: 1230 lock_sock(sk); 1231 ret = sock_get_timestampns(sk, argp); 1232 release_sock(sk); 1233 return ret; 1234 1235 case SIOCGIFADDR: 1236 case SIOCSIFADDR: 1237 case SIOCGIFDSTADDR: 1238 case SIOCSIFDSTADDR: 1239 case SIOCGIFBRDADDR: 1240 case SIOCSIFBRDADDR: 1241 case SIOCGIFNETMASK: 1242 case SIOCSIFNETMASK: 1243 case SIOCGIFMETRIC: 1244 case SIOCSIFMETRIC: 1245 return -EINVAL; 1246 1247 case SIOCADDRT: 1248 case SIOCDELRT: 1249 case SIOCNRDECOBS: 1250 if (!capable(CAP_NET_ADMIN)) 1251 return -EPERM; 1252 return nr_rt_ioctl(cmd, argp); 1253 1254 default: 1255 return -ENOIOCTLCMD; 1256 } 1257 1258 return 0; 1259 } 1260 1261 #ifdef CONFIG_PROC_FS 1262 1263 static void *nr_info_start(struct seq_file *seq, loff_t *pos) 1264 { 1265 spin_lock_bh(&nr_list_lock); 1266 return seq_hlist_start_head(&nr_list, *pos); 1267 } 1268 1269 static void *nr_info_next(struct seq_file *seq, void *v, loff_t *pos) 1270 { 1271 return seq_hlist_next(v, &nr_list, pos); 1272 } 1273 1274 static void nr_info_stop(struct seq_file *seq, void *v) 1275 { 1276 spin_unlock_bh(&nr_list_lock); 1277 } 1278 1279 static int nr_info_show(struct seq_file *seq, void *v) 1280 { 1281 struct sock *s = sk_entry(v); 1282 struct net_device *dev; 1283 struct nr_sock *nr; 1284 const char *devname; 1285 char buf[11]; 1286 1287 if (v == SEQ_START_TOKEN) 1288 seq_puts(seq, 1289 "user_addr dest_node src_node dev my your st vs vr va t1 t2 t4 idle n2 wnd Snd-Q Rcv-Q inode\n"); 1290 1291 else { 1292 1293 bh_lock_sock(s); 1294 nr = nr_sk(s); 1295 1296 if ((dev = nr->device) == NULL) 1297 devname = "???"; 1298 else 1299 devname = dev->name; 1300 1301 seq_printf(seq, "%-9s ", ax2asc(buf, &nr->user_addr)); 1302 seq_printf(seq, "%-9s ", ax2asc(buf, &nr->dest_addr)); 1303 seq_printf(seq, 1304 "%-9s %-3s %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n", 1305 ax2asc(buf, &nr->source_addr), 1306 devname, 1307 nr->my_index, 1308 nr->my_id, 1309 nr->your_index, 1310 nr->your_id, 1311 nr->state, 1312 nr->vs, 1313 nr->vr, 1314 nr->va, 1315 ax25_display_timer(&nr->t1timer) / HZ, 1316 nr->t1 / HZ, 1317 ax25_display_timer(&nr->t2timer) / HZ, 1318 nr->t2 / HZ, 1319 ax25_display_timer(&nr->t4timer) / HZ, 1320 nr->t4 / HZ, 1321 ax25_display_timer(&nr->idletimer) / (60 * HZ), 1322 nr->idle / (60 * HZ), 1323 nr->n2count, 1324 nr->n2, 1325 nr->window, 1326 sk_wmem_alloc_get(s), 1327 sk_rmem_alloc_get(s), 1328 s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L); 1329 1330 bh_unlock_sock(s); 1331 } 1332 return 0; 1333 } 1334 1335 static const struct seq_operations nr_info_seqops = { 1336 .start = nr_info_start, 1337 .next = nr_info_next, 1338 .stop = nr_info_stop, 1339 .show = nr_info_show, 1340 }; 1341 #endif /* CONFIG_PROC_FS */ 1342 1343 static const struct net_proto_family nr_family_ops = { 1344 .family = PF_NETROM, 1345 .create = nr_create, 1346 .owner = THIS_MODULE, 1347 }; 1348 1349 static const struct proto_ops nr_proto_ops = { 1350 .family = PF_NETROM, 1351 .owner = THIS_MODULE, 1352 .release = nr_release, 1353 .bind = nr_bind, 1354 .connect = nr_connect, 1355 .socketpair = sock_no_socketpair, 1356 .accept = nr_accept, 1357 .getname = nr_getname, 1358 .poll = datagram_poll, 1359 .ioctl = nr_ioctl, 1360 .listen = nr_listen, 1361 .shutdown = sock_no_shutdown, 1362 .setsockopt = nr_setsockopt, 1363 .getsockopt = nr_getsockopt, 1364 .sendmsg = nr_sendmsg, 1365 .recvmsg = nr_recvmsg, 1366 .mmap = sock_no_mmap, 1367 .sendpage = sock_no_sendpage, 1368 }; 1369 1370 static struct notifier_block nr_dev_notifier = { 1371 .notifier_call = nr_device_event, 1372 }; 1373 1374 static struct net_device **dev_nr; 1375 1376 static struct ax25_protocol nr_pid = { 1377 .pid = AX25_P_NETROM, 1378 .func = nr_route_frame 1379 }; 1380 1381 static struct ax25_linkfail nr_linkfail_notifier = { 1382 .func = nr_link_failed, 1383 }; 1384 1385 static int __init nr_proto_init(void) 1386 { 1387 int i; 1388 int rc = proto_register(&nr_proto, 0); 1389 1390 if (rc != 0) 1391 goto out; 1392 1393 if (nr_ndevs > 0x7fffffff/sizeof(struct net_device *)) { 1394 printk(KERN_ERR "NET/ROM: nr_proto_init - nr_ndevs parameter to large\n"); 1395 return -1; 1396 } 1397 1398 dev_nr = kcalloc(nr_ndevs, sizeof(struct net_device *), GFP_KERNEL); 1399 if (dev_nr == NULL) { 1400 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device array\n"); 1401 return -1; 1402 } 1403 1404 for (i = 0; i < nr_ndevs; i++) { 1405 char name[IFNAMSIZ]; 1406 struct net_device *dev; 1407 1408 sprintf(name, "nr%d", i); 1409 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, nr_setup); 1410 if (!dev) { 1411 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device structure\n"); 1412 goto fail; 1413 } 1414 1415 dev->base_addr = i; 1416 if (register_netdev(dev)) { 1417 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register network device\n"); 1418 free_netdev(dev); 1419 goto fail; 1420 } 1421 nr_set_lockdep_key(dev); 1422 dev_nr[i] = dev; 1423 } 1424 1425 if (sock_register(&nr_family_ops)) { 1426 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register socket family\n"); 1427 goto fail; 1428 } 1429 1430 register_netdevice_notifier(&nr_dev_notifier); 1431 1432 ax25_register_pid(&nr_pid); 1433 ax25_linkfail_register(&nr_linkfail_notifier); 1434 1435 #ifdef CONFIG_SYSCTL 1436 nr_register_sysctl(); 1437 #endif 1438 1439 nr_loopback_init(); 1440 1441 proc_create_seq("nr", 0444, init_net.proc_net, &nr_info_seqops); 1442 proc_create_seq("nr_neigh", 0444, init_net.proc_net, &nr_neigh_seqops); 1443 proc_create_seq("nr_nodes", 0444, init_net.proc_net, &nr_node_seqops); 1444 out: 1445 return rc; 1446 fail: 1447 while (--i >= 0) { 1448 unregister_netdev(dev_nr[i]); 1449 free_netdev(dev_nr[i]); 1450 } 1451 kfree(dev_nr); 1452 proto_unregister(&nr_proto); 1453 rc = -1; 1454 goto out; 1455 } 1456 1457 module_init(nr_proto_init); 1458 1459 module_param(nr_ndevs, int, 0); 1460 MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices"); 1461 1462 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>"); 1463 MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol"); 1464 MODULE_LICENSE("GPL"); 1465 MODULE_ALIAS_NETPROTO(PF_NETROM); 1466 1467 static void __exit nr_exit(void) 1468 { 1469 int i; 1470 1471 remove_proc_entry("nr", init_net.proc_net); 1472 remove_proc_entry("nr_neigh", init_net.proc_net); 1473 remove_proc_entry("nr_nodes", init_net.proc_net); 1474 nr_loopback_clear(); 1475 1476 nr_rt_free(); 1477 1478 #ifdef CONFIG_SYSCTL 1479 nr_unregister_sysctl(); 1480 #endif 1481 1482 ax25_linkfail_release(&nr_linkfail_notifier); 1483 ax25_protocol_release(AX25_P_NETROM); 1484 1485 unregister_netdevice_notifier(&nr_dev_notifier); 1486 1487 sock_unregister(PF_NETROM); 1488 1489 for (i = 0; i < nr_ndevs; i++) { 1490 struct net_device *dev = dev_nr[i]; 1491 if (dev) { 1492 unregister_netdev(dev); 1493 free_netdev(dev); 1494 } 1495 } 1496 1497 kfree(dev_nr); 1498 proto_unregister(&nr_proto); 1499 } 1500 module_exit(nr_exit); 1501