1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License as published by 4 * the Free Software Foundation; either version 2 of the License, or 5 * (at your option) any later version. 6 * 7 * Copyright Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk) 8 * Copyright Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk) 9 * Copyright Darryl Miles G7LED (dlm@g7led.demon.co.uk) 10 */ 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/capability.h> 14 #include <linux/errno.h> 15 #include <linux/types.h> 16 #include <linux/socket.h> 17 #include <linux/in.h> 18 #include <linux/slab.h> 19 #include <linux/kernel.h> 20 #include <linux/sched/signal.h> 21 #include <linux/timer.h> 22 #include <linux/string.h> 23 #include <linux/sockios.h> 24 #include <linux/net.h> 25 #include <linux/stat.h> 26 #include <net/ax25.h> 27 #include <linux/inet.h> 28 #include <linux/netdevice.h> 29 #include <linux/if_arp.h> 30 #include <linux/skbuff.h> 31 #include <net/net_namespace.h> 32 #include <net/sock.h> 33 #include <linux/uaccess.h> 34 #include <linux/fcntl.h> 35 #include <linux/termios.h> /* For TIOCINQ/OUTQ */ 36 #include <linux/mm.h> 37 #include <linux/interrupt.h> 38 #include <linux/notifier.h> 39 #include <net/netrom.h> 40 #include <linux/proc_fs.h> 41 #include <linux/seq_file.h> 42 #include <net/ip.h> 43 #include <net/tcp_states.h> 44 #include <net/arp.h> 45 #include <linux/init.h> 46 47 static int nr_ndevs = 4; 48 49 int sysctl_netrom_default_path_quality = NR_DEFAULT_QUAL; 50 int sysctl_netrom_obsolescence_count_initialiser = NR_DEFAULT_OBS; 51 int sysctl_netrom_network_ttl_initialiser = NR_DEFAULT_TTL; 52 int sysctl_netrom_transport_timeout = NR_DEFAULT_T1; 53 int sysctl_netrom_transport_maximum_tries = NR_DEFAULT_N2; 54 int sysctl_netrom_transport_acknowledge_delay = NR_DEFAULT_T2; 55 int sysctl_netrom_transport_busy_delay = NR_DEFAULT_T4; 56 int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW; 57 int sysctl_netrom_transport_no_activity_timeout = NR_DEFAULT_IDLE; 58 int sysctl_netrom_routing_control = NR_DEFAULT_ROUTING; 59 int sysctl_netrom_link_fails_count = NR_DEFAULT_FAILS; 60 int sysctl_netrom_reset_circuit = NR_DEFAULT_RESET; 61 62 static unsigned short circuit = 0x101; 63 64 static HLIST_HEAD(nr_list); 65 static DEFINE_SPINLOCK(nr_list_lock); 66 67 static const struct proto_ops nr_proto_ops; 68 69 /* 70 * NETROM network devices are virtual network devices encapsulating NETROM 71 * frames into AX.25 which will be sent through an AX.25 device, so form a 72 * special "super class" of normal net devices; split their locks off into a 73 * separate class since they always nest. 74 */ 75 static struct lock_class_key nr_netdev_xmit_lock_key; 76 static struct lock_class_key nr_netdev_addr_lock_key; 77 78 static void nr_set_lockdep_one(struct net_device *dev, 79 struct netdev_queue *txq, 80 void *_unused) 81 { 82 lockdep_set_class(&txq->_xmit_lock, &nr_netdev_xmit_lock_key); 83 } 84 85 static void nr_set_lockdep_key(struct net_device *dev) 86 { 87 lockdep_set_class(&dev->addr_list_lock, &nr_netdev_addr_lock_key); 88 netdev_for_each_tx_queue(dev, nr_set_lockdep_one, NULL); 89 } 90 91 /* 92 * Socket removal during an interrupt is now safe. 93 */ 94 static void nr_remove_socket(struct sock *sk) 95 { 96 spin_lock_bh(&nr_list_lock); 97 sk_del_node_init(sk); 98 spin_unlock_bh(&nr_list_lock); 99 } 100 101 /* 102 * Kill all bound sockets on a dropped device. 103 */ 104 static void nr_kill_by_device(struct net_device *dev) 105 { 106 struct sock *s; 107 108 spin_lock_bh(&nr_list_lock); 109 sk_for_each(s, &nr_list) 110 if (nr_sk(s)->device == dev) 111 nr_disconnect(s, ENETUNREACH); 112 spin_unlock_bh(&nr_list_lock); 113 } 114 115 /* 116 * Handle device status changes. 117 */ 118 static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 119 { 120 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 121 122 if (!net_eq(dev_net(dev), &init_net)) 123 return NOTIFY_DONE; 124 125 if (event != NETDEV_DOWN) 126 return NOTIFY_DONE; 127 128 nr_kill_by_device(dev); 129 nr_rt_device_down(dev); 130 131 return NOTIFY_DONE; 132 } 133 134 /* 135 * Add a socket to the bound sockets list. 136 */ 137 static void nr_insert_socket(struct sock *sk) 138 { 139 spin_lock_bh(&nr_list_lock); 140 sk_add_node(sk, &nr_list); 141 spin_unlock_bh(&nr_list_lock); 142 } 143 144 /* 145 * Find a socket that wants to accept the Connect Request we just 146 * received. 147 */ 148 static struct sock *nr_find_listener(ax25_address *addr) 149 { 150 struct sock *s; 151 152 spin_lock_bh(&nr_list_lock); 153 sk_for_each(s, &nr_list) 154 if (!ax25cmp(&nr_sk(s)->source_addr, addr) && 155 s->sk_state == TCP_LISTEN) { 156 bh_lock_sock(s); 157 goto found; 158 } 159 s = NULL; 160 found: 161 spin_unlock_bh(&nr_list_lock); 162 return s; 163 } 164 165 /* 166 * Find a connected NET/ROM socket given my circuit IDs. 167 */ 168 static struct sock *nr_find_socket(unsigned char index, unsigned char id) 169 { 170 struct sock *s; 171 172 spin_lock_bh(&nr_list_lock); 173 sk_for_each(s, &nr_list) { 174 struct nr_sock *nr = nr_sk(s); 175 176 if (nr->my_index == index && nr->my_id == id) { 177 bh_lock_sock(s); 178 goto found; 179 } 180 } 181 s = NULL; 182 found: 183 spin_unlock_bh(&nr_list_lock); 184 return s; 185 } 186 187 /* 188 * Find a connected NET/ROM socket given their circuit IDs. 189 */ 190 static struct sock *nr_find_peer(unsigned char index, unsigned char id, 191 ax25_address *dest) 192 { 193 struct sock *s; 194 195 spin_lock_bh(&nr_list_lock); 196 sk_for_each(s, &nr_list) { 197 struct nr_sock *nr = nr_sk(s); 198 199 if (nr->your_index == index && nr->your_id == id && 200 !ax25cmp(&nr->dest_addr, dest)) { 201 bh_lock_sock(s); 202 goto found; 203 } 204 } 205 s = NULL; 206 found: 207 spin_unlock_bh(&nr_list_lock); 208 return s; 209 } 210 211 /* 212 * Find next free circuit ID. 213 */ 214 static unsigned short nr_find_next_circuit(void) 215 { 216 unsigned short id = circuit; 217 unsigned char i, j; 218 struct sock *sk; 219 220 for (;;) { 221 i = id / 256; 222 j = id % 256; 223 224 if (i != 0 && j != 0) { 225 if ((sk=nr_find_socket(i, j)) == NULL) 226 break; 227 bh_unlock_sock(sk); 228 } 229 230 id++; 231 } 232 233 return id; 234 } 235 236 /* 237 * Deferred destroy. 238 */ 239 void nr_destroy_socket(struct sock *); 240 241 /* 242 * Handler for deferred kills. 243 */ 244 static void nr_destroy_timer(struct timer_list *t) 245 { 246 struct sock *sk = from_timer(sk, t, sk_timer); 247 bh_lock_sock(sk); 248 sock_hold(sk); 249 nr_destroy_socket(sk); 250 bh_unlock_sock(sk); 251 sock_put(sk); 252 } 253 254 /* 255 * This is called from user mode and the timers. Thus it protects itself 256 * against interrupt users but doesn't worry about being called during 257 * work. Once it is removed from the queue no interrupt or bottom half 258 * will touch it and we are (fairly 8-) ) safe. 259 */ 260 void nr_destroy_socket(struct sock *sk) 261 { 262 struct sk_buff *skb; 263 264 nr_remove_socket(sk); 265 266 nr_stop_heartbeat(sk); 267 nr_stop_t1timer(sk); 268 nr_stop_t2timer(sk); 269 nr_stop_t4timer(sk); 270 nr_stop_idletimer(sk); 271 272 nr_clear_queues(sk); /* Flush the queues */ 273 274 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 275 if (skb->sk != sk) { /* A pending connection */ 276 /* Queue the unaccepted socket for death */ 277 sock_set_flag(skb->sk, SOCK_DEAD); 278 nr_start_heartbeat(skb->sk); 279 nr_sk(skb->sk)->state = NR_STATE_0; 280 } 281 282 kfree_skb(skb); 283 } 284 285 if (sk_has_allocations(sk)) { 286 /* Defer: outstanding buffers */ 287 sk->sk_timer.function = nr_destroy_timer; 288 sk->sk_timer.expires = jiffies + 2 * HZ; 289 add_timer(&sk->sk_timer); 290 } else 291 sock_put(sk); 292 } 293 294 /* 295 * Handling for system calls applied via the various interfaces to a 296 * NET/ROM socket object. 297 */ 298 299 static int nr_setsockopt(struct socket *sock, int level, int optname, 300 char __user *optval, unsigned int optlen) 301 { 302 struct sock *sk = sock->sk; 303 struct nr_sock *nr = nr_sk(sk); 304 unsigned long opt; 305 306 if (level != SOL_NETROM) 307 return -ENOPROTOOPT; 308 309 if (optlen < sizeof(unsigned int)) 310 return -EINVAL; 311 312 if (get_user(opt, (unsigned int __user *)optval)) 313 return -EFAULT; 314 315 switch (optname) { 316 case NETROM_T1: 317 if (opt < 1 || opt > ULONG_MAX / HZ) 318 return -EINVAL; 319 nr->t1 = opt * HZ; 320 return 0; 321 322 case NETROM_T2: 323 if (opt < 1 || opt > ULONG_MAX / HZ) 324 return -EINVAL; 325 nr->t2 = opt * HZ; 326 return 0; 327 328 case NETROM_N2: 329 if (opt < 1 || opt > 31) 330 return -EINVAL; 331 nr->n2 = opt; 332 return 0; 333 334 case NETROM_T4: 335 if (opt < 1 || opt > ULONG_MAX / HZ) 336 return -EINVAL; 337 nr->t4 = opt * HZ; 338 return 0; 339 340 case NETROM_IDLE: 341 if (opt > ULONG_MAX / (60 * HZ)) 342 return -EINVAL; 343 nr->idle = opt * 60 * HZ; 344 return 0; 345 346 default: 347 return -ENOPROTOOPT; 348 } 349 } 350 351 static int nr_getsockopt(struct socket *sock, int level, int optname, 352 char __user *optval, int __user *optlen) 353 { 354 struct sock *sk = sock->sk; 355 struct nr_sock *nr = nr_sk(sk); 356 int val = 0; 357 int len; 358 359 if (level != SOL_NETROM) 360 return -ENOPROTOOPT; 361 362 if (get_user(len, optlen)) 363 return -EFAULT; 364 365 if (len < 0) 366 return -EINVAL; 367 368 switch (optname) { 369 case NETROM_T1: 370 val = nr->t1 / HZ; 371 break; 372 373 case NETROM_T2: 374 val = nr->t2 / HZ; 375 break; 376 377 case NETROM_N2: 378 val = nr->n2; 379 break; 380 381 case NETROM_T4: 382 val = nr->t4 / HZ; 383 break; 384 385 case NETROM_IDLE: 386 val = nr->idle / (60 * HZ); 387 break; 388 389 default: 390 return -ENOPROTOOPT; 391 } 392 393 len = min_t(unsigned int, len, sizeof(int)); 394 395 if (put_user(len, optlen)) 396 return -EFAULT; 397 398 return copy_to_user(optval, &val, len) ? -EFAULT : 0; 399 } 400 401 static int nr_listen(struct socket *sock, int backlog) 402 { 403 struct sock *sk = sock->sk; 404 405 lock_sock(sk); 406 if (sk->sk_state != TCP_LISTEN) { 407 memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN); 408 sk->sk_max_ack_backlog = backlog; 409 sk->sk_state = TCP_LISTEN; 410 release_sock(sk); 411 return 0; 412 } 413 release_sock(sk); 414 415 return -EOPNOTSUPP; 416 } 417 418 static struct proto nr_proto = { 419 .name = "NETROM", 420 .owner = THIS_MODULE, 421 .obj_size = sizeof(struct nr_sock), 422 }; 423 424 static int nr_create(struct net *net, struct socket *sock, int protocol, 425 int kern) 426 { 427 struct sock *sk; 428 struct nr_sock *nr; 429 430 if (!net_eq(net, &init_net)) 431 return -EAFNOSUPPORT; 432 433 if (sock->type != SOCK_SEQPACKET || protocol != 0) 434 return -ESOCKTNOSUPPORT; 435 436 sk = sk_alloc(net, PF_NETROM, GFP_ATOMIC, &nr_proto, kern); 437 if (sk == NULL) 438 return -ENOMEM; 439 440 nr = nr_sk(sk); 441 442 sock_init_data(sock, sk); 443 444 sock->ops = &nr_proto_ops; 445 sk->sk_protocol = protocol; 446 447 skb_queue_head_init(&nr->ack_queue); 448 skb_queue_head_init(&nr->reseq_queue); 449 skb_queue_head_init(&nr->frag_queue); 450 451 nr_init_timers(sk); 452 453 nr->t1 = 454 msecs_to_jiffies(sysctl_netrom_transport_timeout); 455 nr->t2 = 456 msecs_to_jiffies(sysctl_netrom_transport_acknowledge_delay); 457 nr->n2 = 458 msecs_to_jiffies(sysctl_netrom_transport_maximum_tries); 459 nr->t4 = 460 msecs_to_jiffies(sysctl_netrom_transport_busy_delay); 461 nr->idle = 462 msecs_to_jiffies(sysctl_netrom_transport_no_activity_timeout); 463 nr->window = sysctl_netrom_transport_requested_window_size; 464 465 nr->bpqext = 1; 466 nr->state = NR_STATE_0; 467 468 return 0; 469 } 470 471 static struct sock *nr_make_new(struct sock *osk) 472 { 473 struct sock *sk; 474 struct nr_sock *nr, *onr; 475 476 if (osk->sk_type != SOCK_SEQPACKET) 477 return NULL; 478 479 sk = sk_alloc(sock_net(osk), PF_NETROM, GFP_ATOMIC, osk->sk_prot, 0); 480 if (sk == NULL) 481 return NULL; 482 483 nr = nr_sk(sk); 484 485 sock_init_data(NULL, sk); 486 487 sk->sk_type = osk->sk_type; 488 sk->sk_priority = osk->sk_priority; 489 sk->sk_protocol = osk->sk_protocol; 490 sk->sk_rcvbuf = osk->sk_rcvbuf; 491 sk->sk_sndbuf = osk->sk_sndbuf; 492 sk->sk_state = TCP_ESTABLISHED; 493 sock_copy_flags(sk, osk); 494 495 skb_queue_head_init(&nr->ack_queue); 496 skb_queue_head_init(&nr->reseq_queue); 497 skb_queue_head_init(&nr->frag_queue); 498 499 nr_init_timers(sk); 500 501 onr = nr_sk(osk); 502 503 nr->t1 = onr->t1; 504 nr->t2 = onr->t2; 505 nr->n2 = onr->n2; 506 nr->t4 = onr->t4; 507 nr->idle = onr->idle; 508 nr->window = onr->window; 509 510 nr->device = onr->device; 511 nr->bpqext = onr->bpqext; 512 513 return sk; 514 } 515 516 static int nr_release(struct socket *sock) 517 { 518 struct sock *sk = sock->sk; 519 struct nr_sock *nr; 520 521 if (sk == NULL) return 0; 522 523 sock_hold(sk); 524 sock_orphan(sk); 525 lock_sock(sk); 526 nr = nr_sk(sk); 527 528 switch (nr->state) { 529 case NR_STATE_0: 530 case NR_STATE_1: 531 case NR_STATE_2: 532 nr_disconnect(sk, 0); 533 nr_destroy_socket(sk); 534 break; 535 536 case NR_STATE_3: 537 nr_clear_queues(sk); 538 nr->n2count = 0; 539 nr_write_internal(sk, NR_DISCREQ); 540 nr_start_t1timer(sk); 541 nr_stop_t2timer(sk); 542 nr_stop_t4timer(sk); 543 nr_stop_idletimer(sk); 544 nr->state = NR_STATE_2; 545 sk->sk_state = TCP_CLOSE; 546 sk->sk_shutdown |= SEND_SHUTDOWN; 547 sk->sk_state_change(sk); 548 sock_set_flag(sk, SOCK_DESTROY); 549 break; 550 551 default: 552 break; 553 } 554 555 sock->sk = NULL; 556 release_sock(sk); 557 sock_put(sk); 558 559 return 0; 560 } 561 562 static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 563 { 564 struct sock *sk = sock->sk; 565 struct nr_sock *nr = nr_sk(sk); 566 struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr; 567 struct net_device *dev; 568 ax25_uid_assoc *user; 569 ax25_address *source; 570 571 lock_sock(sk); 572 if (!sock_flag(sk, SOCK_ZAPPED)) { 573 release_sock(sk); 574 return -EINVAL; 575 } 576 if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) { 577 release_sock(sk); 578 return -EINVAL; 579 } 580 if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) { 581 release_sock(sk); 582 return -EINVAL; 583 } 584 if (addr->fsa_ax25.sax25_family != AF_NETROM) { 585 release_sock(sk); 586 return -EINVAL; 587 } 588 if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) { 589 release_sock(sk); 590 return -EADDRNOTAVAIL; 591 } 592 593 /* 594 * Only the super user can set an arbitrary user callsign. 595 */ 596 if (addr->fsa_ax25.sax25_ndigis == 1) { 597 if (!capable(CAP_NET_BIND_SERVICE)) { 598 dev_put(dev); 599 release_sock(sk); 600 return -EPERM; 601 } 602 nr->user_addr = addr->fsa_digipeater[0]; 603 nr->source_addr = addr->fsa_ax25.sax25_call; 604 } else { 605 source = &addr->fsa_ax25.sax25_call; 606 607 user = ax25_findbyuid(current_euid()); 608 if (user) { 609 nr->user_addr = user->call; 610 ax25_uid_put(user); 611 } else { 612 if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) { 613 release_sock(sk); 614 dev_put(dev); 615 return -EPERM; 616 } 617 nr->user_addr = *source; 618 } 619 620 nr->source_addr = *source; 621 } 622 623 nr->device = dev; 624 nr_insert_socket(sk); 625 626 sock_reset_flag(sk, SOCK_ZAPPED); 627 dev_put(dev); 628 release_sock(sk); 629 630 return 0; 631 } 632 633 static int nr_connect(struct socket *sock, struct sockaddr *uaddr, 634 int addr_len, int flags) 635 { 636 struct sock *sk = sock->sk; 637 struct nr_sock *nr = nr_sk(sk); 638 struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr; 639 ax25_address *source = NULL; 640 ax25_uid_assoc *user; 641 struct net_device *dev; 642 int err = 0; 643 644 lock_sock(sk); 645 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { 646 sock->state = SS_CONNECTED; 647 goto out_release; /* Connect completed during a ERESTARTSYS event */ 648 } 649 650 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) { 651 sock->state = SS_UNCONNECTED; 652 err = -ECONNREFUSED; 653 goto out_release; 654 } 655 656 if (sk->sk_state == TCP_ESTABLISHED) { 657 err = -EISCONN; /* No reconnect on a seqpacket socket */ 658 goto out_release; 659 } 660 661 sk->sk_state = TCP_CLOSE; 662 sock->state = SS_UNCONNECTED; 663 664 if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) { 665 err = -EINVAL; 666 goto out_release; 667 } 668 if (addr->sax25_family != AF_NETROM) { 669 err = -EINVAL; 670 goto out_release; 671 } 672 if (sock_flag(sk, SOCK_ZAPPED)) { /* Must bind first - autobinding in this may or may not work */ 673 sock_reset_flag(sk, SOCK_ZAPPED); 674 675 if ((dev = nr_dev_first()) == NULL) { 676 err = -ENETUNREACH; 677 goto out_release; 678 } 679 source = (ax25_address *)dev->dev_addr; 680 681 user = ax25_findbyuid(current_euid()); 682 if (user) { 683 nr->user_addr = user->call; 684 ax25_uid_put(user); 685 } else { 686 if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) { 687 dev_put(dev); 688 err = -EPERM; 689 goto out_release; 690 } 691 nr->user_addr = *source; 692 } 693 694 nr->source_addr = *source; 695 nr->device = dev; 696 697 dev_put(dev); 698 nr_insert_socket(sk); /* Finish the bind */ 699 } 700 701 nr->dest_addr = addr->sax25_call; 702 703 release_sock(sk); 704 circuit = nr_find_next_circuit(); 705 lock_sock(sk); 706 707 nr->my_index = circuit / 256; 708 nr->my_id = circuit % 256; 709 710 circuit++; 711 712 /* Move to connecting socket, start sending Connect Requests */ 713 sock->state = SS_CONNECTING; 714 sk->sk_state = TCP_SYN_SENT; 715 716 nr_establish_data_link(sk); 717 718 nr->state = NR_STATE_1; 719 720 nr_start_heartbeat(sk); 721 722 /* Now the loop */ 723 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) { 724 err = -EINPROGRESS; 725 goto out_release; 726 } 727 728 /* 729 * A Connect Ack with Choke or timeout or failed routing will go to 730 * closed. 731 */ 732 if (sk->sk_state == TCP_SYN_SENT) { 733 DEFINE_WAIT(wait); 734 735 for (;;) { 736 prepare_to_wait(sk_sleep(sk), &wait, 737 TASK_INTERRUPTIBLE); 738 if (sk->sk_state != TCP_SYN_SENT) 739 break; 740 if (!signal_pending(current)) { 741 release_sock(sk); 742 schedule(); 743 lock_sock(sk); 744 continue; 745 } 746 err = -ERESTARTSYS; 747 break; 748 } 749 finish_wait(sk_sleep(sk), &wait); 750 if (err) 751 goto out_release; 752 } 753 754 if (sk->sk_state != TCP_ESTABLISHED) { 755 sock->state = SS_UNCONNECTED; 756 err = sock_error(sk); /* Always set at this point */ 757 goto out_release; 758 } 759 760 sock->state = SS_CONNECTED; 761 762 out_release: 763 release_sock(sk); 764 765 return err; 766 } 767 768 static int nr_accept(struct socket *sock, struct socket *newsock, int flags, 769 bool kern) 770 { 771 struct sk_buff *skb; 772 struct sock *newsk; 773 DEFINE_WAIT(wait); 774 struct sock *sk; 775 int err = 0; 776 777 if ((sk = sock->sk) == NULL) 778 return -EINVAL; 779 780 lock_sock(sk); 781 if (sk->sk_type != SOCK_SEQPACKET) { 782 err = -EOPNOTSUPP; 783 goto out_release; 784 } 785 786 if (sk->sk_state != TCP_LISTEN) { 787 err = -EINVAL; 788 goto out_release; 789 } 790 791 /* 792 * The write queue this time is holding sockets ready to use 793 * hooked into the SABM we saved 794 */ 795 for (;;) { 796 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 797 skb = skb_dequeue(&sk->sk_receive_queue); 798 if (skb) 799 break; 800 801 if (flags & O_NONBLOCK) { 802 err = -EWOULDBLOCK; 803 break; 804 } 805 if (!signal_pending(current)) { 806 release_sock(sk); 807 schedule(); 808 lock_sock(sk); 809 continue; 810 } 811 err = -ERESTARTSYS; 812 break; 813 } 814 finish_wait(sk_sleep(sk), &wait); 815 if (err) 816 goto out_release; 817 818 newsk = skb->sk; 819 sock_graft(newsk, newsock); 820 821 /* Now attach up the new socket */ 822 kfree_skb(skb); 823 sk_acceptq_removed(sk); 824 825 out_release: 826 release_sock(sk); 827 828 return err; 829 } 830 831 static int nr_getname(struct socket *sock, struct sockaddr *uaddr, 832 int *uaddr_len, int peer) 833 { 834 struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr; 835 struct sock *sk = sock->sk; 836 struct nr_sock *nr = nr_sk(sk); 837 838 memset(&sax->fsa_ax25, 0, sizeof(struct sockaddr_ax25)); 839 840 lock_sock(sk); 841 if (peer != 0) { 842 if (sk->sk_state != TCP_ESTABLISHED) { 843 release_sock(sk); 844 return -ENOTCONN; 845 } 846 sax->fsa_ax25.sax25_family = AF_NETROM; 847 sax->fsa_ax25.sax25_ndigis = 1; 848 sax->fsa_ax25.sax25_call = nr->user_addr; 849 memset(sax->fsa_digipeater, 0, sizeof(sax->fsa_digipeater)); 850 sax->fsa_digipeater[0] = nr->dest_addr; 851 *uaddr_len = sizeof(struct full_sockaddr_ax25); 852 } else { 853 sax->fsa_ax25.sax25_family = AF_NETROM; 854 sax->fsa_ax25.sax25_ndigis = 0; 855 sax->fsa_ax25.sax25_call = nr->source_addr; 856 *uaddr_len = sizeof(struct sockaddr_ax25); 857 } 858 release_sock(sk); 859 860 return 0; 861 } 862 863 int nr_rx_frame(struct sk_buff *skb, struct net_device *dev) 864 { 865 struct sock *sk; 866 struct sock *make; 867 struct nr_sock *nr_make; 868 ax25_address *src, *dest, *user; 869 unsigned short circuit_index, circuit_id; 870 unsigned short peer_circuit_index, peer_circuit_id; 871 unsigned short frametype, flags, window, timeout; 872 int ret; 873 874 skb->sk = NULL; /* Initially we don't know who it's for */ 875 876 /* 877 * skb->data points to the netrom frame start 878 */ 879 880 src = (ax25_address *)(skb->data + 0); 881 dest = (ax25_address *)(skb->data + 7); 882 883 circuit_index = skb->data[15]; 884 circuit_id = skb->data[16]; 885 peer_circuit_index = skb->data[17]; 886 peer_circuit_id = skb->data[18]; 887 frametype = skb->data[19] & 0x0F; 888 flags = skb->data[19] & 0xF0; 889 890 /* 891 * Check for an incoming IP over NET/ROM frame. 892 */ 893 if (frametype == NR_PROTOEXT && 894 circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) { 895 skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN); 896 skb_reset_transport_header(skb); 897 898 return nr_rx_ip(skb, dev); 899 } 900 901 /* 902 * Find an existing socket connection, based on circuit ID, if it's 903 * a Connect Request base it on their circuit ID. 904 * 905 * Circuit ID 0/0 is not valid but it could still be a "reset" for a 906 * circuit that no longer exists at the other end ... 907 */ 908 909 sk = NULL; 910 911 if (circuit_index == 0 && circuit_id == 0) { 912 if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG) 913 sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src); 914 } else { 915 if (frametype == NR_CONNREQ) 916 sk = nr_find_peer(circuit_index, circuit_id, src); 917 else 918 sk = nr_find_socket(circuit_index, circuit_id); 919 } 920 921 if (sk != NULL) { 922 skb_reset_transport_header(skb); 923 924 if (frametype == NR_CONNACK && skb->len == 22) 925 nr_sk(sk)->bpqext = 1; 926 else 927 nr_sk(sk)->bpqext = 0; 928 929 ret = nr_process_rx_frame(sk, skb); 930 bh_unlock_sock(sk); 931 return ret; 932 } 933 934 /* 935 * Now it should be a CONNREQ. 936 */ 937 if (frametype != NR_CONNREQ) { 938 /* 939 * Here it would be nice to be able to send a reset but 940 * NET/ROM doesn't have one. We've tried to extend the protocol 941 * by sending NR_CONNACK | NR_CHOKE_FLAGS replies but that 942 * apparently kills BPQ boxes... :-( 943 * So now we try to follow the established behaviour of 944 * G8PZT's Xrouter which is sending packets with command type 7 945 * as an extension of the protocol. 946 */ 947 if (sysctl_netrom_reset_circuit && 948 (frametype != NR_RESET || flags != 0)) 949 nr_transmit_reset(skb, 1); 950 951 return 0; 952 } 953 954 sk = nr_find_listener(dest); 955 956 user = (ax25_address *)(skb->data + 21); 957 958 if (sk == NULL || sk_acceptq_is_full(sk) || 959 (make = nr_make_new(sk)) == NULL) { 960 nr_transmit_refusal(skb, 0); 961 if (sk) 962 bh_unlock_sock(sk); 963 return 0; 964 } 965 966 window = skb->data[20]; 967 968 skb->sk = make; 969 make->sk_state = TCP_ESTABLISHED; 970 971 /* Fill in his circuit details */ 972 nr_make = nr_sk(make); 973 nr_make->source_addr = *dest; 974 nr_make->dest_addr = *src; 975 nr_make->user_addr = *user; 976 977 nr_make->your_index = circuit_index; 978 nr_make->your_id = circuit_id; 979 980 bh_unlock_sock(sk); 981 circuit = nr_find_next_circuit(); 982 bh_lock_sock(sk); 983 984 nr_make->my_index = circuit / 256; 985 nr_make->my_id = circuit % 256; 986 987 circuit++; 988 989 /* Window negotiation */ 990 if (window < nr_make->window) 991 nr_make->window = window; 992 993 /* L4 timeout negotiation */ 994 if (skb->len == 37) { 995 timeout = skb->data[36] * 256 + skb->data[35]; 996 if (timeout * HZ < nr_make->t1) 997 nr_make->t1 = timeout * HZ; 998 nr_make->bpqext = 1; 999 } else { 1000 nr_make->bpqext = 0; 1001 } 1002 1003 nr_write_internal(make, NR_CONNACK); 1004 1005 nr_make->condition = 0x00; 1006 nr_make->vs = 0; 1007 nr_make->va = 0; 1008 nr_make->vr = 0; 1009 nr_make->vl = 0; 1010 nr_make->state = NR_STATE_3; 1011 sk_acceptq_added(sk); 1012 skb_queue_head(&sk->sk_receive_queue, skb); 1013 1014 if (!sock_flag(sk, SOCK_DEAD)) 1015 sk->sk_data_ready(sk); 1016 1017 bh_unlock_sock(sk); 1018 1019 nr_insert_socket(make); 1020 1021 nr_start_heartbeat(make); 1022 nr_start_idletimer(make); 1023 1024 return 1; 1025 } 1026 1027 static int nr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1028 { 1029 struct sock *sk = sock->sk; 1030 struct nr_sock *nr = nr_sk(sk); 1031 DECLARE_SOCKADDR(struct sockaddr_ax25 *, usax, msg->msg_name); 1032 int err; 1033 struct sockaddr_ax25 sax; 1034 struct sk_buff *skb; 1035 unsigned char *asmptr; 1036 int size; 1037 1038 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT)) 1039 return -EINVAL; 1040 1041 lock_sock(sk); 1042 if (sock_flag(sk, SOCK_ZAPPED)) { 1043 err = -EADDRNOTAVAIL; 1044 goto out; 1045 } 1046 1047 if (sk->sk_shutdown & SEND_SHUTDOWN) { 1048 send_sig(SIGPIPE, current, 0); 1049 err = -EPIPE; 1050 goto out; 1051 } 1052 1053 if (nr->device == NULL) { 1054 err = -ENETUNREACH; 1055 goto out; 1056 } 1057 1058 if (usax) { 1059 if (msg->msg_namelen < sizeof(sax)) { 1060 err = -EINVAL; 1061 goto out; 1062 } 1063 sax = *usax; 1064 if (ax25cmp(&nr->dest_addr, &sax.sax25_call) != 0) { 1065 err = -EISCONN; 1066 goto out; 1067 } 1068 if (sax.sax25_family != AF_NETROM) { 1069 err = -EINVAL; 1070 goto out; 1071 } 1072 } else { 1073 if (sk->sk_state != TCP_ESTABLISHED) { 1074 err = -ENOTCONN; 1075 goto out; 1076 } 1077 sax.sax25_family = AF_NETROM; 1078 sax.sax25_call = nr->dest_addr; 1079 } 1080 1081 /* Build a packet - the conventional user limit is 236 bytes. We can 1082 do ludicrously large NetROM frames but must not overflow */ 1083 if (len > 65536) { 1084 err = -EMSGSIZE; 1085 goto out; 1086 } 1087 1088 size = len + NR_NETWORK_LEN + NR_TRANSPORT_LEN; 1089 1090 if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL) 1091 goto out; 1092 1093 skb_reserve(skb, size - len); 1094 skb_reset_transport_header(skb); 1095 1096 /* 1097 * Push down the NET/ROM header 1098 */ 1099 1100 asmptr = skb_push(skb, NR_TRANSPORT_LEN); 1101 1102 /* Build a NET/ROM Transport header */ 1103 1104 *asmptr++ = nr->your_index; 1105 *asmptr++ = nr->your_id; 1106 *asmptr++ = 0; /* To be filled in later */ 1107 *asmptr++ = 0; /* Ditto */ 1108 *asmptr++ = NR_INFO; 1109 1110 /* 1111 * Put the data on the end 1112 */ 1113 skb_put(skb, len); 1114 1115 /* User data follows immediately after the NET/ROM transport header */ 1116 if (memcpy_from_msg(skb_transport_header(skb), msg, len)) { 1117 kfree_skb(skb); 1118 err = -EFAULT; 1119 goto out; 1120 } 1121 1122 if (sk->sk_state != TCP_ESTABLISHED) { 1123 kfree_skb(skb); 1124 err = -ENOTCONN; 1125 goto out; 1126 } 1127 1128 nr_output(sk, skb); /* Shove it onto the queue */ 1129 1130 err = len; 1131 out: 1132 release_sock(sk); 1133 return err; 1134 } 1135 1136 static int nr_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1137 int flags) 1138 { 1139 struct sock *sk = sock->sk; 1140 DECLARE_SOCKADDR(struct sockaddr_ax25 *, sax, msg->msg_name); 1141 size_t copied; 1142 struct sk_buff *skb; 1143 int er; 1144 1145 /* 1146 * This works for seqpacket too. The receiver has ordered the queue for 1147 * us! We do one quick check first though 1148 */ 1149 1150 lock_sock(sk); 1151 if (sk->sk_state != TCP_ESTABLISHED) { 1152 release_sock(sk); 1153 return -ENOTCONN; 1154 } 1155 1156 /* Now we can treat all alike */ 1157 if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) { 1158 release_sock(sk); 1159 return er; 1160 } 1161 1162 skb_reset_transport_header(skb); 1163 copied = skb->len; 1164 1165 if (copied > size) { 1166 copied = size; 1167 msg->msg_flags |= MSG_TRUNC; 1168 } 1169 1170 er = skb_copy_datagram_msg(skb, 0, msg, copied); 1171 if (er < 0) { 1172 skb_free_datagram(sk, skb); 1173 release_sock(sk); 1174 return er; 1175 } 1176 1177 if (sax != NULL) { 1178 memset(sax, 0, sizeof(*sax)); 1179 sax->sax25_family = AF_NETROM; 1180 skb_copy_from_linear_data_offset(skb, 7, sax->sax25_call.ax25_call, 1181 AX25_ADDR_LEN); 1182 msg->msg_namelen = sizeof(*sax); 1183 } 1184 1185 skb_free_datagram(sk, skb); 1186 1187 release_sock(sk); 1188 return copied; 1189 } 1190 1191 1192 static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1193 { 1194 struct sock *sk = sock->sk; 1195 void __user *argp = (void __user *)arg; 1196 int ret; 1197 1198 switch (cmd) { 1199 case TIOCOUTQ: { 1200 long amount; 1201 1202 lock_sock(sk); 1203 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 1204 if (amount < 0) 1205 amount = 0; 1206 release_sock(sk); 1207 return put_user(amount, (int __user *)argp); 1208 } 1209 1210 case TIOCINQ: { 1211 struct sk_buff *skb; 1212 long amount = 0L; 1213 1214 lock_sock(sk); 1215 /* These two are safe on a single CPU system as only user tasks fiddle here */ 1216 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) 1217 amount = skb->len; 1218 release_sock(sk); 1219 return put_user(amount, (int __user *)argp); 1220 } 1221 1222 case SIOCGSTAMP: 1223 lock_sock(sk); 1224 ret = sock_get_timestamp(sk, argp); 1225 release_sock(sk); 1226 return ret; 1227 1228 case SIOCGSTAMPNS: 1229 lock_sock(sk); 1230 ret = sock_get_timestampns(sk, argp); 1231 release_sock(sk); 1232 return ret; 1233 1234 case SIOCGIFADDR: 1235 case SIOCSIFADDR: 1236 case SIOCGIFDSTADDR: 1237 case SIOCSIFDSTADDR: 1238 case SIOCGIFBRDADDR: 1239 case SIOCSIFBRDADDR: 1240 case SIOCGIFNETMASK: 1241 case SIOCSIFNETMASK: 1242 case SIOCGIFMETRIC: 1243 case SIOCSIFMETRIC: 1244 return -EINVAL; 1245 1246 case SIOCADDRT: 1247 case SIOCDELRT: 1248 case SIOCNRDECOBS: 1249 if (!capable(CAP_NET_ADMIN)) 1250 return -EPERM; 1251 return nr_rt_ioctl(cmd, argp); 1252 1253 default: 1254 return -ENOIOCTLCMD; 1255 } 1256 1257 return 0; 1258 } 1259 1260 #ifdef CONFIG_PROC_FS 1261 1262 static void *nr_info_start(struct seq_file *seq, loff_t *pos) 1263 { 1264 spin_lock_bh(&nr_list_lock); 1265 return seq_hlist_start_head(&nr_list, *pos); 1266 } 1267 1268 static void *nr_info_next(struct seq_file *seq, void *v, loff_t *pos) 1269 { 1270 return seq_hlist_next(v, &nr_list, pos); 1271 } 1272 1273 static void nr_info_stop(struct seq_file *seq, void *v) 1274 { 1275 spin_unlock_bh(&nr_list_lock); 1276 } 1277 1278 static int nr_info_show(struct seq_file *seq, void *v) 1279 { 1280 struct sock *s = sk_entry(v); 1281 struct net_device *dev; 1282 struct nr_sock *nr; 1283 const char *devname; 1284 char buf[11]; 1285 1286 if (v == SEQ_START_TOKEN) 1287 seq_puts(seq, 1288 "user_addr dest_node src_node dev my your st vs vr va t1 t2 t4 idle n2 wnd Snd-Q Rcv-Q inode\n"); 1289 1290 else { 1291 1292 bh_lock_sock(s); 1293 nr = nr_sk(s); 1294 1295 if ((dev = nr->device) == NULL) 1296 devname = "???"; 1297 else 1298 devname = dev->name; 1299 1300 seq_printf(seq, "%-9s ", ax2asc(buf, &nr->user_addr)); 1301 seq_printf(seq, "%-9s ", ax2asc(buf, &nr->dest_addr)); 1302 seq_printf(seq, 1303 "%-9s %-3s %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n", 1304 ax2asc(buf, &nr->source_addr), 1305 devname, 1306 nr->my_index, 1307 nr->my_id, 1308 nr->your_index, 1309 nr->your_id, 1310 nr->state, 1311 nr->vs, 1312 nr->vr, 1313 nr->va, 1314 ax25_display_timer(&nr->t1timer) / HZ, 1315 nr->t1 / HZ, 1316 ax25_display_timer(&nr->t2timer) / HZ, 1317 nr->t2 / HZ, 1318 ax25_display_timer(&nr->t4timer) / HZ, 1319 nr->t4 / HZ, 1320 ax25_display_timer(&nr->idletimer) / (60 * HZ), 1321 nr->idle / (60 * HZ), 1322 nr->n2count, 1323 nr->n2, 1324 nr->window, 1325 sk_wmem_alloc_get(s), 1326 sk_rmem_alloc_get(s), 1327 s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L); 1328 1329 bh_unlock_sock(s); 1330 } 1331 return 0; 1332 } 1333 1334 static const struct seq_operations nr_info_seqops = { 1335 .start = nr_info_start, 1336 .next = nr_info_next, 1337 .stop = nr_info_stop, 1338 .show = nr_info_show, 1339 }; 1340 1341 static int nr_info_open(struct inode *inode, struct file *file) 1342 { 1343 return seq_open(file, &nr_info_seqops); 1344 } 1345 1346 static const struct file_operations nr_info_fops = { 1347 .owner = THIS_MODULE, 1348 .open = nr_info_open, 1349 .read = seq_read, 1350 .llseek = seq_lseek, 1351 .release = seq_release, 1352 }; 1353 #endif /* CONFIG_PROC_FS */ 1354 1355 static const struct net_proto_family nr_family_ops = { 1356 .family = PF_NETROM, 1357 .create = nr_create, 1358 .owner = THIS_MODULE, 1359 }; 1360 1361 static const struct proto_ops nr_proto_ops = { 1362 .family = PF_NETROM, 1363 .owner = THIS_MODULE, 1364 .release = nr_release, 1365 .bind = nr_bind, 1366 .connect = nr_connect, 1367 .socketpair = sock_no_socketpair, 1368 .accept = nr_accept, 1369 .getname = nr_getname, 1370 .poll = datagram_poll, 1371 .ioctl = nr_ioctl, 1372 .listen = nr_listen, 1373 .shutdown = sock_no_shutdown, 1374 .setsockopt = nr_setsockopt, 1375 .getsockopt = nr_getsockopt, 1376 .sendmsg = nr_sendmsg, 1377 .recvmsg = nr_recvmsg, 1378 .mmap = sock_no_mmap, 1379 .sendpage = sock_no_sendpage, 1380 }; 1381 1382 static struct notifier_block nr_dev_notifier = { 1383 .notifier_call = nr_device_event, 1384 }; 1385 1386 static struct net_device **dev_nr; 1387 1388 static struct ax25_protocol nr_pid = { 1389 .pid = AX25_P_NETROM, 1390 .func = nr_route_frame 1391 }; 1392 1393 static struct ax25_linkfail nr_linkfail_notifier = { 1394 .func = nr_link_failed, 1395 }; 1396 1397 static int __init nr_proto_init(void) 1398 { 1399 int i; 1400 int rc = proto_register(&nr_proto, 0); 1401 1402 if (rc != 0) 1403 goto out; 1404 1405 if (nr_ndevs > 0x7fffffff/sizeof(struct net_device *)) { 1406 printk(KERN_ERR "NET/ROM: nr_proto_init - nr_ndevs parameter to large\n"); 1407 return -1; 1408 } 1409 1410 dev_nr = kzalloc(nr_ndevs * sizeof(struct net_device *), GFP_KERNEL); 1411 if (dev_nr == NULL) { 1412 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device array\n"); 1413 return -1; 1414 } 1415 1416 for (i = 0; i < nr_ndevs; i++) { 1417 char name[IFNAMSIZ]; 1418 struct net_device *dev; 1419 1420 sprintf(name, "nr%d", i); 1421 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, nr_setup); 1422 if (!dev) { 1423 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device structure\n"); 1424 goto fail; 1425 } 1426 1427 dev->base_addr = i; 1428 if (register_netdev(dev)) { 1429 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register network device\n"); 1430 free_netdev(dev); 1431 goto fail; 1432 } 1433 nr_set_lockdep_key(dev); 1434 dev_nr[i] = dev; 1435 } 1436 1437 if (sock_register(&nr_family_ops)) { 1438 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register socket family\n"); 1439 goto fail; 1440 } 1441 1442 register_netdevice_notifier(&nr_dev_notifier); 1443 1444 ax25_register_pid(&nr_pid); 1445 ax25_linkfail_register(&nr_linkfail_notifier); 1446 1447 #ifdef CONFIG_SYSCTL 1448 nr_register_sysctl(); 1449 #endif 1450 1451 nr_loopback_init(); 1452 1453 proc_create("nr", S_IRUGO, init_net.proc_net, &nr_info_fops); 1454 proc_create("nr_neigh", S_IRUGO, init_net.proc_net, &nr_neigh_fops); 1455 proc_create("nr_nodes", S_IRUGO, init_net.proc_net, &nr_nodes_fops); 1456 out: 1457 return rc; 1458 fail: 1459 while (--i >= 0) { 1460 unregister_netdev(dev_nr[i]); 1461 free_netdev(dev_nr[i]); 1462 } 1463 kfree(dev_nr); 1464 proto_unregister(&nr_proto); 1465 rc = -1; 1466 goto out; 1467 } 1468 1469 module_init(nr_proto_init); 1470 1471 module_param(nr_ndevs, int, 0); 1472 MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices"); 1473 1474 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>"); 1475 MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol"); 1476 MODULE_LICENSE("GPL"); 1477 MODULE_ALIAS_NETPROTO(PF_NETROM); 1478 1479 static void __exit nr_exit(void) 1480 { 1481 int i; 1482 1483 remove_proc_entry("nr", init_net.proc_net); 1484 remove_proc_entry("nr_neigh", init_net.proc_net); 1485 remove_proc_entry("nr_nodes", init_net.proc_net); 1486 nr_loopback_clear(); 1487 1488 nr_rt_free(); 1489 1490 #ifdef CONFIG_SYSCTL 1491 nr_unregister_sysctl(); 1492 #endif 1493 1494 ax25_linkfail_release(&nr_linkfail_notifier); 1495 ax25_protocol_release(AX25_P_NETROM); 1496 1497 unregister_netdevice_notifier(&nr_dev_notifier); 1498 1499 sock_unregister(PF_NETROM); 1500 1501 for (i = 0; i < nr_ndevs; i++) { 1502 struct net_device *dev = dev_nr[i]; 1503 if (dev) { 1504 unregister_netdev(dev); 1505 free_netdev(dev); 1506 } 1507 } 1508 1509 kfree(dev_nr); 1510 proto_unregister(&nr_proto); 1511 } 1512 module_exit(nr_exit); 1513